CALIFORNIA STATE UNIVERSITY, NORTHRIDGE

ROBOTIC SYSTEM

WITH COMPUTER VISION
A thesis submitted in partial satisfaction of the requirement for the degree of Master of Science in

Electrical and Computer Engineering
by
Soo-Man Lee

The Thesis of Soo-Man Lee is approved:

Prgfessor Yuh Sun

Professor V. Anderson

Professor Rob屯rt Y. Wوfag, Chairman

California State University, Northridge

To my Eunjin and parents for their love and patience

TABLE OF CONTENTS

DEDICATION iii
LIST OF TABLES vi
LIST OF FIGURES vii
ABSTRACT ix
CHAPTER

1. INTRODUCTION 1
2. ROBOTIC ARM WITH COMPUTER VISION SYSTEM 3
3. VIDEO PROCESSING SYSTEM 6
3.1 Video Camera with Lens 6
3.2 Video Processing Unit (VPU) 6
3.3 Procedure for Detection of Object 14
4. ROBOTIC SYSTEM 19
4.1 Introduction 19
4.2 TeachMover Performance Characteristics 19
4.3 How the Motors Operate 21
4.4 Electronic Circuitry and Interface 25
4.5 Operation from a Host Computer, Apple IIe 27
4.6 Arm Initialization and Calibration 38
4.7 Coordinate Conversions 42
4.8 Procedure for Robot Arm Movement 67
5. APPLE IIe COMMUNICATION TO VPU AND TEACHMOVER 73
5.1 Introduction 73
5.2 Hardware Needed 73
5.3 Hardware Setup for VPU 73
5.4 Hardware Setup for TeachMover 74
6. FLOW DIAGRAM FOR ROBOTIC SYSTEM WITH COMPUTER VISION 76
7. CONCLUSION 78
REFERENCES 79
APPENDIX 80
A. System Setup 80
B. System Operating Instruction 83
C. Functional Differences of VPU Software 85
D. Serial Interface Commands 88
E. Program Listing 92

LIST OF TABLES

Table Page

1. Serial I/O Pin Assignments 12
2. Switch Settings 13
3. Motor Steps and Joint Rotations 26
4. Baud Rate Selection 33
5. Contro1 Lines 36
6. Conversion Factors Between Motor Steps and Revolute Joint Angles 44
7. Lengths of TeachMover Arm Members 47
8. Summary of Forward Solution 53
9. Summary of Backward Solution 65

LIST OF FIGURES

Figure Page

1. System Structure Configuration 4
2. System Arrangement 5
3. VPU System Interconnect Diagram 11
4. Major Structural Components 20
5. Operating Envelope of the TeachMover Arm 22
6. The Wrist Joint 23
7. Block Diagram of TeachMover Computer and Electronics 28
8. Connecting the TeachMover to Apple IIe 30
9. Pin Numbering for Serial Port Connectors 31
10. Apple IIe-to-TeachMover Serial Connection 32
11. Switches for Selecting Serial Transmission Rate 33
12. Location of Jumper Connections for Serial Operations 37
13. Initialization and Cartesian Paper 41
14. Kinematic Model of the TeachMover Arm 45
15. Definition of Roll and Pitch Angles 47
16. Basic Trigonometric Relationships 49
17. Side View of Kinematic Mode1 50
18. Top View of Kinematic Model 52
19. Different Hand Orientations 55
20. Top View of Arm with 90 Degree Pitch 57
21. Top View of Arm 58
22. Side View of Hand Triangle in Kinematic Model 58
23. Shoulder-Elbow-Wrist Triangle 60
24. Simplified Triangle 62
25. Variation of Hand Length with Hand Opening 66
26. Conversion of Pixels to Cartesian Coordinate 68
27. The Conversion from the Cartesian on the Table Top to the Real Cartesian. Coordinates for Robot Arm 71

ABSTRACT
ROBOTIC SYSTEM
WITH COMPUTER VISION
by
Soo-Man Lee
Master of Science in Electrical and Computer Engineering

This thesis is intended to study the techniques and to solve the problems in the application of video processing to an automatic robotic system. The contents of this thesis are:
a. Description and explanation of the Video Processign Unit, how it is integrated with a television camera, television monitor, and a system controller, Apple IIe.
b. Description and explanation of the Five-Axis Robot, TeachMover, and how it is operated by the system controller, the Apple IIe.
c. Connection and operation of the video camera, video monitor, Video Processing Unit, robotic arm, and the controller, the Apple IIe.
d. Flow chart of controlling program for Apple IIe.
e. Presentation of experimental program.

The basic components of the system are an Apple IIe personal computer with two serial ports, a Video Processing Unit, television camera, television monitor, lighting system, and the TeachMover Robotic Arm.

The system was designed and developed and software programs written. Test results indicated the system operated properly and its performance satisfied the design objectives.

Chapter 1

INTRODUCTION

Pattern recognition and image processing techniques have been developed and applied to automatic visual measurement and inspection. These techniques are used to detect an object and to determine the object's location, size and shape. Industrial automation for assembly, automatic alignment of the assembly for testing and component recognition have demanded the development of a human-like robot. Including the benefit for increasing productivity or improving the quality of life, the life of workers now doing repetitive and sometimes hazardous tasks would be taken care of by using sophisticated robots. Furthermore, using computer vision techniques, the positions and orientations of an object within the field-of-view of the system can be determined.

This thesis involves the design and development of an automated robotic system with computer vision using a Video Processing Unit. The system uses an Apple IIe microcomputer to process data transmitted from the Video Processing Unit (VPU) and serds the command to the robot arm, TeachMover.

First, the data sent from the VPU is processed to analyze where the object is located, its size and orientation.

Second, a set of coordinates and signals were generated and sent to the TeachMover to reach the object. Finally, the robot arm, moving to that object grasps it from the proper direction and places the object as required by the operations.

Algorithms were developed to program the computer to process the data to recognize the object and to command the robot-arm to perform the proper operations. Cubic and cylindrical objects were used for testing.

Chapter 2

ROBOTIC ARM WITH COMPUTER VISION SYSTEM

A functional block diagram of the system is shown in Figure 1. The basic components of the system are:
a) Apple IIe personal computer with two serial ports
b) DAGE-MTI, INC. MK 11 series vidicon type video camera with 10 mm lens
c) The Rank Videometrix Video Processing Unit
d) Video monitor
e) Robot-arm; Five-Axis Robot Model TCM (TeachMover)
f) 5-1/4 in. single sided, double density floppy disk storage system
g) Okidata printer

Figure 2 shows the physical arrangement of the system.

System Structure Configuration
Figure 1

Experimental Equipment

Figure 2
System Arrangement

Chapter 3

VIDEO PROCESSING SYSTEM

3.1 Video Camera with Lens

The optical information is reflected by a surface of an object and its surrounding top into a video camera under a light source. The video camera converts the optical information into an electrical signal. The 10 mm lens was used to cover a 10×10 inch field-of-view.

3.2 Video Processing Unit (VPU)

VPU was used to convert analog signal into digital form and analyze the digitized data. The Rank Videometrix Video Processing Unit (VPU) is a general purpose device which was integrated with a TV camera, TV monitor and a system controller-Apple IIe to provide an automatic dimensional measuring system. Its basic function is to process the video signal generated by the camera and extract various edge data which can be used to determine dimensions of the object being viewed. The unit responds to commands received from the system controller and returns various status and measurement data.

3.2.1 Functional characteristics

Measurement Window and Crosshairs -

The VPU superimposes a rectangular "measurement window" and a set of crosshairs on the TV monitor. The location can be changed under software control. The window surrounds that portion of the video scene which the VPU actually "sees." That is, it ignores any part of the scene outside the window. Thus the window can be used to isolate specific areas of the scene for analysis. The horizontal and vertical crosshairs are independently controllable. They enable gathering data along a particular scan line, a feature which is useful in many measurement applications.

The crosshairs are always confined to be within the window and are never allowed to be closer than 8 pixels or lines from a window side. The left and right window slides cannot be closer than 12 pixels. The same is true for the top and bottom. The VPU will override system controller commands that violate these constraints. At full size the window sides are located as follows:
∞

Edge Detection

$$
\begin{aligned}
& \text { TOP }=0 \text { lines } \\
& \text { BOTTOM }=400 \text { lines } \\
& \text { LEFT }=8 \text { pixels } \\
& \text { RIGHT }=503 \text { pixels }
\end{aligned}
$$

In a sense, the VPU is an analog-to-digital converter. The continuous analog video signal generated by the
camera is sampled at a specific time interval and compared with a pre-set threshold. Sampled voltages above the threshold are declared to be "1" and those below are " 0 ". The result is "digitized" bi-level video,, that is, pure black and white with no gray. By saving all the 0 's and 1's in memory it would be possible to digitize the entire scene. For most measurement applications, however, this is neither required or desirable. Typically, edge transitions form the basis for measurement. Therefore, the VPU was designed to "remember" only the location of the first edge transition (or alternately the last) that it encounters on each horizontal TV scan line. Similarly, it remembers edge transitions in the vertical direction yielding, in effect, a two-dimensional outline of the image. There are 400 usable scan lines and each is divided into 500 elements by the VPU. The data is stored in a table in its computer memory. Upon command the VPU writes to the table one of four types of data:

```
400 X (horizontal) leading edges (first transitions)
400 X trailing edges (last transitions)
500 Y (vertical) leading edges
500 Y trailing edges
```

The terms "X", "Y", "leading" and "trailing" are used frequently throughout the remainder of this manual. The VPU can transfer all this data to the system controller upon demand, which is useful in some cases. More typically, however, the system controller would request only the minimum of all the edge values, or the maximum,
or the one coinciding with the current crosshair location, etc. Appendix A describes all the various possibilities under "Data Gathering Commands."

Centroids and Areas

Besides defining edge locations the VPU can compute the centroid and area of the image in the window. This feature is useful in finding the area or centroid (area moment) of an object that is entirely within the measurement window. The process is performed entirely in hardware and runs at the video scan rate, that is, a centroid/ area can be computer thirty times a second. Unlike the portion of the VPU which does edge detection, the centroid/area hardware uses all edge transitions, not just leading and trailing. The result is a true area/area moment. The centroid is referenced to the upper left hand corner of the window (when at its maximum size). This corner always represents 0,0 .

