FROM DATA TO TRADE:
A MACHINE LEARNING
APPROACH TO
QUANTITATIVE TRADING

Gautier Marti & ChatGPT

B B g

o AR
S

An experiment.
The content of this book was essentially generated by ChatGPT guided by prompts from fintwit anons,

and edited by myself to remove gross mistakes. All remaining errors are ChatGPT’s responsibility.
First release, December 31, 2022

1.1

1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6

1.2

1.2.1
122
1.2.3

1.3

1.3.1
1.3.2
1.3.3

2.1

2.1.1
212
213
214
215

Infroduction to QT and ML

Defining Quantitative Trading 7
What is quantitative trading? 7
History of quantitative trading 7
Types of quanftitative frading strategies o 8
How fo get info quantitative frading? 10
What are the skills of a quantitative frader? 10
What are the top quantitative hedge funds? 11
Introduction to Machine Learning 11
Definition of machine learning i 11
Typesof machine learning 11
Applications of machine learning infinance 12
The Intersection of Quantitative Trading and Machine Learning 13
How machine learning can be used to improve trading strategies 13
Examples of machine learning in action in quantitative frading 13
Challenges and limitations of using machine learning infrading 15

Basic Machine Learning Tools for Trading

Unsupervised Learning 18
CIUSTENNG o 18
Principal Component Analysis (PCA) e 19
oMUl . . 19
Complex NetWorKs . ..o 20

Large Language Models (NLP) 20

2.2

2.2.1
222
223
224

4.1

4.1.1
4.1.2

4.2

4.2.1
422
423

4.3

4.3.1
43.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
439

4.4

4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6

5.1
5.2

Supervised Learning

Linear Regression
Gradient Boosted Trees (GBTs)o i oo
Graph Neural Networks (GNNS)o
TraNSfOrMErS .« o . o

Alternative Data for Quantitative Trading

Data Preprocessing & Feature Engineering

Standard Data Preprocessing & Feature Engineering

Defining Data Preprocessing oo
Defining Feature Engineering

Residualization of stock returns

Why do quantitative tfraders residualize stock returns?
How fo residualize stock returns?

What are the techniques used for residualizing stock returns?

Common features in quantitative trading

Cross-sectional vs. Time series features
Price-based features o
Fundamental-based features
Sentiment-based features
Text-based features i
Audio-based features o
Image-basedfeatures
Video-based features e
Network-based features

Common feature normalization techniques

MiNn-MaX . ..
Z-SCOME v i e
Lognormalization
Quantile normalization o
Rank normalization e
Other normalizations

Model Selection for Trading
Cross-validation for time series

Cross-validation for imbalanced data
DL for Trading: NNs and Beyond

Portfolio Construction using ML

21
21
22
23
23

29
29
30

30
30
31
32

32
32
32
34
36
38
39
41
42
44

44
44
46
46
46
46
47

50
50

8.1

8.2
8.2.1

8.2.2
8.2.3

9.1
9.1.1
9.1.2
9.2
9.2.1
922

9.3

Backtesting and Evaluating Strategies
Backtesting process

Evaluation metrics
Information Coefficient

R-SQUANEd (R2) .\ o\ vttt et
Backtest results . . . oo e e

Implementing ML for QT in Practice

Feature Store

Whatis a Feature Store?
Why is a Feature Store useful for quantitative frading?

MLOps
What is MLOps and why is it useful for quantitative trading?
What are the skills of a MLOps engineer?

Additional tips
Advanced Topics in ML for QT

Conclusion and Future Directions

59

60
60

60
62

66
66
66
66
66
67

67

Electronic copy available at: https://ssrn.com/abstract=4315362

1.1

In this chapter, we briefly introduce Quantitative Trading (QT) and Machine Learning (ML).

Defining Quantitative Trading
What is quantitative trading?

Quantitative trading refers to the use of mathematical models and algorithms to make trading
decisions. It involves the use of computer programs to analyze financial data and identify trading
opportunities, and to execute trades automatically based on predetermined rules.

Quantitative trading can be applied to a wide range of financial instruments, including stocks,
bonds, futures, options, and currencies. It is often used by hedge funds, proprietary trading firms,
and other institutional investors.

One of the key advantages of quantitative trading is that it allows traders to make decisions based
on objective, data-driven criteria, rather than relying on subjective judgment or emotions. It also
allows traders to analyze and trade large amounts of data quickly and accurately, and to implement
complex trading strategies that might be difficult or impossible to execute manually.

However, quantitative trading is not without its challenges. It requires a strong understanding of
mathematics, statistics, computer science, and finance, and it can be expensive to set up and maintain
the necessary infrastructure. It is also subject to market risks and other uncertainties, and can be
affected by changes in market conditions or regulatory environments.

History of quantitative trading

1900s: The origins of quantitative trading can be traced back to the early 20th century, when
researchers and traders began using statistical methods to analyze financial data and make investment
decisions. One of the early pioneers of quantitative trading was Benjamin Graham, who is considered
the father of value investing. Graham used statistical analysis and other quantitative techniques
to identify undervalued stocks, and his work influenced the development of modern investment
strategies such as index funds and exchange-traded funds (ETFs).

8 Chapter 1. Introduction to QT and ML

1950s: In the 1950s, the concept of "portfolio optimization" emerged, which refers to the process
of selecting the optimal mix of investments to maximize returns and minimize risks. Portfolio
optimization was initially developed for use in the field of economics, but it was later applied to
finance and investment management.

1960s: In the 1960s, the development of electronic trading platforms and the availability of high-
quality financial data enabled traders to analyze and execute trades more efficiently and accurately.
This led to the growth of algorithmic trading, which refers to the use of computer programs to
execute trades based on predetermined rules.

1970s: In the 1970s, the emergence of high-speed computers and sophisticated software programs
enabled traders to analyze and trade large amounts of data more quickly and accurately. This led to
the growth of quantitative trading strategies, which rely on statistical analysis and other mathematical
models to identify trading opportunities and make investment decisions.

1980s: In the 1980s, the proliferation of electronic trading platforms and the development of
computerized order management systems revolutionized the way that trades were executed. This
enabled traders to implement complex trading strategies more efficiently and accurately, and to trade
large volumes of financial instruments more quickly.

1990s: In the 1990s, the development of machine learning and artificial intelligence technologies
revolutionized quantitative trading by allowing traders to analyze and trade large amounts of data
more quickly and accurately. Machine learning algorithms, which are capable of adapting and
learning from data, were used to identify patterns and trends in financial data that could be used to
inform trading decisions.

2000s: In the 2000s, the proliferation of high-frequency trading (HFT) firms, which use advanced
algorithms and high-speed computers to execute trades at lightning speeds, further transformed the
landscape of quantitative trading. HFT firms accounted for a significant portion of the volume of
trades on many electronic exchanges, and their impact on the markets was the subject of much debate
and scrutiny.

2010s: In the 2010s, the use of big data and analytics in quantitative trading continued to grow,
as traders sought to gain an edge by analyzing large amounts of data from diverse sources. The
development of cloud computing and other technologies enabled traders to access and analyze data
more easily and affordably. However, the growth of quantitative trading also raised concerns about
the potential impact on market stability and fairness, and regulators around the world began to
scrutinize the activities of HFT firms and other market participants.

2020s: In the 2020s, the use of machine learning and artificial intelligence in quantitative trading
has continued to grow, as traders seek to gain an edge by analyzing large amounts of data and
implementing complex trading strategies. The development of new technologies and approaches,
such as natural language processing and reinforcement learning, has expanded the capabilities of
quantitative trading even further. However, the growth of quantitative trading has also raised concerns
about the potential impact on market stability and fairness, and regulators around the world have
continued to scrutinize the activities of market participants.

Types of quantitative trading strategies

Here is a list of different types of quantitative trading strategies, along with brief descriptions:
* Trend Following: Trend following strategies aim to capitalize on the momentum of price
movements in financial markets. These strategies use algorithms to identify trends in financial
data and to execute trades based on the direction of the trend. Trend following strategies can

1.1 Defining Quantitative Trading %

be based on technical indicators, such as moving averages or relative strength index (RSI), or
on more complex machine learning models.

* Mean Reversion: Mean reversion strategies aim to profit from the tendency of prices to
revert to their long-term averages over time. These strategies use algorithms to identify when
prices are deviating significantly from their long-term averages, and to execute trades based
on the expectation that prices will eventually return to their average levels. Mean reversion
strategies can be based on statistical techniques, such as regressions or cointegration, or on
more complex machine learning models.

» Arbitrage: Arbitrage strategies aim to profit from price discrepancies between different
financial instruments or markets. These strategies use algorithms to identify and exploit
opportunities to buy low and sell high in different markets or instruments, and to execute
trades quickly to capitalize on these opportunities. Arbitrage strategies can be based on a
wide range of techniques, including statistical arbitrage, convergence trading, and event-driven
arbitrage.

* High-Frequency Trading (HFT): High-frequency trading (HFT) strategies use advanced
algorithms and high-speed computers to execute trades at extremely high speeds, often in
the microseconds or milliseconds range. HFT strategies can be used to capture small price
discrepancies or to facilitate the execution of large orders without significantly affecting the
market price. HFT strategies can be based on a wide range of techniques, including order
book analysis, news analysis, and market microstructure analysis.

* Market Making: Market making strategies aim to provide liquidity to financial markets by
continuously buying and selling financial instruments to maintain a two-sided market. These
strategies use algorithms to set bid and ask prices and to execute trades based on supply and
demand conditions. Market making strategies can be based on a wide range of techniques,
including order book analysis, news analysis, and market microstructure analysis.

* Quantitative Portfolio Management: Quantitative portfolio management strategies use
algorithms and mathematical models to optimize the composition of investment portfolios
based on risk and return objectives. These strategies can be used by asset managers to manage
large pools of assets on behalf of clients. Quantitative portfolio management strategies can be
based on a wide range of techniques, including mean-variance optimization, risk parity, and
Black-Litterman optimization.

 Statistical Arbitrage: Statistical arbitrage strategies aim to profit from price discrepancies
between different financial instruments or markets by executing trades based on statistical
relationships between the instruments or markets. These strategies use algorithms to identify
and exploit mispricings in the market, and to execute trades quickly to capitalize on these
opportunities. Statistical arbitrage strategies can be based on a wide range of techniques,
including pairs trading, convergence trading, and event-driven arbitrage.

* Risk Management: Risk management strategies aim to identify and mitigate risks in financial
markets by executing trades based on predetermined risk-related criteria. These strategies
use algorithms to monitor market conditions and to execute trades based on predetermined
risk management rules, such as stop-loss orders or position sizing rules. Risk management
strategies can be based on a wide range of techniques, including value at risk (VaR) analysis,
stress testing, and scenario analysis.

* Alpha Generation: Alpha generation strategies aim to identify and exploit trading opportuni-
ties that can generate positive returns above a benchmark or market index. These strategies
use algorithms to identify mispricings in the market.

10 Chapter 1. Introduction to QT and ML

How to get into quantitative trading?

Quantitative trading involves using mathematical and statistical techniques to analyze financial
markets and make trading decisions. If you’re interested in getting into quantitative trading, there are
a few steps you can take:

* Develop a strong foundation in math and statistics: Quantitative traders often use com-
plex mathematical and statistical models to analyze data and make informed decisions. It’s
important to have a strong foundation in these subjects to be able to effectively use these
techniques.

* Learn programming: Many quantitative traders use programming languages like Python or
R to build and backtest trading strategies. It’s a good idea to learn at least one programming
language so you can automate your analysis and trading processes.

* Gain experience with financial markets: Understanding how financial markets work and
what drives price movements is important for any trader, and this is especially true for
quantitative traders. Consider interning or working at a financial firm to gain hands-on
experience.

* Learn about different trading strategies: There are many different quantitative trading
strategies that use a variety of techniques, such as statistical arbitrage, mean reversion, and
machine learning. It’s a good idea to familiarize yourself with these strategies and understand
how they work.

* Consider getting a degree in a related field: Many quantitative traders have a background in
a field like economics, finance, or computer science. Consider getting a degree in one of these
fields to gain a deeper understanding of the concepts and tools used in quantitative trading.

* Practice your skills: As with any skill, practice is key to becoming a successful quantitative
trader. Consider using online resources or simulation platforms to practice your skills and test
out different trading strategies.

What are the skills of a quantitative trader?

Quantitative traders typically have a strong foundation in math and statistics and are skilled in
programming languages like Python or R. They also have a strong understanding of financial markets
and how they work. In addition to these technical skills, quantitative traders often have strong
analytical and problem-solving skills, as well as the ability to think critically and make informed
decisions based on data. They also need to be able to communicate their ideas and findings effectively,
both to their colleagues and to clients. Other important skills for quantitative traders may include:
* Data analysis: The ability to analyze large sets of data and extract meaningful insights is
crucial for quantitative traders.
* Modeling: Quantitative traders often build and use complex mathematical and statistical
models to make trading decisions.
* Risk management: Quantitative traders need to be able to assess and manage risk in their
trades.
* Machine learning: Some quantitative traders use machine learning techniques to analyze
data and make trading decisions.
* Attention to detail: Quantitative traders need to be detail-oriented in order to accurately
analyze data and identify patterns.
* Adaptability: The financial markets are constantly changing, so quantitative traders need to
be able to adapt to new situations and make informed decisions quickly.

1.2 Infroduction to Machine Learning 11

What are the top quantitative hedge funds?

Some of the top quantitative hedge funds include:
* Renaissance Technologies: This hedge fund is known for using complex mathematical
models to make trading decisions and has been extremely successful over the years.
* Two Sigma: This hedge fund uses a variety of techniques, including machine learning, to
make investment decisions and has consistently generated strong returns.
* AQR Capital Management: This hedge fund uses a variety of quantitative techniques,
including factor-based investing and risk management, to make investment decisions.
* DE Shaw: This hedge fund uses complex mathematical models and algorithms to make
investment decisions and has a strong track record of performance.
* Point72 Asset Management: This hedge fund uses a variety of quantitative techniques,
including machine learning and data analysis, to make investment decisions.
These are just a few examples of top quantitative hedge funds, and there are many other successful
quantitative hedge funds as well.

Introduction to Machine Learning

Definition of machine learning

Machine learning is a type of artificial intelligence that enables computers to learn and adapt without
being explicitly programmed. It involves the use of algorithms and statistical models to analyze data
and make predictions or decisions based on the patterns and trends that it identifies.

In machine learning, a computer is trained to recognize patterns in data by being presented with
a large number of examples of the patterns that it should recognize. As the computer processes
these examples, it "learns" the characteristics of the patterns and becomes better at recognizing them.
Once the computer has learned to recognize the patterns, it can then be used to make predictions or
decisions based on new data that it has not seen before.

There are many different types of machine learning, including supervised learning, unsupervised
learning, semi-supervised learning, and reinforcement learning. Each type of machine learning
involves a different approach to training the computer and making predictions or decisions based on
the data.

Machine learning is used in a wide range of applications, including image and speech recognition,
natural language processing, recommendation systems, and fraud detection. It has the potential to
transform many different industries by automating tasks that would be difficult or impossible for
humans to perform, and by enabling computers to make decisions and predictions based on data in a
way that is more accurate and efficient than human judgment.

Types of machine learning

There are several different types of machine learning, each with its own unique characteristics and
applications:

* Supervised learning: Supervised learning involves training a machine learning model on

a labeled dataset, where the correct output (also known as the "label") is provided for each

example in the dataset. The model is then tested on new data, and its performance is evaluated

based on its ability to correctly predict the labels for the new data. Examples of supervised

learning include classification tasks, such as identifying spam emails or predicting whether a

12

Chapter 1. Introduction to QT and ML

customer will churn, and regression tasks, such as predicting the price of a house based on its
characteristics.

