
1

Incorporating ChatGPT into a Financial Data Science Course with
Python Programming

Yang Liu∗

James Madison University

Laura K. Miller†

James Madison University

Xu Niu‡

James Madison University

We would like to thank the students and class participants of FIN 434 (Fundamentals of Financial Data Science) at

James Madison University in Fall 2022 and Spring 2023 for their valuable suggestions and feedback. We would also like
to acknowledge the generous financial support on this project from the Learning Center’s “Learning Laboratories
Research Fund” at James Madison University.

∗Professor Yang Liu, PhD, is Assistant Professor at the Learning Centers and Department of Psychology at James
Madison University, Harrisonburg, VA 22807, E-mail: liu38yx@jmu.edu.

†Professor Laura K. Miller, PhD, is Assistant Professor of Writing, Rhetoric and Technical Communication and
Executive Director of the Learning Centers at James Madison University, Harrisonburg, VA 22807, E-mail:
mille4lk@jmu.edu.

‡Corresponding author, Professor Xu Niu, PhD, is Assistant Professor at Department of Finance and Business Law
at James Madison University, Harrisonburg, VA 22807, E-mail: niuxx@jmu.edu.

Electronic copy available at: https://ssrn.com/abstract=4412371

mailto:liu38yx@jmu.edu
mailto:mille4lk@jmu.edu
mailto:niuxx@jmu.edu

2

Incorporating ChatGPT into a Financial Data Science Course with
Python Programming

Abstract

ChatGPT’s artificial intelligence (AI) has generated considerable debate and even panic
in higher education. However, AI is an unavoidable trend in education that has the
potential to subvert many courses’ pedagogical structure and methods. One such course
is financial data science with Python programming, a course that is in high demand
among finance majors. Incorporating ChatGPT into such a course can solve long-
standing challenges and difficulties that instructors and students are facing, and it can
shift the focus of the course from tedious Python coding back to financial data
interpretations and real-world applications. This paper represents a first attempt at
welcoming ChatGPT into financial education, by focusing on the pedagogical innovation
of a financial data science course with Python programming. In particular, the paper
provides specific examples of potential projects, with other insights and suggestions for
using ChatGPT in data science courses for finance majors.

JEL classification: A22, C80, I23

Keywords: ChatGPT, Financial Education, Data Science, Python

Electronic copy available at: https://ssrn.com/abstract=4412371

3

1. Introduction

Financial data science courses in higher education have been rapidly changing alongside the

evolution of technology. Simultaneously, big data in the era of artificial intelligence (AI) have shaped

the finance industry quickly, which has steadily increased the demands on the financial data science

workforce. In turn, financial education must evolve to meet industry demands and to prepare students

to succeed in this rapidly evolving field, without compromising essential foundational instruction.

Due to technological trends in the field, financial data science courses for undergraduate finance

majors typically focus on Python programming. In fact, many business schools are launching new

programs or concentrations in FinTech and Financial Analytics, such as the prestigious business

schools at New York University, Massachusetts Institute of Technology, and Columbia University.

However, instructors and students in financial data science courses with Python programming

face several challenges. First, finance majors typically lack the preparation and prerequisites for data

analysis, computer skills, and programming exposure to modern computer languages. Second,

finance majors are not usually motivated to learn the details of Python coding, starting from syntax.

Instead, as applied scientists, finance majors want to see how these Python programs can help solve

real problems in finance. We notice that existing courses, webinar trainings, and textbooks on data

science and Python programming do not target finance majors; instead, their purpose aligns with the

needs of computer science or computer information systems majors. As a result, it is difficult for

finance majors to identify direct financial applications and understand how Python programs can be

linked to other theories they have been learning from other finance courses, such as corporate finance

and investments. Third, given the above two challenges, it is almost impossible to reach the goals of

a financial data science course in one semester. The time-consuming preparations regarding basic

Python coding leave only a few classes at the end of the semester to explore applications in finance.

Finally, the learning outcomes of such a course in financial data science and Python programming

Electronic copy available at: https://ssrn.com/abstract=4412371

4

are vague. Through a one-semester course, it is impossible to train an average finance major to

become a sophisticated programmer in Python. In fact, training finance majors to become computer

programmers should never be the learning objective because cutting-edge finance majors on the job

market should not be competing with computer science majors with Python programming skills.

Instead, finance majors should treat Python (or any computer language or statistical software) as a

tool for understanding and solving problems in the real financial world. Doing so enables finance

majors to communicate with other team members, who are Python experts, and to provide primary

expertise in finance.

In the context of these challenges, Open AI published ChatGPT in November, 2022. ChatGPT is

a large natural language processing model trained by OpenAI based on a massive dataset of internet-

based text before September 2021 (OpenAI, 2022). In March 2023, OpenAI also released a new large

multimodal model named GPT-4 as an enhanced version of ChatGPT (OpenAI, 2023). Both

ChatGPT and GPT-4 produce text response based on a user’s prompt. ChatGPT is free and only

receives text prompts, while GPT-4 is only available in the paid version and can receive both text and

image prompts.

ChatGPT has created new challenges in higher education and has provoked a broad discussion on

how to include this innovation in higher education (Dowling & Lucey, 2023; Huang, 2023; Lund &

Wang, 2023). For instance, Rudolph et al. (2023) indicates that ChatGPT raises questions about

plagiarism, which need to be dealt with carefully. Some universities, like the University of Vermont

(2023), have begun to revise their plagiarism rules. One of the top universities in France, Paris

Institute of Political Studies (SciencesPo), has even banned the use of ChatGPT (Sciences Po, 2023).

Although current large natural language processing models, such as ChatGPT, have unignorable

limitations, including the tendency to hallucinate, produce harmful content, amplify biases, etc., the

advances in large language models have indubitable potential for vast social impact, including higher

Electronic copy available at: https://ssrn.com/abstract=4412371

5

education (Tamkin et al., 2021; OpenAI, 2023a). Yet, the application of artificial intelligence in

financial data science education has not been fully explored. Educators must admit that AI not only

has the potential to change traditional pedagogy, but it could even subvert the current structure and

instructional methods of certain courses.

One such course is financial data science with Python programming, a course in high demand

among finance majors. Incorporating AI tools, such as ChatGPT, into this course using Python

programming could provide a promising or even an ultimate solution to the above-mentioned

challenges in teaching financial data science courses.

First, with the help of ChatGPT, instructors can free finance majors from the tedious and time-

consuming preparations on writing Python codes and instead focus on reading and understanding

Python codes. Second, the instructional focus can shift from teaching students how to write

executable Python codes to writing effective prompts with applications in financial data science.

Finally, a financial data science course with Python programming can once again become a finance

course by focusing on financial theories and applications, instead of becoming a computer

programming course with minimal examples in finance.

To the best of our knowledge, this paper represents the first attempt at exploring the possibility of

incorporating ChatGPT into financial education, especially the course in financial data science with

Python programming. Given GhatGPT’s ability to convert among different computer languages, we

use Python as an example to illustrate how educators could use ChatGPT as a tool to teach financial

data science.

The remainder of this paper proceeds as follows: Section 2 reviews the literature on ChatGPT in

finance and education. Section 3 introduces several examples of in-class projects for using ChatGPT

in a financial data science course with Python programming, and it provides more suggestions on

Electronic copy available at: https://ssrn.com/abstract=4412371

6

potential projects that are suitable for learning with the help of ChatGPT. Section 4 concludes by

reviewing the overarching assertions in this paper.

