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Abstract

We investigate the relationship between crude oil prices and stock markets. Unlike prior

studies, we use implied volatility indices and evaluate the change in the relationship

between the volatility indices through a sub-period analysis. Specifically, we examine the

causal relationships among the crude oil, S&P 500 index, and KOSPI 200 index volatilities

by using the autoregressive distributed lag (ARDL) bounds and the Toda–Yamamoto

Granger causality tests. In addition, a BEKK-GARCH model is employed to enhance the

robustness of the causality test results. These experiments indicate that the OVX and VIX

show bi-directional causality in the period that includes the shale gas revolution and no cau-

sality in the period that does not. Further, the OVX Granger causes the VKOSPI in the for-

mer period, but there is no causality between them in the latter period. Finally, we find strong

unidirectional causality from the VIX to the VKOSPI in both sub-periods. These results have

important implications for the analysis of portfolio risk management and for assisting energy

policymakers and traders in making effective decisions and investments, respectively.

Introduction

Oil is one of the most important natural resources in the global economy. Many machines,

such as cars, airplanes, and mechanical tools in factories, use oil as a power source. Moreover,

numerous essential goods are manufactured from oil, such as plastic products and nylon cloth-

ing. Hence, oil is crucial to production activities and is becoming increasingly important for

many countries.

Oil affects industrial development significantly and oil prices have naturally been the sub-

ject of global attention over the past several decades. A rise in crude oil prices increases the

production cost of the manufacturing industry, reducing corporate profitability, which has a

negative effect on stock prices (e.g. [1]). This is because increased crude oil price volatility can

negatively affect economic growth, causing greater economic uncertainty. Empirical test

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0232508 May 5, 2020 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Choi S-Y, Hong C (2020) Relationship

between uncertainty in the oil and stock markets

before and after the shale gas revolution: Evidence

from the OVX, VIX, and VKOSPI volatility indices.

PLoS ONE 15(5): e0232508. https://doi.org/

10.1371/journal.pone.0232508

Editor: Stefan Cristian Gherghina, The Bucharest

University of Economic Studies, ROMANIA

Received: December 15, 2019

Accepted: April 16, 2020

Published: May 5, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0232508

Copyright: © 2020 Choi, Hong. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data are obtained

from the CBOE and Korean stock exchange: http://

www.cboe.com/; http://www.krx.co.kr/main/main.

jsp.

http://orcid.org/0000-0001-7234-7183
https://doi.org/10.1371/journal.pone.0232508
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232508&domain=pdf&date_stamp=2020-05-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232508&domain=pdf&date_stamp=2020-05-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232508&domain=pdf&date_stamp=2020-05-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232508&domain=pdf&date_stamp=2020-05-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232508&domain=pdf&date_stamp=2020-05-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232508&domain=pdf&date_stamp=2020-05-05
https://doi.org/10.1371/journal.pone.0232508
https://doi.org/10.1371/journal.pone.0232508
https://doi.org/10.1371/journal.pone.0232508
http://creativecommons.org/licenses/by/4.0/
http://www.cboe.com/
http://www.cboe.com/
http://www.krx.co.kr/main/main.jsp
http://www.krx.co.kr/main/main.jsp


results indicating that crude oil prices and economic activity are very much related are already

seen in many studies ([2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]).

Because oil is so important, every country is affected by changes in the oil market. For

example, during oil crises (e.g., the 1973 oil crisis), rising oil prices have a dramatic effect on

oil-exporting nations, which then accumulate vast wealth. On the contrary, for oil-importing

countries, oil price increases lead to significant slowdowns in economic growth.

Two consecutive oil shocks in the early and late 1970s resulted in many studies that investi-

gate the effect of oil price changes on the economic or financial environment. A number of

them investigate how oil shocks affect macroeconomic variables such as GDP (gross domestic

product), inflation, exchange rates, and government expenditure ([13], [14], [15], [16], [17],

[18]). Moreover, a few studies examine the relationship between oil prices and exchange rates

intensively. For instance, some use the nominal and real dollar exchange rates to examine the

relationship ([19], [20]), while others analyze the effect of oil shocks on exchange rates for oil-

importing and -exporting countries ([21], [22], [23]).

In addition, some past studies focus on oil price volatility and its relationship with other

economic variables. [24] examine the volatility of crude oil prices and find stylized facts and

permanent and asymmetric effects. [25] uses volatility models that allow for two structural

breaks and finds evidence of persistence and leverage effects in oil price volatility. [26] fore-

casts oil price volatility using a hybrid model combining artificial neural networks and the

GARCH model. In addition, some works examine the volatility transmission between oil and

other assets such as agricultural commodities prices ([27], [28], [29], [30]).