Thresholding

The analog video signal voltage for a given scene covers a range representing the blackest black to the whitest white. The VPU contains peak detectors which in effect remember these extremes over the entire frame. It is then able to compare the intensity of every other point in the scene relative to these peaks in making its " 0 " or " 1 " determination as previously described under "EdgeDetection." This process is called thresholding.

The comparator setting can be anywhere from 0 to 100% of the range defined by the peak detectors and is under software control. A typical setting is 50% but sometimes various lighting and surface conditions require some experimentation to find the proper setting. Appendix A describes the threshold setting command.

3.2.2 System interconnects Hardware selup for wheyshom

Figure 3 shows cable interconnects for a the system consisting of the Video Processing Unit, TV camera, monitor, and a system controller. Video cables were the coaxial, shielded type.

Table 1 shows the pin assignments for the RS -232 connector ($\mathrm{DB}-253$) on the rear panel, which were connected to Appe IIe with serial port. And, Table 2 shows the switch settings on the first pc board inside the VPU.
3.2.3 RS-232 specifications

The VPU configuration used with the Apple IIe was as follows:

```
2400 Baud
7 Bit Characters (ASCII Standard)
Even Parity
1 Stop Bit
```

The VPU software does not support the following RS-232 functions:

Clear to Send
Request to Send
Data Terminal Ready
Data Set Ready

SERIAL I/O PIN ASSIGNMENTS

PIN NO.	SIGNAL NAME
1	Protective Ground
2	Received Data
3	Transmitted Data
4	\checkmark Clear to Send
5	\checkmark Request to Send
6	Sata Terminal Ready
7	Unused
20	\checkmark Data Set Ready
$21-25$	Unused

Connector - DB-25S

Table 1

SWITCH SETTINGS

EOL Sequence (bit 4)
$0=C R$ on VPU output
* $1=C R / L F$
Daisy/Non-daisy (bit 5)
* $0=$ Standard $I / 0$
1 = Daisy-chained I/O
Baud Rate (bits 6-8)
00019200
0019600
0104800
* 0112400
$100 \quad 1200$
101600
$110 \quad 300$
$111 \quad 150$

* : setting for experimental program
Table 2

3.3 Procedure for Detection of Object

1. If the width of the object is less than 100 pixels, it is less than two block lengths. Therefore, it never exceeds the two blocks (one block is 100 pixel-wide).
2. The object is adjusted to be wider than 30 pixels.
3. Then, the step of Y should be less than 30 pixels. Let Y step be 20 .
4. a) Set $y(I)$ at first 20 of a selected 200 x 200 square window.

For $\mathrm{I}=20$ to 200 step 20
Find $I E / X / L$ and $I E / X / T$
b) If (XT-XL) << 30

That is, if (XT-XL) < 5 then it's just one portion of arc of an object. Then, save it and continue to measure the remaining arc or line. 20 < width < 100
c) If (XT-XL) > 5 then, this block might hold the object then treat it as the object and go to step d)

If (XT-XL) > 1000 then, that point may contain noise and go to e.
d) Accumulate the number
$\mathrm{ps}(\mathrm{I}, \mathrm{J})=\mathrm{p}(\mathrm{I}, \mathrm{J})+1$
e) Go to next block (move the window) and check
as above.

$$
\begin{array}{r}
\text { Window } \mathrm{ps}(2,2) \text { Wind } \\
\operatorname{ps}(2,2)<\mathrm{ps}(2,3)
\end{array}
$$

5. The maximum number of $\mathrm{ps}(\mathrm{I}, \mathrm{J})$ is implemented as a holding block. Therefore, $n^{\text {th }}$ block is holding the object.

Save I,J number into EX and EY and set up that window, and analyze the data using commands to get the data for the object and compute where it is placed and how much it is rotated if it is cubic.
6. In order to detect where it is located, locate the window around the object:

$$
\mathrm{AG} / \mathrm{T} / \mathrm{B} / \mathrm{L} / \mathrm{R}
$$

a) Now with EX, EY, compute $\mathrm{T}, \mathrm{B}, \mathrm{L}, \mathrm{R}$ to locate the window; $A G / T / B / L / R$.
b) To get the top point of the object compute MI/Y/L.

To get the bottom point of that object, compute MX/Y/T.

To get the left-most point of the object, compute MI/X/L.
To get the right-most point of the object, compute $\mathrm{MX} / \mathrm{X} / \mathrm{T}$
c) From $\mathrm{I}=\mathrm{T}$ to B step 5

Compute IE/X/L and IE/X/T.
Find Max. (XT-XL)
IE/Y/L and IE/Y/T
d) See if these values matche 6(b).

If almost same or less than 10% error then, there is no noise and data is good. And go to e. Else, go to c) and check data or check threshold again.
e) If the difference between X of the top point and X of the bottom point is less than 5, and the difference between Y of the left-most and Y of the right-most point is less than 5, THEN it is 45 degree rotated cubic or cylinder top, and go to next step 7. Else, it is surely cubic go to 7-c to check the degree of rotation.
7.

a) Using $C C$ or $C N / B$, get the center of that top surface of the object. Save it to (XC,YC). After getting the point (L1,Y), and (L2,Y) calculate (XC - L1)/2 + L1 and set up the crosshair using the command $C S / V /((X C-L 1) / 2$ $+\mathrm{L} 1)$. Next, get the point $(\mathrm{X}, \mathrm{T} 3)$ and $(\mathrm{X}, \mathrm{T} 4)$
b) If $\operatorname{ABS}((\mathrm{T} 4-\mathrm{T} 3)-(\mathrm{L} 2-\mathrm{L} 1) / 2)<(\mathrm{L} 2-\mathrm{T} 1) / 4$ THEN the object is cubic and rotated degree is 45 degrees else, it is a cylinder.
c) If it is cubic then, get the degrees the cubic is rotated.
1)

1) First, get the centroid.

Second, calculate the length W2 from the top to the horizontal crosshair which is set up through (XC,YC).

Third, calculate W1.
Finally, using $\theta=\operatorname{Tan}^{-1}$ (W2/W1)
2) If the left-most point is higher than the centroid point, then again set the horizontal crosshair via that point and get $\theta=\operatorname{Tan}^{-1}$ (W2/W1). The data needed to command Robot-Arm is compensated and corrected if there is an error and checked again by slightly different method in program.

Chapter 4

ROBOTIC SYSTEM

4.1 Introduction

The robotic systom used for this project is the TeachMover robot arm which is a microprocessor-controlled, six-jointed mechanical arm designed to provide an unusual combination of dexterity. This project is using Serial Interface Mode, in which the TeachMover arm can be controlled by a host computer, Apple IIe via one of two built-in RS-232C asychronous serial communications lines. Major structural components are shown in Figure 4.

4.2 TeachMover Performance Characteristics

4.2.1 General

Configuration	5 revolution axes and integral hand
Drive	Electric stepper motors - Open loop control
Controller	6502A microprocessor with 4K bytes of EPROM and 1 K bytes of RAM located in base of unit
Interface	Deal RS-232C asynchronous serial communications interfaces (baud rates in switch-selectable between 110, $150,300,600,1200$, 2400, 4800, and 9600 baud)
Teach Control	14 key - 13 function keyboard, 5 output and 7 input bits under computer control

Major Structural Components
Figure 4.

Power Requirement 12 to 14 volts, 4.5 amps DC 4.2.2 Performance

Resolution	$0.011 \mathrm{in} .(0.25 \mathrm{~mm})$ maximum on each axis
Load Capacity	$16 \mathrm{oz} .(445 \mathrm{gm})$ at full extension
Gripping Force	$3 \mathrm{lbs} .(13 \mathrm{Nextons})$ maximum
Reach	$17.5 \mathrm{in} .(444 \mathrm{~mm})$
Velocity	$0-7 \mathrm{in} . / \mathrm{sec} .(0-178 \mathrm{~mm} / \mathrm{sec}$.$) with$ controlled acceleration

4.2.3 Detailed Performance

Motion Range
Base $\quad \pm 90$ degrees
Shoulder $\quad+144,-35$ degrees
E1bow $\quad+0,-149$ degrees
Wrist Roll ± 360 degrees
Wrist Pitch $\quad \pm 90$ degrees
Hand
$0-3$ i ($0-75 \mathrm{~mm}$)
4.2.4 Physical characteristics

Arm Weight
$8 \mathrm{lbs} .(4 \mathrm{~kg})$
Teach Control
$3.75 \mathrm{ft} .(1150 \mathrm{~mm})$
Cable Length

4.3 How the Motors Operate

Each of the cable drives is controlled by a stepper motor. The motors used have 4 coils, each driven by a power transistor. The drive is digital with the transistors either turned on or turned off to obtain the desired

Operating Envelope of the TeachMover Arm
Figure 5.

The wrist Joint
Figure 6.
pattern of currents in the motor windings. By changing the pattern of currents, a rotating magnetic field is obtained inside the motor that causes the motor to rotate in small increments or steps.

Stepper motors are not the only kind of motors used in robot arms. Some arms use servo motors with electronic feedback loops for precise position control. Unlike stepper motors, these servo motors cannot develop slippage. This advantage must be weighed against the servo motor's far greater cost.

Stepper motors are easier to control from a computer than are servo motors.

Now, in order to turn a stepper mtor in the TeachMover, a particular sequence of binary phase patterns is output to the desired motor, one pattern per step. In order to change motor direction, the order in which the phase patterns are output is simply reversed. The particular phase patterns used in the TeachMover generate a sequence known as "half-stepping;" the steps are half the size specified by the motor manufacturer. (The motors used to drive the TeachMover are specified by the manufacturer at 48 steps per revolution, but are actually stepped at 96 steps per revolution.) Compared to full stepping, halfstepping produces smoother slow-speed motions, reduces the power requirement, and improves the arm resolution by a factor of two.

The relationship between motor steps and actual joint rotation is given in Table 3.

4.4 Electronic Circuitry and Interface

 4.4.1 On-board computer and memoryA circuit card houses all the internal electronics, including the 6502A Microprocessors. In technical terms, this microprocessor is an 8 -bit, 2 MHz chip. It is the same chip used in the Apple, Atari, and PET computers; it is used in the TeachMover to coordinate all joint motions and handle all input and output.

TeachMover firmware (permanently built-in software) is contained in another chip housing 4 K bytes of readonly memory (ROM); this firmware interprets the commands given to the arm, coverting these to electrical signals the arm can obey.

