
Optimizing Big Scio Pipelines
(in Scala!)

Naheon Kim
6th March 2019



Who I am

‣ Data engineer at Spotify
‣ Was backend engineer in Korea



We lock privacy

‣ Padlock - Key management system
‣ Right to be forgotten

○ Make private data forgotten by wiping keys out

ENCRYPT(keyA, userA)

Padlock

Give me userA’s key!

UserA doesn’t want to!!!

Okay DECRYPT(keyA, encrypted_userA)



Event processing at Spotify

Event
Delivery 
System

Pseudonymization

Cloud Storage

Scio pseudonymization pipelines
for every event
run every hour



We use Scio

+more cool things

Scala

Google Cloud 
Dataflow

Scio

‣ Scala API for Apache Beam and
Google Cloud Dataflow

‣ Apache Beam
○ Unified model for batch and streaming 

processing
○ Dataflow : cloud-driven



Scio gives...

‣ Elegant syntax
‣ Stronger type safety
‣ In-house optimization



From Beam to Scio



Pseudonymize events

‣ Generalized Scio pipeline to pseudonymize any 
data set

‣ Join hourly event with hourly key dump

Event

Join Pseudony-
mized data

All keys



Technical challenges

‣ > 400 event types
‣ Various data size
‣ Users are not active all the time 



small event optimization



Optimize small event

Join is still slow

‣ Key dump is still big
○ 207M MAU (2018)

‣ Shuffling
○ Journey to find the same key
○ Network IO is expensive

I’m here,
my friend!!

Where is my
buddy?



Side input

sc.broadcast(m)

An additional input that your DoFn can access each time it 
processes an element in the input PCollection

Beam copies side input to every worker



Hash join: idea combined

HashJoin(big_left, small_right)

B1

worker

B2

worker

B3

worker

S S S

distribute
side input
copy

Bn

S

join



Verify hash join



Experimentation

‣ Giant and tiny data set
‣ Join them either by naive join or by hash join
‣ Monitor and compare resources

50 MB

51 GB

>15GB*5



Experimentation pipelines



Expected result

‣ Hash join is faster
‣ Can see different resource patterns



Expected result

‣ Hash join is faster : 30min > 10min
‣ Can see different resource patterns : YES!



Task scheduling

Hash join Naive join

Reading small input Reading big input
not started



Autoscale workers

Hash join Naive join

IO for small input



CPU

Hash join Naive join

100%
100%



Network traffic

Hash join

Received bytes at once

Naive join

In and out - do shuffle

received 

received 

sent 



Disk

Hash join Naive join

write

read 
write



hashJoin implementation
big_left.hashJoin(small_right)

1
2
3
4
5
6
7
8
9
10
11

// (every key-value from big_left, SideInputContext)



W00t! Small events are happy (:

Let’s optimize big event



Optimize big event

‣ They never fit in memory
‣ Turn the other side out : is it possible not to 

shuffle key dump?

JOIN(key_dump, small_event)

JOIN(big_event, key_dump)

No shuffle



Key dump shortcut

Users are not active all the time

User1, Event1

User1, Event2

User1, Event3

User1, Event5

User1, Event4

User2, Event1

User2, Event2

User3, Event1

User4, Event1

User1 🔑🔑🔑 
User2 🔑🔑🔑 
User3 🔑🔑🔑 
User4 🔑🔑🔑 
User5 🔑🔑🔑 
User6 🔑🔑🔑 
User7 🔑🔑🔑 
User8 🔑🔑🔑 
User10 🔑🔑🔑 
User11 🔑🔑🔑
User12 🔑🔑🔑
User13 🔑🔑🔑 
User14 🔑🔑🔑 
User15 🔑🔑🔑 



Sparkey join

‣ Summarize active users from the most active 
event

‣ Pre-generate hotset called ‘Sparkey’
○ You can think of it as disk cache

‣ Put Sparkey as side input and join



Let’s merge optimizations

HashJoin(key_dump, small_event)Event < 50MB

SparkeyJoin(keys_in_hotset, hotset)Users in hotset

SkewedJoin(key_dump, rest_event)

Yes

Yes

No

No Merge into
the final result



Let’s merge optimizations

HashJoin(key_dump, small_event)Event < 50MB

SparkeyJoin(keys_in_hotset, hotset)Users in hotset

SkewedJoin(key_dump, rest_event)

Yes

Yes

No

No Merge into
the final result

They are different join types.

Our codes are not messy…



Google is expensive.

We save a lot of money!



Lesson learned

‣ Spotify scale and technical challenges I’ve never 
seen before

‣ Don’t guess or imagine. Prove by making hands 
dirty and have fun



Thank you! : )