Oil price volatility measures the uncertainty of oil prices in the market. High volatility

means large fluctuations in oil prices, which is undesirable for both oil-exporting and -import-

ing countries. The greater the uncertainty in oil prices, the higher the cost of managing this

resource. Therefore, observing oil price volatility and taking its expected changes into account

are essential for managing risk.

Most research still uses crude oil and stock prices. However, the volatility indices are a bet-

ter suitable barometer of the fragility of the markets and the economy. Therefore, the aim of

this work is to investigate the relationship among the volatility indices, to derive important

implications for the analysis of portfolio risk management. Furthermore, since the introduc-

tion of volatility derivatives (e.g., Chicago Board Options Exchange (CBOE) volatility index

(VIX) futures, options, and exchange-traded products), the trading volume has been increas-

ing because they can be used as a risk-hedging strategy against stock market downturns (e.g.

[31]). Accordingly, investigation of the relationship between volatility indices can give neces-

sary insight into suggestions for the pricing of volatility derivatives.

We use the CBOE crude oil volatility index (OVX) to proxy for oil price volatility. The

OVX is a market estimate of the expected 30-day volatility in crude oil prices and is thus

regarded as a measure of oil market uncertainty. The OVX is calculated by applying the VIX

methodology to the United States Oil Fund options. The United States Oil Fund is an

exchange-traded security designed to track daily price movements in West Texas Intermediate

(WTI) light, sweet crude oil.

As measures of stock market volatility, we adopt the VIX and VKOSPI volatility indices,

calculated from S&P 500 index options and the KOSPI 200 index, respectively. The VIX, cre-

ated by the CBOE, measures the expected 30-day volatility in the U.S. stock market. Notably,

the VKOSPI is the first volatility index for a domestic Asian stock market. It represents the

expected volatility of the next 30 days for the KOSPI 200 index option.

Because South Korea has close political, economic, and social ties with the United States, it

is worthwhile examining the relationship between the volatility indices of the U.S. and South

Korean stock markets. However, South Korea’s GDP is only ranked 12th in the world,
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according to the World Bank (https://datacatalog.worldbank.org/dataset/gdp-ranking). In

addition, according to the US Energy Information Administration, it is among the 10 largest

oil consumers and depends entirely on oil imports to meet its needs. Consequently, the South

Korean economy is sensitive to variations in oil prices.

Methodologically, we adopt the autoregressive distributed lag (ARDL) bounds test for coin-

tegration as well as the Toda–Yamamoto (TY) Granger causality test developed in [32]. To

enhance the robustness of the tests, we employ a multivariate model introduced by [33] called

the BEKK model. Furthermore, these tests are explored using a sub-period analysis to examine

whether their relationship is constant over time, which would provide insight into the dynamic

nature of the interactions between the volatility indices. The other reason we proceed with the

sub-period analysis is because we want to analyze how shale gas, an alternative to crude oil,

affects the relationship between stock markets and the oil market. Several studies investigate

the effect of the shale gas revolution on the oil market.

There are two aspects of this study that differ from previous studies. The first is our use of

volatility indices to identify the relationship between crude oil and the stock market. Although

previous empirical studies find causal relationships between oil prices and stock indices,

research on the causality between implied volatility indices is scarce. To bridge this gap, we

adopt the OVX, VIX, and VKOSPI to measure the implied volatility in oil prices, the S&P 500,

and the KOSPI 200, respectively. Second, whereas previous studies focus mainly on the rela-

tionship between crude oil and the stock market, we focus on the change in that relationship

over time.

We obtain three main contributions from these differences. The first is the investigation of

the relationship between future expectations for each market—the crude oil, U.S., and South

Korean stock markets. In particular, the volatility index represents the future risk measure of

market participants. Therefore, we can investigate the relationship between the risk measures

implied by crude oil, the S&P 500 index, and the KOSPI 200 index by using the volatility indi-

ces. The second is the examination of the causality between the OVX and VKOSPI and

between the VIX and VKOSPI. To the best of our knowledge, this study is the first to investi-

gate the relationship between the OVX and VKOSPI. Based on their relationship, policy-

makers can propose laws and policies for oil-importing countries to manage market risk. As

mentioned above, South Korea and the United States have a close economic relationship;

hence, it is reasonable to explore the causality between them owing to the uncertainty in their

stock markets. The third major contribution concerns the change in the relationship between

the volatility indices as revealed through a sub-period analysis. Based on the empirical results

of the sub-period analysis, we conclude that one of the factors causing the change in the rela-

tionship is the increased production of shale gas. Detailed discussions on this will be covered

in Section 6.