The circuit card also includes chips containing 1 K bytes of random-access memory (RAM). This is enough RAM to store an arm-motion program of up to 53 steps. It is possible to "piggy-back" a second set of RAMs on the first, thereby extending the program capacity to 126 steps.

4.4.2 Serial ports

Two serial interface ports allow the connections to the TeachMover to a host computer, printer, or terminal. Serial transmission speed is selectable with eight
$\left.\begin{array}{|cllc|}\hline & \text { MOTOR STEPS AND JOINT ROTATIONS }\end{array}\right]$

Motor Steps and Joint Rotations Table 3
standard speeds available from 110 to 9600 Baud. The 9600 Baud speed is used for Apple IIe.

4.4.3 User inputs and outputs

The computer card also contains an auxiliary parallel input/output port. Interfaces from the TeachMover to external equipment is done through a 16-conductor flat ribbon cable. Five TTL compatible user output bits can be set (to 1) or cleared (to 0) under program control to turn other equipment on or off when a given arm motion is complete. Seven TTL compatible input bits can be used to control an arm sequence when a given external condition is met.

A block diagram of the TeachMover's electronic circuitry is shown in Figure 7.
4.5 Operation from a Host Computer, Apple Ile

Connecting the TeachMover arm to a host computer or a terminal greatly extends the unit's capabilities.

4.5.1 Configuring the serial ports

"Configuring the serial ports" refers to making sure that the computer and the TeachMover can "talk" to one another. This requires taking care of the following:

1. electrical connections
2. transmission rate
3. data format
4. settings for standard interface signals

Block Diagram of TeachMover Computer and Electronics Figure 7.
5. opening the port
6. testing the configuration

4.5.2 Electrical connections

The two serial ports perform the following functions:

- Signals that enter the left port (P2) always pass through to the right port (P 1) unchanged.
- Signals that enter the right port pass through to the left port unchanged, unless the signals are a series of characters beginning with an "@" sign and terminating with a <CR> (carriage return); these signals are not passed through, but are interpreted as arm commands.

Thus, to operate the arm from a host computer or a terminal, connect the computer or terminal to the TeachMover's right serial port.

4.5.3 Transmission rate

The TeachMover is configured to operate at a transmission rate of 9600 baud (9600 bits per second), for both send and receive. You can change this rate to any of seven other standard rates by means of three switches located on TeachMover computer card (Figure 11). The available rates and the corresponding switch settings are given in Table 4.

Connecting the TeachMover to Apple IIe Figure 8.

Pin Numbering For Serial Port Connectors
Figure 9.

[^0]| BAUD RATE SELECTION | | | |
| :---: | :---: | :---: | :---: |
| BAUD | SWI | SW2 | SW3 |
| 110 | ON | ON | ON |
| 150 | OFF | ON | ON |
| 300 | ON | OFF | ON |
| 600 | OFF | OFF | ON |
| 1200 | ON | ON | OFF |
| 2400 | OFF | ON | OFF |
| 4800 | ON | OFF | OFF |
| 9600 | OFF | OFF | OFF |
| | | | |
| NOTE: SW4 is not used. | | | |

Baud Rate Selection
Table 4

Switches for Selecting Serial Transmission Rate Figure 11.

These switches should be changed when power is off, since the switch settings are read by TeachMover firmware on power-up only.

4.5.4 Data format

The TeachMover uses the following data format:

$$
\text { word length }=8 \text { bits }
$$

1 start bit 1 stop bit no parity bit full duplex

Especially, Apple IIe rather than specify a word length of 8 , it is necessary to specify a word length of 7 plus a parity bit equal to zero. This is because this computer uses a most significant bit equal to 1 when processing 8 -bits words. (It is possible to use the @ARM command to allow the robot to recognize an "@" with the eighth bit $=1$, but in order to execute this command the robot must recognize the first "@" in this @ARM command. To do this the robot must receive an "@" character with the most significant bit $=0$.$)].$

4.5.5 Standard interface signals

Some computers and terminals require logic levels on certain pins to indicate the following status conditions:

Data Terminal Ready Clear to Send Carrier Detect Request to Send

The TeachMover does not use these signals, but does pass them through when it is placed in series between a computer and a terminal.
4.5.6 Serial interface commands

Ten different commands can be issued to the TeachMover over the serial lines. (A concise summary of all ten commands is given in Appendix D.)

Note: All commands can be abbreviated to an "@" sign plus the first three characters--@CLO for @CLOSE, etc.

- All characters and numeric values are decimal ASCII (industry-standard character format). - Once a serial command is executed, the teach control is left in TRAIN mode, with two exceptions:
- @RESET leaves it in MODE mode.
- @RUN simply runs the arm until another command stops it.
- However, the indicator lights will remain as they were before the serial command was executed. (Example: If MODE light is on, and then, say, a @CLOSE command is executed, the Teach Control will then be in TRAIN mode but with the MODE light still on.)
- To change the status of the indicator lights, use the @STEP command with all parameters set to zero except the "OUT" value (see below). No other serial command affects the status of the lights (except the closed light which

Left Port Pin No.	Description	Right Port Pin No.	Jumper
	Data Carrier Detect	8	W1
1,7	Ground	1,7	--
3	Transmit from TeachMover	2	--
2	Receive by TeachMover	3	--
4	Request to Send	4	W4
5	Clear to Send	5	W3
20	Data Terminal Ready	20	W2

Location of Jumper Connections for Serial Operations
Figure 12.
always indicates the state of the gripper switch).

The ten commands are as follows:

1. @STEP	6. @ARM
2. @CLOSE	7. @delay
3. @SET	8. @QDUMP
4. @RESET	9. @Qwrite
5. @READ	10. @RUN

4.6 Arm Initialization and Calibration

The computer in the robot keeps track of the arm by using the starting position as a reference. To run a program to operate the robot arm, the starting position was as specified in the program.

With the origin of the coord n te system located at the axis of rotation of the base $)^{4}$ the robot arm, the location of the front edge of th ase of the arm is defined as $x=1-5 / 8$. The base centered on the y axis. The gripper is brought to est, barely touching, on the spot PO, shown on the grid at $\lambda=5$ and $Y=0$.

Because of the proper window of the VPU for the experimental program, two relative cartesian coordinates are used. One is called table top cresian coordinates and the other called real cartesian cordinates.

The table top cartesian coordinates is placed on the table top which is 8 inch higher then the bottom where the base of the robot arm is placed. And the 0 point of
the X axis $(X=0)$ is 4 inches farther placed from the axis of rotation of the base of the robot arm.

The real cartesian coordinates is for robot arm, with origin located at the axis of rotation of the base of the robot arm.

After all the data was calculated using the table top cartesian coordinates from the VPU data, it was converted into the real cartesian coordinates as follows:

Let $X R, Y R$, and $Z R$ be the variables for $V P U$ and X, Y and Z be those for robot arm.

Then, $X=X R+4$

$$
\begin{aligned}
& Y=Y R \\
& Z=Z R+8
\end{aligned}
$$

This conversion is shown in Figures 13 and 26.
Following the above explanation, the initialization point is:

$$
\begin{aligned}
& \mathrm{XR}=5 \\
& \mathrm{YR}=0 \\
& \mathrm{ZR}=0
\end{aligned}
$$

Therefore,

$$
X=9
$$

$$
Y=0
$$

$$
\mathrm{Z}=8
$$

The hand must be perpendicular to the work surface and parallel to the front edge of the base of the robot. The gripper opens as the arm is brought to this position, and then closes the gripper as the last step in
setting the initial position. The gripping force is applied by the motor as the point is closing.

The arm can be brought to this starting position by moving it manually with the power off or by using the teach control with the power on.

Specifically, the cartesian coordinates of the
initial configuration are:
$X R=4, X=9$ inches
$Y R=0, Y=0$ inches
$\mathrm{ZR}=0$, $\mathrm{Z}=8$ inches
Pitch $=-90^{\circ}$
Ro11 $=0^{\circ}$ (see Note 1, below)
Grip $=$ Closed (see Note 2, below)
Note 1: Because the hand can turn through many revolutions of "roll," it is difficult to tell by simply looking at the hand whether the "roll" has been set to 0°. Yet, it is important that the roll irially be 0° in order that the wrist cables be allowed their full range of motion.

Note 2: For experimental program it is important that the initial position be very precise. Initialization point is shown in Figure 13.

1 block is 1×1 inch
Initialization and Cartesian Faper

$$
\text { Figure } 13
$$

4.7 Coordinate Conversions

It is often advantageous to be able to describe the configuration of a robot arm in more than one coordinate system. The two most commonly used systems are:*

- Joint Coordinates (the joint angles of the arm). These are most convenient for controlling the arm directly from a computer.
- Cartesian Coordinates (X, Y, Z, pitch, and roll). These are more convenient for describing an assembly task on a flat table top.

For practical work, a set of formulas is needed to mathematically convert from one coordinate system to the other.

- The Forward Solution converts from joint angles to Cartesian coordinates.
- The Backward Solution converts from Cartesian coordinates to joint angles.

This section describes how both of these coordinate systems are defined, and how the forward and backward solutions may be derived and implemented.
4.7.1 Kinematic model of arm

Before formulating the arm solutions, the relationship between the different parts of the arm must be specified. This can be done in terms of the kinematic model shown in Figure D-1. The kinematic model indicates
how each joint is articulated, how the joint angles are measured, and the distances between joints.
θ is used to indicate joint angles in mathematical expressions. The symbols $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$, and θ_{5}, respectively, are proportional to the joint expressions $\mathrm{J}_{1}, \mathrm{~J}_{2}$, J_{3}, J_{4}, and J_{5} used in the computer command discussed in Chapter 7. The θ s, measured in degrees or radians, are related to the Js, measured in motor steps, as shown in Table D-1. There are 360 degrees or 2 radians in one complete revolution.

The distances bewteen joints (lengths of arm members) are indicated by the constants, H, L, and LL shown in Figure 14. H is the distance from the table top to the shoulder joint centerline; L is the distance from shoulder joint to elbow joint, which equals the distance from elbow joint to wrist joint; and LL is the distance from the wrist joint to the center point between the two fingertips, with the fingertips separated by 1.5 inches. Values for these distances are given in Table 7.

The pitch angle, P, and the roll angle, R, are given by the following equations.

$$
\begin{align*}
& P=.5\left(\theta_{5}+\theta_{4}\right) \tag{1}\\
& R=.5\left(\theta_{5}-\theta_{4}\right) \tag{2}
\end{align*}
$$

where θ_{4} and θ_{5} are right and left wrist angles. The angles P, θ_{4}, and θ_{5} are all measured from the horizontal as shown in Figure 15.