Unsupervised learning: Unsupervised learning involves training a machine learning model
on an unlabeled dataset, without providing the model with the correct outputs for each example.
Instead, the model must discover the underlying structure of the data and learn to identify
patterns and relationships on its own. Examples of unsupervised learning include clustering
tasks, such as grouping customers into segments based on their characteristics, and anomaly
detection tasks, such as identifying fraudulent transactions in a dataset.

Semi-supervised learning: Semi-supervised learning involves training a machine learning
model on a dataset that is partially labeled and partially unlabeled. This can be useful when
labeled data is scarce or expensive to obtain, as it allows the model to make use of both labeled
and unlabeled data to improve its performance.

Reinforcement learning: Reinforcement learning involves training a machine learning model
to make decisions in an environment by receiving rewards or punishments for its actions.
The model learns to maximize its rewards over time by adapting its behavior based on the
consequences of its actions. Reinforcement learning is commonly used in robotics, control
systems, and games.

Deep learning: Deep learning is a subfield of machine learning that involves the use of
neural networks, which are algorithms that are inspired by the structure and function of the
human brain. Deep learning algorithms can learn to recognize patterns and features in data
by analyzing large amounts of data and adjusting the weights of the connections between the
nodes in the network. Deep learning algorithms have achieved state-of-the-art performance in
many applications, including image and speech recognition, natural language processing, and
machine translation.

Applications of machine learning in finance

Machine learning has a wide range of applications in the finance industry, including:

Credit risk modeling: Machine learning algorithms can be used to predict the likelihood of a
borrower defaulting on a loan, based on factors such as credit history, income, and debt-to-
income ratio. This can help lenders to identify high-risk borrowers and to make informed
decisions about whether to approve a loan.

Fraud detection: Machine learning algorithms can be used to identify fraudulent transactions
in real-time by analyzing patterns in transaction data and identifying anomalies that may
indicate fraudulent activity.

Customer segmentation: Machine learning algorithms can be used to segment customers
into groups based on their characteristics, preferences, and behaviors. This can help financial
institutions to personalize their products and services and to target their marketing efforts
more effectively.

Predictive maintenance: Machine learning algorithms can be used to predict when equipment
is likely to fail, based on patterns in maintenance and performance data. This can help financial
institutions to schedule maintenance and repairs in advance, reducing the risk of equipment
failure and downtime.

Trading: Machine learning algorithms can be used to analyze market data and make trades
based on patterns and trends that they identify. This can include identifying trade opportunities,
executing trades, and managing risk.

1.3 The Intersection of Quantitative Trading and Machine Learning 13

* Portfolio optimization: Machine learning algorithms can be used to optimize the composition
of investment portfolios based on risk and return objectives. This can involve analyzing
financial data and using optimization algorithms to determine the optimal mix of assets for a
given portfolio.

* Risk management: Machine learning algorithms can be used to identify and mitigate risks
in financial markets by analyzing patterns in market data and executing trades based on
predetermined risk management rules.

These are just a few examples of the many ways in which machine learning can be applied in
the finance industry. Machine learning has the potential to transform many different aspects of the
finance industry by enabling computers to analyze data and make decisions in a way that is more
accurate and efficient than human judgment.

The Intersection of Quantitative Trading and Machine Learning
How machine learning can be used to improve trading strategies

Machine learning can be used to improve trading strategies in a number of ways, including:

* Identifying trends and patterns: Machine learning algorithms can analyze large amounts
of data to identify patterns and trends that may not be readily apparent to humans. This can
be useful for identifying trading opportunities and for making predictions about future price
movements.

* Making predictions: Machine learning algorithms can be trained to make predictions about
future prices or other market outcomes based on patterns and trends that they identify in
historical data. This can be useful for identifying trade entry and exit points and for managing
risk.

* Improving risk management: Machine learning algorithms can be used to analyze market
data and identify risks that may not be apparent to humans. This can be useful for developing
risk management strategies and for identifying potential risk exposures.

* Automating trading: Machine learning algorithms can be used to automate the execution
of trades based on predetermined rules or criteria. This can be useful for reducing the time
and effort required to execute trades and for improving the speed and efficiency of the trading
process.

* Improving the accuracy of predictions: Machine learning algorithms can be used to improve
the accuracy of predictions made about market outcomes by analyzing a wider range of data
and identifying patterns and trends that may not be apparent to humans. This can be useful for
improving the performance of trading strategies.

It is important to note that machine learning is just one tool that can be used to improve trading

strategies, and it is not a panacea. Like any other tool, it has its limitations and it is important to use
it appropriately and in conjunction with other techniques and approaches.

Examples of machine learning in action in quantitative trading

Some examples:

* Predictive modeling: Machine learning algorithms have been used to develop predictive
models for forecasting future prices or other market outcomes. These models can be trained
on historical data and can be used to make predictions about future market movements.

* Improving the accuracy of predictions: Machine learning algorithms have been used to
improve the accuracy of predictions made about market outcomes by analyzing a wider range

14

Chapter 1. Introduction to QT and ML

of data and identifying patterns and trends that may not be apparent to humans. This can be
useful for improving the performance of trading strategies.

Trading signal generation: Machine learning algorithms have been used to identify patterns
and trends in market data that can be used to generate trading signals. These signals can be
used to identify trade entry and exit points, and to manage risk.

Algorithmic trading: Machine learning algorithms have been used to develop and implement
automated trading systems that can execute trades based on predetermined rules or criteria.
These systems can analyze market data in real-time and can execute trades at high speeds,
making them useful for high-frequency trading.

Risk management: Machine learning algorithms have been used to identify and mitigate
risks in financial markets by analyzing patterns in market data and executing trades based on
predetermined risk management rules.

Sentiment analysis: Machine learning algorithms have been used to analyze social media
data and other sources of unstructured data to identify sentiment trends that may be relevant
to trading. For example, an algorithm might analyze social media posts about a particular
company to identify trends in sentiment about the company, which could be used to inform
trading decisions.

Optimizing portfolio composition: Machine learning algorithms have been used to optimize
the composition of investment portfolios based on risk and return objectives. This can involve
analyzing financial data and using optimization algorithms to determine the optimal mix of
assets for a given portfolio.

Identifying arbitrage opportunities: Machine learning algorithms have been used to identify
arbitrage opportunities in financial markets by analyzing large amounts of data and identifying
discrepancies in prices that may be exploitable.

Identifying trading opportunities: Machine learning algorithms have been used to identify
trading opportunities in financial markets by analyzing large amounts of data and identifying
patterns and trends that may not be apparent to humans. This can involve using techniques
such as cluster analysis and anomaly detection to identify unusual market conditions that may
be exploitable.

Enhancing risk management: Machine learning algorithms have been used to improve risk
management in financial markets by analyzing patterns in market data and identifying potential
risk exposures that may not be apparent to humans. This can be useful for developing risk
management strategies and for identifying and mitigating risks.

Trading strategy development: Machine learning algorithms have been used to develop
trading strategies by analyzing patterns and trends in market data and identifying trading
opportunities. This can involve training machine learning models on historical data and using
them to make predictions about future market movements.

Enhancing the performance of predictive models: Machine learning algorithms have been
used to improve the performance of predictive models for forecasting market outcomes by
analyzing patterns in data and identifying features that are most predictive of future outcomes.
This can involve using techniques such as feature selection and dimensionality reduction to
improve the accuracy and efficiency of the models.

Enhancing the performance of trading algorithms: Machine learning algorithms have been
used to improve the performance of trading algorithms by adjusting the algorithms’ parameters
based on patterns and trends that are identified in data. This can be useful for improving the
efficiency and accuracy of the algorithms.

1.3 The Intersection of Quantitative Trading and Machine Learning 15

These are just a few examples of how machine learning has been used in quantitative trading.
There are many other potential applications of machine learning in this field, and the use of machine
learning in trading is likely to continue to evolve and expand in the future.

Challenges and limitations of using machine learning in trading

There are several challenges and limitations to using machine learning in trading:

Data quality: The accuracy and effectiveness of machine learning models depend heavily on
the quality of the data used to train them. Poor quality data can lead to poor model performance
and inaccurate predictions. It is important to ensure that the data used to train machine learning
models is clean, accurate, and relevant to the task at hand.

Overfitting: Machine learning algorithms can sometimes become "overfitted" to the data they
are trained on, meaning that they perform well on the training data but poorly on new data.
This can be a particular concern when working with small or limited datasets, as the model
may learn patterns that are specific to the training data but do not generalize well to new data.
Lack of interpretability: Many machine learning algorithms, particularly those that use
complex models such as deep neural networks, can be difficult to interpret and understand. This
can make it challenging to understand why a particular model is making certain predictions or
to identify potential biases in the model.

Changing market conditions: Financial markets are constantly evolving, and machine
learning models that are trained on historical data may not be able to adapt to changing market
conditions. This can make it challenging to use machine learning models for long-term trading
or to use models trained on one market to trade in a different market.

Complexity: Machine learning algorithms can be complex and require specialized knowledge
and expertise to implement and use effectively. This can make it challenging for traders who
are not familiar with machine learning to effectively incorporate these techniques into their
trading strategies.

Overall, while machine learning can be a powerful tool for improving trading strategies, it is
important to be aware of these challenges and limitations and to use machine learning in a thoughtful
and disciplined manner.

Electronic copy available at: https://ssrn.com/abstract=4315362

There are many different machine learning models that can be used in trading, and the specific model
or models used will depend on the nature of the data, the specific trading strategy and financial
instruments being traded, and the goals of the machine learning model. Here are some examples of
machine learning models that are commonly used in trading:

Linear models: Linear models are a class of machine learning models that make predictions
based on a linear combination of the input features. Examples of linear models include linear
regression, logistic regression, and linear discriminant analysis. Linear models are often used
in trading because they are simple, fast to train, and easy to interpret.

Tree-based models: Tree-based models are a class of machine learning models that make
predictions based on a decision tree. Examples of tree-based models include decision trees,
random forests, and gradient boosting machines. Tree-based models are often used in trading
because they can handle high-dimensional data, missing values, and categorical features.
Neural networks: Neural networks are a class of machine learning models that are inspired
by the structure and function of the human brain. Neural networks can be used to model
complex relationships between the input features and the target variable and are often used in
trading to extract features and patterns from raw data.

Support vector machines: Support vector machines (SVMs) are a class of machine learning
models that are used for classification and regression tasks. SVMs are based on the idea of
finding the hyperplane that maximally separates the different classes in the data and are often
used in trading to identify patterns and trends in the data.

Clustering algorithms: Clustering algorithms are a class of machine learning models that
are used to group data points into clusters based on their similarity. Clustering algorithms are
often used in trading to identify groups of similar stocks or to uncover patterns in the data.
Anomaly detection algorithms: Anomaly detection algorithms are a class of machine
learning models that are used to identify data points that are unusual or deviate from the norm.
Anomaly detection algorithms are often used in trading to detect unusual patterns or events in
the data, such as sudden price movements or unusual trading activity.

It’s worth noting that these are just a few examples of machine learning models that are commonly

18 Chapter 2. Basic Machine Learning Tools for Trading

used in trading, and there are many other models that may be useful depending on the specific data
and analysis or modeling tasks. It’s a good idea to seek out additional resources and guidance to
learn more about machine learning models and how to apply them effectively in quantitative trading.

Unsupervised Learning

Unsupervised learning is a type of machine learning in which the goal is to discover patterns or
relationships in the data without the use of labeled data. Unsupervised learning is commonly used
in trading for tasks such as clustering (grouping data points into clusters based on their similarity)
and dimensionality reduction (reducing the number of features in the data while preserving as much
information as possible).

Here are some examples of unsupervised learning algorithms that are commonly used in trading
for clustering and dimensionality reduction:

* Clustering algorithms: Clustering algorithms are used to group data points into clusters
based on their similarity. Examples of clustering algorithms include k-means, hierarchical
clustering, and density-based clustering. Clustering algorithms are often used in trading to
identify groups of similar stocks or to uncover patterns in the data.

* Dimensionality reduction algorithms: Dimensionality reduction algorithms are used to
reduce the number of features in the data while preserving as much information as possible.
Examples of dimensionality reduction algorithms include principal component analysis (PCA),
singular value decomposition (SVD), and independent component analysis (ICA). Dimension-
ality reduction algorithms are often used in trading to reduce the complexity of the data and to
improve the performance of machine learning models.

It’s worth noting that the specific unsupervised learning algorithm or algorithms used in trading
will depend on the nature of the data, the specific trading strategy and financial instruments being
traded, and the goals of the machine learning model. It’s a good idea to seek out additional resources
and guidance to learn more about unsupervised learning and how to apply it effectively in quantitative
trading.

Clustering

Clustering is a machine learning technique that can be used to group data points into clusters based
on their similarity. In the context of trading, clustering could be used to group securities or financial
instruments into clusters based on their historical price movements or other financial characteristics.

Here are some ways in which clustering could be used for trading:

* Identifying correlated instruments: Clustering can be used to identify securities that have
similar price movements or other financial characteristics, which could indicate a high degree
of correlation between them. This could be useful for identifying pairs trading opportunities
or for constructing diversified portfolios.

* Detecting market regimes: Clustering can be used to group data points into clusters that
correspond to different market regimes, such as bull and bear markets. This could be useful
for identifying changes in market conditions and adapting trading strategies accordingly.

* Uncovering hidden patterns: Clustering can be used to uncover patterns in financial data
that may not be immediately apparent by visually examining the data. This could be useful for
discovering new trading opportunities or for identifying trends that may not be immediately
obvious.

2.1 Unsupervised Learning 19

To use clustering for trading, you would need to first collect relevant financial data and then
apply a clustering algorithm to group the data into clusters. There are many different clustering
algorithms to choose from, and the appropriate algorithm will depend on the specific problem you
are trying to solve and the characteristics of the data you are working with. Once you have grouped
the data into clusters, you can then analyze the clusters to identify potential trading opportunities or
trends.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical technique that can be used to reduce the
dimensionality of a dataset by projecting it onto a lower-dimensional space.

In the context of trading, PCA could be used to identify the underlying factors that are driving
the returns of a portfolio of securities or to identify the most important features of a financial dataset.

Here are some ways in which PCA could be used for trading:

* Portfolio optimization: PCA can be used to identify the underlying factors that are driving
the returns of a portfolio of securities. This could be useful for constructing a portfolio that is
well-diversified and that has the potential to generate returns with minimal risk.

* Risk management: PCA can be used to identify the most important factors that are contribut-
ing to the risk of a portfolio of securities. This could be useful for managing risk by reducing
exposure to factors that are contributing significantly to portfolio risk.

* Feature selection: PCA can be used to identify the most important features of a financial
dataset. This could be useful for selecting the most relevant features to include in a trading
model, which could improve model performance.

To use PCA for trading, you would need to first collect relevant financial data and then apply
the PCA algorithm to transform the data into a lower-dimensional space. There are many different
ways to implement PCA, and the appropriate method will depend on the specific problem you are
trying to solve and the characteristics of the data you are working with. Once you have transformed
the data using PCA, you can then analyze the resulting principal components to identify potential
trading opportunities or trends.

Copula

In probability theory and statistics, a copula is a multivariate distribution function used to describe
the dependence between random variables. The general formula for a copula is:

C(ul,uz,...,un):Pr[Ul Sul,Uzﬁuz,...,Un Sun]

where C is the copula function, Uy, U,, ..., U, are random variables with uniform distribution on
the interval [0,1], and uy,uy, .. .,u, are real values in the interval [0, 1].

In the context of statistical arbitrage, copulas could be used to model the dependence between

the returns of different securities or financial instruments.

Here are some ways in which copulas could be used for statistical arbitrage:

* Modeling dependence between returns: Copulas can be used to model the dependence
between the returns of different securities or financial instruments. This could be useful for
identifying mispricings in the market by comparing the returns of securities that are expected
to be highly correlated but are actually behaving differently.