The rest of the paper is organized as follows. Section 2 presents a review of the literature on

volatility indices. Section 3 describes the data and methodology used in this study. Section 4

provides the results of the empirical analysis for the full sample period. In Section 5, we show

the sub-period analysis. Section 6 presents a discussion of the results in terms of shale gas and

risk management. Lastly, we provide concluding remarks in Section 7.

Literature review

There is a vast body of literature on the implied volatility indices. In this section, we would like

to divide the research into that on the VIX, OVX, and VKOSPI according to the content.

First, because the VIX is obtained from the S&P 500 index, many studies have focused on

the relationship between the VIX (implied volatility) and S&P 500 index (underlying asset).
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For example, [34] investigates the relationship between the implied volatility and underlying

stock index for both the S&P 100 and Nasdaq 100 indices. According to [34], there is a negative

relationship between changes in the VIX and the underlying stock index. Other studies also

obtain similar results ([35], [36], [37], [38]), while some investigate the behavior of the VIX

and VIX futures markets ([39], [40], [41], [42], [43]). Furthermore, the VIX has also been used

to explain market change, because it represents the market’s expectations regarding future

uncertainties. For example, many studies investigate the effects of macroeconomic events on

the VIX. [44] show how the VIX behaves around the time of monetary policy announcements.

[45] find that good and bad news affect the VIX asymmetrically.

Since the launch of the VIX, the huge demand for volatility risk hedging has led to increas-

ing trade in volatility derivatives ([46], [47], [48]). Furthermore, attempts are being made to

model VIX and VIX derivatives such as VIX options ([49], [50], [51], [52], [53], [54], [55]).

Recently, some studies have examined VIX term structures. [56] investigate the term struc-

ture of VIX and present a VIX formula under the general jump-diffusion model. [57] shows

that two factors (Level and Slope) can explain the dynamics of the VIX term structure effec-

tively. [58] analyzes how principal components of the S&P 500 index affect the VIX term

structure.

Similarly, much research examines the relationship between the OVX and crude oil price

([59], [60, 61], [62]). In addition, a number of studies look into the relationship between vari-

ous market variables. Much of the research is done on the relationship between the stock mar-

kets. [63] study the relationship between the OVX and alternative energy sector equity. [64]

explore the effect of OVX shocks on the Chinese stock market index. [65] investigate whether

the OVX affects the Middle Eastern and African stock markets. [66] examine whether the

OVX improves the directional predictability of the implied volatility index for some stock mar-

kets(France, Germany, India, Japan, Mexico, the Netherlands, Russia, South Africa, Sweden,

Switzerland, the United Kingdom, and the United States).

Many studies look into the relationship with economic variables without stock. Because

crude oil is classified as a commodity, many studies look at its relationship with other com-

modities. [67] investigates the cross-market uncertainty transmission implied by the OVX and

other volatility indices (VIX, EVZ, and GVZ). The EVZ and GVZ are the euro/dollar exchange

rate and the gold price volatility indices, respectively. Adopting a similar approach, [68] studies

the implied volatility transmission across commodity, equity, foreign exchange, and Treasury

bond markets by using EVZ, GVZ, OVX, VIX, and VXTYN. The VXTYN is the Treasury note

futures price volatility index. [69] investigate the predictive power of OVX in explaining the

return structure of the precious metal (gold and silver) markets. [70] investigates the depen-

dence structure between OVX, WIV (wheat volatility index), and CIV(corn volatility index)

during bear, normal, and bull markets. [71] examine the effects of OVX on the returns and vol-

atilities of Chinese commodities (petrochemicals, agricultural commodities, and metals). By

contrast, credit-related studies have been also conducted. [72] examine the directional predict-

ability from the OVX to the sovereign CDS spreads of oil-exporting countries. [73] investigate

the dependence between OVX and BRICS sovereign CDS spreads from July 2009 to March

2017. [74] investigate the dynamic spillover of the OVX and volatilities on sovereign credit

default swap (CDS) spreads of ten oil-exporting countries.