CONVERSION FACTORS BETWEEN MOTOR STEPS
AND REVOLUTE JOINT ANGLES

Motor	Joint	Steps in Revolution	Steps per Radian	Steps per Degree
2	Base	7072		1125

Conversion Factors Between Motor Steps and Revolute Joint Angles

Table 6

Kinematic Model of the TeachMover Arm
Figure 14.

Lengths of TeachMover Arm Members		
Segments	Length (inches)	Length (mm)
H	7.68	195.0
L	7.00	177.8
LL	3.80	96.5

Lengths of TeachMover Arm Members
Table 7

ROLL ANGLE is the orientation of the hand looking towards it along its centerline.
Clockwise rotation is positive.

END VIEW

```
Definition of Roll and Pitch Angles
    Figure 15.
```


4.7.2 Forward arm solution

This section shows how to determine P, R, and the X, Y, and Z coordinates of the end point from the joint angles $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$, and θ_{5}. The coordinates and joint angles are defined in Figure 14. This solution relies on the trigonometric relationships given in Figure 16 for reference.

The first step is to determine Z, the height of the end point above the table top, and an intermediate variable RR, the horizontal distance from the base pivot to the end point. The situation is summarized in Figure 17. Summing the vertical contributions from each link gives the following expression for Z :

$$
\begin{equation*}
Z=H+L \sin \theta_{2}+L \sin \theta_{3}+L L \sin P \tag{3}
\end{equation*}
$$

Summing the horizontal contributions gives:

$$
\begin{equation*}
R R=L \cos \theta_{2}+L \cos \theta_{3}+L L \cos P, \tag{4}
\end{equation*}
$$

where pitch angle P is given by

$$
\begin{equation*}
P=.5\left(\theta_{5}+\theta_{4}\right) \tag{5}
\end{equation*}
$$

The second step is to determine the X and Y coordinates of the end point from the intermediate variable, RR, as shown in Figure 18. By inspection, the coordinates are:

$$
\begin{equation*}
X=R R \cos \theta_{1} \tag{6}
\end{equation*}
$$

ANGLE FORMULAS:

$a+\beta+\gamma=180^{\circ}$
for a right triangla $\gamma=90^{\circ}$
and $\alpha+\beta=90^{\circ}$

PYTHAGOREAN THEDREM:

$C^{2}=A^{2}+B^{2}$, or
$C=\sqrt{A^{2}+B^{2}}$ or $A=\sqrt{C^{2}-B^{2}}$

RATIOS OF SIDES:

$$
\begin{array}{lll}
\sin a=\frac{A}{C} & \text { or } & A=C \sin a \\
\cos a=\frac{B}{C} & \text { or } & B=C \cos a \\
\tan a=\frac{A}{8} & \text { or } & A=8 \tan a
\end{array}
$$

ANGLE DEFINED BY INVERSE FUNCTION:

$a=\tan ^{-1}\left(\frac{A}{B}\right)$

Side View of Kinematic Model
Figure 17.

$$
\begin{equation*}
Y=R R \sin \theta_{1} \tag{7}
\end{equation*}
$$

A summary of this forward solution is given in Table D-3. A BASIC program implementing this solution is given in Figure D-12 (Statements 460 to 510). The program's variables $\mathrm{T}_{1}, \mathrm{~T}_{2}$, . . ., T_{5} correspond to the angles $\theta_{1}, \theta_{2}, . . ., \theta_{5}$.

4.7.3 Backward arm solution

This section shows how to determine the joint angles $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$, and θ_{5} required to position the end point at a desired X, Y, Z position and with desired values of pitch and roll. The coordinates referred to are shown in Figure 14. A review of the formulas used is given in Figure 16.
A. Specifying position/orientation $-X, Y, Z, P$, and R Before starting the backward solution it is necessary to specify the desired position and orientation of the end point. The position of the end point is defined by the following three distances:

X : The distance of the desired end point in front of the arm, measured from the base pivot along the X -axis.

Y: The distance of the desired end point to the left of the arm, measured from the base pivot along the Y -axis.

Top View of Kinematic Model
Figure 18.

Summary of Forward Solution
$\frac{\text { Step }}{1}$
$P=\left(\theta_{5}+\theta_{4}\right) / 2$
2

Table 8

Z: The vertical height of the desired end point above the table top.

The units of these distances (inches or millimeters) are match the units of the segment lengths shown in Table 7.

The orientation at the end point is defined by the following two angles (see Figure 19):

P: The desired pitch angle, measured in degrees
R: The desired roll angle, measured in degrees
In practice it is difficult to distinguish between positive and negative roll angles (as $+90^{\circ}$ and -90°, or $+45^{\circ}$ and -135°) by looking at the hand. It is helpful to mark the top of the hand when it is at 0° to eliminate this ambiguity. The 0° position corresponds to the orientation when the wrist cable turnbuckles are aligned.
B. Specifying roll in cartesian frame, R^{\prime}

Sometimes it is useful to express "roll" with respect to a Cartesian frame rather than with respect to the arm. One way to do this is to use $P=-90^{\circ}$ (hand point down) as a reference orientation, and measure the "Cartesian roll" with respect to the x-axis, as indicated in Figure 20. The formula relating to roll measured with respect to the arm (R) and the roll measured with respect to the Cartesian frame (R^{\prime}) is then simply:

$$
R^{\prime}=R-\theta_{1}
$$

(a) DIFFERENT PITCH ANGLES AT SAME ENDPOINT

(b) DIFFERENT ROLL ANGLES AT SAME ENDPOINT.

View looking into front of hend along pitch vector.

Different Hand Orientations

$$
\text { Figure } 19 .
$$

In the backward solution, we introduce a special variable, $R 1$, that enables us to write equations that are valid regardless of whether roll is measured with respect to the arm or with respect to the Cartesian frame.

> R1 $=\frac{1}{}$ frame. R1 $=0$ if roll is with respect to Cartesian
> if respect to arm frame. With this new variable, Equation (8) can be modified to express both normal and Cartesian roll as follows:

$$
\begin{equation*}
R^{\prime}=R-\theta_{1} R 1 \tag{9}
\end{equation*}
$$

Solving for R gives:

$$
\begin{equation*}
R=R^{\prime}+\theta_{1} R 1 \tag{10}
\end{equation*}
$$

C. Backward solution, step-by-step

The first step of the backward solution is to determine the base angle, ${ }_{1}$, and the radius vector, $R R$, from the base to the end pont as shown in Figure 21. Using the Pythagorean Theorem:

$$
\begin{align*}
R R & =\sqrt{X^{2}+Y^{2}} \tag{11}\\
\theta_{1} & =\tan ^{-1}(Y / X) \tag{12}
\end{align*}
$$

The second step is to find θ_{4} and θ_{5} from P and R. Using Equation (1) and Equation (2) of the wrist

Top view of arm with Fitch $=90$ degrees showing roll in Cartesian frame (R^{\prime}) and roll with respect to the arm (R).

Figure 20.

Figure 21.

Side View of Hand Triangle in Kinematic Model
Figure 22.
differential previously described, and substituting ($\mathrm{R}^{\prime}+{ }_{1} R 1$) for R using Equation (10) gives:

$$
\begin{align*}
& 5=P+R^{\prime}+\theta_{1} R 1 \tag{13}\\
& 4=P-R^{\prime}-\theta_{1} R 1 \tag{14}
\end{align*}
$$

[Note: From here on, the prime will be dropped and use R for roll in all cases, remembering to set $\mathrm{Rl}=0$ when roll is measured with respect to the arm, and R1 $=1$ when roll is measured with respect to the Cartesian frame.]

The third step is to work back from the coordinates of the end point to those of the wrist. As in the forward solution, we use the side of the kinematic model shown in Figure 17. Distances in this view are measured vertically along the Z axis and horizontally along the radius from the base (r axis). Letting R_{e} and Z_{e} be the coordinates of the end point in this plane, we can calculate the coordinates of the wrist $\left(R_{W}\right.$ and $\left.Z_{W}\right)$ by using the triangle shown in Figure D-9. From this triangle the coordinates of the wrist are:

$$
\begin{align*}
& R_{W}=R_{e}-L L \cos P \tag{15}\\
& Z_{W}=Z_{e}-L L \sin P \tag{16}
\end{align*}
$$

The fourth step is to define the shoulder-elbowwrist triangle so that θ_{2} and θ_{3} can be determined. For this purpose, the translated coordinate system introduced in Figure 23 is used. The origin $(0,0)$ is at the shoulder and the coordinates of the wrist are now $\left(\mathrm{R}_{0}, \mathrm{Z}_{0}\right)$.

> Shoulder-Elbow-wrist Triangle
> Figure 23.

The distance from the shoulder to the wrist, R_{0}, is the same as R_{w} previously determined in Equation (15). This is expressed as:

$$
\begin{equation*}
\mathrm{R}_{0}=\mathrm{R}_{\mathrm{e}}-\mathrm{LL} \cos \mathrm{P} \tag{17}
\end{equation*}
$$

The height of the wrist above the shoulder, Z_{0}, is just the height of the wrist above the table top, Z_{w}, less the height of the shoulder, H. Thus,

$$
\mathrm{Z}_{0}=\mathrm{Z}_{\mathrm{w}}-\mathrm{H}
$$

substituting for Z_{w} using Equation (16) gives

$$
\begin{equation*}
Z_{0}=Z_{e}-L L \sin P-H \tag{19}
\end{equation*}
$$

The fifth step is to solve the shoulder-elbow-wrist triangle for θ_{2} and θ_{3}. Three new angles: α, β, and ϕ, are introduced to simplify this solution. First solve for α, β, and ϕ.

Since $\tan \beta=\left(Z_{0} / R_{0}\right)$, we obtain:

$$
\begin{equation*}
\beta=\tan ^{-1}\left(Z_{0} / R_{0}\right) \tag{20}
\end{equation*}
$$

Pivoting the shoulder-elbow-wrist triangle about the shoulder by β gives the simplified triangle shown in Figure 24. The length of the base of the simplified triangle is given by $\sqrt{\mathrm{Z}_{0}{ }^{2}+\mathrm{R}_{0}{ }^{2}}$ (Phythagorean Theorem, using the right triangle at the bottom of Figure 23). As shown in Figure 24, the simplified triangle can be partitioned into two congruent right triangles. The base, b, of each of these smaller triangles is then given by:

$$
\begin{equation*}
\mathrm{b}=.5 \sqrt{\mathrm{Z}_{0}^{2}+\mathrm{R}_{0}^{2}} \tag{21}
\end{equation*}
$$

> Simplified Triangle Figure 24.