* Constructing trading pairs: Copulas can be used to identify securities that have similar price
movements or other financial characteristics, which could indicate a high degree of correlation

20 Chapter 2. Basic Machine Learning Tools for Trading

between them. This could be useful for constructing trading pairs for statistical arbitrage, such
as pairs trading or convergence trading.

* Uncovering hidden patterns: Copulas can be used to uncover patterns in financial data that
may not be immediately apparent by visually examining the data. This could be useful for
discovering new trading opportunities or for identifying trends that may not be immediately
obvious.

To use copulas for statistical arbitrage, you would need to first collect relevant financial data
and then apply a copula model to the data to model the dependence between the returns of different
securities or financial instruments. There are many different types of copulas to choose from, and the
appropriate copula will depend on the specific problem you are trying to solve and the characteristics
of the data you are working with. Once you have modeled the dependence between the returns
of different securities using a copula, you can then analyze the model to identify potential trading
opportunities or trends.

Complex Networks

Complex networks are graphical representations of systems or processes in which nodes represent the
elements of the system and edges represent the relationships between those elements. In the context
of statistical arbitrage, complex networks could be used to represent the dependencies between
different securities or financial instruments and to identify mispricings in the market.

Here are some ways in which complex networks could be used for statistical arbitrage:

* Modeling dependencies between securities: Complex networks can be used to represent the
dependencies between different securities or financial instruments. This could be useful for
identifying mispricings in the market by comparing the dependencies between securities that
are expected to be highly correlated but are actually behaving differently.

* Constructing trading pairs: Complex networks can be used to identify securities that have
similar price movements or other financial characteristics, which could indicate a high degree
of correlation between them. This could be useful for constructing trading pairs for statistical
arbitrage, such as pairs trading or convergence trading.

* Uncovering hidden patterns: Complex networks can be used to uncover patterns in financial
data that may not be immediately apparent by visually examining the data. This could be
useful for discovering new trading opportunities or for identifying trends that may not be
immediately obvious.

To use complex networks for statistical arbitrage, you would need to first collect relevant financial
data and then construct a complex network representation of the dependencies between different
securities or financial instruments. There are many different ways to construct complex networks,
and the appropriate method will depend on the specific problem you are trying to solve and the
characteristics of the data you are working with. Once you have constructed the complex network,
you can then analyze the network to identify potential trading opportunities or trends.

Large Language Models (NLP)

Natural language processing (NLP) and language models can be used in a number of ways to inform
trading decisions or to construct trading strategies. Some potential applications include:
* Sentiment analysis: Language models can be used to analyze the sentiment or emotion
expressed in text data, such as news articles or social media posts, to gauge sentiment or
sentiment changes about a particular company or industry. This could be useful for identifying

2.2 Supervised Learning 21

trading opportunities or for constructing sentiment-based trading strategies.

* News analysis: Language models can be used to analyze the content of news articles or
other text data to identify trends or events that may affect the price of a security or financial
instrument. This could be useful for identifying trading opportunities or for constructing
event-based trading strategies.

* Language translation: Language models can be used to translate text data from one language
to another, which can be useful for analyzing foreign language news articles or social media
posts to identify trading opportunities or to inform trading strategies.

* Text classification: Language models can be used to classify text data into categories, such as
positive or negative sentiment, to inform trading decisions or to construct trading strategies
based on sentiment.

* Text summarization: Language models can be used to generate summary versions of text
data, which can be useful for quickly processing large volumes of information and identifying
key trends or themes that may affect trading decisions.

It is important to note that language models and NLP techniques are only one part of the puzzle
when it comes to trading. It is also important to consider a wide range of other factors, such as
economic conditions, company-specific news, and market sentiment, when making investment
decisions.

Supervised Learning

Supervised learning is a type of machine learning in which the goal is to learn a function that can
map input data (features) to output data (labels) based on a training dataset that includes both the
input data and the corresponding output data. Supervised learning is commonly used in trading for
tasks such as classification (predicting a categorical label) and regression (predicting a continuous
label).

Here are some examples of supervised learning algorithms that are commonly used in trading

for classification and regression tasks:

* Classification algorithms: Classification algorithms are used to predict a categorical label
(e.g., "buy," "sell," "hold") based on the input features. Examples of classification algorithms
include logistic regression, linear discriminant analysis, k-nearest neighbors, decision trees,
and support vector machines.

* Regression algorithms: Regression algorithms are used to predict a continuous label (e.g.,
stock price, return, volatility) based on the input features. Examples of regression algorithms
include linear regression, ridge regression, lasso regression, and support vector regression.

It’s worth noting that the specific supervised learning algorithm or algorithms used in trading

will depend on the nature of the data, the specific trading strategy and financial instruments being
traded, and the goals of the machine learning model. It’s a good idea to seek out additional resources
and guidance to learn more about supervised learning and how to apply it effectively in quantitative
trading.

Linear Regression

Linear regression is a statistical method that can be used to analyze the relationship between a
dependent variable, such as future stock returns, and one or more independent variables, such as
past stock returns or economic indicators. By fitting a linear regression model to historical data, it is
possible to use the model to make predictions about future stock returns.

22 Chapter 2. Basic Machine Learning Tools for Trading

Here is an example of how linear regression could be used to predict future stock returns:

* Gather data: First, you would need to gather data on the dependent variable (e.g., future
stock returns) and the independent variables (e.g., past stock returns, economic indicators) that
you want to use in your model. It is important to ensure that you have a sufficient amount of
high-quality data to build an accurate model.

* Preprocess data: Next, you would need to preprocess the data by cleaning and formatting it
as necessary. This might involve handling missing values, scaling the data, or creating new
features.

* Fit a linear regression model: Once you have preprocessed the data, you can fit a linear
regression model to the data by estimating the parameters of the model using a statistical
algorithm.

* Make predictions: Once you have fit a linear regression model to the data, you can use the
model to make predictions about future stock returns by inputting values for the independent
variables.

It is important to note that linear regression is only one of many statistical methods that can be
used to predict stock returns, and it is not always the most accurate or appropriate method. It is also
important to remember that no statistical model can perfectly predict future stock returns, and all
investments carry some level of risk.

Gradient Boosted Trees (GBTs)

Gradient boosted trees (GBTs) are a type of machine learning model that can be used to make
predictions about future stock returns. Here is a general outline of how you might use GBTs to
predict stock returns:

* Collect and prepare data: First, you’ll need to collect historical stock data that you want to
use to train your model. This data should include features (e.g., the stock’s price, volume, etc.)
that you believe are relevant to predicting future stock returns. You’ll also need to split this
data into training and testing sets, so you can evaluate the performance of your model.

* Calculate stock returns: Next, you’ll need to calculate the stock returns for each period in
your data. Stock returns are a measure of the change in a stock’s price over time and can be
calculated by dividing the change in the stock’s price by its initial price.

* Train the model: Once you have your stock return data, you can use it to train a GBT model.
This involves specifying the hyperparameters of the model (e.g., the learning rate, the number
of trees in the forest, etc.) and using an optimization algorithm to find the combination of
hyperparameters that minimizes the model’s prediction error on the training data.

* Make predictions: Once you’ve trained your GBT model, you can use it to make predictions
about future stock returns by providing it with new data as input. For example, you might use
the model to predict the stock’s return over a future period of time based on its current price
and other relevant features.

» Evaluate the model’s performance: Finally, you’ll want to evaluate the performance of your
GBT model to see how accurately it is able to predict future stock returns. To do this, you can
compare the model’s predictions to the actual stock data and calculate evaluation metrics such
as mean squared error or accuracy.

It’s worth noting that this is just a general outline, and there are many details involved in using

GBTs to predict stock returns. It’s a good idea to familiarize yourself with the specific techniques
and algorithms involved in using GBTs and to seek out additional resources and guidance as needed.

2.2 Supervised Learning 23

Graph Neural Networks (GNNs)

Graph neural networks (GNNs) are a type of machine learning model that are designed to process
data represented as graphs. In the context of trading, GNNs could potentially be used to analyze
financial data represented as a graph, such as data on the relationships between different companies
or industries.

Here are a few examples of how GNNs could be used for trading:

* Portfolio optimization: GNNs could be used to analyze the relationships between different
securities or financial instruments in a portfolio and to identify optimal portfolios based on a
given set of constraints or objectives.

* Trading signal generation: GNNs could be used to analyze financial data and identify
patterns or trends that may indicate trading opportunities. For example, GNNs could be used
to identify correlations between different securities or to identify unusual trading activity.

* Market prediction: GNNs could be used to analyze financial data and make predictions
about future market movements. For example, GNNs could be used to predict the future price
of a particular security or to forecast changes in the overall market.

It is important to note that GNNSs, like all machine learning models, are only as good as the data
they are trained on. In order to use GNNs effectively for trading, it is important to have high-quality,
relevant data and to carefully evaluate the performance and limitations of any model you develop. It is
also important to remember that no machine learning model can perfectly predict market movements,
and all investments carry some level of risk.

Transformers

Transformers are a type of machine learning model that have been widely used in natural language
processing (NLP) tasks, such as language translation and language modeling. In the context of
trading, Transformers could potentially be used to analyze time series data and identify patterns or
trends that may indicate trading opportunities.

Here are a few examples of how Transformers could be used on time series data for trading:

* Time series forecasting: Transformers could be used to analyze time series data and make
predictions about future values in the series. This could be useful for predicting the future
price of a particular security or for forecasting changes in the overall market.

* Anomaly detection: Transformers could be used to analyze time series data and identify
unusual patterns or events that may indicate trading opportunities. For example, Transformers
could be used to identify unusual spikes in the price or volume of a security or to identify
unusual trading activity.

* Feature extraction: Transformers could be used to extract features from time series data that
may be relevant for trading. For example, Transformers could be used to identify trends or
patterns in the data that may indicate trading opportunities.

* Trading signal generation: Transformers could be used to analyze time series data and
identify patterns or trends that may indicate trading opportunities. For example, Transformers
could be used to identify correlations between different securities or to identify unusual trading
activity.

It is important to note that Transformers, like all machine learning models, are only as good as
the data they are trained on. In order to use Transformers effectively on time series data for trading,
it is important to have high-quality, relevant data and to carefully evaluate the performance and
limitations of any model you develop. It is also important to remember that no machine learning

24 Chapter 2. Basic Machine Learning Tools for Trading

model can perfectly predict market movements, and all investments carry some level of risk.

There are many different types of datasets that can be used for trading, beyond traditional financial
data such as price and volume data. Here are some examples of alternative datasets that can be used
for trading:

News articles: News articles can be used to identify trends or events that may affect the price
of a security or financial instrument. This could be useful for identifying trading opportunities
or for constructing event-based trading strategies.

Social media data: Social media data, such as tweets or posts on platforms like Twitter or
Facebook, can be used to gauge sentiment or sentiment changes about a particular company
or industry. This could be useful for identifying trading opportunities or for constructing
sentiment-based trading strategies.

Geolocation data: Geolocation data, such as data on the location of smartphone users, can be
used to identify trends or changes in consumer behavior. This could be useful for identifying
trading opportunities or for constructing trading strategies based on changes in consumer
behavior.

Environmental data: Environmental data, such as data on weather patterns or natural disasters,
can be used to identify trends or events that may affect the price of a security or financial
instrument. This could be useful for identifying trading opportunities or for constructing
event-based trading strategies.

Alternative financial data: Alternative financial data, such as data on cryptocurrency prices
or data on the performance of alternative assets, can be used to identify trends or events that
may affect the price of a security or financial instrument. This could be useful for identifying
trading opportunities or for constructing trading strategies based on alternative assets.
Weather data: Weather data, such as data on temperature, precipitation, and wind patterns,
can be used to identify trends or events that may affect the price of a security or financial
instrument. For example, weather data could be used to construct trading strategies based on
the impact of weather on agriculture or energy prices.

Satellite data: Satellite data, such as data on land use, vegetation, or ocean conditions, can be
used to identify trends or events that may affect the price of a security or financial instrument.

26

Chapter 3. Alternative Data for Quantitative Trading

For example, satellite data could be used to construct trading strategies based on the impact of
natural disasters or changes in land use on commodity prices.

Internet of Things (IoT) data: IoT data, such as data collected by connected devices like
smart thermostats or smart appliances, can be used to identify trends or changes in consumer
behavior. This could be useful for identifying trading opportunities or for constructing trading
strategies based on changes in consumer behavior.

Government data: Government data, such as data on economic indicators or regulatory filings,
can be used to identify trends or events that may affect the price of a security or financial
instrument. This could be useful for identifying trading opportunities or for constructing
event-based trading strategies.

Supply chain data: Supply chain data, such as data on the flow of goods and materials
through a supply chain, can be used to identify trends or events that may affect the price of a
security or financial instrument. This could be useful for identifying trading opportunities or
for constructing event-based trading strategies.

Natural language processing (NLP) data: NLP data, such as data on the sentiment or
emotion expressed in written or spoken language, can be used to gauge sentiment or sentiment
changes about a particular company or industry. This could be useful for identifying trading
opportunities or for constructing sentiment-based trading strategies.

Web traffic data: Web traffic data, such as data on the number of visitors to a website or the
amount of time they spend on the site, can be used to identify trends or changes in consumer
behavior. This could be useful for identifying trading opportunities or for constructing trading
strategies based on changes in consumer behavior.

Sentiment data: Sentiment data, such as data on the sentiment or emotion expressed in social
media posts or news articles, can be used to gauge sentiment or sentiment changes about a
particular company or industry. This could be useful for identifying trading opportunities or
for constructing sentiment-based trading strategies.

Geospatial data: Geospatial data, such as data on the location and movement of people or
vehicles, can be used to identify trends or changes in consumer behavior. This could be useful
for identifying trading opportunities or for constructing trading strategies based on changes in
consumer behavior.

Audio data: Audio data, such as data on the content of phone calls or audio recordings, can
be used to gauge sentiment or sentiment changes about a particular company or industry.
This could be useful for identifying trading opportunities or for constructing sentiment-based
trading strategies.

Video data: Video data, such as data on the content of video recordings or the movements of
people or vehicles in video footage, can be used to identify trends or changes in consumer
behavior. This could be useful for identifying trading opportunities or for constructing trading
strategies based on changes in consumer behavior.

Text data: Text data, such as data on the content of documents or emails, can be used to gauge
sentiment or sentiment changes about a particular company or industry. This could be useful
for identifying trading opportunities or for constructing sentiment-based trading strategies.
Behavioral data: Behavioral data, such as data on the actions or interactions of users on a
website or app, can be used to identify trends or changes in consumer behavior. This could
be useful for identifying trading opportunities or for constructing trading strategies based on
changes in consumer behavior.

Image data: Image data, such as data on the content of images or videos, can be used to

27

identify trends or changes in consumer behavior. This could be useful for identifying trading
opportunities or for constructing trading strategies based on changes in consumer behavior.
Audio-visual data: Audio-visual data, such as data on the content of audio and video
recordings, can be used to gauge sentiment or sentiment changes about a particular company
or industry. This could be useful for identifying trading opportunities or for constructing
sentiment-based trading strategies.

Demographic data: Demographic data, such as data on the age, gender, income, or education
level of a population, can be used to identify trends or changes in consumer behavior. This
could be useful for identifying trading opportunities or for constructing trading strategies
based on changes in consumer behavior.

Sensor data: Sensor data, such as data collected by sensors embedded in physical devices or
infrastructure, can be used to identify trends or events that may affect the price of a security
or financial instrument. This could be useful for identifying trading opportunities or for
constructing event-based trading strategies.

Customer data: Customer data, such as data on the purchasing behavior or preferences of
customers, can be used to identify trends or changes in consumer behavior. This could be
useful for identifying trading opportunities or for constructing trading strategies based on
changes in consumer behavior.