There are several studies that use the VKOSPI to investigate the characteristics of the South

Korean market ([75], [76], [77]). However, few studies explore the relationship between for-

eign markets and South Korean markets using the VKOSPI. According to [77], U.S. market

factors are more important than South Korean factors in explaining VKOSPI dynamics. Tables

1–3 provide a summary of each study included in the review.
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To the best of our knowledge, there is no study investigating the links between the VIX,

OVX, and VKOSPI. Instead, many investigate the VIX and OVX ([67], [68], [78], [79], [80]).

Among them, [78], [79], [80] study the link between the VIX and OVX. We contribute to the

finance literature by uncovering the relationship between the VIX, OVX, and VKOSPI under

different market conditions.

Data and methodology

Data

The volatility time series we use in this study consists of three indices: the OVX, VIX, and

VKOSPI. The data are obtained from the CBOE and South Korean stock exchange. The sam-

ple period runs from January 2, 2009 to December 28, 2018, yielding 2354 daily observations.

Table 4 shows the descriptive statistics for each volatility index. Panel A presents the results

for the log prices; whereas, Panel B does the same for the differenced series. The average OVX

is the highest and all the series show positive skewness. Furthermore, all the first-differenced

indices have a leptokurtic distribution with asymmetric tails as supported by the correspond-

ing kurtosis results. The Jarque–Bera test implies that the normality hypothesis is rejected.

Moreover, the Lagrange multiplier test indicates the existence of the autoregressive conditional

heteroscedastic(ARCH) effect in the average log returns of all the volatility indices.

Table 5 presents the Pearson correlation coefficients among the volatility indices, showing

significantly positive correlations, which indicate that the expected changes in oil and stock

Table 1. The first literature review summary.

Study Main Data Relevant findings

[35] S&P 100, VIX A large negative contemporaneous correlation exists between VIX changes

and S&P 100 index returns

[36] S&P 100, VIX VIX has acted reliably as a fear gauge.

[34] S&P 100, VIX

NASDAQ100, VXN

There is a strong negative relationship between contemporaneous changes in

implied volatility indexes and the underlying stock indexes

[37] S&P500, VIX A strongly negative contemporaneous correlation exists between the VIX and

SPX returns

[39] VIX Develops a VIX model to price VIX futures

[46] S&P 500, VIX Examines the benefits of adding VIX to the S&P 500 stock portfolio for

reducing risk

[40] VIX Examines the driving of the dynamics of implied volatility indices in

continuous time.

[44] VIX VIX reacts to U.S. monetary policy announcements

[51] VIX, VIX option Develops a dynamic model for the joint evolution of the VIX spot value and

the S&P500 index to evaluate VIX futures and options.

[41] S&P 500, VIX VIX does reflect past jump activity in the S&P 500.

[38] S&P 500, VIX Investigates the inverse relation between movements in the VIX and

movements in the S&P 500

[50] VIX Provides closed-form valuation models for European options written on the

spot and forward VIX, respectively.

[42] VIX future Develops a general model to price VIX futures contracts

[52] VIX and SPX options Examines the pricing performance of VIX option models

[56] 1,3,6,9,12,15 months VIX Presents the VIX formula under the general jump-diffusion model.

[43] VIX futures Develops a term structure model for VIX futures

[53] VIX futures Presents a general theory and a unifying framework for understanding

arbitrage pricing theory in VIX options

https://doi.org/10.1371/journal.pone.0232508.t001
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markets have the same movement over the sample period. In addition, the highest correlation

is observed between the volatility indices of the U.S. and South Korean stock markets.

Fig 1 illustrates the volatility indices used in this study for the whole sample period. Several

sharp fluctuations occur due to drastic changes in the political, business, or economic environ-

ment. For example, the European debt crisis (2010), Black Monday (2011), and the Libyan

War (2011) all cause large fluctuations in the oil and stock markets. In particular, certain spikes

are observed in the OVX series during 2015 and 2016. These spikes are provoked by the strong

U.S. dollar, OPEC’s control, and Iran’s nuclear deal.

ARDL bounds tests

The cointegration tests proposed by [81], [82], and [83] have been used in many empirical

studies to investigate the long-run relationship of economic variables. However, the use of

these approaches is limited. For example, these methods can be applied to those series that

have a unique order of integration. The ARDL bounds test proposed by [84] and [85] is a pop-

ular method because it has certain advantages over traditional cointegration methods.

First, it does not need all the variables in the model to be integrated of the same order. Sec-

ond, the approach is relatively more efficient in the case of small and finite sample data sizes

Table 2. The second literature review summary.