The haf, h; (again using the Pythagorean Theorem) is

$$
\begin{equation*}
h=L^{2}-b^{2} . \tag{22}
\end{equation*}
$$

Since tangent of α is h / b,

$$
\begin{equation*}
\alpha=\tan ^{-1}(h / b) \tag{23}
\end{equation*}
$$

Substitug fon, han Equation (23) by using Equation (22) gi

$$
\begin{equation*}
\alpha=\tan ^{-1} \frac{\sqrt{\mathrm{~L}^{2}-\mathrm{b}^{2}}}{\mathrm{~b}^{2}} \tag{24}
\end{equation*}
$$

Substitag for bin Equation (2,4) using Equation (21) gives

$$
\begin{equation*}
\alpha \neq \tan ^{-1} \sqrt{\frac{4}{\mathrm{R}_{0}^{2}+\mathrm{E}_{0}^{2}} \mathrm{E}_{0}^{2}}-1 . \tag{25}
\end{equation*}
$$

The sixth strep is to use and to determine θ_{2} and O3. The millowing three relations are first set up and then soud. At the shoulder (see Figure D-10),

$$
\begin{equation*}
\theta_{2}+\Phi+\theta_{3}=180^{\circ} . \tag{27}
\end{equation*}
$$

Summing the internal angles of the simplified triangle (Figure 2M) gives. $\Phi+\alpha+\alpha=180$, or

$$
\begin{equation*}
\Phi=180^{\circ} \alpha-2 \tag{28}
\end{equation*}
$$

Substituting the value of θ_{2} from Equation (26) and the value of from Equation (28) into Equation (27) gives

$$
\begin{equation*}
\theta_{3}=\alpha-\beta . \tag{29}
\end{equation*}
$$

Note however, that the elbow angle, θ_{3}, is defined as the angle above the horizontal and hence we must change the sign of θ_{3}.

In summary, the results of the sixth step are:

$$
\begin{align*}
& \theta_{2}=\alpha+\beta . \tag{30}\\
& \theta_{3}=\beta-\alpha . \tag{31}
\end{align*}
$$

thus completing the backward solution. A summary of the backward solution is given in Table 9.
4.7.4 Variation of hand length with hand opening.

The opening of the hand is proportional to the number of steps of the hand drive motor. The constant of proportionality is:

$$
S_{6}=371 \text { steps/inch }(14.6 \text { steps/mm). }
$$

Although the length of the hand, LL, has been treated as a constant in the previous calculations, it varies slightly with hand opening, as shown in Figure 25. The effect is small, $\pm 0.10 \mathrm{in} .(\pm 2.5 \mathrm{~mm})$, but for more precise work it may be necessary to take this into account.

The hand length, LL, may be expressed as the sum of a fixed length, L_{1}, and a varying length that depends on hand opening, G, by the following formula:

$$
\begin{equation*}
L L=L_{1}+\sqrt{L_{2}^{2}-\frac{\left(G-G_{0}\right)^{2}}{2}} \tag{32}
\end{equation*}
$$

Summary of Backward Solution	
Step	Operation
1	Determine arm constants H, L, LL
2	Determine the desired X, Y, Z, R, P, and R1 coordinates of the endpoint
3	$1=\tan ^{-1}(\mathrm{Y} / \mathrm{X})$
4	$R \mathrm{R}=\mathrm{X}^{2}+\mathrm{Y}^{2}$
5	$5=P+R+R 11$
6	$4=\mathrm{P}-\mathrm{R}-\mathrm{Rl} 1$
7	$\mathrm{R}_{0}=\mathrm{RR}-\mathrm{LL} \cos \mathrm{P}$
8	$Z_{0}=Z-L L \sin P-H$
9	$=\tan ^{-1}\left(\mathrm{Z}_{0} / \mathrm{R}_{0}\right)$
10	$=\tan ^{-1} 4 \mathrm{~L}^{2} /\left(\mathrm{R}_{0}^{2}+\mathrm{Z}_{0}^{2}\right)-1$
11	$2=+$
12	$3=-$

Summary of Backward Solution
Table 9


```
Variation of Hand Length with Hand Opening
Figure 25.
```

where:
$\mathrm{L}_{1}=1.884 \mathrm{in}(47.9 \mathrm{~mm})$
$\mathrm{L}_{2}=1.700 \mathrm{in}(43.2 \mathrm{~mm})$
$\mathrm{G}_{0}=1.520 \mathrm{in}(38.6 \mathrm{~mm})$
The hand opening, G, may be converted to motor steps and vice-versa by using the proportionality constant, S_{6}, given above.

Varying hand length may be taken into consideration in both the forward and backward solutions. Before starting either solution, the correct value of LL would be computer from the hand opening using Equation (32).

4.8 Procedure for Robot Arm Movement

In order to grab the object correctly and place it where we want, those data that were determined and calculated in procedure for detection of object should be converted into cartesin coordinates for robot arm movement as below.

1. Conversion of pixels to cartesian world coordinate for Robot shown in Figure 26.

As compared in Figure 26, the coordinate for X, Y in cartesian paper can be calculated in the following way,

$$
x=(430-x C) / 41
$$

$$
Y=(Y C-200) / 41
$$

where X and Y are in inch, and $X C$ and $Y C$ are in pixels.

Conversion of pixels to Cartesian
Coordinate
Figure 26
2. Save the data of the object into some rooms.

$$
\left.\left.\begin{array}{rl}
R= & \text { transmitted data for rotated degree of } \\
& \text { the object }
\end{array}\right\} \begin{array}{rl}
\mathrm{GP}= & \text { the width of the object }(=\mathrm{HG}) \\
\mathrm{XR} \mathrm{=} & \mathrm{X} \text { coordinate of the center or centroid of } \\
\text { the object }
\end{array}\right\} \begin{aligned}
\mathrm{YR} \mathrm{=} & \mathrm{Y} \text { coordinate of the center or centroid of } \\
& \text { the object } \\
\mathrm{ZR} \mathrm{=} & \text { height from the table top to the tip of } \\
& \text { the hand grip }
\end{aligned}
$$

3. Initialize the robot arm using cartesian coordinates. To initialize the robot arm, use the Hand Held Control to place the tip of the hand grip.

$$
\begin{aligned}
\mathrm{XR} & =5 \text { inch } \\
\mathrm{YR} & =0 \text { inch } \\
\mathrm{ZR} & =0 \\
\mathrm{P} & =-90 \text { degrees } \\
\mathrm{R} & =0 \text { degree } \\
\mathrm{GP} & =0
\end{aligned}
$$

Then, calculate the real cartesian coordinates for robot arm. Since the table top is 8 inches higher than TeachMover base and the center of the table top $(5,0)$ is 4 inches farther placed from the real cartesian coordinate for TeachMover:

$$
\begin{aligned}
\mathrm{X} & =\mathrm{XR}+4=9 \\
\mathrm{Y} & =\mathrm{YR}=0 \\
\mathrm{Z} & =\mathrm{ZR}+8=8 \\
\mathrm{P} & =-90 \text { degrees } \\
\mathrm{R} & =0 \\
\mathrm{GP} & =0
\end{aligned}
$$

This conversion can be easily understood in Figure 27.
4. Move the arm to the stand-by position to avoid the blocking of lens' sight for the 10-in. x 10-in. table top cartesian paper.

$$
\begin{aligned}
\mathrm{XR} & =2 ; \mathrm{X}=\mathrm{XR}+4=6 \\
\mathrm{YR} & =0 ; \mathrm{Y}=\mathrm{YR}=0 \\
\mathrm{ZR} & =9 ; \mathrm{Z}=\mathrm{ZR}+8=17 \\
\mathrm{P} & =45 \text { degrees } \\
\mathrm{R} & =0 \\
\mathrm{GP} & =0
\end{aligned}
$$

5. Then, obtain data of the position of the object.
6. Move the arm to the 1 -in. higher than the top of that object and ready to be picked up by opening the hand and rotate in proper degrees if it is cubic.
7. Lower the hand to have the object between the hand grips.
8. Hold the object.
9. Lift up the object by one inch.
10. Place it as programmed. If it is cubic, $X R=2$, $Y R=3, Z R=0, P=-90$ degrees, $R=0$ and $G P=0$. If

The conversion from the cartesian on the table top to the real cartesian coordinates for robot arm
it is cylinder, $X R=2, Y R=-3, Z R=1, P=-90$ degrees, $R=0$ and $G P=0$.
11. Go back to the origin, $X R=5, Y R=0, Z R=0$, $P=-90$ degrees, $R=0, G P=0$.
12. Stop the program.

Chapter 5

APPLE IIE COMMUNICATION TO VPU AND TEACHMOVER

5.1 Introduction

For the Apple Computer to communicate with the TeachMover and VPU it is necessary to interconnect the two via a serial card and a cable.

5.2 Hardware Needed

1. Super Serial Card, manufactured by Apple Computer, Inc.
2. RS-232-C cable with a 25-pin male connector at each end.
5.3 Hardware Setup for VPU

The Apple II Super Serial Card (SSC) needs to be prepared first in accordance with Chapter 1 of the SSC manual. Then proceed with the settings below. For reference, the TeachMover uses the SSC in the Communications Mode.

1. The reversible jumper block on the SSC should have the white triangle pointed at "MODEM."
2. Switch No. 1 (SW1) Settings

POSITION	SETTING	NOTES
1	Off	These settings are 2400 BAUD
2	On	transmission rate
3	Off	
4	On	
5	On	
6	On	Communications mode RS-232-C
7	On	signals

3. Switch No. 2 (SW2) Settings

POSITION	SETTING	
1	On	Sets 1 stop bit
2	Off	Sets 7 data bits
3	Off	
4	Off	Even parity
5	Off	No LF after CR
6	Off	Interrupts off
7	Off	RS-232-C signals

4. The SSC was plugged into slot \#2 in the Apple.

5.4 Hardware Setup for TeachMover

The Apple II Super Serial Card (SSC) needs to be prepared first in accordance with Chapter 1 of the SSC manual. Then proceed with the settings below. For reference, the TeachMover uses the SSC in the Communications Mode.