2. Literature Review

The finance industry is undergoing a transformation due to rapid changes in technology, such as

advances in artificial intelligence and big data, leading to opportunities for growth and innovation in

financial education (Alt et al., 2018; Arner et al., 2015; Davenport & Ronanki, 2018; Schueffel, 2016;

Suryono et al., 2020). For example, Arner et al. (2015) review the long history during which finance

and technology have evolved together, and they discuss challenges in balancing the potential benefits

of innovation with the possible risks of approaches. Alt et al. (2018) assert that FinTech has disruptive

potential for the financial industry, including the convergence of multiple technologies, the customer-

orientation approach, and the innovation/entrepreneurial spirit. They highlight the dominance of the

banking sector within the FinTech domains but call for more research on other FinTech domains.

Consequently, fintech education is essential to equip professionals with necessary skills and

knowledge to excel in this rapidly evolving field.

Financial data science education has also become increasingly important due to the rise of big

data in the finance industry. Several studies have explored the current state and future prospects of

financial data science education (Alshater, 2022; Aydın & Karaarslan, 2023; Birjali et al., 2021;

Dowling & Lucey, 2023; Fisher et al., 2016; Kang et al., 2020; Olan et al., 2022; Xing et al., 2018;

Yan, 2018). For example, Yan (2018) identifies big data and programming as two trends in job

advertisements at business schools. They collected job advertisements from 23 business schools and

found that there is significant demand for fintech education among students and professionals. Yan

(2018) also indicates that many economics, finance, and accounting data are available to students as

Electronic copy available at: https://ssrn.com/abstract=4412371

7

public data, such as the Federal Reserve, US. Department of Treasure, Marketwatch, and more. They

also suggest business majors should master at least one programing language, such as Python.

The finance industry is also undergoing a transformation due to the incorporation of AI, which

has opened up new opportunities for data-driven decision-making and innovation (Bussmann et al.,

2020; Davenport & Ronanki, 2018; Lu, 2019; Rudin & Radin, 2019). For example, Bussmann et al.

(2020) propose an AI model to assess credit risk in the context of peer-to-peer lending. Lu (2019)

discusses the significant role that AI played in industrial development from 1961 to 2018, especially

in integrating emerging technologies such as graphic processing units, cloud computing, and

blockchain. Moreover, this study emphasizes the unquestionable value of AI as an assistant in a wide

range of industries. Accordingly, there is a growing interest in AI and financial data science education

to equip professionals with the necessary skills and knowledge to excel in this rapidly evolving field.

One of the examples and applications of AI is Large Language Models (LLMs) based on Natural

Language Processing (NLP), which has significant implications for financial data science education.

In recent years, researchers have explored the use of NLP techniques for processing and analyzing

financial data in varied areas in finance (Alshater, 2022; Aydın & Karaarslan, 2023; Birjali et al.,

2021; Dowling & Lucey, 2023; Kang et al., 2020; Xing et al., 2018). For example, Aydin and

Karaarslan (2023) use ChatGPT as an example of Generative AI to discuss the technical and structural

fundamentals, competitors, and user expectations. They find that although ChatGPT fabricates some

citations when writing a literature review on given topics, Generative AI might change the way we

do things in many fields. Kang et al. (2020) provides a comprehensive review of the application of

the UT Dallas List of 24 Leading Business Journals that employ NLP as their focal analytical

technique to elucidate how textual data can be harnessed for advancing management theories across

multiple disciplines. The study discusses the managerial and technological challenges associated with

the application of LLMs in management research.

Electronic copy available at: https://ssrn.com/abstract=4412371

8

In summary, the literature in finance has reached a consensus that fintech education is a rapidly

evolving field that requires innovative approaches and resources to keep pace with industry demands.

Therefore, effective strategies for financial education need to be identified. The literature also

suggests that AI and financial data science education are critical for future growth and innovation in

the finance industry. It is necessary to identify effective strategies for AI and financial data science

education and evaluate their impact on industry and society. Education must also prepare students to

navigate the ethical implications of AI in finance to ensure responsible and sustainable use of AI in

finance.

3. Examples of Python Projects with ChatGPT

As a first attempt at welcoming ChatGPT into financial education, this paper focuses on the

pedagogical innovation of a financial data science course with Python programming. A typical such

course is one semester long and is geared toward junior or senior finance majors at the undergraduate

level. Since existing textbooks on data science and Python programming do not target finance majors,

such a course is not oriented from a required textbook; instead, the course is project-based and

includes a sequence of in-class projects and take-home projects as assignments.

In this section, we first present two typical examples of in-class projects that would benefit from

interacting with ChatGPT. The first project uses the Monte Carlo simulation to calculate the weights

for an optimal portfolio given a list of stocks in a certain sample period. The second project is intended

to run a sequence of time-series regressions for a list of stocks to find the factor loadings of the Fama-

French Three-Factor Model. At the end of the section, we provide a list of other potential projects

that can be suitable for using ChatGPT in a financial data science course with Python programming.

All potential projects are well-suited for such a course (either as in-class projects or as take-home

assignments), and all projects have been tested by the authors of this article.

Electronic copy available at: https://ssrn.com/abstract=4412371

9

3.1 Example Project 1: Monte Carlo Simulation and Optimal Portfolio

An optimal portfolio given a list of stocks can be achieved by three equivalent methods: (a)

maximizing an investor's expected return for a given level of risk, (b) minimizing the risk for a given

level of expected return, or (c) maximizing the Sharpe ratio of the portfolio. The construction of an

optimal portfolio is a fundamental concept in modern portfolio theory and is used extensively in the

field of finance. A typical undergraduate-level course in “Investments” or “Portfolio Management”

for finance majors will cover such a topic in great detail from a theoretical point of view. One

approach to creating an optimal portfolio is to use the Monte Carlo simulation. The basic idea is to

generate a large number of random portfolios and then choose the one that has the best risk-return

tradeoff (i.e., choose the portfolio that gives the highest possible Sharpe ratio).

For this particular in-class project, instructors typically need to start with an overview of related

concepts with a focus on financial concepts, such as optimal portfolio, Sharpe ratio, efficient frontier,

and Capital Asset Pricing Model (CAPM). At the onset, students often view these concepts as overly

theoretical and do not see their applications with real financial data. Therefore, we assign this

particular project to help students understand how these concepts directly apply to the real financial

world. Instead of the traditional approach of instruction beginning with Python coding, we initiate

our project with help from ChatGPT. We have found that incorporating ChatGPT into the project

frees students from tedious and complicated Python programming, and the most important part of

learning becomes understanding the theoretical concepts needed to communicate with ChatGPT

effectively.

The first step of using ChatGPT is to develop a prompt (i.e., input from users) and then react

according to outputs from ChatGPT for the following procedures. We emphasize that it is likely that

ChatGPT’s first response might not meet our requirements and will require follow up with modified

questions to get expected answers and Python codes from ChatGPT. Next, the instructor would help

Electronic copy available at: https://ssrn.com/abstract=4412371

10

students understand that the logic of calculating weights for an optimal portfolio requires

downloading of returns for a given list of stocks in a certain sample period. Moreover, the instructor

can choose to use monthly returns data from Yahoo Finance for this project, and let students be aware

of the data availability from Yahoo Finance (and probably other data resources, such as CRSP). We

note to students that in order to communicate with ChatGPT effectively, they only need to be aware

of the data available from Yahoo Finance and be able to understand the data structure.

Table 1 presents the dialog with ChatGPT requesting a Python code for downloading data from

Yahoo Finance. For illustration purposes, in Table 1 (and all similar tables hereafter), we present

“Input from the user of ChatGPT” in Panel A and corresponding “Output from ChatGPT” in Panel

B. The screenshots for all dialogs with ChatGPT are available from the authors upon request. We

note that ChatGPT will generate a slightly different answer even if the question is from the same user.

Therefore, the outputs from ChatGPT in our paper might not be exactly replicated either by other

researchers, educators, or students in class. Instead of focusing on the direct replication of each project,

we describe the logic of dialog with ChatGPT and investigate how this logic can be applied in the

financial data science course with Python programming. Since the Python codes generated by

ChatGPT are too long to present in the table, we report all such codes in the Appendix.