Human activity data: Human activity data, such as data on the movements or actions of
people, can be used to identify trends or changes in consumer behavior. This could be useful
for identifying trading opportunities or for constructing trading strategies based on changes in
consumer behavior.

Traffic data: Traffic data, such as data on the flow of vehicles or pedestrians through an area,
can be used to identify trends or changes in consumer behavior. This could be useful for
identifying trading opportunities or for constructing trading strategies based on changes in
consumer behavior.

Consumer sentiment data: Consumer sentiment data, such as data on the attitudes and
opinions of consumers about economic conditions or specific products or industries, can be
used to gauge sentiment or sentiment changes that may affect the price of stocks or bonds.
This could be useful for identifying trading opportunities or for constructing sentiment-based
trading strategies.

Employment data: Employment data, such as data on the number of job openings or the
unemployment rate, can be used to identify trends or events that may affect the price of
stocks or bonds. This could be useful for identifying trading opportunities or for constructing
event-based trading strategies.

Political data: Political data, such as data on the actions or statements of political leaders
or on election results, can be used to identify trends or events that may affect the price of
stocks or bonds. This could be useful for identifying trading opportunities or for constructing
event-based trading strategies.

Retail data: Retail data, such as data on the sales or inventory levels of retailers, can be used
to identify trends or events that may affect the price of stocks or bonds. This could be useful
for identifying trading opportunities or for constructing event-based trading strategies.
Transportation data: Transportation data, such as data on the movement of goods or people
by various modes of transportation, can be used to identify trends or events that may affect
the price of stocks or bonds. This could be useful for identifying trading opportunities or for
constructing event-based trading strategies.

Electronic copy available at: https://ssrn.com/abstract=4315362

4.1
4.1.1

Standard Data Preprocessing & Feature Engineering

Defining Data Preprocessing

Data preprocessing is the process of preparing data for analysis or modeling, and it is an important
step in quantitative trading. Data preprocessing techniques are used to clean, transform, and organize
data in a way that makes it more suitable for analysis or modeling. Here are some examples of data
preprocessing techniques that are commonly used in quantitative trading:

Data cleaning: Data cleaning is the process of identifying and correcting errors, inconsisten-
cies, or missing values in the data. Data cleaning is important in quantitative trading because it
helps to ensure that the data is accurate and complete, which is necessary for accurate analysis
and modeling.

Data transformation: Data transformation is the process of modifying or restructuring
the data in a way that makes it more suitable for analysis or modeling. Data transforma-
tion techniques in quantitative trading might include scaling, normalization, aggregation, or
discretization.

Data imputation: Data imputation is the process of filling in missing values in the data.
Data imputation is important in quantitative trading because it helps to ensure that the data is
complete and accurate, which is necessary for accurate analysis and modeling.

Data feature selection: Data feature selection is the process of identifying the most relevant
or important features in the data for a particular task. Data feature selection is important
in quantitative trading because it helps to ensure that the machine learning model is trained
on the most relevant and meaningful features, which can improve the model’s accuracy and
performance.

Data split: Data split is the process of dividing the data into training and test sets. Data split
is important in quantitative trading because it allows you to evaluate the performance of the
machine learning model on unseen data, which helps to ensure that the model is generalizable
and not overfitted to the training data.

It’s worth noting that these are just a few examples of data preprocessing techniques that are

30 Chapter 4. Data Preprocessing & Feature Engineering

commonly used in quantitative trading, and there are many other techniques that may be useful
depending on the specific data and analysis or modeling tasks. It’s a good idea to seek out additional
resources and guidance to learn more about data preprocessing and how to apply it effectively in
quantitative trading.

Defining Feature Engineering

Feature engineering is the process of creating and selecting features (i.e., data points or variables)
that are used as input to machine learning algorithms in quantitative trading. Feature engineering
involves identifying relevant features, creating new features based on domain knowledge or existing
features, and selecting the most relevant or useful features for a particular task.

Feature engineering is an important step in the machine learning process because the quality
and relevance of the features can significantly impact the performance and accuracy of the machine
learning model. By carefully selecting and creating relevant and meaningful features, it is possible
to improve the model’s ability to learn and make accurate predictions or decisions.

There are many different approaches to feature engineering, and the specific techniques and
approaches used will depend on the nature of the data and the specific trading strategy and financial
instruments being traded. Some common techniques used in feature engineering in quantitative
trading include:

» Feature selection: Feature selection is the process of identifying the most relevant or important
features in the data for a particular task. Feature selection can be done manually by an analyst,
or it can be automated using machine learning algorithms or statistical techniques.

» Feature extraction: Feature extraction is the process of creating new features based on exist-
ing features or domain knowledge. Feature extraction techniques might include dimensionality
reduction, feature transformation, or feature generation.

» Feature scaling: Feature scaling is the process of normalizing or standardizing the values
of the features so that they are on the same scale. Feature scaling is important in quantitative
trading because it helps to ensure that the machine learning model is not biased by the scale of
the features.

* Feature normalization: Feature normalization is the process of transforming the values
of the features so that they have a mean of zero and a standard deviation of one. Feature
normalization is important in quantitative trading because it helps to ensure that the machine
learning model is not biased by the distribution of the features.

It’s worth noting that these are just a few examples of feature engineering techniques that are
commonly used in quantitative trading, and there are many other techniques that may be useful
depending on the specific data and analysis or modeling tasks. It’s a good idea to seek out additional
resources and guidance to learn more about feature engineering and how to apply it effectively in
quantitative trading.

Residualization of stock returns

Why do quantitative traders residualize stock returns?

Quantitative traders may residualize stock returns for a variety of reasons. Some common reasons
include:

* To isolate the effect of specific factors on the stock’s returns: By residualizing the stock’s

returns, quantitative traders can isolate the effect of specific factors (e.g., the overall market

4.2 Residualization of stock returns 31

performance, the performance of a particular sector, etc.) on the stock’s returns and better
understand the drivers of the stock’s performance.

To build more accurate models: By removing the influence of certain factors on the stock’s
returns, quantitative traders can build more accurate models of the stock’s future performance.
This can be useful in cases where the trader wants to make predictions about the stock’s returns
or to assess the risk of their investments.

To identify trading opportunities: By understanding the factors that are driving the stock’s
returns, quantitative traders can identify trading opportunities and make informed decisions
about when to buy or sell the stock.

To evaluate the performance of their trading strategies: By residualizing the stock’s returns,
quantitative traders can evaluate the performance of their trading strategies and assess the
impact of specific factors on their returns.

It’s worth noting that these are just a few examples of why quantitative traders may residualize
stock returns, and there may be other reasons as well. The specific reason for residualizing the
returns will depend on the goals and constraints of the analysis.

How to residualize stock returns?

Residualizing stock returns involves adjusting the returns of a stock for the influence of certain
factors that may be driving the returns. This can be useful in cases where you want to isolate the
effect of specific factors on the stock’s returns. Here is a general outline of how you might residualize
stock returns:

Collect and prepare data: First, you’ll need to collect historical stock data that you want to
use to residualize the returns. This data should include both the stock’s returns and the factors
that you want to adjust for. You’ll also need to split this data into training and testing sets, so
you can evaluate the performance of your model.

Identify the factors to adjust for: Next, you’ll need to identify the factors that you want
to adjust for in your stock returns. These factors might include things like the overall mar-
ket performance, the performance of a particular sector, or the performance of a specific
benchmark.

Build a model to predict the stock’s returns: Once you have identified the factors that you
want to adjust for, you can build a model to predict the stock’s returns based on these factors.
This model might be a linear regression model, for example, or it could be a more complex
model like a gradient boosted tree.

Calculate the residual returns: Once you have built your model, you can use it to predict
the stock’s returns based on the factors that you are adjusting for. The difference between the
actual returns and the predicted returns is known as the residual returns. These residual returns
represent the portion of the stock’s returns that cannot be explained by the factors that you are
adjusting for.

Evaluate the model’s performance: Finally, you’ll want to evaluate the performance of your
model to see how accurately it is able to predict the stock’s returns based on the factors that
you are adjusting for. To do this, you can compare the model’s predictions to the actual stock
data and calculate evaluation metrics such as mean squared error or accuracy.

It’s worth noting that this is just a general outline, and there are many details involved in
residualizing stock returns. It’s a good idea to familiarize yourself with the specific techniques and
algorithms involved and to seek out additional resources and guidance as needed.

32 Chapter 4. Data Preprocessing & Feature Engineering

What are the techniques used for residualizing stock returns?

There are several techniques that can be used for residualizing stock returns. Some common
techniques include:

* Regression analysis: One common technique for residualizing stock returns is to use regres-
sion analysis to predict the stock’s returns based on certain factors. This might involve using a
linear regression model, for example, to predict the stock’s returns based on the overall market
performance or the performance of a particular sector.

* Machine learning: Another technique that can be used for residualizing stock returns is to
use machine learning algorithms like gradient boosted trees or random forests to build models
that can predict the stock’s returns based on various features.

» Factor analysis: Factor analysis is a statistical technique that can be used to identify the
underlying factors that are driving the returns of a stock. Once these factors have been
identified, they can be used to adjust the stock’s returns and isolate the effect of each factor on
the returns.

* Time series analysis: Time series analysis is a statistical technique that can be used to model
and forecast the future behavior of a series of data points, such as stock returns. Time series
models can be used to predict the stock’s returns based on past data and can be used to
residualize the returns by adjusting for the influence of certain factors.

It’s worth noting that these are just a few examples of techniques that can be used for residualizing
stock returns, and there are many other techniques as well. The best technique to use will depend on
the specific goals and constraints of your analysis. It’s a good idea to familiarize yourself with the
different techniques available and to seek out additional resources and guidance as needed.

Common features in quantitative trading
Cross-sectional vs. Time series features

In quantitative trading, cross-sectional features refer to characteristics of a group of securities that
are being analyzed at a specific point in time. These features can include things like price, volume,
or other characteristics of the securities in the group.

Time-series features, on the other hand, refer to characteristics that are specific to a single
security or instrument over a period of time. These features can include things like the security’s
historical price movements, trading volume, or other characteristics that change over time.

In general, both cross-sectional and time-series features can be useful in quantitative trading, and
the choice of which type of features to use may depend on the specific trading strategy or approach
being employed.

Price-based features

Here are some examples of price-based features that are commonly used in quantitative trading:

* Price: The current price of the financial instrument being traded is a basic price-based feature
that is often used in quantitative trading.

* Volume: The volume of the financial instrument being traded can be a useful feature in
quantitative trading, as it can provide insight into the level of interest in the instrument and
potentially predict future price movements.

* Open, high, low, and close prices: The open, high, low, and close prices of the financial
instrument can be useful in quantitative trading, as they provide information about the range

4.3 Common features in quantitative trading 33

of prices that the instrument traded at over a specific time period.

* Price changes: The change in the price of the financial instrument over a specific time period
(e.g., the day, the week, the month) can be a useful feature in quantitative trading.

* Price patterns: The presence of certain price patterns, such as head and shoulders or trend
lines, can be used as features in quantitative trading to identify trends and predict future price
movements.

* Moving averages: A moving average is a statistical measure that is calculated by taking
the average of a set of data over a specific time period and is used to smooth out short-term
fluctuations in the data. Moving averages are often used as features in quantitative trading to
identify trends and predict future price movements.

* Bollinger bands: Bollinger bands are statistical measures that are calculated by plotting a set
of lines above and below a moving average, with the upper and lower bands representing the
standard deviation of the data from the moving average. Bollinger bands are often used as
features in quantitative trading to identify trends and predict future price movements.

* Candlestick patterns: Candlestick patterns are specific arrangements of open, high, low, and
close prices that are often used to predict future price movements. Candlestick patterns are
commonly used as features in quantitative trading.

* Price momentum: Price momentum is a measure of the strength or weakness of a financial
instrument’s price trend, and it can be calculated by taking the difference between the current
price and the price at a previous point in time. Price momentum is often used as a feature in
quantitative trading to identify trends and predict future price movements.

* Volatility: Volatility is a measure of the amount of fluctuation in a financial instrument’s price,
and it can be calculated using various techniques (e.g., standard deviation, average true range).
Volatility is often used as a feature in quantitative trading to assess risk and predict future price
movements.

* Price gaps: A price gap is a difference between the price of a financial instrument at the close
of one period and the price at the open of the next period. Price gaps can be used as features
in quantitative trading to identify trends and predict future price movements.

* Price oscillators: Price oscillators are technical indicators that are used to identify overbought
and oversold conditions in the market. Examples of price oscillators include the relative
strength index (RSI) and the stochastic oscillator.

* Volume-weighted average price (VWAP): The volume-weighted average price (VWAP) is
a measure of the average price of a financial instrument over a specific time period, taking
into account the volume of trades that have occurred. VWARP is often used as a feature in
quantitative trading to identify trends and predict future price movements.

* Price channel: A price channel is a range of prices within which a financial instrument is
expected to trade. Price channels can be used as features in quantitative trading to identify
trends and predict future price movements.

* Support and resistance levels: Support and resistance levels are price levels at which a
financial instrument is expected to encounter buying or selling pressure, respectively. Support
and resistance levels are often used as features in quantitative trading to identify trends and
predict future price movements.

34 Chapter 4. Data Preprocessing & Feature Engineering

Now, let's test our function by generating some random stock data and calculating
First, we will start by importing the necessary libraries: the cross-sectional momentum:

() Copy code

() Copy code

import pandas as pd
import numpy as np

stocks = pd.DataFrame(np.random.normal(100,),

columns=[))

Next, we will create a function to calculate the cross-sectional momentum for a
group of stocks. The cross-sectional momentum is a measure of the relative momentum = cross_sectional_momentum(stocks,
strength of each stock in the group, based on their price performance over a certain
time period. In this example, we will use a 12-month momentum signal:

- print(momentum)
() Copy code

(stocks, period):
This will output something like the following:

returns = stocks.pct_change(period).mean() O Copy code

ranks = returns.rank(ascending=False)

ranks = (ranks - ranks.min()) / (ranks.max() - ranks.min())

return ranks The output shows the momentum scores for each stock, with a higher score

indicating a stronger relative performance.

Implementation of a cross-sectional momentum

] Copy code

import pandas as pd

df = pd.read_csv(

].pct_change(periods=3@)

].rank{ascending=False)

poor_performers = df[df[] > df.shape[0]/2]

A naive implementation of a cross-sectional reversal strategy

Fundamental-based features

Here are some examples of fundamental features that are commonly used in quantitative trading:
» Earnings per share (EPS): Earnings per share (EPS) is a measure of a company’s profitability
and is calculated by dividing the company’s net income by its number of outstanding shares.
EPS is often used as a fundamental feature in quantitative trading, particularly for strategies
that are based on value investing principles.

4.3 Common features in quantitative trading 35

* Price-to-earnings ratio (P/E ratio): The price-to-earnings ratio (P/E ratio) is a measure of
a company’s valuation and is calculated by dividing the company’s stock price by its EPS.
The P/E ratio is often used as a fundamental feature in quantitative trading, particularly for
strategies that are based on value investing principles.

* Dividend yield: The dividend yield is a measure of a company’s dividend payments relative
to its stock price and is calculated by dividing the company’s annual dividend per share by its
stock price. The dividend yield is often used as a fundamental feature in quantitative trading,
particularly for strategies that are focused on income generation.

* Revenue: Revenue is the total amount of money that a company generates from its sales, and
it can be a useful fundamental feature in quantitative trading.

* Profit margin: The profit margin is a measure of a company’s profitability and is calculated
by dividing the company’s net income by its revenue. The profit margin is often used as a
fundamental feature in quantitative trading, particularly for strategies that are based on value
investing principles.