Study Main Data Relevant findings

[54] Presents an analytical exact solution for the price of VIX options under

stochastic volatility model with jumps

[45] SPX option, VIX Good and bad announcements change implied volatility slope and VIX.

[55] S&P 500, VIX Develops a regime-switching Heston model

[49] Demonstrates a 3/2 model for the pricing of equity and VIX derivatives

[47] S&P 500, VIX futures Proposes a methodology using VIX futures as an investment asset

[48] S&P 500, VIX ETPs(exchange

traded products)

Provides an analysis of VIX ETPs with a focus on hedging

[57] S&P500 variance swap, VIX Changes in the VIX term structure convey information about variance

risk premia rather than expected changes in the VIX

[58] 9 days, 1,3,6,12 months VIX Identifies the principal factors affecting the change in volatility term

structure

[67] VIX, OVX, EVZ, GVZ There is no strong long-run equilibrium relationship between the OVX

and other volatility indices

[68] EVZ, GVZ, OVX, VIX, VXTYN Volatility contagion across U.S. equity and non-equity markets

[59] crude oil price, OVX A negative and asymmetric contemporaneous relationship between OVX

changes and crude oil price returns

[60] VIX, USO crude oil ETF A negative relationship between the contemporaneous oil VIX and USO

ETF oil returns

[61] crude oil price, OVX The OVX contains information regarding the future realized volatility of

crude oil returns

[62] WTI, Brent, OVX The OVX has predictive ability for spot volatility of WTI and Brent oil

returns

[63] WTI, OVX, Clean Energy

Index

OVX improves the volatility forecasts for the clean energy equity market

[64] Shanghai Composite Index,

WTI, OVX

Oil price shocks positively affect Chinese stock returns

[70] OVX,WIV, CIV Evidence of asymmetric tail dependence between the pair of cereals as

well as between oil

https://doi.org/10.1371/journal.pone.0232508.t002
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([84] and [86]). Third, applying the ARDL technique, we obtain unbiased estimates of the

long-term model ([87]).

We use this approach to analyze the dynamic interactions between oil prices and stock mar-

kets. The ARDL bounds test assumes that the variables are integrated of order zero (I(0)) or

Table 4. Summary statistics for the VIX and VKOSPI. ‡ and † indicate the rejection of the null hypothesis at the 1% and 5% significance levels, respectively.

Index log (OVX) log (VIX) log (VKOSPI)

Panel A: Log price

Mean 3.499883 2.850168 2.822976

Standard deviation 0.334504 0.352381 0.332613

Skewness 0.102328 0.771809 1.104779

Kurtosis -0.161943 0.204169 1.063548

Jarque–Bera Test 6.7344† 242.65‡ 602.16 ‡

Lagrange multiplier test 2292.1‡ 2234.5‡ 2285.2‡

Panel B: First difference

Mean -0.000209 -0.000135 -0.000386

Standard deviation 0.050136 0.077759 0.055497

Skewness 0.762307 1.048369 0.967227

Kurtosis 9.953206 7.379172 6.524589

Jarque–Bera Test 10148‡ 5890.8‡ 4636.3‡

https://doi.org/10.1371/journal.pone.0232508.t004

Table 3. The third literature review summary.

Study Main Data Relevant findings

[65] OVX, Stock market indices Oil market uncertainty has substantial effects on the realized volatility of

most Middle Eastern and African stock markets

[72] WTI, sovereign CDS spreads,

OVX

A significant directional predictability from oil uncertainty to the CDS

spreads for most oil-exporting countries.

[73] OVX, CDS spreads BRICS

countries

Low (high) volatility of the oil market predicts low (high) sovereign risk

[66] OVX, implied volatility indices The ability of crude oil to predict stock market conditions using implied

volatility data and a cross-quantilogram approach

[69] OVX, WTI, S& P GSCI data A significant price spillover running from the oil market to the

industrial metal sector

[74] OVX, WTI, Sovereign CDS Study the dynamic spillover from crude oil prices to sovereign CDS

spreads

[71] WTI, OVX, industrial sectors of

China

China’s commodity returns respond negatively to OVX shock

[75] KOSPI 200, VKOSPI A strong asymmetric and negative relationship between KOSPI 200

returns and the VKOSPI

[76] VKOSPI, Common stocks listed

on the KOSPI

Future returns on large stocks are higher than those on small stocks on

days

[77] S&P 500, VKOSPI U.S. market factors are more significant than domestic (Korean) factors

in explaining VKOSPI dynamics

[78] OVX, Implied volatility indices The connectedness between oil and equity is established by the bi-

directional information spillovers between the two markets

[79] S&P 500, OVX A strong co-movement between the volatilities of the equity and oil

markets

[80] VIX, VXXLE(U.S. energy sector

equity VIX), OVX

There is a long-run relationship between oil and stock market implied

volatility indexes

https://doi.org/10.1371/journal.pone.0232508.t003
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integrated of order one (I(1)). Therefore, we determine the order of integration of all the vari-

ables before applying this test.