Electronic copy available at: https://ssrn.com/abstract=4412371

11

Table 1: Dialog with ChatGPT – Download Data from Yahoo Finance

Panel A: Input from the user of ChatGPT
Write a python code that can directly download monthly stock return data for a list of stocks from Yahoo Finance.

Panel B: Output from ChatGPT
To download monthly stock return data for a list of stocks from Yahoo Finance, we can use the `pandas-
datareader` library. The following Python code can be used to download the monthly returns for a list of stocks:

(Note: ChatGPT generates a Python code here in a stand-alone box. Since the Python code generated by ChatGPT is too
long to present in the table, we report all such codes in the Appendix.)

In this code, we first define a list of stocks (`stocks_list`) and the start and end dates for the data (`start_date`
and `end_date`). We then use the `pdr.get_data_yahoo()` function to download the data from Yahoo
Finance, specifying the list of stocks, start and end dates, and an interval of 'm' for monthly data.

Next, we extract the Adj Close prices for each stock from the downloaded data, and use the `pct_change()` function
to calculate the monthly returns for each stock.

Finally, we print the first few rows of the returns dataframe to verify that the data was downloaded and processed
correctly.

Instead of pausing our logic and stream of thoughts by reading through the Python code, we tell

students that we shall first assume the Python code generated by ChatGPT is executable and correct

(which it is often not). After we receive all Python codes as expected from a sequence of queries in

ChatGPT, we have students merge all Python codes together and develop a final version of Python

code in a single file before debugging and executing the code. Of course, a quick browse-through of

the Python code is necessary and very helpful in the following steps.

By quickly reading through ChatGPT’s response, as presented in Table 1, we notice that ChatGPT

not only provides a Python code in a clean format (with comments alongside code), but more

importantly, ChatGPT provides details and the logic behind the generated Python code, which are

extremely helpful for beginning users of Python who do not have much previous experience and

exposure to computer programming. Notably, most students in a financial data science course for

finance majors should be considered this type of Python user.

Next, we notice that ChatGPT recommends using the ̀ pandas-datareader` library for this purpose.

A more sophisticated financial data scientist might be aware of another widely used library of

Electronic copy available at: https://ssrn.com/abstract=4412371

12

`yfinance` for accessing data directly from Yahoo Finance. We want to introduce this new library to

the class and therefore send our modified question and request to ChatGPT, forcing the generated

Python code to use the `yfinance` library instead. The dialog with ChatGPT for this purpose is

presented in Table 2.

Table 2: Dialog with ChatGPT – Download Data from Yahoo Finance (Modified)

Panel A: Input from the user of ChatGPT
Write a python code that can directly download monthly stock return data for a list of stocks from Yahoo Finance,
using the yfinance library in Python.

Panel B: Output from ChatGPT
To download monthly stock return data for a list of stocks from Yahoo Finance using the `yfinance` library in
Python, we can use the following code:

(Note: ChatGPT generates a Python code here in a stand-alone box. Since the Python code generated by ChatGPT is
too long to present in the table, we report all such codes in the Appendix.)

In this code, we first import the `yfinance` library using the `yf` alias. We then define a list of stocks
(`stocks_list`) and the start and end dates for the data (`start_date` and `end_date`).

Next, we use the `yf.download()` function to download the data from Yahoo Finance, specifying the list of
stocks, start and end dates, and an interval of '1mo' for monthly data.

We then extract the Adj Close prices for each stock from the downloaded data, and use the `pct_change()`
function to calculate the monthly returns for each stock.

Finally, we print the first few rows of the returns dataframe to verify that the data was downloaded and processed
correctly.

Now, assuming the datasets with monthly stock returns are ready to use, we proceed to request

that ChatGPT generate a python code that can calculate the optimal portfolio given monthly return

data for a list of stocks. The dialog with ChatGPT for this purpose is presented in Table 3.

Electronic copy available at: https://ssrn.com/abstract=4412371

13

Table 3: Dialog with ChatGPT – Calculate Optimal Portfolio

Panel A: Input from the user of ChatGPT
Write a python code that can calculate the optimal portfolio given monthly return data for a list of stocks.

Panel B: Output from ChatGPT
To calculate the optimal portfolio given monthly return data for a list of stocks, we can use the `scipy` library in
Python to perform a mean-variance optimization. Here is an example code:

(Note: ChatGPT generates a Python code here in a stand-alone box. Since the Python code generated by ChatGPT is
too long to present in the table, we report all such codes in the Appendix.)

In this code, we first define a list of stocks (`stocks_list`) and the start and end dates for the data
(`start_date` and `end_date`). We then download the monthly return data for each stock using the Yahoo
Finance API and concatenate them into a single dataframe.

Next, we define the objective function for the mean-variance optimization, which calculates the variance of the
portfolio given a set of weights and the covariance matrix of the returns. We also define a constraint for the sum of the
weights to equal 1.

We then define initial weights for the optimization and bounds for the weights to be between 0 and 1. We use the
`minimize()` function from `scipy.optimize` to perform the mean-variance optimization, specifying the
objective function, initial weights, method, bounds, and constraint.

Finally, we print the optimal weights.

According to the response from ChatGPT in Table 3, we notice that the ChatGPT-proposed

Python code calculates the weight for the optimal portfolio using the method of a mean-variance

optimization, which is not our intended method of the Monte Carlo simulation. We note that this is

very common when communicating with ChatGPT, and the solution is easy and straightforward: We

send another round of requests to ChatGPT with a similar question, but this time, we specifically

require ChatGPT to use “simulation” to generate Python codes. The dialog with ChatGPT for this

round of communication is presented in Table 4.

Electronic copy available at: https://ssrn.com/abstract=4412371

14

Table 4: Dialog with ChatGPT – Calculate Optimal Portfolio (Simulation)

Panel A: Input from the user of ChatGPT
Write a python code that uses simulation to calculate the optimal portfolio given monthly return data for a list of stocks.

Panel B: Output from ChatGPT
To use simulation to calculate the optimal portfolio given monthly return data for a list of stocks, we can generate
random portfolios with different weights and simulate their returns to find the portfolio with the highest Sharpe ratio.
Here is an example code:

(Note: ChatGPT generates a Python code here in a stand-alone box. Since the Python code generated by ChatGPT is
too long to present in the table, we report all such codes in the Appendix.)

In this code, we first download the monthly return data for each stock using the `yfinance` library and calculate the
returns. We then define the number of simulations and the number of portfolios to generate for each simulation.

We define a function to generate a random portfolio of weights, which generates a set of random weights and
normalizes them so that they sum to 1. We also define a function to simulate the returns of a portfolio given a set of
weights, which calculates the expected return, volatility, and Sharpe ratio of the portfolio.

We then generate multiple sets of random portfolios and simulate their returns to find the portfolio with the highest
Sharpe

Interestingly, we notice that ChatGPT first downloaded the monthly return data from Yahoo

Finance using the `yfinance` library. We have tested the behavior and response from ChatGPT in a

“New chat” window, and the results are different and do not use the `yfinance` library, as in the first

request. Therefore, it is reasonable to assume that ChatGPT’s algorithm links the current request with

the previous requests in the same chatting thread to optimize the user’s experience. We appreciate

this feature in ChatGPT because it creates a more natural, efficient conversational experience.

By merging all the related Python codes generated by ChatGPT (i.e., downloading data and using

simulation to calculate weights for the optimal portfolio), we can easily develop a single Python code

for the entire project. Usually, with only a few rounds of potential debugging, the full Python code

becomes executable and fulfills our requirements and purposes. In fact, since we organized the

questions in the most effective way of communicating with ChatGPT, the last Python code generated

by ChatGPT is almost ready to use directly for our purpose.