* Debt-to-equity ratio (D/E ratio): The debt-to-equity ratio (D/E ratio) is a measure of a
company'’s financial leverage and is calculated by dividing the company’s total debt by its
shareholder equity. The D/E ratio is often used as a fundamental feature in quantitative trading,
particularly for strategies that are based on value investing principles.

* Return on equity (ROE): Return on equity (ROE) is a measure of a company’s profitability
and is calculated by dividing the company’s net income by its shareholder equity. ROE is
often used as a fundamental feature in quantitative trading, particularly for strategies that are
based on value investing principles.

* Price-to-book ratio (P/B ratio): The price-to-book ratio (P/B ratio) is a measure of a
company’s valuation and is calculated by dividing the company’s stock price by its book value
(i.e., the value of its assets minus its liabilities) (Figure 4.1). The P/B ratio is often used as a
fundamental feature in quantitative trading, particularly for strategies that are based on value
investing principles.

* Sales growth: Sales growth is a measure of a company’s revenue growth over a specific time
period, and it can be a useful fundamental feature in quantitative trading.

* Earnings growth: Earnings growth is a measure of a company’s earnings growth over
a specific time period, and it can be a useful fundamental feature in quantitative trading,
particularly for strategies that are based on value investing principles.

* Net income: Net income is a measure of a company’s profitability and is calculated by sub-
tracting the company’s expenses from its revenues. Net income is often used as a fundamental
feature in quantitative trading, particularly for strategies that are based on value investing
principles.

* Operating margin: The operating margin is a measure of a company’s profitability and is
calculated by dividing the company’s operating income by its revenue. The operating margin
is often used as a fundamental feature in quantitative trading, particularly for strategies that
are based on value investing principles.

» Market capitalization: Market capitalization is a measure of a company’s size and is calcu-
lated by multiplying the company’s stock price by the number of outstanding shares. Market
capitalization is often used as a fundamental feature in quantitative trading.

* Sales per share: Sales per share is a measure of a company’s sales relative to the number
of outstanding shares and is calculated by dividing the company’s sales by its number of
outstanding shares. Sales per share is often used as a fundamental feature in quantitative

36 Chapter 4. Data Preprocessing & Feature Engineering

trading.

» Earnings yield: The earnings yield is the inverse of the P/E ratio and is calculated by dividing
the company’s EPS by its stock price. The earnings yield is often used as a fundamental
feature in quantitative trading, particularly for strategies that are based on value investing
principles.

It’s worth noting that these are just a few examples of fundamental features that are commonly
used in quantitative trading, and there are many other fundamental features that may be useful
depending on the specific trading strategy and financial instruments being traded. It’s a good idea
to carefully consider the features that are most relevant to your trading strategy and to seek out
additional resources and guidance as needed.

2 Copy code

import pandas as pd

df = pd.read_csv(

df[] = df[1 7/ df[

Figure 4.1: Price-to-book ratio (P/B ratio) for stocks in Python

The P/B ratio is a financial ratio that compares a company’s market value to its book value. It is
often used as a measure of the value of a company, with a low P/B ratio indicating that the company
is undervalued and a high P/B ratio indicating that it is overvalued.

Sentiment-based features

Sentiment-based features are data points that reflect the attitudes, opinions, or emotions of individuals
or groups of people, and they can be used in quantitative trading to gauge investor sentiment and
potentially predict market movements. Here are some examples of sentiment-based features that are
commonly used in quantitative trading:

* Social media posts: Posts on social media platforms, such as Twitter or Facebook, can be
used as sentiment-based features in quantitative trading. For example, positive or negative
mentions of a particular stock or company on social media could be used to gauge investor
sentiment and potentially predict future price movements.

* News articles: News articles about a particular stock or company can be used as sentiment-
based features in quantitative trading. For example, positive or negative coverage of a company
in the news could be used to gauge investor sentiment and potentially predict future price
movements.

* Sentiment indices: Some companies and organizations publish sentiment indices that measure
the overall level of positive or negative sentiment among investors or the public. These indices
can be used as sentiment-based features in quantitative trading.

* Survey data: Survey data, such as consumer confidence indices or investor sentiment indices,
can be used as sentiment-based features in quantitative trading.

4.3 Common features in quantitative trading 37

* Expert opinions: Expert opinions, such as analysts’ recommendations or market commentary,
can be used as sentiment-based features in quantitative trading.

* Blog posts: Blog posts about a particular stock or company can be used as sentiment-based
features in quantitative trading. For example, positive or negative mentions of a company on a
blog could be used to gauge investor sentiment and potentially predict future price movements.

* Online reviews: Online reviews of a particular stock or company can be used as sentiment-
based features in quantitative trading. For example, positive or negative reviews of a company
on a website or platform like Yelp or Glassdoor could be used to gauge investor sentiment and
potentially predict future price movements.

* Reddit threads: Reddit threads about a particular stock or company can be used as sentiment-
based features in quantitative trading. For example, positive or negative discussions of a
company on Reddit could be used to gauge investor sentiment and potentially predict future
price movements.

* StockTwits streams: StockTwits streams, which are real-time feeds of short messages about
a particular stock or company, can be used as sentiment-based features in quantitative trading.
For example, positive or negative mentions of a company on StockTwits could be used to
gauge investor sentiment and potentially predict future price movements.

* Tweets: Tweets about a particular stock or company can be used as sentiment-based features
in quantitative trading. For example, positive or negative mentions of a company on Twitter
could be used

» User-generated content: User-generated content, such as forum posts or online reviews, can
be used as sentiment-based features in quantitative trading. For example, positive or negative
comments about a company on a forum or review website could be used to gauge investor
sentiment and potentially predict future price movements.

* Expert interviews: Expert interviews, such as those with analysts or market strategists, can
be used as sentiment-based features in quantitative trading. For example, positive or negative
comments about a company or the market in general made by experts in interviews could be
used to gauge investor sentiment and potentially predict future price movements.

* Conference call transcripts: Conference call transcripts, which are transcripts of earnings
conference calls or other company events, can be used as sentiment-based features in quanti-
tative trading. For example, positive or negative comments about a company made during a
conference call could be used to gauge investor sentiment and potentially predict future price
movements.

* Earnings reports: Earnings reports, which are financial statements that companies publish on
a regular basis, can be used as sentiment-based features in quantitative trading. For example,
positive or negative comments about a company’s performance made in an earnings report
could be used to gauge investor sentiment and potentially predict future price movements.

* News headlines: News headlines about a particular stock or company can be used as sentiment-
based features in quantitative trading. For example, positive or negative headlines about a
company could be used to gauge investor sentiment and potentially predict future price
movements.

* Press releases: Press releases, which are official statements issued by companies, can be
used as sentiment-based features in quantitative trading. For example, positive or negative
comments about a company made in a press release could be used to gauge investor sentiment
and potentially predict future price movements.

* Investment newsletters: Investment newsletters, which are publications that provide analysis

38

Chapter 4. Data Preprocessing & Feature Engineering

and recommendations on financial instruments, can be used as sentiment-based features in
quantitative trading. For example, positive or negative recommendations about a company in
an investment newsletter could be used to gauge investor sentiment and potentially predict
future price movements.

Social media sentiment analysis: Social media sentiment analysis is a technique that uses
natural language processing and machine learning algorithms to analyze the sentiment of
social media posts. This analysis can be used as a sentiment-based feature in quantitative
trading.

Expert rating systems: Expert rating systems, which are systems that use the recommen-
dations of analysts or experts to assign ratings to financial instruments, can be used as
sentiment-based features in quantitative trading. For example, positive or negative ratings of a
company in an expert rating system could be used to gauge investor sentiment and potentially
predict future price movements.

Analysts’ recommendations: Analysts’ recommendations are opinions on whether a financial
instrument, such as a stock or bond, should be bought, sold, or held, and they can be used
as a sentiment-based feature in quantitative trading. For example, if an analyst issues a
buy recommendation for a particular stock, this could be seen as a positive sentiment and
potentially predict a future price increase.

Research reports: Research reports are detailed analyses of financial instruments, industries,
or markets, and they can be used as sentiment-based features in quantitative trading. For
example, if a research report is positive about a particular company or industry, this could be
seen as a positive sentiment and potentially predict a future price increase.

Market strategists’ opinions: Market strategists are experts who provide insights and opin-
ions on the market, and their opinions can be used as sentiment-based features in quantitative
trading. For example, if a market strategist is bullish about the overall market, this could be
seen as a positive sentiment and potentially predict future price increases.

Financial news articles: Financial news articles about the market or specific financial
instruments can be used as sentiment-based features in quantitative trading. For example, if a
financial news article is positive about a particular company or industry, this could be seen as
a positive sentiment and potentially predict a future price increase.

It’s worth noting that these are just a few examples of how market commentary can be used

as a sentiment-based feature in quantitative trading, and there are many other ways that market
commentary can be used in this way. It’s a good idea to carefully consider the market commentary
that is most relevant to your trading strategy and to seek out additional resources and guidance as
needed.

Text-based features

Text-based features are data points that are derived from text data and are used in quantitative trading
to extract insights and predict market movements. Here are some examples of text-based features
that are commonly used in quantitative trading:

* Keywords: Keywords are specific words or phrases that are used to identify relevant doc-

uments or text data. Keywords can be used as text-based features in quantitative trading to
identify trends or themes in market-related text data, such as news articles or social media
posts.

* Sentiment analysis: Sentiment analysis is a technique that uses natural language processing

4.3 Common features in quantitative trading 39

and machine learning algorithms to analyze the sentiment of text data. Sentiment analysis
can be used as a text-based feature in quantitative trading to gauge investor sentiment and
potentially predict market movements.

* Named entity recognition: Named entity recognition is a technique that uses natural language
processing algorithms to identify named entities, such as people, organizations, or locations,
in text data (Figure 4.2). Named entity recognition can be used as a text-based feature in
quantitative trading to identify trends or themes in market-related text data.

* Part-of-speech tagging: Part-of-speech tagging is a technique that uses natural language
processing algorithms to identify the part of speech (e.g., noun, verb, adjective) of each word
in a text data. Part-of-speech tagging can be used as a text-based feature in quantitative trading
to identify trends or themes in market-related text data.

* Topic modeling: Topic modeling is a technique that uses machine learning algorithms to
identify the main topics or themes in a text data. Topic modeling can be used as a text-based
feature in quantitative trading to identify trends or themes in market-related text data.

» Text classification: Text classification is a machine learning technique that assigns text data
to one or more predefined categories or classes. Text classification can be used as a text-based
feature in quantitative trading to classify market-related text data, such as news articles or
social media posts, into relevant categories.

* Word embeddings: Word embeddings are numerical representations of words or phrases that
capture their meaning and context. Word embeddings can be used as a text-based feature in
quantitative trading to analyze the meaning and context of market-related text data.

» Text summarization: Text summarization is a technique that generates a concise summary
of a larger text data. Text summarization can be used as a text-based feature in quantitative
trading to extract key points or insights from market-related text data.

It’s worth noting that these are just a few examples of text-based features that are commonly used
in quantitative trading, and there are many other text-based features that may be useful depending
on the specific trading strategy and financial instruments being traded. It’s a good idea to carefully
consider the text-based features that are most relevant to your trading strategy and to seek out
additional resources and guidance as needed.

Audio-based features

Audio-based features are data points that are derived from audio data and are used in quantitative
trading to extract insights and predict market movements. Here are some examples of audio-based
features that are commonly used in quantitative trading:

* Speaker recognition: Speaker recognition is a technique that uses machine learning al-
gorithms to identify the speaker of an audio data. Speaker recognition can be used as an
audio-based feature in quantitative trading to identify trends or themes in market-related audio
data, such as earnings conference calls or expert interviews.

* Speech-to-text: Speech-to-text is a technique that converts spoken words into written text
using natural language processing algorithms (Figure 4.3). Speech-to-text can be used as an
audio-based feature in quantitative trading to extract insights from market-related audio data.

* Sentiment analysis: Sentiment analysis is a technique that uses natural language processing
and machine learning algorithms to analyze the sentiment of audio data. Sentiment analysis
can be used as an audio-based feature in quantitative trading to gauge investor sentiment and
potentially predict market movements.

40 Chapter 4. Data Preprocessing & Feature Engineering

) Copy code

Lmport spacy

nlp = spacy.load(

= nlp(text)

‘or ent in doc.ents:
print(

) Copy code

Figure 4.2: Named entity recognition using spaCy

This code loads the English version of the en_core_web_sm model from spaCy, which is a small
model that includes basic NER capabilities. It then defines a piece of text to process and uses the
nlp function to process the text and generate a Doc object. The code then iterates over the named
entities in the Doc object and prints the text and label of each entity.

4.3 Common features in quantitative trading 41

£ Copy code

import speech_recognition as sr

r = sr.Recognizer()

with sr.Microphone() as source:

audio_data = r.listen(source)

text = r.recognize_google(audio_data)

print(text)

Figure 4.3: Speech-to-text in Python

Keep in mind that this is just a basic example, and there are many other options and configurations
that you can use with the speech_recognition library. For more information, you can refer to the
library’s documentation: https://pypi.org/project/speechrecognition/

* Keyword extraction: Keyword extraction is a technique that uses natural language processing
algorithms to identify the most important or relevant words or phrases in an audio data.
Keyword extraction can be used as an audio-based feature in quantitative trading to identify
trends or themes in market-related audio data.

* Language identification: Language identification is a technique that uses machine learning
algorithms to identify the language of an audio data. Language identification can be used as
an audio-based feature in quantitative trading to identify trends or themes in market-related
audio data.

It’s worth noting that these are just a few examples of audio-based features that are commonly
used in quantitative trading, and there are many other audio-based features that may be useful
depending on the specific trading strategy and financial instruments being traded. It’s a good idea to
carefully consider the audio-based features that are most relevant to your trading strategy and to seek
out additional resources and guidance as needed.

Image-based features

Image-based features are data points that are derived from image data and are used in quantitative
trading to extract insights and predict market movements. Here are some examples of image-based
features that are commonly used in quantitative trading:

* Object recognition: Object recognition is a technique that uses machine learning algorithms
to identify and classify objects in an image. Object recognition can be used as an image-based
feature in quantitative trading to identify trends or themes in market-related image data, such
as product images or company logos.

* Face recognition: Face recognition is a technique that uses machine learning algorithms
to identify and classify faces in an image (Figure 4.4). Face recognition can be used as an

https://pypi.org/project/speechrecognition/

42

Chapter 4. Data Preprocessing & Feature Engineering

image-based feature in quantitative trading to identify trends or themes in market-related
image data, such as images of company executives or analysts.

Image classification: Image classification is a machine learning technique that assigns an
image to one or more predefined categories or classes. Image classification can be used as an
image-based feature in quantitative trading to classify market-related image data into relevant
categories.

Image segmentation: Image segmentation is a technique that divides an image into multiple
segments or regions based on specific features or characteristics. Image segmentation can
be used as an image-based feature in quantitative trading to identify trends or themes in
market-related image data.

Image feature extraction: Image feature extraction is a technique that extracts specific
features or characteristics from an image using machine learning algorithms. Image feature
extraction can be used as an image-based feature in quantitative trading to identify trends or
themes in market-related image data.

It’s worth noting that these are just a few examples of image-based features that are commonly
used in quantitative trading, and there are many other image-based features that may be useful
depending on the specific trading strategy and financial instruments being traded. It’s a good idea to
carefully consider the image-based features that are most relevant to your trading strategy and to
seek out additional resources and guidance as needed.

Video-based features

Video-based features are data points that are derived from video data and are used in quantitative
trading to extract insights and predict market movements. Here are some examples of video-based
features that are commonly used in quantitative trading:

Object recognition: Object recognition is a technique that uses machine learning algorithms
to identify and classify objects in a video. Object recognition can be used as a video-based
feature in quantitative trading to identify trends or themes in market-related video data, such
as product demonstrations or company presentations.