1. The reversible jumper block on the SSC.
2. Switch No. 1 (SW1) Settings

POSITION	SETTING	NOTES
1	Off	These seetings are 9600 BAUD
2	Off	transmission rate, and match
3	Off	the factory setting of the
4	On	TeachMover.
5	On	
6	On	Communications mode
7	On !	RS-232-C signals

3. Switch No. 2 (SW2) Settings

POSITION SETTING
NOTES

1	On	Sets 1 stop bit
2	Off	Sets 7 data bits
3	On	
4	Off	Odd parity
5	Off	No LF after CR
6	Off	Interrupts off
7	Off	RS-232-C signals

4. The SSC was plugged into slot 4 in the Apple.
5. RS-232-C cable was plugged into the right connector when looking from the rear of the TeachMover.

Chapter 6

FLOW DIAGRAM FOR ROBOTIC SYSTEM WITH COMPUTER VISION

Set the window 200×200 pixels in which the object is placed

Get the data of center if it is cylinder, or centroid if it is cubic. Get the data of rotated degree if it is cubic, the width of that object to set up the robot hand grip

Details and algorithms are explained in 3.3 including Procedure for Detection of Object, and in 4.8 , the Procedure for Robot Arm Movement. The experimental program is listed in Appendix E.

Chapter 7
CONCLUSION

Image processing was found to be useful in detecting an object. Analyses were made to get the proper information for robot movement using a controller such as the Apple IIe computer. Even though the usage of personal computers was limited in the past, it was found to be useful as a robotic system controller.

The system was found to be capable of distinguishing cubic and cylindrical objects of different sizes. Programs written were capable of retriving these objects and placing them in the proper location.

As a future project, a sensor for object detection can be attached to the robot itself to simplify coordinate transformations. Filtering techniques can be applied to images of the object using video image processing to improve the quality of the images when operating at poor lighting environments.

REFERENCES

1. R. Y. Wong, "Scene Matching with Invariant Movement," Computer Graphics Image Processing, No. 8, August 1978.
2. R. Y. Wong, "Intensity Signal Processing of Images for Optical to Radar Scene Matching," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vo1. ASSP-28, No. 2, April 1980.
3. R. Y. Wong, "Computer Pattern Classification and Scene Matching," published by the Department of Electrical and Computer Engineering, California State University, Northridge.
4. "Operating of the Five-Axis Robot Mode1 TCM," by MICROBOT, Inc.
5. "Video Processing Unit Operating Manual" by Rank Videometrix, January 1982.
6. "Apple II Super Serial Card Installation and Operating Manual" by Apple Computer.

APPENDIX A
 System Set-Up

APPENDIX A

System Set-up

Power Supply (for the video camera)
ON/OFF switch
This switch turns the camera system power on and off.

Video Camera

1. Camera Connector

Connect the camera cable connector. Be sure the cable connector if fitted securely to each Vertical, Horizontal, and Video connector which should be properly connected to VPU input. And, the monitor is to be connected to the monitor input.
2. For proper size and picture

Adjust Lens focus for the sharpest picture. Adjust the aperature for the proper threshold of the VPU. Ajust the distance from the 8 -inch high table top to have the entire picture within the 409×400 pixel
window of the VPU.

Videometrix

1. Connector coming from camera should be properly connected to camera as explained above in Video Camera section.
2. The connector for monitor to TV monitor

Serial Port (for VPU)

1. 21-pin connector goes to the serial port which resides in slot \#2 of the Apple Computer.
2. The switch on the first layer inside the VPU is set up as below. Switch 6 is OFF, 7 is ON, and 8 is ON for 2400 baud rate. Switch 4 is $O N$ for $C R / L F$ and 5 is OFF for standard I/O. The rest of the switch left does not affect any situation.

Robot Arm

1. DC Power Supply should be connected to the robot arm, TeachMover using the two leg connector which red leg should be plugged into red female plug.
2. The DB-24S coming from the Apple IIe connector should be connected to the right female connector attached to the back of the base.
3. The center of the robot-arm should be placed at $X=0$ and $Y=0$ point in real cartesian world coordinates.

Apple IIe

1. Super Serial Port for VPU should reside in slot \#2 for experimental program.
2. Super Serial Point for TeachMover is in slot \#4.
3. Disk Drive has ribbon cable connected to its controller card in slot $\# 6$, drive 1 of the Apple IIe computer.

APPENDIX B

System Operating Instruction

APPENDIX B

System Operating Instruction

1. Turn on power supply for the video camera.
2. Turn on the lighting system.
3. Turn on the monitor.
4. Turn on the VPU power switch.
5. Turn on computer power and load "project" program from disk drive 2.
6. Run the program, following the instructions below.
6.1 Initialize the robot arm with $\mathrm{X}=5, \mathrm{Y}=0, \mathrm{Z}=0$, $\mathrm{P}=90$ degrees, $\mathrm{R}=0$, $\mathrm{GP}=0$ at the center of the table top cartesian paper, which is actually $X=9, Y=0, Z=8, P=90$ degrees, $R=0$, $G P=0$ in real cartesian coordinates for robot calculation and movement.
6.2 Set the proper threshold.
6.3 Return to get the data for the object location and move the robot arm to place the object where we want. If it is cubic, place it at $X=6, Y=0$ and if it is cylinder, place it at $X=6, Y=0$ in real cartesian coordinates.
7. Check the movement and the result.

APPENDIX C
Functional Difference of VPU Software

APPENDIX C

Functional Difference of VPU Software

1. Required Changes in Host Software
A. The following commands no longer return output

CS
CM
GS) Al1 Gate \& Crosshair
GM) Manipulation commands

TH Threshold Set
DV Digitized Video Enable/Disable
CI Comparator Input Select
RS Reset
HO Horizontal Offset
DM Display Mode
US Update Aspect Ratio
WP Write to a Port
B. Ensure that VPU switch settings are correct for application (settings now control baud rate, daisy/non-daisy, and VPU output terminator characters.
C. Spaces may no longer be used as delimiters in polled VPU command strings.
2. Enhancements
A. New Commands

AN	Vertex \& Cosine of an angle
RP	Read a paralle1 port
WP	Write to a paralle1 port
EL	Equation of a least squares fit line
MF	Median filter enable/disable
CT	Crosshair tracking enable/disable
FN	Surface or edge focus

B. Fixed or Enhanced Commands

RS	Reset now works
CS/W	Set Xhairs to center of current window
CC	Can now use many points (up to 10,000 can
	be specified)
AG	Now works reliably
WS	Now works reliably
CS	Now center crosshairs to precise center of maximum window

3. Power-Up Conditions

Parameter
Comparator Input
Digitization
Video Threshold
Gradient Threshold
Window Setting
Crosshair Setting
Aspect Ratio

Value
Video
Off
50\% (Relative)
50\% (Absolute)
Full window
Centered
1.25 (5X:4Y)

APPENDIX D

Serial Interface Commands

APPENDIX D
 Serial Interface Commands

Notes: 1. <CR> = Carriage Return
2. Arm returns [0<CR>] if command has a syntax error, [$1\langle C R\rangle]$ after command is executed (except for @ RUN), [$2<C R>]$ if STOP button was pressed before execution was completed (@STEP and @CLOSE on1y)

Command	Function	Syntax/Details of Operation
@ARM	Specifies recognition character to use instead of "@" sign	@ARM <CHAR> <CR> where CHAR is any character except a carriage return.
@Close	Close gripper until grip switch is activated	@CLOSE <SP> <CR> where $S P=$ optional speed value (see item 4 in this appendix).
@DELAY	Inserts a delay between transmitted characters	```@DELAY <CR> Where N = proper delay value, determined by trial and error.```
@QDUMP	Uploads entire current program from TeachMover to host computer	@DUMP <CR> Returns character string comprising 8 two-byte values for each program step. See Table 9 in chapter 7 for details.
@QWRITE	Downloads a program step from host computer to TeachMover	@WRITE<N>, <L1>, <L2>, ... <L7><CR> where $N=$ Step number to which program step is to be written. L1-L7 = two-byte values as in @QDUMP command. See chapter 7 for details.

Command	Function	Syntax/Details of Operation
@READ	Reads value of	@READ <CR>
	the internal	Arm returns:
	position regis-	$\langle\mathrm{K} 1\rangle,\langle\mathrm{K} 2\rangle, \ldots,\langle\mathrm{K} 6\rangle,\langle\mathrm{I}\rangle\langle\mathrm{CR}\rangle$
	ters, gives last	where K1-K6 = values of
	key pressed on	internal position registers
	teach control,	$I=$ Last key $* 256+$ Input
	and tells which	Byte where "Last key" values
	input bits are	are defined below:
		"Last key" Key
		Value Pressed
		1 TRAIN
		2 PAUSE
		3 GRIP
		4 OUT
		5 FREE
		6 MOVE
		7 MODE
		8 STEP
		9 POINT
		10 JUMP
		11 CLEAR
		12 ZERO
		13 SPEED
		14 REC
		and:
		"Input Byte" = decimal num-
		ber whose binary equivalent
		specifies which of the eight
		input bits are set to 1 (see
		"jump condition" numbers
		under hand-held teach control
		JUMP command, above).
@RESET	Zeros the internal	aRESET<CR>
	position registers	
	and turns off.	
	motor currents	
@SET	Sets subsequent	@SET<SP><CR>
	arm speed and	where SP = optional speed
	activates joint	value (see item 4 in this
	control keys on	appendix). Control returns
	hand-held teach	to host when REC or MODE key
	control	is pressed.