Electronic copy available at: https://ssrn.com/abstract=4412371

15

Next and most importantly, we need to read and understand the Python codes generated by

ChatGPT line by line and identify any errors. We note that it is rare that ChatGPT-generated Python

code has any “syntax error”; instead, the focus should be on the theoretical side (e.g., whether the

Python code defines the Sharpe ratio in a correct manner and whether the code can identify the

portfolio with maximized Sharpe ratio). We emphasize this in class. According to students’ feedback,

they start to realize the importance of understanding fundamental finance theories because other

tedious and complicated work, such as Python coding, can be easily handled by modern tools like

ChatGPT.

As an example, we assume the list of stocks under consideration include Apple Inc. (AAPL),

Alphabet Inc. (GOOGL), and Amazon.com Inc. (AMZN), for the sample period from January 1, 2016

to December 31, 2021. The calculated weights for the optimal portfolio using the merged Python

codes generated by ChatGPT are presented in Table 5.

Table 5: Results Based on ChatGPT Generated Python Code – Optimal Portfolio

Panel A: Weights for Optimal Portfolio (Monte-Carlo Simulation Method)
Name of Stock (Ticker) Weights
Apple Inc. (AAPL) 43.08%
Alphabet Inc. (GOOGL) 29.76%
Amazon.com Inc. (AMZN) 27.16%

Panel B: Summary Statistics of Optimal Portfolio

Expected Return 33.73%
Volatility (Standard Deviation) 21.75%

It is natural for students to ask a follow-up question about the differences between the method of

mean-variance optimization and the method of simulation in calculating optimal portfolio weights.

In fact, we show the class that ChatGPT can also help us design such questions, although we still

need instructor expertise and guidance because ChatGPT’s responses to such questions are not always

correct and reliable. The dialog with ChatGPT about the advantages and disadvantages of the methods

Electronic copy available at: https://ssrn.com/abstract=4412371

16

of mean-variance optimization versus simulation is presented in Table 6. We conclude this project by

noting and detailing the response from ChatGPT on this comparison.

Table 6: Dialog with ChatGPT – Compare Different Methods

Panel A: Input from the user of ChatGPT
Compared to the method of mean-variance optimization, what are the advantages of using the method of simulation to
calculate optimal portfolio?

Panel B: Output from ChatGPT
The mean-variance optimization method for calculating optimal portfolio weights relies on assumptions about the
distributions of the assets' returns and correlations, which may not hold in reality. In contrast, simulation-based
approaches do not make any assumptions about the distribution of asset returns or correlations and are therefore more
robust to model misspecification.

Furthermore, mean-variance optimization requires the estimation of the covariance matrix of asset returns, which can
be noisy and may lead to instability in the portfolio weights. In contrast, simulation-based approaches only require the
calculation of the mean and standard deviation of the portfolio returns, which are more stable and less sensitive to
outliers.

Simulation-based approaches also allow for the incorporation of non-normal distributions, which may be important in
practice since stock returns often exhibit non-normal behavior such as skewness and kurtosis.

Finally, simulation-based approaches can easily incorporate constraints on the portfolio weights, such as upper and
lower bounds, integer constraints, and exposure constraints, which can be challenging to handle in mean-variance
optimization.

Overall, simulation-based approaches can provide a more flexible and robust alternative to mean-variance optimization
for calculating optimal portfolio weights.

Finally, we conclude this in-class project by noting that as applied scientists, such us finance

majors, our focus should always be on understanding the theories in finance. While previously there

were many distractions in reaching this goal because finance majors often devote too much time to

learning Python programming, nowadays with the help of ChatGPT, the focus is back on financial

content. According to our experience in the classroom, students strongly agree with this notion and

more than ever understand the importance of theories from fundamental courses in finance.

Electronic copy available at: https://ssrn.com/abstract=4412371

17

3.2 Example Project 2: Regression Analysis and Fama-French Three-Factor Model

Our second example project is intended to run a sequence of time-series regressions for a list of

stocks to find the factor loadings of the Fama-French Three-Factor Model (Fama & French, 1992).

Ever since the first establishment of this model, the Fama-French Three-Factor Model has established

its importance. It soon became a widely used asset pricing model that has significant implications for

financial theory and practice. Nowadays, almost every finance textbook (especially those in

Investments and Asset Pricing) mentions this important model. It is therefore of critical importance

for finance majors to have a full and sophisticated understanding of the model by doing time-series

regressions of Fama-French Three-Factor Model themselves. Therefore, a typical course in financial

data science should cover this material.

Similar to the previous in-class project, we start this project by reviewing the related concepts in

financial theory and financial econometrics, such as the Fama-French Three-Factor Model, regression

analysis, and the different structures of financial data (time-series, cross-sectional, and panel data).

Moreover, we introduce students to the data available from Wharton Research Data Services (WRDS),

especially the Center for Research in Security Prices (CRSP) and the Data Library on Professor Ken

French’s webpage (which has been integrated into WRDS). Due to the recent attempt of launching

Two-Factor Authentication (2FA) at WRDS in 2023, we instruct all students to register for their own

individual accounts because the original instructional WRDS account (i.e., “Shared Account for Class”

at WRDS) does not support direct access databases from Python program.

Next, an important starting point is finding a well-designed question or prompt to communicate

with ChatGPT. Table 7 displays the dialog with ChatGPT requesting a Python code for downloading

data from WRDS.

Electronic copy available at: https://ssrn.com/abstract=4412371

18

Table 7: Dialog with ChatGPT – Download Data from WRDS

Panel A: Input from the user of ChatGPT
Write a python code that can directly download datasets from WRDS. The code needs to download daily return data
for a list of stocks (available in CRSP) and Fama-French Factors. Finally, merge the downloaded datasets.

Panel B: Output from ChatGPT
To download datasets from WRDS, you can use the `wrds` Python package. Here is an example code that downloads
daily returns data for a list of stocks available in CRSP and Fama-French factors, and merges the downloaded datasets:

(Note: ChatGPT generates a Python code here in a stand-alone box. Since the Python code generated by ChatGPT is
too long to present in the table, we report all such codes in the Appendix.)

In this code, we first establish a connection to WRDS using the `wrds.Connection()` function. We then specify
the list of stocks and Fama-French factors we want to download.

To download the daily returns data for the specified stocks, we construct a SQL query that selects the date, permno
(CRSP's unique identifier for each stock), and daily return (`ret`) from the `crsp.msf` table, filtering by the
specified list of tickers (`ticker`) in the `crsp.msenames` table. We use the `raw_sql()` function of the
`wrds` package to execute this query and obtain the resulting dataset.

To download the Fama-French factors data, we construct another SQL query that selects the date and the specified
factors from the `ff.factors_daily` table.

We then merge the downloaded CRSP and Fama-French datasets on the `date` column using the `pd.merge()`
function of the pandas package.

Finally, we close the connection to WRDS using the `close()` method of the `wrds.Connection` object.

As before, we only quickly browse through the Python code generated by ChatGPT and assume

the code is executable, which minimizes distractions in our thought process. According to Table 7, it

seems that the ChatGPT-generated Python code is as expected. No further modifications are

necessary.

However, a quick glance through the ChatGPT-generated Python code, comments, and notes

reveals a potential error in coding—the code requests to download the “daily return” data from the

“crsp.msf” table on CRSP; however, this table on CRSP is interpreted as “Table: Monthly Stock –

Securities” on CRSP and WRDS, and the correct table with daily stock returns should be

“crsp_a_stock.dsf”. Similarly, the ChatGTP-requested table of `crsp.msenames` on CRSP should be

“crsp_a_stock.dsenames”. Therefore, we emphasize in class that ChatGPT is a helpful tool in Python

Electronic copy available at: https://ssrn.com/abstract=4412371

19

coding, but we should not use the code without scrutinizing the details. Instead, we should check the

correctness of ChatGPT-generated codes and use these codes with caution.