Face recognition: Face recognition is a technique that uses machine learning algorithms to
identify and classify faces in a video. Face recognition can be used as a video-based feature in
quantitative trading to identify trends or themes in market-related video data, such as images
of company executives or analysts.

Video classification: Video classification is a machine learning technique that assigns a
video to one or more predefined categories or classes. Video classification can be used as a
video-based feature in quantitative trading to classify market-related video data into relevant
categories.

Video feature extraction: Video feature extraction is a technique that extracts specific features
or characteristics from a video using machine learning algorithms. Video feature extraction
can be used as a video-based feature in quantitative trading to identify trends or themes in
market-related video data.

Video summarization: Video summarization is a technique that generates a concise summary
of a longer video. Video summarization can be used as a video-based feature in quantitative
trading to extract key points or insights from market-related video data.

It’s worth noting that these are just a few examples of video-based features that are commonly
used in quantitative trading, and there are many other video-based features that may be useful

4.3 Common features in quantitative trading 43

(] Copy code

import face_recognition

image = face_recognition.load_image_file("person.jpg")

image_encoding = face_recognition. face_encodings(image)[?]

compare_image = face_recognition.load_image_file("compare.jpg")

compare_image_encoding =
face_recognition. face_encodings(compare_image)[?]

result = face_recognition.compare_faces([image_encoding],

compare_image_encoding)

print(result)

Figure 4.4: Face recognition in Python

This code will load two images, person. jpg and compare. jpg, encode them into feature vectors
using a deep learning model, and then compare the vectors to see if the faces in the images match. If
the faces match, the code will print True, otherwise it will print False.

Keep in mind that this is just a basic example, and there are many other options and configurations
that you can use with the face_recognition library. For more information, you can refer to the
library’s documentation: https://pypi.org/project/face-recognition/

https://pypi.org/project/face-recognition/

44 Chapter 4. Data Preprocessing & Feature Engineering

depending on the specific trading strategy and financial instruments being traded. It’s a good idea to
carefully consider the video-based features that are most relevant to your trading strategy and to seek
out additional resources and guidance as needed.

Network-based features

Network-based features are data points that are derived from network data and are used in quantitative
trading to extract insights and predict market movements. Network data refers to data that represents
relationships or connections between entities, such as people, organizations, or financial instruments.

Here are some examples of network-based features that are commonly used in quantitative
trading:

* Centrality measures: Centrality measures are metrics that quantify the importance or influ-
ence of a node (i.e., an entity) in a network. Centrality measures can be used as network-based
features in quantitative trading to identify trends or themes in market-related network data,
such as stock ownership or trading relationships (Figure 4.5).

* Network motifs: Network motifs are patterns or structures that are observed in a network and
that are thought to be indicative of certain functions or processes. Network motifs can be used
as network-based features in quantitative trading to identify trends or themes in market-related
network data.

* Network communities: Network communities are groups of nodes in a network that are
more closely connected to each other than to nodes in other groups. Network communities
can be used as network-based features in quantitative trading to identify trends or themes in
market-related network data.

* Network centralization: Network centralization is a measure of how centralized or decen-
tralized a network is, and it can be used as a network-based feature in quantitative trading to
identify trends or themes in market-related network data.

* Network assortativity: Network assortativity is a measure of the extent to which nodes in a
network are connected to other nodes that are similar to them in some way, and it can be used
as a network-based feature in quantitative trading to identify trends or themes in market-related
network data.

It’s worth noting that these are just a few examples of network-based features that are commonly
used in quantitative trading, and there are many other network-based features that may be useful
depending on the specific trading strategy and financial instruments being traded. It’s a good idea to
carefully consider the network-based features that are most relevant to your trading strategy and to
seek out additional resources and guidance as needed.

Common feature normalization techniques

Normalization is a technique that is used to transform the values of the features so that they are on the
same scale. Normalization is often used in quantitative trading to ensure that the machine learning
model is not biased by the scale of the features. There are several different ways to normalize
features in quantitative trading, including:

Min-Max

Min-Max normalization: Min-Max normalization scales the values of the features between a given
minimum and maximum value. The formula for Min-Max normalization is: X’ = (X - xmin) / (Xmax -

4.4 Common feature normalization techniques 45

) Copy code

import networkx as nx

G = nx.read_edgelist('stock_network.txt")

degree_centrality = nx.degree_centrality(G)

betweenness_centrality = nx.betweenness_centrality(G)

closeness_centrality = nx.closeness_centrality(G)

Figure 4.5: Centrality features computed using networkx

Degree centrality measures the number of connections that a stock has to other stocks in the network.
Betweenness centrality measures the number of times a stock lies on the shortest path between two
other stocks in the network. Closeness centrality measures the average distance from a stock to all
other stocks in the network.

These measures can be useful for identifying the most important or influential stocks in the network,
as stocks with high centrality values tend to have a disproportionate influence on the overall structure
and behavior of the network.

46 Chapter 4. Data Preprocessing & Feature Engineering

) Copy code

import numpy as np

data = np.loadtxt('data.txt")

mean = np.mean(data)
std = np.std(data)

z_scores = (data - mean) / std

Figure 4.6: Z-score computed in Python

The Z-score, also known as the standard score, is a measure of how many standard deviations a given
datapoint is from the mean. It is often used to identify outliers in a dataset or to standardize data for
comparison purposes.

xmin), where X is the original value of the feature, xmin is the minimum value of the feature, xmax
is the maximum value of the feature, and x’ is the normalized value of the feature.

Z-score

Z-score normalization: Z-score normalization scales the values of the features based on the mean
and standard deviation of the feature. The formula for Z-score normalization is (Figure 4.6): X’ = (x
- mean) / stdev, where x is the original value of the feature, mean is the mean value of the feature,
stdev is the standard deviation of the feature, and x’ is the normalized value of the feature.

Log normalization

Log normalization: Log normalization scales the values of the features by taking the logarithm
of the values. Log normalization is often used to normalize skewed or heavily-tailed data. The
formula for log normalization is: X’ = log(x), where x is the original value of the feature, and x’ is
the normalized value of the feature.

Quantile normalization

Quantile normalization: Quantile normalization scales the values of the features so that they have
the same distribution of values across different samples or groups. Quantile normalization is often
used to adjust for differences in the distribution of the features between different groups or samples.

The formula for quantile normalization is: x’ = Q(p), where x is the original value of the feature,
Q is the quantile function, p is the quantile of the feature, and x’ is the normalized value of the
feature.

Rank normalization

Rank normalization: Rank normalization scales the values of the features based on the rank or
position of the value in the data. Rank normalization is often used when the ordinal nature of the

4.4 Common feature normalization techniques 47

data is important, but the magnitude of the data is not important. The formula for rank normalization
is: X’ =rank(x) / n, where x is the original value of the feature, rank is the rank of the feature, n is
the number of features, and x’ is the normalized value of the feature.

Other normalizations

Decimal scaling normalization: Decimal scaling normalization scales the values of the
features by multiplying or dividing them by a power of 10. The formula for decimal scaling
normalization is: x’ = x / 10", where x is the original value of the feature, n is the scaling
factor, x’ is the normalized value of the feature.

Robust scaling: Robust scaling scales the values of the features based on the median and
interquartile range of the feature. Robust scaling is less sensitive to outliers or extreme values
in the data compared to other normalization techniques. The formula for robust scaling is: x’
= (x - median) / IQR, where x is the original value of the feature, median is the median value
of the feature, IQR is the interquartile range of the feature, and x’ is the normalized value of
the feature.

Scaling to unit length: Scaling to unit length scales the values of the features so that the
sum of the squares of the values is equal to one. Scaling to unit length is often used when the
magnitude of the features is not important, but the direction of the features is important. The
formula for scaling to unit length is: x> =x/ sqrt(sum(xz)), where x is the original value of the
feature, and x’ is the normalized value of the feature.

Unit variance normalization: Unit variance normalization scales the values of the features
so that the variance of the feature is equal to one. Unit variance normalization is often used
when the scale of the features is not important, but the variance of the features is important.
The formula for unit variance normalization is: X’ = x / stdev, where x is the original value of
the feature, stdev is the standard deviation of the feature, and x’ is the normalized value of the
feature.

Bounded normalization: Bounded normalization scales the values of the features between a
given minimum and maximum value, similar to Min-Max normalization. However, unlike
Min-Max normalization, bounded normalization does not allow the values of the features to
exceed the minimum or maximum values. This can be useful when the values of the features
are expected to be within a certain range.

Sigmoidal normalization: Sigmoidal normalization scales the values of the features using
a sigmoidal function, which is a mathematical function that has an "S" shape. Sigmoidal
normalization can be useful when the values of the features are expected to follow a non-linear
trend.

Normalization by scaling factor: Normalization by scaling factor scales the values of the
features by dividing them by a constant scaling factor. This can be useful when the values of
the features are expected to be within a certain range and the range can be approximated by a
scaling factor.

Normalization by standardizing to a reference value: Normalization by standardizing to
a reference value scales the values of the features by subtracting a reference value from the
values and dividing the result by a constant scaling factor. This can be useful when the values
of the features are expected to be close to a reference value and the range can be approximated
by a scaling factor.

Normalization by scaling to a unit interval: Normalization by scaling to a unit interval

48

Chapter 4. Data Preprocessing & Feature Engineering

scales the values of the features so that the minimum and maximum values of the features are
equal to zero and one, respectively. This can be useful when the values of the features are
expected to be within a certain range and the range is not known in advance.

Model selection and hyperparameter tuning are important steps in the machine learning process for
quantitative trading. Model selection is the process of choosing the best machine learning model for
a particular task, and hyperparameter tuning is the process of adjusting the settings or parameters of
the machine learning model to optimize its performance.

The process of model selection and hyperparameter tuning in quantitative trading typically
involves the following steps:

Define the problem: The first step in model selection and hyperparameter tuning is to
clearly define the problem and the goals of the machine learning model. This might involve
identifying the target variable, the input features, the performance metrics, and any constraints
or requirements for the model.

Select a set of candidate models: The next step is to select a set of candidate machine
learning models that are suitable for the task. This might involve choosing models from
different categories (e.g., linear models, tree-based models, neural networks) or models with
different properties (e.g., models that are fast to train, models that are highly interpretable,
models that are good at handling imbalanced data).

Define a set of hyperparameters to tune: Each machine learning model has a set of hy-
perparameters that control its behavior and performance. These hyperparameters need to
be set before training the model, and the optimal values for the hyperparameters can have a
significant impact on the model’s performance.

Define a validation strategy: The next step is to define a strategy for evaluating the per-
formance of the candidate models and hyperparameter configurations. This might involve
splitting the data into training, validation, and test sets, or using cross-validation to evaluate
the model’s performance on different subsets of the data.

Train and evaluate the models: The next step is to train and evaluate the candidate models
using the defined hyperparameters and validation strategy. This might involve using a grid
search or random search to explore different combinations of hyperparameters, or using a
more sophisticated optimization algorithm to find the optimal hyperparameters.

Select the best model: Once the candidate models have been trained and evaluated, the next

50 Chapter 5. Model Selection for Trading

step is to select the best model based on the performance metrics and the goals of the machine
learning model. This might involve choosing the model with the highest accuracy, the lowest
error rate, or the best trade-off between performance and complexity.

* Fine-tune the model: Once the best model has been selected, the next step is to fine-tune the
model by adjusting the hyperparameters and other settings to optimize its performance. This
might involve using techniques like early stopping or regularization to prevent overfitting, or
using techniques like feature selection or dimensionality reduction to improve the model’s
generalization ability.

* Evaluate the final model: The final step in the model selection and hyperparameter tuning
process is to evaluate the performance of the final model on the test set or on out-of-sample
data to ensure that it is generalizable and performs well on unseen data.

It’s worth noting that the specific steps and techniques used in the model selection and hyper-
parameter tuning process will depend on the nature of the data, the specific trading strategy and
financial instruments being traded, and the goals of the machine learning model. It’s a good idea to
seek out additional resources and guidance to learn more about model selection and hyperparameter
tuning and how to apply these techniques effectively in quantitative trading.

Cross-validation for time series

Cross-validation is a method used to evaluate the performance of a machine learning model by
training it on a subset of the available data and testing it on the remaining data. It is often used to
assess the generalization performance of a model, and can help to identify overfitting and underfitting.

In the case of time series data, it is important to take the temporal ordering of the data into
account when performing cross-validation. One common method for doing this is called "rolling
cross-validation", which involves dividing the data into a series of non-overlapping windows and
training a model on each window while using the data from the previous windows as the validation
set.

Here is an example of how you could implement rolling cross-validation for a time series in
Python (5.1):

Cross-validation for imbalanced data

When working with imbalanced data (i.e. data with a disproportionate ratio of classes), it is important
to consider the distribution of the classes when performing cross-validation. One approach is to use
stratified cross-validation, which ensures that the proportions of the classes are preserved in each
fold of the cross-validation.

Here is an example of how you could implement stratified cross-validation for imbalanced
data in Python using the StratifiedKFold class from the sklearn.model_selection module
(Figure 5.2):

5.2 Cross-validation for imbalanced data 51

) Copy code

Lmport numpy as np

window_size =

num_windows = len(time_series) // window_size

windows = np.array_split(time_series, num_windows)

scores = []

for i, window in enumerate(windows):

train_data = np.concatenate(windows[:1])

test_data = window

model . fit(train_data)

score = model.score(test_data)

scores.append(score)

mean_score = np.mean{scores)

Figure 5.1: Rolling cross-validation

This code will split the time series data into a series of non-overlapping windows, train a model on
each window using the data from the previous windows as the training set, and evaluate the model
on the current window using a score function (such as accuracy or mean squared error). The mean
score across all windows will be calculated and stored in the mean_score variable.

52 Chapter 5. Model Selection for Trading

) Copy code

import numpy as np
from sklearn.model_selection import StratifiedKFold

num_folds =

skf = StratifiedKFold(n_splits=num_folds, shuffle=True)

folds = skf.split(X, y)

scores = []

for train_index, test_index in folds:

X_train, X_test = X[train_index], X[test_index]

y_train, y_test = y[train_index], y[test_index]

model.fit(X_train, y_train)

score = model .score(X_test, y_test)

scores.append(score)

mean_score = np.mean{scores)

Figure 5.2: Stratified cross-validation

This code will use the StratifiedKFold class to split the data into folds, ensuring that the pro-
portions of the classes are preserved in each fold. It will then train a model on each fold using the
training data and evaluate it on the test data using a score function (such as accuracy or F1 score).
The mean score across all folds will be calculated and stored in the mean_score variable.

Deep learning (DL) is a type of machine learning that is based on artificial neural networks (NNs),
which are inspired by the structure and function of the human brain. Deep learning algorithms
are designed to learn hierarchical representations of the data and can be used for tasks such as
classification, regression, and clustering.

Deep learning algorithms have been successful in a wide range of applications, including image
and speech recognition, natural language processing, and computer vision. In recent years, deep
learning has also been applied to trading, with the goal of extracting features and patterns from raw
data, such as financial time series, news articles, and social media data.

Here is an overview of deep learning algorithms and how they might be used in trading:

* Artificial neural networks: Artificial neural networks (ANNs) are the foundation of deep
learning and are composed of interconnected processing units (neurons) that are organized into
layers. ANNs can be trained to recognize patterns and relationships in the data by adjusting
the weights and biases of the connections between the neurons. ANNs can be used in trading
for tasks such as stock price prediction, risk management, and trade recommendation.

* Convolutional neural networks: Convolutional neural networks (CNNs) are a type of ANN
that are designed to process data that has a grid-like structure, such as images and time series.
CNNs are composed of convolutional layers that extract local features from the data and
pooling layers that reduce the dimensionality of the features. CNNs can be used in trading to
extract features and patterns from financial time series or to analyze images or video data.