@STEP

> Sets arm speed, moves joints, sets output bits

```
@STEP<SP>,<J1>,<J2>,...,
<J6>, <OUT><CR>
where SP = speed value (see
item 4 in this appendix).
J1-J6 = Number of motor
    half-steps
J1 = Base swivel (positive
    counterclockwise)
J2 = Shoulder (positive
    downwards)
J3 = Elbow (positive
    downwards)
J4 = Right wrist (positive
        downwards)
J5 = Left wrist (positive
        downwards)
J6 = Hand (positive open)
OUT = Optional decimal num-
ber whose binary equivalent
specified the value of the
output bits (see Appendix F,
item G).
```


APPENDIX E

Program Listing

```
    M, HINE
    L#; CHK$ (4)
    4a kEM
    E4 bOS!jB 7040
    S5 FHINT "RS"
```



```
    Д(% GOSUB ENUN
    HHINT "DU/E"
    DR1NT: "CT/E"
    PHINT "CSIW"
    PRINT "TH/玉&"
        GOSus 800u
            G010 ener20
            REM FRUM ETO日こ
            PRINT "**************************"
            PRINT " INITIALIZATION "
            PFINT "--- (5, 凤) AT CENTER --- (0, () AT FIEHTMOST LENTEF---- (10.\otimes)
            HI LEFTMOST LENTER ---"
            GOT0 16Q
    iIV WRINI "TYNE IN COMMHND AND, DOR, 1"
    .こひ 1NDUT Lま.E゙
    1.ju1 GUbじに /Wんど
    146 GUSLE 10von
    14ご G゙じつUH 8いればい
    14G FRINT "WANT MDRE COMMAND? Y-G,N-1"
    146 LINPUT LV
    147 IF ZV = O EOTO 11:E
    IGU PHINT "IY&E IN THRESHDLD VGLUE, IUST NLMEER"
        INPUT TN
        GOSUH 7#Qa &% &
        DRINT "TH/";7N
        GOSUR 日, (%)
        PRINT " GGFIN? Y-D,N-1"
    INOM
```



```
    C4* M = (SD - TD) / 5 + 1
    OW = WT (M)
```



```
    EE| UlM 辂(M), IT (M),NL (M)
```



```
    SML DRKNT "EN/E"
    GE& DHTNT "CN/B"
    S3ul INWUT XE, YB, HB
```



```
        **": bullo 3ご教
    ##G DRINT "CN/E"
    Ju6 IN&JT XO, YE,RC
    370 3F XC, & B# THEN L = E0: GOTD 380
    37.5L = 3HT (XC - 60)
    B6. IF XC, 3EG THEN R = 4E゙G: GOTO 400, 
    ZGN R = INT (XC + EV)
    4&NT TF VL & EN THEN T = D: GOTO 4EQ
    4IEF= INT (YL - EQ)
```



```
    4VB= TAT (VLL + EW)
```



```
    45% बTTf=006
```

```
\Xiご@ FUR NJ = 170 3
BNONON FOR = TO 3
.j4kT = TD + (NJ - 1) * 10Q
```



```
AEtUL=LD + (NI - 1) * 10J
ジ7NK=RD + (NI - 1)* 103
ナご囚* PHINT "AG/":7:"/":B;"/":L:"/";R
34n I= \
S%6) FOR 1 = TO E STEP 5
```



```
&゙刀口 DKINT "CS/H/":1
30H0 PHIN1 "IE/X/L"
3`GQ INDUT XL(J),Y(J)
340E DHINT "IE/X/T"
3410 INIJT XT(J).V(J)
34ごど N'EX7 1
44S0 F[1P J = 1 TO M
34Se PHINT "GT Y=":Y(J):" XL=";XL(J);" X「=":XT(J)
3457 DFF(J) = XT(J) - XL(J)
3458 NT(J) = XT(J) - XT(J - 1)
3459 NL(J) = XL(J) - XL(J - 1)
34EQ PHINT "DIFFERENCE XT-XL=":DF(J)
```



```
    i PS(NI,NJ)=PS(NI,NJ) + 1
347E IF DF(J) ''5 AND DF(J) (110 AND ALS (NL(J)) (18 AND AHS (NG(I))
    ( 1E THEN PS(NI,NJ) = DS(NI,NJ) + }
347E 1H XL(J) ) HND XL(J) (503 THEN NS(NJ,NJ) =NS(NI,NJ) + :
#4B4 IF DC(J), 11N THEN PE (NI,NJ) = PE (NL.NT) + $
```



```
    1 + I
:4%% KEm TOO BIG
2.4-z NEX| J
うこも\mp@code{NEX7 NT}
S゙C゙& :vtx| NJ
```



```
344% HOKI= =TL Z
```



```
~ニ゙ご OHIN! ' OL(":I:",":J:")=":DD(I,I)
```



```
SEQ NEX! I
シ5% NEXT J
```



```
4IOW REM IF OS(I,J) IS MAXINUM THEN SAVE IG
4CEVEX = = D
4WEごDX=0
```



```
4*4゙几 FOK J = 1 TO 3
46宏 FUH I = 1 TO 3
4*OCH IF NS(I,J) (ES AND DS(I,J) > EX THEN GOTD 4RE4
```



```
4@&4 iF PE(I.J) ( 3 AND PS(I,J) ( E1 THEN EX = FS(i,I):IX = I:JX=J
4N/v It PE(T.J), FX THENFX=PE(I,J):MX = I:NX=J
4*FHN NEXT 1
4*SW NiEXT J
+ivi, REM, MINIMUM=30, SO/S=E, LEAST NO.
```



```
410.0 H-W GuGQ\=FINI) CENTEH
4:\thereforeO RUN IF TT LS YOO BIG
44% WNINT OLACE UEJECT, IF THEHE IS AN GEIECT THEN TT YS TOG SNALE TO
    OSM UF"
4:Si" DRJNT "AFTER PLGCE EEJECT, PUSH RFTURS"
&2ER INW!IT לs$
4%% BUTO 1W# REM उEWU STARTING HUINT
```



```
    ENa07=70 + (3x - 1) * 100
```



```
    205L}L=LD+(1x-1)*10%
    SW46 K=RD + (IX - 1) * 1VE
~ODSU RFM OBJECT IS IN THIS ELOCH
    SWEW HEM FRUM 450
    L心&こ DRINT "AG/";T;"/";B;"/";L;"/";R
    ちQE'S FRDNT "TH/":7N
    En/m HEM WINDUW EXHANSION
    ち19* HRINT "****(1)USING COMMAND-CC ******
    Sil: KF= \
\\5TE HRIN| "TH/":TN
    むこご园 HN!N! "CL"
    B1E= JNDUT WX.WY. RE
    #2己今 मRJN| "CN/E"
    #JE4 INWUl XL.YL
    y!E゙t IF AHS (XC - WX) ( 10 OR HES (YC - WY) ( 10 THEN GOTO 5:Jこ
    I!こ! MF = KF + I
    LIEB IF KH > S THEN PRINT "*** TRY AGAIN WITH LTFFERENNT TH ***": GOTO -
        Эいい以
    229 GOTO 511*
```



```
    &14缺 PRINT "---------"
    S:EU PRINT "THE OHJECT 1S PLACED AT X=":XC:" Y=":YC;" WITH KHD:LSS=':RG
    む)ヒ| UKINT "---------"
    シ1G# PHINT "****(E) USING MI, MX *****
```



```
    シごんひ PRIN| "MI/X/L"
    EnO INPUT LX,LY
    シEE& HRINT "MX/X/T"
    \becauseSk` INPUl RX,HY
    エ=4W" HHIE, "MI/Y/L"
```



```
    シE'tk" WNINTT "rix/Y/T"
    SE/W INDUT Bx.bY
```



```
    ##x% pHIN| "RIGHTMOST POINT= (";FX:",":RY;")" Xb
```



```
    &二゙ひ FHINT " BiJTIUM HUlNT=(";BX;",":EY;")"
    SO: Y = HHS (RYY - LY):XQ = AHS (EX - TX)
    BGS DRINI "RY-LY=":YG:": BX-TX=":XO
    LHOW HRINT "
    3540 X1 = (kX - LX) / E + LX
    MSEW Y1 = (KY - LY) /E + LY
    SZも\ XE = (EX - TX) / E + TX
    5s70 Ye = (EY - TY) / Z + TY
```



```
    S380 DRINT "CENTER BETWEEN LEFI AND RIGHT = (":X1:",":Y|:")"
    ちJW DRINT "CENVEH BETWEEN TOP AND BUTTOM = (";XE;",":YE:")"
    #'GE HHINT "CENTER XC,YC WHS= (":XC:",":YC:")"
    E40N4 REM IF (SC.YC) AND (X1,Y1)
    L4TQ AEM HND(XE,Yご) ARE 100 DIFFERENT
    -4Eこて REM THEN TRY--IE/X/L--IE----
    Gにक< fb (IX.JX)=N
```



```
    5is4 busueg/vew
    5% G UYPNT "7H/":7N
```



```
    *ary J=0
    \therefore二゙タ F!H I = TVO E STED 5
    ##:ax Y= I + I
```



```
    び心ニ゙ 山&INI "IE/X/L"
    ジSシ INHLI XL(J),Y(J)
    &54 НHINT "1E/X7"
    ぢぶ LNHUT XT{J),Y(J)
    =ごち NEXT 1
```



```
    LSi& DF(J) = XT(J) - XL(J)
    SGG NT(J)=XT(J) - XT(J - 1):NL(J) = XL(J) - XL(J - 1)
    S54| IF DF(J) > 5 AND DF(J) < IEQ AND AES (NL(J)) (18 GND A*S (N'(I):
        ({B THEN PS(IX,JX)= DSIIX,JX) + 1: GOID 57W%
    5SLb GUTO 575Q REM GAREAGE GOTO NEXI
```



```
    D
    #7:0 MTT = MT + 1:\lambdaM = XM + NL (J):YM = YM + 5
```



```
    #iG4 NEXT J
```



```
    Uov HEM IF COBIC IS IN GQ DEGREE
```



```
    Э164 PRINT "*** TEST PT=";PT:" M1 =";MT;" XM=":XM;" YM=":YM
    :DG=":DG
```



```
    #BSO
    EMAE JF XM ( Z THEN DG = R:LL = PS(IX,JX) * 5 + 5: GOTO 5B3Q
    SHIV LGG= - HTN (YM/ XM):LL = (YM + U) / Sif( - DG)
    =HS* REM FKOM 5BOD
    S*4& PRTMT "--------ANGLE----wIDTH---"
    5nG% UR = 180 * (UG/ 3.1415`)
```



```
    Sebr KEM FROM EBGO