Next, the instructor would need to help students review the details of the Fama-French Three-

Factor Model. Specifically, the time-series regression equation for estimating factor loadings on the

Fama-French Three-Factor Model for stock i can be written as:

𝑅𝑅𝑖𝑖,𝑡𝑡 − 𝑅𝑅𝑓𝑓,𝑡𝑡 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖�𝑅𝑅𝑚𝑚,𝑡𝑡 − 𝑅𝑅𝑓𝑓,𝑡𝑡� + 𝑠𝑠𝑖𝑖𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡 + ℎ𝑖𝑖𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡 , (1)

where 𝑅𝑅𝑖𝑖,𝑡𝑡 is the excess return of stock i at time t; 𝑅𝑅𝑓𝑓,𝑡𝑡 is the risk-free rate at time t; 𝑅𝑅𝑚𝑚,𝑡𝑡 is the excess

return of the market portfolio at time t; 𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡 is the size factor at time t, calculated as the difference

between the returns of small and large stocks; 𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡 is the value factor at time t, calculated as the

difference between the returns of high and low book-to-market stocks; 𝛼𝛼𝑖𝑖 is the intercept of the

regression for stock i, representing the excess return not explained by the factors; 𝛽𝛽𝑖𝑖 is the beta

coefficient of the market factor for stock i, representing the sensitivity of the stock's excess return to

the market return; 𝑠𝑠𝑖𝑖 and ℎ𝑖𝑖 are the sensitivity coefficients of SMB and HML factors for stock i,

respectively; 𝜀𝜀𝑖𝑖,𝑡𝑡 is the residual term or error term for stock i at time t.

According to Equation (1), and compared to what is already there in our download data from

WRDS, for each stock, we have all independent variables ready, but we need to generate the

dependent variable, which is the excess return of stock i. For a typical student in our course of

financial data science with basic knowledge of Python from the materials at the beginning of the

semester, the student should be able to add this line of Python code easily. If not, given the powerful

tool of ChatGPT, it is only one more question away from getting this sample code. Such a

communication with ChatGPT is presented in Table 8.

Electronic copy available at: https://ssrn.com/abstract=4412371

20

Table 8: Dialog with ChatGPT – Create New Variables

Panel A: Input from the user of ChatGPT
In Python, how to define a new variable "ret_rf = ret - rf," assuming the variables "ret" and "rf" are available in the
dataset?

Panel B: Output from ChatGPT
To define a new variable `ret_rf` as the difference between two existing variables `ret` and `rf` in Python, you
can simply subtract `rf` from `ret` using the `-` operator, and assign the resulting series to a new variable
`ret_rf`. Here's an example code assuming you have a Pandas DataFrame called `data` that contains the `ret`
and `rf` columns:

(Note: ChatGPT generates a Python code here in a stand-alone box. Since the Python code generated by ChatGPT is
too long to present in the table, we report all such codes in the Appendix.)

In this code, we use the Pandas indexing operator `[]` to select the `ret` and `rf` columns from the `data`
DataFrame, and then subtract `rf` from `ret`. The resulting series is assigned to a new variable `ret_rf`. Note
that this assumes that both ̀ ret` and ̀ rf` are numeric columns in the DataFrame, and that they have the same length
and index as the other columns in the DataFrame.

Next, we emphasize in class that the downloaded dataset is supposed be a panel data (i.e., a cross-

section of a list of stocks plus a time-series of variables, such as returns for each stock). However,

using regression to estimate factor loadings for the Fama-French Three-Factor Model is supposed to

be time-series regression. Therefore, for each individual stock, we shall run a separate time-series

regression. We remind students that it is of critical importance to understand this difference in data

structure, and we need to design questions for ChatGPT with this data structure in mind.

Therefore, this time, we need to provide much longer instructions to ChatGPT to generate the

Python code that would meet our requirement. We shall break down those instructions into different

sentences; Table 9 presents our communication with ChatGPT for this purpose. We remind students

again that we should help ChatGPT understand our data structure, and thus the key words such as

“time-series regression,” “panel data,” and “time-series variables” are very important.

Electronic copy available at: https://ssrn.com/abstract=4412371

21

Table 9: Dialog with ChatGPT – Fama-French Three-Factor Regressions

Panel A: Input from the user of ChatGPT
Write a Python code for a sequence of time-series regressions. The data given is a panel data with a list of stocks and
a time series of variables for each stock. For each regression, the dependent variable is "ret_rf", and the three
independent variables are "mktrf", "smb", and "hml". Report the regression results (with t-statistics and p-value) for
each stock in a table.

Panel B: Output from ChatGPT
Here's an example Python code for running a sequence of time-series regressions with plots for each regression line.
This assumes you have a Pandas DataFrame called `panel_data` that contains the panel data for each stock, with
columns for "ret_rf", "mktrf", "smb", and "hml". The code performs a separate regression for each stock in the dataset,
and generates a table of regression results and a plot of the regression line for each stock.

(Note: ChatGPT generates a Python code here in a stand-alone box. Since the Python code generated by ChatGPT is
too long to present in the table, we report all such codes in the Appendix.)

In this code, we first define the list of independent variables as ['mktrf', 'smb', 'hml']. We then group
the panel data by stock ticker using the `groupby()` function of the Pandas DataFrame object.

We initialize an empty DataFrame called `regression_results` to store the regression coefficients, t-
statistics, and p-values for each independent variable for each stock. We then loop over each group of data for each
stock ticker, and run a separate linear regression using the `OLS()` function from the `statsmodels` package.

We extract the regression coefficients, t-statistics, and p-values from the fitted model and store them in a new row of
the `regression_results` DataFrame for each stock.

Finally, we print the `regression_results` DataFrame, which contains the regression coefficients, t-statistics,
and p-values for each independent variable for each stock.

Finally, we note that the Python codes generated by ChatGPT only print the final results from

regressions on screen. Given the potentially large size of the table, we would rather request Python

to output the table to an Excel file. We note to class that whenever we have such a task in mind but

are unsure how to write it in Python, ChatGPT can help us. For example, Table 10 represents our

conversation with ChatGPT on additional Python code to output a dataframe in Python into an Excel

file.

Electronic copy available at: https://ssrn.com/abstract=4412371

22

Table 10: Dialog with ChatGPT – Output an Excel File

Panel A: Input from the user of ChatGPT
How to output a python dataframe to a separate Excel file?

Panel B: Output from ChatGPT
To output a Python DataFrame to a separate Excel file, you can use the `to_excel()` method of the Pandas
DataFrame object. Here's an example Python code that demonstrates how to write a DataFrame called `my_data` to
an Excel file called `my_file.xlsx`:

(Note: ChatGPT generates a Python code here in a stand-alone box. Since the Python code generated by ChatGPT is
too long to present in the table, we report all such codes in the Appendix.)

In this code, the `to_excel()` method writes the contents of the `my_data` DataFrame to an Excel file called
`my_file.xlsx`. The `index=False` argument tells Pandas not to include the DataFrame index in the Excel
file.

You can also specify additional arguments to the `to_excel()` method to control the formatting of the Excel file,
such as the worksheet name, cell formatting, and whether to include column headers. See the Pandas documentation
for more information on these arguments.

We now have all fragments of Python codes generated by ChatGPT for this project. Next, we

inspect carefully all these Python codes, merge them into one single code, and get it ready to be

executed. Once again, we note in class that certain parts of the code require modifications and

corrections, such as the previously mentioned file names in CRSP to access “daily returns” data.

As an example, we assume the list of stocks under consideration include Microsoft Corp. (MSFT),

Apple Inc. (AAPL), and Amazon.com Inc. (AMZN), for the sample period from January 1, 2020 to

March 31, 2020. Using the merged (and modified) Python codes that are generated by ChatGPT, the

calculated factor loadings, t-statistics, and p-values are presented in Table 11.