* Recurrent neural networks: Recurrent neural networks (RNNs) are a type of ANN that
are designed to process data with temporal dependencies, such as sequences or time series.
RNNs are composed of recurrent layers that allow the network to remember past states and to
process data in a sequential manner. RNNs can be used in trading to analyze financial time
series, news articles, or social media data.

* Autoencoders: Autoencoders are a type of ANN that are used for dimensionality reduction
and feature learning. Autoencoders are composed of encoder and decoder layers (Figure 6.1)
that are trained to reconstruct the input data from a lower-dimensional representation (latent
space). Autoencoders can be used in trading to extract features and patterns from raw data or

54 Chapter 6. DL for Trading: NNs and Beyond

to reduce the dimensionality of the data.

It’s worth noting that these are just a few examples of deep learning algorithms and how
they might be used in trading, and there are many other algorithms and approaches that may be
useful depending on the specific data and analysis or modeling tasks. It’s a good idea to seek out
additional resources and guidance to learn more about deep learning and how to apply it effectively
in quantitative trading.

55

[Copy code

torch
torch.nn nn

(nn_Module):
(self, input_dim, hidden_dim):

self.fcl = nn.Llinear(input_dim, hidden_dim)
self.fcZ = nn.LinearChidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, hidden_dim}

(nn_Module):
» input_dim, hidden_dim):

self.fcl = nn.Linear(input_dim, hidden_dim)

self.fc2 = nn.LlinearChidden_dim, hidden_dim)
self.fed = nn.Llinear(hidden_dim, input_dim)

self.encoder r{input_dim, hidden_dim)
self der oder(hidden_dim, input_dim}

(self, x):
x = self.encoder(x)
x = self.decoder(x)
%

X = torch. tensor(stock_data, dtype=torch. |

autoenceder = Autoencoder(input_dim=X.shape[1], hidden_dim=51)

loss_fn = nn MSELoss()

optimizer = torch.optim.Adam{autcencoder.parameters{)}

epoch ra

output = autoencoder(X)
loss = loss_fnoutput, X)

optimizer.zero_grad()
loss.backward()
optimizer.step()

encoded = autoencoder.encoder(X)

reconstructed = autoencoder.decoder(e

Figure 6.1: Autoencoder

This code assumes that you have a NumPy array or PyTorch tensor called stock_data that contains
the stock data you want to use for training the autoencoder. The code defines an autoencoder with an
input dimension equal to the number of features in the stock data and a hidden dimension of 64. It
then trains the autoencoder using the mean squared error loss function and the Adam optimizer, with
the number of epochs set to 10 in this example.

Electronic copy available at: https://ssrn.com/abstract=4315362

Mean variance portfolios are portfolios that are constructed to maximize the expected return of the
portfolio while minimizing the risk or variance of the portfolio. Machine learning techniques can be
used to optimize the construction of mean variance portfolios in a number of ways, depending on the
specific goals and characteristics of the portfolio. Here are a few examples of how machine learning
might be used to optimize mean variance portfolios:

* Identifying the most relevant features or predictors of stock returns: Machine learning
techniques can be used to identify the most important features or predictors of stock returns,
which can be useful for constructing portfolios that have the highest expected return while
minimizing risk. For example, regression models, decision trees, or neural networks might be
used to identify the most relevant economic, financial, or market indicators that are predictive
of stock returns, or to identify patterns or trends in the data that are not easily visible to
humans.

* Grouping assets into clusters: Clustering algorithms can be used to group assets into clusters
(Figure 7.1) based on their similarity or correlation, which can be useful for constructing
diversified portfolios. For example, k-means clustering, hierarchical clustering, or density-
based clustering might be used to group stocks or other assets into clusters based on their
historical returns, risk characteristics, or other features.

* Identifying the most important features or components of the data: Dimensionality
reduction algorithms can be used to reduce the number of features or variables that are used
to construct the portfolio, which can help to improve the efficiency and interpretability of
the portfolio. For example, principal component analysis, singular value decomposition, or
independent component analysis might be used to identify the most important features or
components of the data, and to reduce the number of features that are used in the portfolio
construction process.

* Optimizing the portfolio using an objective function: Machine learning techniques can be
used to optimize the portfolio using an objective function that specifies the desired properties
of the portfolio, such as the expected return, the variance, or the Sharpe ratio. For example,
optimization algorithms, such as gradient descent, simulated annealing, or evolutionary

58

Chapter 7. Portfolio Construction using ML

() Copy code

Lmport numpy as np
from sklearn.cluster import KMeans

X = np.loadtxt(

kmeans = KMeans(n_clusters=5)

kmeans . fit(X)

labels = kmeans.predict(X)

Figure 7.1: K-means using scikit-learn

K-Means is a popular algorithm for clustering data into groups (also known as clusters) based on
their similarity. It works by randomly initializing K centroids, and then iteratively reassigning each
datapoint to the cluster with the nearest centroid and updating the centroids to the mean of the points
in their respective clusters.

algorithms, might be used to find the optimal portfolio weights that maximize the expected
return while minimizing the risk.

Optimizing the portfolio using reinforcement learning: Reinforcement learning algorithms
can be used to optimize the portfolio using an objective function that specifies the desired
properties of the portfolio, such as the expected return, the variance, or the Sharpe ratio. For
example, a reinforcement learning algorithm might be used to learn a policy that maximizes
the expected return of the portfolio while minimizing the risk, by iteratively updating the
portfolio weights based on the performance of the portfolio.

Using machine learning to identify and manage risk: Machine learning techniques can
be used to identify and manage risk in a portfolio, by developing models that predict the
likelihood of different types of risk, such as market risk, credit risk, or liquidity risk. For
example, machine learning techniques might be used to identify the most relevant risk factors
or predictors of risk, or to identify patterns or trends in the data that are indicative of risk.

These are just a few examples of how machine learning might be used to optimize mean variance

portfolios, and there are many other techniques and approaches that may be relevant depending on
the specific goals and characteristics of the portfolio. It’s a good idea to seek out additional resources
and guidance to learn more about the specific techniques and approaches that are most relevant to
your goals and data characteristics.

8.1

Backtesting process

Backtesting and evaluating trading strategies with machine learning involves simulating the perfor-
mance of a trading strategy on historical data to assess its potential risk and return characteristics.
This can be useful for testing the robustness and reliability of a trading strategy and for identifying
potential weaknesses or limitations.

Here is a general outline of how you might backtest and evaluate a trading strategy with machine

learning:

* Collect and preprocess the data: The first step in backtesting and evaluating a trading strategy
with machine learning is to collect and preprocess the data. This might involve gathering
financial data (e.g., stock prices, returns, volumes) from a variety of sources, cleaning the
data to remove errors or outliers, and transforming the data as needed (e.g., taking log returns,
standardizing the data).

* Develop the trading strategy: The next step is to develop the trading strategy using machine
learning. This might involve selecting and processing the input features, selecting and training
the machine learning model, and defining the trading rules or signals based on the model’s
predictions.

* Backtest the strategy: Once the trading strategy has been developed, the next step is to
backtest the strategy on the historical data. This might involve simulating trades based on the
trading rules or signals, keeping track of the performance metrics (e.g., returns, Sharpe ratio,
drawdown), and comparing the performance to benchmarks or other relevant metrics.

* Evaluate the strategy: The final step is to evaluate the performance of the trading strategy
based on the backtest results. This might involve analyzing the performance metrics, assessing
the risk and return characteristics of the strategy, and identifying potential weaknesses or
limitations.

It’s worth noting that this is just a general outline of how to backtest and evaluate a trading

strategy with machine learning, and there are many other steps and considerations that may be
important depending on the specific data, trading strategy, and evaluation goals. It’s a good idea to

60 Chapter 8. Backtesting and Evaluating Strategies

seek out additional resources and guidance to learn more about backtesting and evaluating trading
strategies with machine learning.

Evaluation metrics

Information Coefficient

The Information Coefficient (IC) is a measure of the predictive power or value of a feature or variable
in a financial model. It is calculated as the correlation between the feature and the target variable
(e.g., stock returns) and is used to identify the most predictive features or to rank the features in order
of importance (Figure 8.1).

The IC is commonly used in quantitative trading to evaluate the performance of a predictive
model or to identify the most useful features for forecasting stock returns or other financial variables.
A high IC indicates that the feature is strongly correlated with the target variable and is likely to
be a useful predictor, while a low IC indicates that the feature is weakly correlated with the target
variable and is likely to be a less useful predictor.

The IC is typically calculated using a sample of historical data, and it is important to ensure
that the sample is representative of the target population and that the IC is properly adjusted for any
biases or confounding factors. It’s also important to recognize that the IC is a measure of the strength
of the relationship between the feature and the target variable and does not necessarily indicate the
direction or magnitude of the relationship.

It’s worth noting that the Information Coefficient is just one metric that can be used to evaluate
the predictive power of features or variables in a financial model, and there are many other metrics
and techniques that may be useful depending on the specific goals and data characteristics of the
model. It’s a good idea to seek out additional resources and guidance to learn more about the
Information Coefficient and how to use it effectively in quantitative trading.

R-squared (R?)

In quantitative trading, the R-squared (R?) is a measure of the goodness of fit of a predictive model.
It is calculated as the percentage of the variance in the target variable (e.g., stock returns) that is
explained by the model (Figure 8.2).

The R-squared is used to evaluate the performance of a predictive model and to compare the fit
of different models. A high R-squared indicates that the model is a good fit for the data and that it
explains a large proportion of the variance in the target variable, while a low R-squared indicates
that the model is a poor fit and explains a small proportion of the variance in the target variable.

The R-squared is typically calculated using a sample of historical data, and it is important to
ensure that the sample is representative of the target population and that the R-squared is properly
adjusted for any biases or confounding factors. It’s also important to recognize that the R-squared is
a relative measure of fit and does not necessarily indicate the absolute accuracy or precision of the
model.

It’s worth noting that the R-squared is just one metric that can be used to evaluate the fit of a
predictive model in quantitative trading, and there are many other metrics and techniques that may
be useful depending on the specific goals and data characteristics of the model. It’s a good idea
to seek out additional resources and guidance to learn more about the R-squared and how to use it
effectively in quantitative trading.

8.2 Evaluation metrics 61

] Copy code

Lmport numpy as np

returns = calculate_returns(stock_prices)

signal = calculate_trading_signal(stock_prices, other_data)

ic = np.corrcoef(returns, signal)[?, 1]

print(ic)

Figure 8.1: IC of a trading signal in Python

This code will use the calculate_returns and calculate_trading_signal functions to com-
pute the returns of the stock and the trading signal, respectively. It will then use the np. corrcoef
function from NumPy to compute the Pearson correlation coefficient between the returns and the
signal, which is a measure of the strength and direction of the linear relationship between the two
variables. The IC is then calculated as the square of the Pearson correlation coefficient.

] Copy code

Lmport numpy as np
from sklearn.metrics import ri_score

returns = calculate_returns(stock_prices)

signal = calculate_trading_signal(stock_prices, other_data)

r2 = r2_score(returns, signal)

print{r2)

Figure 8.2: R-squared of a trading signal in Python

This code will use the calculate_returns and calculate_trading_signal functions to com-
pute the returns of the stock and the trading signal, respectively. It will then use the r2_score
function from scikit-learn to compute the R2, which is a measure of the goodness of fit of the linear
regression model that predicts the returns from the trading signal.

62

Chapter 8. Backtesting and Evaluating Strategies

Backtest results

Quantitative traders often use a variety of metrics to evaluate the performance of a trading strategy.
The specific metrics used will depend on the goals of the strategy and the risk and return characteris-
tics of the financial instruments being traded. Here are some examples of metrics that quantitative
traders might consider when evaluating a trading strategy:

Return: Return is the profit or loss resulting from a trade or investment, expressed as a
percentage of the initial capital invested. Return is an important metric for evaluating the
performance of a trading strategy because it reflects the overall profitability of the strategy.
Sharpe ratio: The Sharpe ratio is a measure of the risk-adjusted return of a trading strategy. It
is calculated as the excess return (the return of the strategy minus the risk-free rate) divided by
the standard deviation of the returns (Figure 8.3). The Sharpe ratio is useful for comparing the
performance of different strategies and for determining the risk-reward trade-off of a strategy.
Drawdown: Drawdown is the maximum decline in the value of a portfolio or account from
its peak to its trough (Figure 8.4). Drawdown is an important metric for evaluating the risk of
a trading strategy because it reflects the potential losses that the strategy might incur.

Hit rate: The hit rate is the percentage of trades that are profitable. The hit rate is useful for
evaluating the accuracy or consistency of a trading strategy and for comparing the performance
of different strategies.

Alpha: Alpha is a measure of the excess return of a trading strategy relative to a benchmark
or expected return. Alpha is useful for evaluating the skill or value added of a trading strategy
and for determining whether the strategy is outperforming or underperforming the benchmark.
Beta: Beta is a measure of the volatility or systematic risk of a trading strategy relative to a
benchmark. Beta is useful for evaluating the risk profile of a trading strategy and for comparing
the risk characteristics of different strategies.

Annualized return: The annualized return is the average return of a trading strategy over a
given period, expressed as an annual percentage. The annualized return is useful for comparing
the performance of different strategies and for determining the long-term potential of a strategy.
Profit factor: The profit factor is the ratio of the total profits to the total losses of a trading
strategy. The profit factor is useful for evaluating the profitability of a strategy and for
comparing the performance of different strategies.

Trade duration: Trade duration is the length of time that a trade is open, measured in days or
other units of time. Trade duration is an important metric for evaluating the holding period of
a trading strategy and for comparing the trading frequency of different strategies.
Risk-reward ratio: The risk-reward ratio is the ratio of the potential loss to the potential gain
of a trade. The risk-reward ratio is useful for evaluating the risk-reward trade-off of a trading
strategy and for determining the minimum acceptable return of a trade.

Tracking error: Tracking error is the standard deviation of the difference between the returns
of a trading strategy and a benchmark. Tracking error is useful for evaluating the deviation of
a strategy from the benchmark and for determining the level of active risk of a strategy.

It’s worth noting that these are just a few examples of metrics that quantitative traders might
consider when evaluating a trading strategy, and there are many other metrics that may be useful
depending on the specific goals and risk and return characteristics of the strategy. It’s a good idea to
seek out additional resources and guidance to learn more about the metrics and techniques used to
evaluate trading strategies.

8.2 Evaluation metrics 63

] Copy code

Lmport numpy as np

strategy_returns = calculate_strategy_returns(strategy_data)

mean_return = np.mean(strategy_returns) *
std_dev = np.std(strategy_returns) * np.sqrt(252)

risk_free_rate =

sharpe_ratio = (mean_return - risk_free_rate) / std_dev

print(sharpe_ratio)

Figure 8.3: Computing the Sharpe ratio of a trading strategy

This code will use the calculate_strategy_returns function to compute the returns of the
trading strategy, and will use the np.mean and np.std functions from NumPy to calculate the
annualized mean return and standard deviation of the returns, respectively. It will then use the
formula for the Sharpe ratio to calculate the ratio, which is a measure of the risk-adjusted return of

the strategy.

] Copy code

Lmport numpy as np
strategy_returns = calculate_strategy_returns(strategy_data)

cumulative_returns = np.cumsum(strategy_returns)

max_drawdown = (np.maximum.accumulate(cumulative_returns) -
cumulative_returns) / np.maximum.accumulate(cumulative_returns)

print(np.max{max_drawdown))

Figure 8.4: Computing the maximum drawdown of a trading strategy

This code will use the calculate_strategy_returns function to compute the returns of the
trading strategy, and will use the np. cumsum function from NumPy to calculate the cumulative
returns. It will then use the np . maximum. accumulate function to calculate the maximum drawdown,
which is defined as the maximum peak-to-trough decline of the cumulative returns.

