

Chapter 8 Mobile Communication Networks

Prof. P. Tran-Gia

www3.informatik.uni-wuerzburg.de

2006

Chapter 8 Mobile Communications Networks

8.1	Introduction	
	8.1.1 8.1.2	History of mobile communication Fundamental concepts of mobile communication systems
		· · · · · · · · · · · · · · · · · · ·
	8.1.3	Multiplexing schemes in mobile communication networks
8.2	GSM-Technology	
	8.2.1	Characteristics and network structure
	8.2.2	Example for connection establishment
	8.2.3	GPRS: General Packet Radio Service
8.3	3rd Generation Mobile Networks - UMTS	
	8.3.1	Characteristics of 3rd generation mobile networks
	8.3.2	UMTS network architecture
	8.3.3	Fundamentals of (Wideband) CDMA
	8.3.4	Important control mechanisms in UMTS
	8.3.5	Soft capacity and coverage area

History of Mobile Communication

- ▶ 1895 Guglielmo Marconi : first demonstration of wireless telegraphy
- **1907**
 - Commercial transatlantic connections
 - Large base stations (30 · 100m high antennas)
- ▶ 1915 wireless voice communication New York San Francisco
- ▶ 1920 discovery of short-waves by Marconi: reflection at the ionosphere allows for smaller senders and receivers
- **1926**
 - First telephone inside train between Hamburg and Berlin
 - Wires parallel to the rails as antennas

Source: Jochen Schiller, Mobile Communications, Addison Wesley

Prof. Dr. P. Tran-Gia

3

History: Early Mobile Networks

- ▶ 1958 A-Netz in Germany
 - Analog, 160MHz, mobile originated connection establishment only
 - No handover, 80% area coverage, 11000 customers in 1971
- ▶ 1972 B-Net in Germany
 - Analog, 160MHz, net-oriented connections possible (location of mobile phone has to be known)
 - Also in A, NL and LUX, 13000 customers in Germany in 1979
- ▶ 1986 C-Netz in Germany (until 2000)
 - Analog voice transmission, 450MHz, handover possible,
 - Automatic determination of mobile phone location
 - FAX, modem, X.25, e-mail, 98% area coverage

Background and History

- ▶ 1992 introduction of GSM
 - In Germany as D1 and D2, digital frequency, 900MHz
 - Automatic localization of subscribers, handover,
 - Cellular structure, roaming
 - Nowadays in more than 170 countries worldwide
 - Data with 9.6kbit/s, FAX, voice, ...
- ▶ 1997 wireless local radio networks (WLAN IEEE802.11)
 - 1999 IEEE 802.11b
 - 2001 IEEE 802.11a
 - 2003 IEEE 802.11g
- ▶ 2000 GSM with higher data rates (HSCSD, GPRS)

Prof. Dr. P. Tran-Gia

E

Background and History

- ▶ 2000 UMTS auctions
- 2001 introduction of 3G systems
 - CDMA2000 in Korea
 - UMTS in Europe, FOMA in Japan
- 2001 wireless "Metropolitan Area Networks"
 - IEEE 802.16 MAN
 - 2001 IEEE 802.16-2001
 - 2004 IEEE 802.16-2004
- ▶ 2004 introduction of 3G in Germany
 - PC Card for UMTS
 - Services are still under development

Growth of Mobile Communication Systems

Prof. Dr. P. Tran-Gia

7

Mobile Subscribers (4Q2003)

Cellular Network Concept (McDonald, AT&T, 1978)

- ▶ Reason: Number of available frequencies is very limited (z.B. 124 frequency pairs in GSM)
- ▶ Solution: Segmentation of service area into cells
 - Spatial reuse of available frequencies (frequency reuse)
 - Introduction of regions concerning the reuse of frequencies
 - Handover or handoff: transfer of connection (control) crossing the cell border

Prof. Dr. P. Tran-Gia

9

Realistic Example of a Segmentation into Cells

Region of Wuerzburg

Highway

Coburg

Bamberg

Frequency Reuse Distance

- Consequence of segmenting the service area into cells
- ▶ With frequency multiplexing a number of frequencies is allocated to every cell
- Sufficiently large frequency reuse distance to minimize interferences

Prof. Dr. P. Tran-Gia

11

Frequency Allocation Method

- ► The existing frequencies (channel pairs) must be assigned to the cells of a cellular group according to a certain frequency allocation method
- Frequency allocation method:
 - Static frequency allocation
 - Allocation with borrowing policy: possibility for a highly loaded cell to borrow a channel from a neighboring less loaded cell
 - Dynamic frequency allocation: a new frequency requirement station emerges with every new connection; thereafter the frequency allocation has to be adapted
- ► Frequency allocation methods are in general complex (algorithm is NP complete)

Micro Cells, Macro Cells and Umbrella Cells

- Enhancement of the cellular concept
- Hierarchical systems for reducing the signaling effort

Prof. Dr. P. Tran-Gia

13

Multiplexing Schemes in Mobile Communication Networks

- ► FDMA (Frequency Division Multiple Access)
 - Separated, non overlapping frequency bands
 - Exclusive allocation of one frequency for the whole duration of a connection

FDMA/TDMA & Frequency Hopping

► FDMA/TDMA (Frequency/Time Division Multiple Access)

- Frequency band segmented into time slots
- Combination of time and frequency division multiplex
- Used in GSM systems combined with frequency hopping

Frequency hopping

- Change of frequency band every time frame according to predefined hopping sequence
- Improved robustness against frequency selective fading and interference
- Technically complex

Prof. Dr. P. Tran-Gia

15

Frequency Hopping

Multiplexing Schemes in Mobile Communication Networks

► SDMA (Space Division Multiple Access)

- Separating medium is the space, in which multiplexing is realized by directed (smart) antennas
- Steering of smart antennas (adaptive antenna arrays) is normally done electronically and not mechanically
- Combination with FDMA/TDMA or CDMA possible

Prof. Dr. P. Tran-Gia

17

Multiplexing Schemes in Mobile Communication Networks

► CDMA (Code Division Multiple Access)

- Used in cdmaOne and in UMTS
- Uses orthogonal codes
- Receiver filters the appropriate signal in the code space
- Signals from other stations seen as noise

Radio Propagation

- Radio waves are influenced by the following effects:
 - Reflections are caused by objects in the propagation path which are very large in comparison to the wave length (e.g. the surface of a building)
 - Diffractions are caused by objects of sizes approximately equal to the wave length
 - Shadowing effects are caused by impenetrable obstacles in the line of sight

Prof. Dr. P. Tran-Gia

19

Radio Propagation

Distance between sender and receiver

- ➤ Small-scale fading: due to small changes in position; the sum of the phases of the received signal is nearly random because of the multipath propagation. Variation of the received signal strength by approx. 30-40 dB
- ► Large-scale fading: on larger distances; the mean received signal strength decreases gradually because of propagation loss

Simple Radio Propagation Model

$PL(d) = PL(d_0) + 10 \text{ n log}(d/d_0) + X_{\sigma}$ (in dB)

PL: path loss as mean received signal strength

d: distance between sender and receiver

n: path loss exponent (in free space n = 2, typical $n \le 4$)

 d_0 : reference distance (1 km on macro cells, 100 m on micro cells)

 X_{σ} : lognormal shadowing, Gaussian RV with mean 0 dB

Prof. Dr. P. Tran-Gia