Electronic copy available at: https://ssrn.com/abstract=4412371

23

Table 11: Regression Results Based on ChatGPT Generated Python Code

 Microsoft Apple Amazon
ID (permno)

10107 14593 84788

 coefficient 1.288 1.155 0.763
MKTRF t-stat 23.916 22.157 9.913
 p-value 0.000 0.000 0.000

 coefficient −0.181 −0.553 0.032
SMB t-stat −1.306 −4.123 0.164
 p-value 0.197 0.000 0.871

 coefficient −0.660 −0.380 −0.765
HML t-stat −4.323 −2.575 −3.505
 p-value 0.000 0.013 0.001

3.3 Other Potential Projects for Financial Data Science with ChatGPT

As we can see, the instructional and learning experiences have changed substantially since

ChatGPT has become available. We have adapted two typical projects in a course of financial data

science with the help of this newly available tool. Since one of the main purposes of this paper is to

inspire educators in finance (especially the instructors of financial data science courses) to incorporate

ChatGPT into their courses, in this subsection, we suggest other potential projects that are suitable

for learning with ChatGPT. We have tested all these projects, and they are all doable. These projects

can either be in-class, as previously indicated, or assigned to students as take-home projects. We also

note that this is not an exhaustive list of suitable projects.

(a) Direct access of financial databases from various data resources.

We have shown in previous example projects that ChatGPT can help us write Python codes to

access popular financial data on the Internet directly (e.g., Yahoo Finance and WRDS). Since it is

one of the important learning objectives for a course in financial data science, students would also

Electronic copy available at: https://ssrn.com/abstract=4412371

24

need to be familiar with many more available financial databases. The important such data resources

for finance can include:

• FRED (Federal Reserve Economic Data), which is a database maintained by the Federal

Reserve Bank of St. Louis that provides access to a wide range of economic and financial

data series, including data on inflation, interest rates, gross domestic product (GDP),

employment, and more.

• EDGAR (Electronic Data Gathering, Analysis, and Retrieval), which is a database

maintained by the U.S. Securities and Exchange Commission (SEC) that contains filings

made by publicly traded companies and other organizations. These filings include annual

reports, quarterly reports, and other regulatory filings that provide information on the

financial and operational activities of these organizations.

• Nasdaq Data Link, which is a data service provided by Nasdaq that offers historical and

real-time data on a variety of financial instruments including stocks, options, futures, and

indices. It provides data on global equities, derivatives, and fixed income markets.

• Quandl, which is a financial data provider that offers a wide range of financial and

economic data to individuals, academics, and businesses. It provides data on a variety of

topics including stock prices, futures, options, currencies, and economic indicators from

over 500 sources. We note that Quandl was acquired by Nasdaq in 2018, but it operates

as a distinct entity.

We can easily ask ChatGPT to write Python codes to access those data. An example of such a

request can be:

• “write a python code that can directly access WTI prices data from FRED database,”

• “write a python code that can directly access10-K filing data from SEC Edgar database.”

• “write a python code that can directly access data with nasdaqdatalink and quandl.”

Electronic copy available at: https://ssrn.com/abstract=4412371

25

We tested all these prompts in dialog with ChatGPT. Every time, ChatGPT can do a reasonably

satisfactory job in generating Python codes that are almost ready to use. With a few potential

corrections and debugging, the Python codes can execute smoothly and provide expected results.

(b) Text Analysis and Sentiment Analysis with Natural Language Toolkit (NLTK)

Natural Language Toolkit (NLTK) is a Python library used for working with human language

data, such as processing and analyzing text. NLTK provides a set of tools and resources, such as

corpora, lexicons, and algorithms for tasks such as tokenization, stemming, tagging, parsing, and

sentiment analysis. We can instruct students in the financial data science course to download a 10-K

filing for a certain company from SEC EDGAR and run sentiment analysis with NLTK library in

Python. We can easily request that ChatGPT run the analyses by stating, “write a python code that

can run sentiment analysis on a text document using nltk.” In our experience, the Python code

generated by ChatGPT can easily be modified into an applicable program for this purpose.

(c) Data Visualization and Word Clouds

Data visualization and word clouds allow complex financial data and ideas to be conveyed in a

clear and concise manner. Presenting data in a visually appealing way can help make data more

accessible, understandable, and engaging to a wider audience, which can lead to better decision-

making and insights. The visualization plots we can introduce to students include (and certainly are

not limited to) boxplot, histogram, pair plot, scatter plot, and one of the most important plots among

the list, word clouds. We can easily request ChatGPT to do such coding in Python by stating, “write

a python code that can generate a word cloud based on a text document.”

(d) Calculation of Rolling Beta for Stocks

Electronic copy available at: https://ssrn.com/abstract=4412371

26

Rolling beta is a measure of a stock's risk or volatility over a certain period, calculated using a

rolling window of historical data. In a rolling beta calculation, a regression analysis is performed on

a subset of data that “rolls” forward over time, with each new calculation incorporating the most

recent data point and dropping the oldest one. This allows for a more dynamic and up-to-date

assessment of a stock's risk profile, as compared to a static beta calculation based on a fixed period

of historical data. This is a widely used technique for estimating beta, according to the Capital Asset

Pricing Model (CAPM). For example, Yahoo Finance reports “Beta (5Y Monthly)” in the homepage

of all stock quotes. It is a 5-year rolling beta for the given stock that is calculated based on monthly

data. We can easily request ChatGPT to calculate rolling beta by asking it to “write a python code

that can calculate the 5-year rolling beta for a stock.” We have successfully tested this prompt and

interaction with ChatGPT.

(e) Time Value of Money, Financial Calculator, and Mortgage Payment Schedule

The concept of Time Value of Money is considered “Finance 101,” and ever since the first course

in finance, students have been exposed to this important concept. Finance students are often required

to learn how to use a financial calculator. One of the direct applications of a financial calculator is

calculating mortgage monthly payments of principal and interest (for a typical 30-year fixed-rate

mortgage).

With the help of ChatGPT, we now can easily develop a simple “software” of a financial

calculator and make it into an executable (.exe) file (using Python libraries such as “pyinstaller”). We

can further instruct students to test whether the developed financial calculator is functioning properly

by calculating mortgage monthly payments because this information is easily available from real

estate websites (e.g., Zillow.com and Trulia.com). We can easily request ChatGPT to do this by

instructing, “write a python code that can do all calculations as a financial calculator and make it into

Electronic copy available at: https://ssrn.com/abstract=4412371

27

an executable file.” As with the other projects we propose, our test runs demonstrate that the Python

code generated by ChatGPT can easily be modified to accomplish our purpose.

4. Conclusion

This paper explores the utility of using ChatGPT in a financial data science course and provides

specific suggestions for student projects and other assignments. As an example of artificial

intelligence that has the capacity to change the educational landscape of higher education, ChatGPT

represents both risks and rewards in the classroom. In our experience, ChatGPT has the potential to

replace tedious Python coding with meaningful real-world applications. Therefore, we encourage

educators in finance to pay more attention to, take seriously, and embrace newly developed AI

technologies, especially ChatGPT.

Despite our optimistic views of ChatGPT, we also recommend proceeding carefully. For instance,

we recommend scrutinizing ChatGPT output, particularly Python code, due to AI’s current

limitations. Students also need instructor guidance on prompt creation, model checking,

understanding the data structure, and other applications. Indeed, ChatGPT is not prepared to replace

classroom instruction, but it is a valuable tool that can enable instructors to prioritize financial theory,

learning, and applications—the most important foundations for a successful career in finance.