    ##si R\thereforeM IF CJRCLE
```



```
        CYLINOER
    5GB2 GUSUL /OWQ: PRINT "TH/";7N
    \E&i4 YE = INT (YE)
    G8にち PKINT "CS/H/":YC
    SBOE @NINT "IE/X/L": INPUT L1,T1
    ~m&% 次JNT "IE/X/T": INHUT LE゙, TE゙
    GGHO KI = XC - LI:RE = LE - XC
    #oje LG = (xL - L1) f E' + Ll
    EtJ: L! = INY (LC)
    Sむだ ロqINT "CS/V/":LL
```



```
    **EE DRTNT "IE/Y/7": INNUT L4,74
    Stうi ERSUE 日vinN
```



```
        GUTD 59MEMEANS CYLINDER
```



```
    GZE HRINT " CYLINDER, SM=";SM
```



```
    SG0l4 HG=(L- - 4J)/54 + 1
    シナC\
    535% 605!生70<%
```



```
    Gゴ心ス PRINT "CS/H/"; INT (YC)
    EjE% F-INT "LS/V/"; INT (XE)
```



```
    #H4 TLSM=| THEN DRINT "CISEIG*******"
    ジこごTNPGT AS$
```



```
    EMg4 GOTO E7OUO
```



```
    ro%n Rervin)
```



```
シムVM& HK!N'* Z=":Z:"INCHES"
E4&18& PHIN: " PITCH=";P:"DEGREES"
シ4ジ与% URINT " RDLL=";R;"DEGRELS"
C41*U PHINT " HAND=";GP / SG:"INCHES"
\4:1# RETURN
E4:ED REM
E414KINEM KOU KUUINE TO CONVEFT CAKTESIAN LOORDINATES
2415@ KEM 7U NLMEER OF JOINT STEDS AWAY FROM SIART POSITION:
<4!E| K=M
E゙SNom& REM
FSW:W KEM BHLKWHKD SOLUTION CALCULTIUNS
```



```
SWI!4 LL = J.H:L=7.O:RI=1: REM USED VARIALLEE IN VDU
```



```
Eこッチ& IF X = IHENTI = SGN (Y) PI / E
```



```
cover KN = SUR (X*X + Y Y )
GW%/G IF HK < こ.ES AND 2 ( 15 THEN PRINT : DHINT "HAND TOC C!USE TD EOU
    Y. HF=";RR
E゙ちヒHか IF HM, 17.B THEN URINT & UFINT "REGCH OUT DE RANGE. RR=":QR
EOCGE R| = RR - LL COS (D)
```



```
            PRINT : PRINT "HANU INTERFERENCE WIIH EASE."
CSIIN KEM NUTE THHT THE AEUVE SIATEM=NT RAY FE ALTEFED TE ACCOMODATE rO
    VES CLUSE TO THE GASE
EHこど凶゙2n=2-LL SIN (以) - H
```



```
:540 ! M0 < , MTHENE = ATN (20 / F(A)
ジ`5N&=R|*R| + 20* 20
ジ\leftrightharpoons!ちんム=4 L L L/N-1
E゙オ:7V 1: A & THEN PRINT : DKINT "FEHCH OUT UF RANGE FOR SHUMUDER
                                    AND E!-E!JW.": GOTD ECS5**
Ealthi'R=HINi (SUN (A))
```



```
つごい! 7 = H-H
```



```
    l IF HHNGE. T<=":TE * E
```



```
        LIF FANOLE. T3=":T3 * C
```



```
        : NYINT "FIILH UUT OF K&NGE. HT7CH=":5 &
```



```
    DITLH ULUT LL H&NGE. HITCH=":D (')
```



```
        3)) THEN PNINT F PNINT "RULL OUT OF FIMNGE. ROLL=":R * C
EEEE 「4 = N - R - Rl *T!
E5THT5=W+R+R1*Ty
<S500 REM **** CHECK %%170 #####*
ZEUMW HEM CORRECT COCRCINATES
E゙QIDWI = INT (S1 * T& +.5) - p1
```



```
-EW4k W4 = INT (54*T4 + * ) - P4
2GBEW Wt = INT (SS*TS + .5) - PS
Etveも kETUAN
<uts INOUY" Z=":Z
```



```
    -E,IM REM SS=1 MEANS URIGIN }Z=B,X=
    -unt -t = 1
    \becauseOい田 IF SS = TMEN GOTO EN13%
    ッ6%-4V(\becausej(1, n)=n
```



```
    三&:7* INPUT " HOLL=":R
    \because:71 1NOLT " HAND=":GP
    EML/2 INDUT " SPEED=";S
    EUy`5 INULTT "HIT HETURN TO GU ON:";AS
    -wlit it SS = GOTO e|180
    zம%%в }X=X=4:7=Z + 8
    EL1甘% IF }x\mathrm{ ( IT THEN 210001
    E4%% GOSUR E4QUO KEM SHDW COORDINATES
```



```
    En-*"4 HRiNT "LU(S.":U:")=":UU(5,U);" UU(E.";U;")=":LU(E,U)
    こせどビ 楒NT "UU(7,":山;")=":UU(7.U)
    -t-kE HRINT "W1=":W1:" WE=";WE:" W3=";W3;" W4=":W4
```



```
    M:",":W4 - UU(4,U):".";WS - UU(S,U):":":WJ - UU(E,U):":U): INPUT
    むごだいリ=U+1
    Ev=1 UJ(1,U)=W!
    FH,&%UU(E,U)=N2
    CこごS UL!(3,U) = W3
    =4-54 UU(4,U) = W4
    ##2LS LIS(L,U) = WS
    E゙んニ゙S !UU(t,U) = GM
    まこどでUU(7.U) = S
```



```
    \therefore<44 IF UU = & THEN GOTO 27EG®
```



```
    Eとごい it いい = 5 THEN QQ = Q: GU1U E7900
```



```
    #みが心 LY = 0
    \becauseF&&: DFJNT "RETURV TO INITIHL WUSITION"
    EInG:' DRINT "GREHD": INPUT I
    Z1:003 INPUT A,B,E,D,E,F,G
    EMWN4 DRINT "LCLDSE E4ご": INPUT I
```



```
        C: INPUT I
    OHWGE PRIN: "RUN THE PROGRAM"
    Ein!e FOHI= I T0 U
```



```
        .1) - UU(S.1 - 1);".":UU(3,1) - UU(3,1 - 1): INPUT N
    ๕u#0n IF UU(G.I) ( THEN 210E|
```



```
    E?\4% NExT?
    -111% EY = EY + 1
    ~"*eit U&jiv! "LYCLE ":CY
    \therefore: 3& , 301%%d
```



```
    \because4:On WW!M : HEINT"" }x=":x:"1NEHL:""
```



```
    E゙ちち4* UU(t.电) = - 931
```



```
    EEfig}\mathrm{ нOT0 EM133
    ETNNG H5m FHUM INITIALIZnTION Eも16Q
    E゙TVIW X=E:Y= D:Z=17
    OTOW:L = 45:H=N:GP=0
```



```
    ET:442 GUSLU EmnNO
    E705% QU = 1: REM
```



```
    E0%% Qu = 0
    =7n/E \RINI"
    ジ隹打=1
    二7a%y It UT = THEN OG = 3: GOTO ED1E1
    #14ON UO = Q: REM FRUM 2WIG1 THRU---
    ETOH: KEM GET DOTA OF VDU
    ERUEE HUME : GOTO 1NE: KEM GOING TO VDU
```



```
    <74JごXR=(430 - XL) / 41
    E,.WM YR = (YL - E(VW) / 41
    EI:V iH=HG + I:REM. OR ZH=(HG-1)/E IF L:IEIC
    \therefore1:CTGG=FG
    Cl.4V FR = - Ow
```



```
    ZTGZ KEN LUNVEKSION FKUM LHKTESIFNN TO ROBUIIL KEAL CAWTESIAN
```



```
    EAHS YH=YK - D.E7:XR = XR + D.16: GOTO E.751%
```



```
    E.435 YH=YR - 0.15:XR = XR + 2.1E: GOTO E7519
    こ74北 I YR 人 - E THEN GOTO こ745日
    E7437 YR = YR + E.1E:XR = XR + O.16: GOTD =75:3
```



```
    E74'G` IF YR , THEN YR = YR - D. 1: GOTO ETSNQ
    E゙SOQ IF XH) S THEN GUTO 2750n
    E/UW: IF YR (E THEN GOTO E750こ
```



```
GO!NH JF Y# & E IHEN GOTO E7SIN
```



```
    E.g.1 YR=YH-N.1Э:XR=XK - N.1:GOTU E7S19
```



```
    E/51G Y = YR:X = XR + 4
    #GEL&=2R+B
    EiぢNROR=-DH
```



```
    F゙いんL !L = 3. B: REM LL WAS LENTH IN UPU LL=3.E IS FOR ROFOT
    Eノ7VS S e30
    :75&& P&1NT "X=":X:" Y=":Y:" Z=":Z:" R=";K
    ごデЭも ザミNT-" P=":P:" GP=";GP;" *** HG=";HG;" SE=":SE
```



```
    ジも!n GLSLO
```



```
    ジ/七su ジ丁口丁 ENEN%
```



```
\because1:%1, 7 = 0.4:5 = 215:GW = 0
ジ心安隹= - DK:D= - 9w
```



```
\because/li=0 GÖw,H ESvu#
=1/30 \心=4
\therefore7/4% GUlO EREID: REM INSTEAD OF EDZO:
```



```
ジィヒル INPUT I
#1504C 2 = 5.4:5=EEn:GD=0
ジTBE = = - G*:R = - DR
\because7614 GUSUH E40wい
```



```
\because7GNQ GEM UD UN THE GOGL PLACE
C/F1Q IF 5M = THEN Z = F.4:S=220:GP=0:X=E:r=4:Q=0:P=-9%
```



```
    '\existsx'
```



```
7G%w 心W=G
```



```
こevere h=w FHum ご77*
```



```
E日げ& SUSUR ESuva
```



```
EBKED KEM FRUME77v
```



```
crin#W INPUI I
ESlkA K=#M UP UVER THAT GOAL PLACE
EG11以Z = 10.E:P = - 90:GP = 0
ませうに S = ここれ
```



```
天日:4: GILSHE ESOUN
EB154 Wu = 8
&8ted GUTO E&E10
2BcWOU REM CLOSE HAND
```



```
EBEI= INNUT I
: Bak& HEm! GU) BACN TD DRIGIN
EOIdX='\exists:Y=|:L=1Q. 
```



```
ER-1% REM
:b+ich R=M GUTO DKIGIN Z=B+E.E
E&41%X=Э:Y=0:L=10.E
```



```
ニ64302 P = - э凶 
```



```
\because7414 105=11
```


[^0]: Apple IIe-to-Teach Mover Serial Connection
 Figure 10.

