Optimizing Big Scio Pipelines
(in Scala!)

Naheon Kim
6th March 2019

» Data engineer at Spotify

» Was backend engineer in Korea /// ‘\X\

et

N A

We lock privacyt. m

» Padlock - Key management system

» Right to be forgotten
o Make private data forgotten by wiping keys out

ENCRYPT(keyA, userA)

Give me userA’s key! Okay | DECRYPT(keyA, encrypted_userA)

i
Padlock
- UserA doesn’t want to!!!

Event processing at Spotify

Cloud Storage

Event Pseudonymization ee
Delivery
System
[]

Scio pseudonymization pipelines
for every event
run every hour

We use Scio

Scio

Choose your language...

+more cool things
» Scala API for Apache Beam and e m
Google Cloud Dataflow
» Apache Beam 3 Beam Model
o Unified model for batch and streaming
processing

o Dataflow : cloud-driven

Google Cloud
Dataflow
..and youru

» Elegant syntax
» Stronger type safety
» In-house optimization

From Beam to Scio

» Generalized Scio pipeline to pseudonymize any
data set
» Join hourly event with hourly key dump

e R
Event
- Y Pseudony-
— mized data
v
All keys

v

Technical challenges

» > 400 event types
» Various data size
» Users are not active all the time

small event optimization

Where is my
Join is still slow buddy?

» Key dump is still big [} [}
o 207M MAU (2018)

» Shuffling

o Journey to find the same key
o Network IO is expensive

I’'m here,
my friend!!

Side input

sc.broadcast(m)

Hash join: idea combined

HashJoin(big_left, small_right)

_A
-] e

worker worker worker

Verity hash join

Experimentation

» Giant and tiny data set
» Join them either by naive join or by hash join
» Monitor and compare resources

>15GB*5

\/

Experimentation pipelines

» Hash join is faster
» Can see different resource patterns

» Hash join is faster : 30min > 10min
» Can see different resource patterns : YES!

Task scheduling

Hash join

@ typedAvroFile@{HashJo... ~
Succeeded
1 min 32 sec

Reading small input

@ typedAvroFile@{HashJo...
Succeeded
15 sec

V] map@{HashJoinJob.sc...
Succeeded
9 sec

typedAvroFile@{HashJo... ¥
Not started

0se
Reading bfg input
not started
typedAvroFile@{HashJo...

Not started
0 sec

map@{HashJoinJob.sc...
Not started
0 sec

P I IV IIII I I I

hashjoin

4

Part running
1 hr 3 min 40 sec

Naive join

typedAvroFile@{Normal... ~
Running
50 sec

typedAvroFile@{Normal...
71,315 elements/s
12 sec

map@{NormalJoinJob....
71,315 elements/s
7 sec

OIS TA

join@{NormalJoinJob.s...
71,314 elements/s
7 sec

typedAvroFile@{Normal... ~
Running
24 min 31 sec

typedAvroFile@{Normal...
1,484,699 elements/s
8 min 10 sec

map@{NormalJoinJob....
1,484,699 elements/s
3 min 36 sec

join@{NormalJoinJob.s...
1,484,699 elements/s
3 min 23 sec

Autoscale workers

Hash join

" -

IO for small input

Naive join

2:50 2:55

3 PM

3:05

3:10

3:15

o == N W >~ O O

Hash join

CPU Usage

Naive join

CPU Usage

Network Traffic

Network traffic

Hash join

Received bytes at once

received

80MB/s

64MB/s

48MB/s

32MB/s

16MB/s

Naive join

In and out - do shuffle

Network Traffic

sent

received

80MB/s

64MB/s

48MB/s

32MB/s

16MB/s

Disk 1/0

Disk

Hash join

write

24MB/s

20MB/s

16MB/s

12MB/s

8MB/s

4MB/s

0

Naive join

Disk I/0

write

read

96MB/s

80MB/s

64MB/s

48MB/s

32MB/s

16MB/s

0

hashJoin implementation
big_left.hashJoin(small_right)

def hashJoin[W: Coder] (

s(side)

.iterator

that:

1iﬁorm {=>
S

val|side |= comblneAsMapSideInput(that)

(K, (v, W))1 {

SCollection[(K, W)1)(

vwCoder = Coder[(V,

| inlwithSideInputs(side)

)]

koder: Coder[K],

voder: Coder[V]):

SCollection[(K, (V, W))] =

, s) => // (every key-value from big_left, SidelnputContext)

}
.toSCollection

2gvoNorwWN -

“

.getOrElse(ArrayBuffer.empty[W])

.map(w => ([kv._l} ([kv._Z],EI])))

WOOt! Small events are happy (:

Let’s optimize blg event

» They never fit in memory
» Turn the other side out : is it possible not to
shuffle key dump?

No shuffle
JOIN(key_dump, small_event)
JOIN(big_event, key_dump)

Users are not active all the time

Usert 2209

User1, Eventl

User2 2R 9

User2, Eventl

User3 PR P

Userl, Event2

Userd B PP

User5 2 20

User3, Event1

Usere 2 R0

User1, Event3

User7 2R P

User8 2P0

User2, Event2

Useri0 2 20

User1, Event4

Userl1 222

User1i2 P2

User4, Eventl

Useri3 222

User1, Eventb

User14 @ 2@

Userls 2 2 2@

Summarize active users from the most active
event

Pre-generate hotset called ‘Sparkey’
o You can think of it as disk cache

Put Sparkey as side input and join

Let’s merge optimizations

Event < 50MB

No

HashJoin(key_dump, small_event)

-~ SparkeyJom(keys in_hotset, hotset) ‘x,

[e Merge/into"'/
. SkewedJoin(key_dump, rest_event) th,e/ﬁhal result

Let’s merge optimizations

They are different join types.

Our codes are not messy...

-
Google is expensive; ~- -
Ay~ g e —

» Spotify scale and technical challenges I’ve never
seen before

» Don’t guess or imagine. Prove by making hands
dirty and have fun

Thank you! :)