Electronic copy available at: https://ssrn.com/abstract=4412371

28

References

Alshater, M. (2022). Exploring the Role of Artificial Intelligence in Enhancing Academic
Performance: A Case Study of ChatGPT (SSRN Scholarly Paper No. 4312358).
https://doi.org/10.2139/ssrn.4312358

Alt, R., Beck, R., & Smits, M. T. (2018). FinTech and the transformation of the financial industry.
Electronic Markets, 28(3), 235–243. https://doi.org/10.1007/s12525-018-0310-9

Arner, D. W., Barberis, J., & Buckley, R. P. (2015). The Evolution of FinTech: A New Post-Crisis
Paradigm. Georgetown Journal of International Law, 47(4), 1271–1320.

Aydın, Ö., & Karaarslan, E. (2023). Is ChatGPT Leading Generative AI? What is Beyond
Expectations? (SSRN Scholarly Paper No. 4341500). https://doi.org/10.2139/ssrn.4341500

Birjali, M., Kasri, M., & Beni-Hssane, A. (2021). A comprehensive survey on sentiment analysis:
Approaches, challenges and trends. Knowledge-Based Systems, 226, 107134.
https://doi.org/10.1016/j.knosys.2021.107134

Bussmann, N., Giudici, P., Marinelli, D., & Papenbrock, J. (2020). Explainable AI in fintech risk
management. Frontiers in Artificial Intelligence, 3, 26.

Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business
Review, 96(1), 108–116.

Demajo, L. M., Vella, V., & Dingli, A. (2020). Explainable AI for Interpretable Credit Scoring.
Computer Science & Information Technology (CS & IT), 185–203.
https://doi.org/10.5121/csit.2020.101516

Dowling, M., & Lucey, B. (2023). ChatGPT for (Finance) research: The Bananarama Conjecture.
Finance Research Letters, 103662. https://doi.org/10.1016/j.frl.2023.103662

Fama, E. F., & French, K. R. (1992). The Cross-Section of Expected Stock Returns. The Journal of
Finance, 47(2), 427–465. https://doi.org/10.1111/j.1540-6261.1992.tb04398.x

Fisher, I. E., Garnsey, M. R., & Hughes, M. E. (2016). Natural Language Processing in Accounting,
Auditing and Finance: A Synthesis of the Literature with a Roadmap for Future Research.
Intelligent Systems in Accounting, Finance and Management, 23(3), 157–214.
https://doi.org/10.1002/isaf.1386

Huang, K. (2023). Alarmed by AI chatbots, universities start revamping how they teach. New York
Times.

Kang, Y., Cai, Z., Tan, C.-W., Huang, Q., & Liu, H. (2020). Natural language processing (NLP) in
management research: A literature review. Journal of Management Analytics, 7(2), 139–172.
https://doi.org/10.1080/23270012.2020.1756939

Electronic copy available at: https://ssrn.com/abstract=4412371

29

Lu, Y. (2019). Artificial intelligence: A survey on evolution, models, applications and future trends.
Journal of Management Analytics, 6(1), 1–29.
https://doi.org/10.1080/23270012.2019.1570365

Lund, B. D., & Wang, T. (2023). Chatting about ChatGPT: how may AI and GPT impact academia
and libraries? Library Hi Tech News, ahead-of-print(ahead-of-print).
https://doi.org/10.1108/LHTN-01-2023-0009

Olan, F., Liu, S., Suklan, J., Jayawickrama, U., & Arakpogun, E. O. (2022). The role of Artificial
Intelligence networks in sustainable supply chain finance for food and drink industry.
International Journal of Production Research, 60(14), 4418–4433.

OpenAI. (2023a). Introducing ChatGPT. Introducing ChatGPT. https://openai.com/blog/chatgpt
OpenAI. (2023b). GPT-4 Technical Report (arXiv:2303.08774). arXiv.

https://doi.org/10.48550/arXiv.2303.08774
Rudin, C., & Radin, J. (2019). Why are we using black box models in AI when we don’t need to? A

lesson from an explainable AI competition. Harvard Data Science Review, 1(2), 10–1162.
Schueffel, P. (2016). Taming the Beast: A Scientific Definition of Fintech. Journal of Innovation

Management, 4(4), Article 4. https://doi.org/10.24840/2183-0606_004.004_0004
Sciences Po. (2023). Sciences Po bans the use of ChatGPT without transparent referencing. Espace

Presse Sciences Po. https://newsroom.sciencespo.fr/sciences-po-bans-the-use-of-chatgpt/
Suryono, R. R., Budi, I., & Purwandari, B. (2020). Challenges and trends of financial technology

(Fintech): A systematic literature review. Information, 11(12), 590.
Tamkin, A., Brundage, M., Clark, J., & Ganguli, D. (2021). Understanding the Capabilities,

Limitations, and Societal Impact of Large Language Models (arXiv:2102.02503). arXiv.
https://doi.org/10.48550/arXiv.2102.02503

Xing, F. Z., Cambria, E., & Welsch, R. E. (2018). Natural language based financial forecasting: A
survey. Artificial Intelligence Review, 50(1), 49–73. https://doi.org/10.1007/s10462-017-
9588-9

Yan, Y. (2018). A Trend in Business Education. International Journal of Education and Social
Science, 5(7), 15–20.

Electronic copy available at: https://ssrn.com/abstract=4412371

30

Appendix A. Python Codes Generated by ChatGPT

(A-1) Python Codes Generated by ChatGPT – Download Data from Yahoo Finance – Table 1

Python Copy code
import pandas_datareader as pdr

Define the list of stocks
stocks_list = ['AAPL', 'GOOGL', 'AMZN']

Define the start and end dates for the data
start_date = '2016-01-01'
end_date = '2021-12-31'

Download the data using Yahoo Finance as the source
data = pdr.get_data_yahoo(stocks_list, start=start_date, end=end_date,
interval='m')

Extract the Adj Close prices for each stock
prices = data['Adj Close']

Calculate the monthly returns for each stock
returns = prices.pct_change()

Print the first few rows of the returns dataframe
print(returns.head())

(A-2) Python Codes Generated by ChatGPT – Download Data (Modified) – Table 2

Python Copy code
import yfinance as yf

Define the list of stocks
stocks_list = ['AAPL', 'GOOGL', 'AMZN']

Define the start and end dates for the data
start_date = '2016-01-01'
end_date = '2021-12-31'

Download the data using Yahoo Finance as the source
data = yf.download(stocks_list, start=start_date, end=end_date,
interval='1mo')

Extract the Adj Close prices for each stock
prices = data['Adj Close']

Calculate the monthly returns for each stock
returns = prices.pct_change()

Print the first few rows of the returns dataframe
print(returns.head())

Electronic copy available at: https://ssrn.com/abstract=4412371

31

(A-3) Python Codes Generated by ChatGPT – Optimal Portfolio – Table 3

Python Copy code
import pandas as pd
import numpy as np
from scipy.optimize import minimize

Define the list of stocks
stocks_list = ['AAPL', 'GOOGL', 'AMZN']

Define the start and end dates for the data
start_date = '2016-01-01'
end_date = '2021-12-31'

Download the data using yfinance as the source
data = pd.DataFrame()
for stock in stocks_list:
 stock_data =
pd.read_csv(f'https://query1.finance.yahoo.com/v7/finance/download/{stock}?per
iod1=1451606400&period2=1640908800&interval=1mo&events=history&includeAdjusted
Close=true', index_col='Date', parse_dates=True)
 stock_data = stock_data[['Adj Close']]
 stock_data = stock_data.rename(columns={'Adj Close': stock})
 data = pd.concat([data, stock_data], axis=1)

Calculate monthly returns for each stock
returns = data.pct_change().dropna()

Define the objective function for the mean-variance optimization
def portfolio_variance(weights, returns):
 cov_matrix = np.cov(returns.T)
 portfolio_variance = np.dot(weights.T, np.dot(cov_matrix, weights))
 return portfolio_variance

Define the constraint for the sum of the weights to equal 1
def weight_constraint(weights):
 return np.sum(weights) - 1.0