Electronic copy available at: https://ssrn.com/abstract=4315362

Implementing machine learning for quantitative trading in practice involves a number of steps and
considerations, including the following:

* Define the problem and objectives: The first step in implementing machine learning for
quantitative trading is to clearly define the problem you are trying to solve and the objectives
you are trying to achieve. This might involve identifying the financial instruments you are
interested in trading, the time horizon of the trades, and the performance metrics you will use
to evaluate the strategy.

Collect and preprocess the data: The next step is to collect and preprocess the data that you
will use to develop and test the trading strategy. This might involve gathering financial data
(e.g., stock prices, returns, volumes) from a variety of sources, cleaning the data to remove
errors or outliers, and transforming the data as needed (e.g., taking log returns, standardizing
the data).

Develop the machine learning model: The next step is to develop the machine learning
model that will be used to predict stock returns or other relevant financial variables. This
might involve selecting and processing the input features, selecting and training the machine
learning model, and defining the trading rules or signals based on the model’s predictions.
Backtest the strategy: Once the trading strategy has been developed, the next step is to
backtest the strategy on the historical data. This might involve simulating trades based on the
trading rules or signals, keeping track of the performance metrics (e.g., returns, Sharpe ratio,
drawdown), and comparing the performance to benchmarks or other relevant metrics.
Evaluate and optimize the strategy: The final step is to evaluate and optimize the perfor-
mance of the trading strategy based on the backtest results. This might involve analyzing
the performance metrics, assessing the risk and return characteristics of the strategy, and
identifying potential weaknesses or limitations. It may also involve adjusting the model or
trading rules to improve the performance of the strategy.

It’s worth noting that this is just a general outline of how to implement machine learning for

quantitative trading, and there are many other steps and considerations that may be important
depending on the specific data, trading strategy, and evaluation goals. It’s a good idea to seek

66 Chapter 9. Implementing ML for QT in Practice

out additional resources and guidance to learn more about implementing machine learning for
quantitative trading in practice.

Feature Store
What is a Feature Store?

A feature store is a centralized repository for storing, managing, and serving features that are used in
machine learning models. Features are data points or variables that are used as inputs to machine
learning models to make predictions or decisions.

A feature store helps manage the entire lifecycle of features, from the initial ingestion and prepro-
cessing of raw data, to the storage and serving of features to machine learning models at prediction
time. It also provides tools for feature engineering, such as feature selection, transformation, and
normalization.

Overall, a feature store is an important tool for any organization that is using machine learning
to make data-driven decisions.

Why is a Feature Store useful for quantitative trading?

A feature store can be useful for quantitative trading in a number of ways:

* Improved efficiency: A feature store can automate the process of creating, storing, and
serving features to machine learning models used in quantitative trading. This can save time
and reduce the risk of errors, allowing data scientists and other stakeholders to focus on more
important tasks.

* Improved accuracy: A feature store allows you to store and serve features consistently, which
can improve the accuracy and reliability of machine learning models used in quantitative
trading.

* Improved performance: A feature store can optimize the serving of features to machine
learning models, which can improve the performance of those models. This can be especially
important in quantitative trading, where fast and accurate model performance is critical.

* Improved collaboration: A feature store allows data scientists and other stakeholders to
easily access and share features within an organization. This can improve collaboration and
coordination, and help ensure that machine learning models are developed in a way that is
consistent with the organization’s goals and needs.

Overall, a feature store can be a valuable tool for organizations that are using machine learning

in quantitative trading, as it can help ensure that features are created, stored, and served in a way that
is efficient, accurate, and consistent with the needs of the organization.

MLOps
What is MLOps and why is it useful for quantitative trading?

MLOps (short for "machine learning operations") is a set of practices and tools that aim to improve
the collaboration and cooperation between data scientists and IT professionals in the development
and deployment of machine learning (ML) models.
MLOps encompasses a wide range of activities, including:
* Collaboration: MLOps encourages data scientists and IT professionals to work together from
the beginning of the ML model development process, rather than working in silos. This can

9.3 Additional tips 67

improve communication and coordination, and help ensure that ML models are developed in a
way that is consistent with the organization’s goals and IT infrastructure.

* Automation: MLOps promotes the use of automation tools and techniques to streamline the
development, testing, and deployment of ML models. This can help reduce the risk of errors
and improve the speed of model deployment.

* Monitoring: MLOps encourages the use of monitoring tools and techniques to track the
performance of ML models in production and identify any issues that may arise.

* Version control: MLOps promotes the use of version control systems to track changes to
ML models and their underlying data and code. This can help ensure that ML models are
developed in a consistent and reproducible manner.

Overall, the goal of MLOps is to improve the efficiency and reliability of the ML model
development process, and to ensure that ML models can be deployed and maintained in a way that
is consistent with the needs of the organization. MLOps can be particularly useful for quantitative
trading, where there is often a need to quickly and efficiently develop and deploy ML models.

What are the skills of a MLOps engineer?

MLOps engineers are responsible for the development, deployment, and maintenance of machine
learning (ML) models in production environments.

Here are some of the skills that are typically required for an MLOps engineer:

* Machine learning knowledge: MLOps engineers should have a strong understanding of ma-
chine learning concepts, algorithms, and techniques, as well as experience with implementing
and deploying ML models.

* Software development skills: MLOps engineers should be proficient in at least one program-
ming language, such as Python, Java, or C++. They should also be familiar with software
development best practices, such as version control, testing, and debugging.

* DevOps skills: MLOps engineers should have experience with DevOps practices, such as
continuous integration and delivery, containerization, and infrastructure as code. They should
also be familiar with tools such as Git, Jenkins, and Docker.

* Data engineering skills: MLOps engineers should have experience with data engineering
tasks such as data ingestion, transformation, and storage. They should also be familiar with
tools such as Apache Spark, Apache Flink, and Hadoop.

* Cloud computing skills: MLOps engineers should have experience with cloud computing
platforms such as Amazon Web Services (AWS), Microsoft Azure, or Google Cloud Platform
(GCP). They should be familiar with cloud-based tools and services for ML, such as Amazon
SageMaker, Azure Machine Learning, and GCP Al Platform.

* Communication skills: MLOps engineers should have strong communication skills and
the ability to work effectively with data scientists, IT professionals, and other stakeholders.
They should be able to explain technical concepts to non-technical audiences and work
collaboratively to achieve common goals.

Overall, MLOps engineers should have a combination of machine learning, software develop-

ment, DevOps, data engineering, cloud computing, and communication skills to be effective in their
roles.

Additional tips

Here are some tips for setting up a machine learning team for success in quantitative trading:

68

Chapter 9. Implementing ML for QT in Practice

Hire skilled and experienced professionals: It is important to hire skilled and experienced
professionals with expertise in machine learning, data science, and finance. Look for individu-
als with a strong track record of developing and implementing successful machine learning
models in the financial industry.

Establish clear goals and expectations: Clearly define the goals and expectations for the
machine learning team, including the specific types of models and strategies that the team will
be responsible for developing.

Foster a collaborative and open culture: Encourage collaboration and open communication
within the machine learning team, and provide the necessary resources and support for team
members to succeed.

Invest in the necessary infrastructure: Ensure that the team has the necessary hardware,
software, and data resources to develop and implement machine learning models effectively.
Establish a robust development and testing process: Implement a robust development and
testing process to ensure that machine learning models are reliable and perform well under
different market conditions.

Monitor and review performance: Regularly monitor and review the performance of the
machine learning models and strategies developed by the team, and make adjustments as
needed to ensure their continued success.

By following these tips, you can set up a machine learning team that is well positioned for

success in the field of quantitative trading.

10.

There are many advanced topics in machine learning that are relevant to quantitative trading. Here
are a few examples:

Ensemble methods: Ensemble methods involve combining the predictions of multiple ma-
chine learning models to improve the accuracy or robustness of the predictions. Examples of
ensemble methods include bagging, boosting, and stacking. Ensemble methods can be useful
for improving the performance of a trading strategy, especially when the underlying models
are diverse or complementary.

Reinforcement learning: Reinforcement learning involves training a machine learning model
to make decisions in an environment by receiving rewards or penalties based on the actions
taken. Reinforcement learning can be useful for developing trading strategies that adapt to
changing market conditions or that optimize for a long-term objective (e.g., maximizing the
Sharpe ratio).

Causal inference: Causal inference involves estimating the effect of one variable (the cause)
on another variable (the effect) while controlling for other variables that might confound the
relationship. Causal inference methods can be useful for identifying the underlying drivers of
stock returns or for developing trading strategies that are based on causal relationships.
Natural language processing: Natural language processing (NLP) involves using machine
learning algorithms to process and analyze text data. NLP can be useful for extracting
information from news articles, earnings calls, or other text sources that might be relevant to
trading decisions.

High-frequency trading: High-frequency trading (HFT) involves using machine learning
algorithms to trade financial instruments at a very high frequency, typically on the order of
milliseconds or microseconds. HFT requires specialized hardware and infrastructure and is
typically only feasible for large, well-capitalized firms.

It’s worth noting that these are just a few examples of advanced topics in machine learning that
are relevant to quantitative trading, and there are many other topics and techniques that may be
useful depending on the specific goals and data characteristics of the trading strategy. It’s a good
idea to seek out additional resources and guidance to learn more about advanced machine learning

70 Chapter 10. Advanced Topics in ML for QT

techniques for quantitative trading.

11. Conclusion and Future Directions

The future directions for machine learning in quantitative trading may depend on the specific goals
and focus of the research, as well as on the current state of the field and the emerging trends and
challenges. Some possible future directions for machine learning in quantitative trading might
include:

Developing more advanced machine learning algorithms and models that are better suited
to the challenges of quantitative trading, such as high-frequency trading, multi-asset trading,
or real-time decision-making. This might involve exploring new techniques for improving
the accuracy, robustness, and interpretability of machine learning models, such as ensemble
methods, deep learning, or reinforcement learning.

Applying machine learning to new domains or contexts, such as commodities trading, crypto-
currencies, or emerging markets. This might involve adapting existing machine learning
techniques to new data sources and types of financial instruments, or developing new methods
that are specifically designed for these contexts.

Exploring new data sources and features that might be useful for predicting stock returns or
other financial variables, such as social media data, alternative data, or network-based features.
This might involve developing new techniques for extracting and processing these types of
data, as well as evaluating their potential value for quantitative trading.

Developing methods for evaluating and comparing the performance of different machine
learning models or trading strategies, such as risk-adjusted return measures, out-of-sample
testing, or cross-validation. This might involve exploring new metrics and techniques for
assessing the robustness and generalizability of machine learning models, as well as developing
new approaches for benchmarking the performance of different strategies.

Investigating the ethical, legal, and regulatory implications of machine learning in quantitative
trading, such as fairness, accountability, and transparency. This might involve studying the
potential impacts of machine learning on financial markets and society, as well as developing
strategies and policies for addressing any potential risks or concerns.

Developing machine learning methods for adapting to changing market conditions or for
managing risk in real-time. This might involve exploring new techniques for online learning,

72

Chapter 11. Conclusion and Future Directions

adaptive optimization, or dynamic risk management, as well as developing new models and
algorithms that are more robust to changing environments.

Applying machine learning to optimize trading execution or to identify market inefficien-
cies. This might involve developing algorithms for minimizing transaction costs, identifying
arbitrage opportunities, or predicting the impact of trades on market liquidity or volatility.
Developing methods for integrating machine learning with traditional trading approaches or
for combining machine learning with other forms of quantitative analysis. This might involve
exploring new techniques for combining machine learning models with fundamental analysis,
technical analysis, or other types of quantitative models, as well as developing new approaches
for integrating machine learning into the trading process.

Investigating the potential uses of machine learning for automating or augmenting the decision-
making process in quantitative trading. This might involve exploring new techniques for inte-
grating machine learning models with decision support systems, or developing new approaches
for combining machine learning with human expertise or judgment.

Developing methods for integrating machine learning with other emerging technologies, such
as blockchain, smart contracts, or distributed ledgers, to enable new forms of trading or to
enable new forms of data analysis or risk management.

Developing machine learning methods for optimizing portfolios or for identifying attractive
investment opportunities. This might involve exploring new techniques for portfolio construc-
tion, asset allocation, or risk management, as well as developing new models and algorithms
for predicting asset returns or for identifying mispriced assets.

Applying machine learning to identify and exploit patterns or trends in financial data. This
might involve developing new techniques for detecting patterns or trends in large data sets, or
for identifying patterns or trends that are not easily visible to humans.

Developing machine learning methods for automating the data collection and preprocessing
process, or for improving the efficiency and effectiveness of data-driven trading strategies. This
might involve exploring new techniques for automating the data collection and preprocessing
process, or for developing more efficient and effective machine learning models.
Investigating the potential applications of machine learning for automating the compliance
process or for improving risk management in quantitative trading. This might involve develop-
ing new techniques for automating the compliance process, or for identifying and mitigating
risks in real-time.

Developing methods for integrating machine learning with other emerging technologies, such
as artificial intelligence, robotics, or the Internet of Things, to enable new forms of trading or
to enable new forms of data analysis or risk management.

It’s worth noting that these are just a few examples of possible future directions for machine

learning in quantitative trading, and there are many other areas of research and application that may
be relevant depending on the specific goals and focus of the research. It’s a good idea to seek out
additional resources and guidance to learn more about the current state of the field and the challenges
and opportunities for future research.

	Introduction to QT and ML
	Defining Quantitative Trading
	What is quantitative trading?
	History of quantitative trading
	Types of quantitative trading strategies
	How to get into quantitative trading?
	What are the skills of a quantitative trader?
	What are the top quantitative hedge funds?

	Introduction to Machine Learning
	Definition of machine learning
	Types of machine learning
	Applications of machine learning in finance

	The Intersection of Quantitative Trading and Machine Learning
	How machine learning can be used to improve trading strategies
	Examples of machine learning in action in quantitative trading
	Challenges and limitations of using machine learning in trading

	Basic Machine Learning Tools for Trading
	Unsupervised Learning
	Clustering
	Principal Component Analysis (PCA)
	Copula
	Complex Networks
	Large Language Models (NLP)

	Supervised Learning
	Linear Regression
	Gradient Boosted Trees (GBTs)
	Graph Neural Networks (GNNs)
	Transformers

	Alternative Data for Quantitative Trading
	Data Preprocessing & Feature Engineering
	Standard Data Preprocessing & Feature Engineering
	Defining Data Preprocessing
	Defining Feature Engineering

	Residualization of stock returns
	Why do quantitative traders residualize stock returns?
	How to residualize stock returns?
	What are the techniques used for residualizing stock returns?

	Common features in quantitative trading
	Cross-sectional vs. Time series features
	Price-based features
	Fundamental-based features
	Sentiment-based features
	Text-based features
	Audio-based features
	Image-based features
	Video-based features
	Network-based features

	Common feature normalization techniques
	Min-Max
	Z-score
	Log normalization
	Quantile normalization
	Rank normalization
	Other normalizations

	Model Selection for Trading
	Cross-validation for time series
	Cross-validation for imbalanced data

	DL for Trading: NNs and Beyond
	Portfolio Construction using ML
	Backtesting and Evaluating Strategies
	Backtesting process
	Evaluation metrics
	Information Coefficient
	R-squared (R2)
	Backtest results

	Implementing ML for QT in Practice
	Feature Store
	What is a Feature Store?
	Why is a Feature Store useful for quantitative trading?

	MLOps
	What is MLOps and why is it useful for quantitative trading?
	What are the skills of a MLOps engineer?

	Additional tips

	Advanced Topics in ML for QT
	Conclusion and Future Directions

