

Chapter 8.2 GSM-Technology

Prof. P. Tran-Gia

www3.informatik.uni-wuerzburg.de

2006

Chapter 8 Mobile Communications Networks

8.1	Introduction 8.1.1 History of mobile communication 8.1.2 Fundamental concepts of mobile communication systems 8.1.3 Multiplexing schemes in mobile communication networks	
8.2	GSM-Technology	
	 8.2.1 Characteristics and network structure 8.2.2 Example for connection establishment 8.2.3 GPRS: General Packet Radio Service 	
8.3	 3rd Generation Mobile Networks - UMTS 8.3.1 Characteristics of 3rd generation mobile networks 8.3.2 UMTS network architecture 8.3.3 Fundamentals of the (Wideband) CDMA-Technology 8.3.4 Important control mechanisms in UMTS 8.3.5 Soft capacity and coverage area 	

Characteristics and Network Structure

- ▶ GSM : first version standardized 1991(GSM : Groupe Spéciale Mobile, later Globale System for Mobile Communication)
- Prevalent mobile network of the 2nd generation (2G)

	GSM 900	GSM 1800 (DCS)	GSM 1900 (PCS in USA)
Uplink	890 - 915 MHz	1710 – 1785 MHz	1850 – 1910 MHz
Downlink	935 - 960 MHz	1805 - 1880 MHz	1930 - 1990 MHz

(DSC: Digital Cellular System)

(PCS: Personal Communications Service)

- ► E.g. System GSM 900:
 - 124 frequencies/ frequency pairs,
 - TDMA with 8 time slots with channel distance of 200 KHz each,
 - physically maximal 124 wave bands usable

Prof. Dr. P. Tran-Gia

3

Architecture of a GSM Mobile Network

PSTN: Public Switched Telephone

Network

AUC: AuthenticationCenter
HLR: Home Location Register
VLR: Visitor Location Register
MSC: Mobile SwitchingCenter

BSC: Base Station Controller

BTS: Base Transceiver Station

MS: Mobile Station

System Components

Mobile Station (MS)

- Cell phone, comprises hardware and software
- Stores all relevant information of a GSM subscriber

Base Transceiver Station (BTS)

- Corresponds to a radio cell, can be realized with sectors
- Includes antenna, signal processing, amplifier
- Serves the Abis interface to the BSC (Abis has several 16kbps and 64kbps connections)
- Typical radius: 100m to 35km

▶ Base Station Controller (BSC)

- Controls several BTS
- Reservation of radio frequencies, supports handover between BTS
- Supports multiplexing of multiple connections prior to transmission to fixed network

Prof. Dr. P. Tran-Gia

5

System Components

▶ Base Station Subsystem (BSS)

Corresponds to one site in the network of a mobile service provider

► Mobile (Services) Switching Center (MSC)

- Switching center, responsible for a number of BSS
- Supports control of connections to its BSCs and to other MSCs
- Mobility monitoring
 - Paging (calling of a mobile subscriber within a network)
 - Updating of subscriber locations

► Home Location Register (HLR)

- Database, stores information of subscribers registered or authorized in its area of administration
- Stores fundamental subscriber data (services, class, tariff, etc.)

Visitor Location Register (VLR)

- Associated with each MSC
- Database, stores information of subscribers temporarily visiting the MSC's area of administration

GSM: Multiple Access Scheme

Prof. Dr. P. Tran-Gia

7

GSM: Multiple Access Scheme

- Combination of FDMA, TDMA (frequency bandwidth 200 kHz, time slot 577 μs)
- with "slow frequency hopping": avoids frequency selective degradation of the radio link quality of one specific channel over a longer period of time
- Bit rates:
 - Gross bit rate: $\frac{2 \times 57 \text{bit}}{4.615 \text{ ms}} = 24.70 \text{ kbps}$
 - Net bit rate per channel: 24.70 kbps · code efficiency
 - Coding: combination of convolutional coding, parity check and fire-code
 - Code efficiency depends on application and code
 - Net bit rates between 12kbps and 13kbps for voice transmission

GSM: Example for a Connection Establishment

Prof. Dr. P. Tran-Gia

Chapter 8 Mobile Communications Networks

8.1	Introduction							
	8.1.1	History of mobile communication						
	8.1.2	Fundamental concepts of mobile communication systems						

8.1.3 Multiplexing schemes in mobile communication networks

8.2 **GSM-Technology** 8.2.1 Characteristics and network structure 8.2.2 Example for connection establishment

8.2.3 **GPRS: General Packet Radio Service**

8.3 **3rd Generation Mobile Networks - UMTS**

8.3.1 Characteristics of 3rd generation mobile networks UMTS network architecture 8.3.2 8.3.3 Fundamentals of the (Wideband) CDMA-Technology