Define initial weights for the optimization
n_assets = len(stocks_list)
weights_0 = np.ones(n_assets)/n_assets

Define bounds for the optimization (weights must be between 0 and 1)
bounds = tuple((0, 1) for i in range(n_assets))

Perform the mean-variance optimization
optimal_weights = minimize(portfolio_variance, weights_0, args=returns,
method='SLSQP', bounds=bounds, constraints={'type': 'eq', 'fun':
weight_constraint}).x

Print the optimal weights for each stock
for i, stock in enumerate(stocks_list):
 print(f"{stock}: {optimal_weights[i]*100:.2f}%")

Calculate the expected return and volatility of the optimal portfolio
portfolio_return = np.sum(returns.mean()*optimal_weights)*12

Electronic copy available at: https://ssrn.com/abstract=4412371

32

portfolio_volatility = np.sqrt(np.dot(optimal_weights.T,
np.dot(np.cov(returns.T), optimal_weights)))*np.sqrt(12)

Print the expected return and volatility of the optimal portfolio
print(f"Expected return: {portfolio_return*100:.2f}%")
print(f"Volatility: {portfolio_volatility*100:.2f}%")

(A-4) Python Codes Generated by ChatGPT – Optimal Portfolio (Simulation) – Table 4

Python Copy code
import pandas as pd
import numpy as np
import random
import yfinance as yf

Define the list of stocks
stocks_list = ['AAPL', 'GOOGL', 'AMZN']

Define the start and end dates for the data
start_date = '2016-01-01'
end_date = '2021-12-31'

Download the data using Yahoo Finance as the source
data = yf.download(stocks_list, start=start_date, end=end_date,
interval='1mo')
prices = data['Adj Close']
returns = prices.pct_change().dropna()

Define the number of simulations and the number of portfolios to generate
for each simulation
n_simulations = 10000
n_portfolios = 1000

Define a function to generate a random portfolio of weights
def generate_portfolio(n_assets):
 weights = np.random.random(n_assets)
 weights /= np.sum(weights)
 return weights

Define a function to simulate the returns of a portfolio given a set of
weights
def simulate_portfolio(weights, returns):
 portfolio_return = np.sum(returns.mean() * weights) * 12
 portfolio_volatility = np.sqrt(np.dot(weights.T,
np.dot(np.cov(returns.T), weights))) * np.sqrt(12)
 sharpe_ratio = portfolio_return / portfolio_volatility
 return sharpe_ratio

Generate multiple sets of random portfolios and simulate their returns
optimal_weights = None
max_sharpe_ratio = -np.inf
for i in range(n_simulations):
 # Generate a set of random portfolios
 portfolios = [generate_portfolio(len(stocks_list)) for j in
range(n_portfolios)]

Electronic copy available at: https://ssrn.com/abstract=4412371

33

 # Simulate the returns of each portfolio and find the one with the
highest Sharpe ratio
 sharpe_ratios = [simulate_portfolio(weights, returns) for weights in
portfolios]
 max_sharpe_ratio_i = np.max(sharpe_ratios)
 if max_sharpe_ratio_i > max_sharpe_ratio:
 optimal_weights = portfolios[np.argmax(sharpe_ratios)]
 max_sharpe_ratio = max_sharpe_ratio_i

Print the optimal weights for each stock
for i, stock in enumerate(stocks_list):
 print(f"{stock}: {optimal_weights[i]*100:.2f}%")

Calculate the expected return and volatility of the optimal portfolio
portfolio_return = np.sum(returns.mean()*optimal_weights)*12
portfolio_volatility = np.sqrt(np.dot(optimal_weights.T,
np.dot(np.cov(returns.T), optimal_weights)))*np.sqrt(12)

Print the expected return and volatility of the optimal portfolio
print(f"Expected return: {portfolio_return*100:.2f}%")
print(f"Volatility: {portfolio_volatility*100:.2f}%")

(A-5) Python Codes Generated by ChatGPT – Download Data from WRDS – Table 7

Python Copy code
import wrds
import pandas as pd

Establish a connection to WRDS
db = wrds.Connection()

Specify the list of stocks and Fama-French factors
stocks = ['AAPL', 'MSFT', 'GOOG']
factors = ['MKT', 'SMB', 'HML', 'RF']

Download daily returns data for the stocks using CRSP
crsp_query = """
 select date, permno, ret
 from crsp.msf
 where permno in (
 select permno
 from crsp.msenames
 where ticker in ({0})
)
 and date >= '2000-01-01'
""".format("'" + "','".join(stocks) + "'")

crsp_data = db.raw_sql(crsp_query)

Download Fama-French factors data
ff_query = """
 select date, {0}
 from ff.factors_daily
 where date >= '2000-01-01'

Electronic copy available at: https://ssrn.com/abstract=4412371

34

""".format(','.join(factors))

ff_data = db.raw_sql(ff_query)

Merge the downloaded datasets
merged_data = pd.merge(crsp_data, ff_data, on='date')

Close the connection to WRDS
db.close()

(A-6) Python Codes Generated by ChatGPT – Create New Variables – Table 8

Python Copy code
import pandas as pd

Assuming you have a Pandas DataFrame called `data` containing the `ret`
and `rf` columns
ret_rf = data['ret'] - data['rf']

(A-7) Python Codes Generated by ChatGPT – Fama-French Three-Factor Regression – Table 9

Python Copy code
import pandas as pd
import statsmodels.api as sm

Assuming you have a Pandas DataFrame called `panel_data` with columns for
"ret_rf", "mktrf", "smb", and "hml"

Define the list of independent variables
independent_vars = ['mktrf', 'smb', 'hml']

Group the panel data by stock ticker
grouped_data = panel_data.groupby('ticker')

Initialize an empty DataFrame to store the regression results

regression_results = pd.DataFrame(columns=['ticker', 'coef_mktrf',
'tstat_mktrf', 'pvalue_mktrf',

 'coef_smb', 'tstat_smb',
'pvalue_smb',

 'coef_hml', 'tstat_hml',
'pvalue_hml'])

Loop over each stock ticker and run a separate regression
for ticker, data in grouped_data:
 # Define the dependent variable and the independent variables
 y = data['ret_rf']
 X = data[independent_vars]

 # Fit a linear regression model using the OLS function from statsmodels
 model = sm.OLS(y, sm.add_constant(X)).fit()

 # Extract the regression coefficients, t-statistics, and p-values
 coef = model.params

Electronic copy available at: https://ssrn.com/abstract=4412371

35

 tstat = model.tvalues
 pvalue = model.pvalues

 # Store the regression results in a new row of the DataFrame

regression_results = regression_results.append({'ticker': ticker,
'coef_mktrf': coef['mktrf'], 'tstat_mktrf': tstat['mktrf'],
'pvalue_mktrf': pvalue['mktrf'], 'coef_smb': coef['smb'],
'tstat_smb': tstat['smb'], 'pvalue_smb': pvalue['smb'],

'coef_hml': coef['hml'], 'tstat_hml': tstat['hml'],
'pvalue_hml': pvalue['hml']},

 ignore_index=True)

Print the regression results table
print(regression_results)

(A-8) Python Codes Generated by ChatGPT – Output an Excel File – Table 10

Python Copy code
import pandas as pd

Assuming you have a Pandas DataFrame called `my_data`

Write the DataFrame to an Excel file
my_data.to_excel("my_file.xlsx", index=False)

Electronic copy available at: https://ssrn.com/abstract=4412371

	1. Introduction
	2. Literature Review
	3. Examples of Python Projects with ChatGPT
	3.1 Example Project 1: Monte Carlo Simulation and Optimal Portfolio
	3.2 Example Project 2: Regression Analysis and Fama-French Three-Factor Model
	3.3 Other Potential Projects for Financial Data Science with ChatGPT
	4. Conclusion
	References
	Appendix A. Python Codes Generated by ChatGPT