Important control mechanisms in UMTS

8.3.5 Soft capacity and coverage area

8.3.4

General Packet Radio Service (GPRS)

- ▶ GPRS is the extension of GSM for the transmission of packet data traffic
- Instead of circuit switching like in GSM, packet switching is used (TCP/IP in GPRS fixed network)
- ▶ GPRS belongs to the mobile network generation 2+ or 2.5
- Channel allocation in GPRS
 - Join utilization of one channel by several users
 - Higher data rates by using several channels in parallel (PDCH=Packet Data Channel)
 - In the starting phase utilization of the idle GSM channels (on-demand channel), later explicit reservation of channels for GPRS (dedicated channel)
- ► Few hardware changes required for GPRS, i.e. architecture of GSM with additional functional nodes: SGSN and GGSN
- Flexible utilization of the air interface resources
- Several data rates per channel with different coding schemes

Prof. Dr. P. Tran-Gia

11

GPRS System Architecture

SGSN: Serving GPRS Support Node

- Main functionality: authentication, billing, session management
- Session management
 - Attach: registration at the SGSN
 - authentication
 - Copying the user profile from HLR to SGSN
 - Temporary ID (P-TMSI) is assigned to mobile
 - Detach: counterpart of attach
 - Management of PDP context (Packet Data Protocol context):
 - Temporary IP address of the mobile
 - Quality of service
 - Address of corresponding GGSN
 - PDP context stored in MS, SGSN, and GGSN

Prof. Dr. P. Tran-Gia

13

SGSN: Serving GPRS Support Node

- Location management:
 - IDLE: MS not attached
 - READY: MS informs SGSN about change of cell
 - STANDBY: MS informs SGSN about change of routing area (routing area: cluster of several cells)

Connection to the Internet with GPRS

Prof. Dr. P. Tran-Gia

15

GPRS: Protocol Stack

Data Transmission with GPRS

- ▶ Utilization of GSM channels, i.e. FDMA/TDMA with frequency hopping
- Data is segmented into RLC blocks (radio link control)
- ▶ RLC provides secure transmission with an ARQ mechanism (automatic repeat request)
- ▶ Size of RLC blocks depends on chosen coding scheme
- Data rate of a PDCH (Packet Data Channel) for different CS:

Coding scheme	Pre- cod. USF	Infobits without USF	Parity bits BC	Tail bits	Output conv encoder	Punctured bits	Code rate	Data rate kbit/s
CS-1	3	181	40	4	456	0	1/2	9.05
CS-2	6	268	16	4	588	132	~2/3	13.4
CS-3	6	312	16	4	676	220	~3/4	15.6
CS-4	12	428	16	0	456	0	1	21.4

Prof. Dr. P. Tran-Gia

17

Example: Coding Scheme 2

Multiplexing and Channel Allocation

- Task of the MAC layer (medium access control)
- Data transmission is realized in TBF (Temporary Block Flow)
- At most one TBF per up- and downlink for a mobile
- ▶ TBF between mobile and base station exists only during data transmissions
- ▶ TBF consists of:
 - TFI (Temporary Flow ID)
 - Number of PDCHs with associated USF (uplink state flag) for uplink TBF
- ▶ TBF can use several PDCHs (theoretically up to 8):
 - Currently mobiles with up to 4 neighbored PDCHs
 - In theory data rates up to 171.2kbps (CS 4, 8 PDCH),
 - Realistic data rates: 26.6kbps and 53.2kbps with CS 2 and 2/4 PDCH
- Several TBFs can share one PDCH, multiplexing with
 - TFI on the downlink
 - USF on the uplink, i.e. USF in the downlink RLC block specifies which TBF is to use the next RLC block on the uplink
 - All TBFs of one PDCH get the same bandwidth, i.e. RLC blocks are sent in a round robin fashion

Prof. Dr. P. Tran-Gia

19

Example for Multiplexing on the Uplink Using USF

- ► Three uplink TBFs on time slots (TS) 1-3:
 - A: USF 1 on TS 1, 2 and 3
 - B: USF 2 on TS 2, USF 3 on TS 3
 - C: USF 2 on TS 3

TS 1
TS 2
TS 3

Scheduling at the base station:

TS 1
TS 2
TS 3

MS A
MS B
MS C
MS B

Scheduling discipline: Round Robin on every PDCH

TDMA frame		1-4	5-8	9-13	14-17	18-21	22-25	26-29	30-33
TS 1	Downlink	USF 1							
	Uplink		A1	A4	A5	A7	A9	A11	A12
TS 2	Downlink	USF 1	USF 2						
	Uplink		A2	B1	A6	В3	A10	B4	A13
TS 3	Downlink	USF 1	USF 3	USF 2	USF 1	USF 3	USF 2	USF 1	USF 3
	Uplink		A3	C1	B2	A8	C2	B5	A14