The F-test (or the Wald test) can be performed in order to check the significance of the

lagged coefficient in the unrestricted correction model. The critical values comprise the upper

and lower bound values following [85]. If the calculated F-statistic is above the upper critical

value, we can conclude that a long-term relationship exists. If the calculated F-statistic is below

the lower critical value, we cannot reject the null hypothesis of no cointegration. If it lies

between the upper and lower bound critical values, then the decision is inconclusive.

The ARDL bounds test can be applied in two steps. The first is determining the existence of

the long-run relationship between the variables using the F-statistic. The second step is choos-

ing the appropriate lag order for the ARDL model and estimating the long-run estimates of the

selected ARDL model. If a long-run relationship exists between the underlying variables, the

ARDL approach to cointegration can be applied. Using model order selection criteria such as

the Akaike information criterion (AIC) and Schwarz criterion (SC), we determine the optimal

lag length for the ARDL model. Under the best model, the estimates become the long-run

coefficients.

Fig 1. Volatility indices for the sample period from January 2009 to December 2018.

https://doi.org/10.1371/journal.pone.0232508.g001

Table 5. Correlation coefficients. The sample period ranges from 2009 to 2018.

Panel A: Log price

log (OVX) log (VIX) log (VKOSPI)

log (OVX) 1.0000 0.6313 0.5529

log (VIX) 0.6313 1.0000 0.8989

log (VKOSPI) 0.5529 0.8989 1.0000

Panel B: First difference

Δlog (OVX) Δlog (VIX) Δlog (VKOSPI)

Δlog (OVX) 1.0000 0.4438 0.1946

Δlog (VIX) 0.4438 1.0000 0.1955

Δlog (VKOSPI) 0.1946 0.1955 1.0000

https://doi.org/10.1371/journal.pone.0232508.t005
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The ARDL model used in this study is expressed as follows:

Dlog ðOVXÞt ¼ o1 þ
Xp

i¼1

a1;iDlog ðOVXÞt� i þ
Xq

i¼0

b1;iDlog ðVIXÞt� i

þ
Xr

i¼0

g1;iDlog ðVKOSPIÞt� i þ a1 log ðOVXÞt� 1

þb1 log ðVIXÞt� 1
þ c1 log ðVKOSPIÞt� 1

þ �1;t;

ð1Þ

Dlog ðVIXÞt ¼ o2 þ
Xp

i¼0

a2;iDlog ðOVXÞt� i þ
Xq

i¼1

b2;iDlog ðVIXÞt� i

þ
Xr

i¼0

g2;iDlog ðVKOSPIÞt� i þ a2 log ðOVXÞt� 1

þb2 log ðVIXÞt� 1
þ c2 log ðVKOSPIÞt� 1

þ �2;t;

ð2Þ

Dlog ðVKOSPIÞt ¼ o3 þ
Xp

i¼0

a3;iDlog ðOVXÞt� i þ
Xq

i¼0

b3;iDlog ðVIXÞt� i

þ
Xr

i¼1

g3;iDlog ðVKOSPIÞt� i þ a3 log ðOVXÞt� 1

þb3 log ðVIXÞt� 1
þ c3 log ðVKOSPIÞt� 1

þ �3;t;

ð3Þ

where Δ and �i,t(i = 1, 2, 3) are the first-difference operator and white noise error terms. The

null hypothesis of no cointegration among the volatility indices in (1) is

H0 : a1 ¼ b1 ¼ c1 ¼ 0

against the alternative hypothesis:

H1 : a1 6¼ b1 6¼ c1 6¼ 0:

In model (1), we denote the F-statistic of the test by FOVX(OVX | VKOSPI, VIX). In models (2)

and (3), we denote the F-statistic as FVIX(VIX | OVX, VKOSPI) and FVKOSPI(VKOSPI | OVX,

VIX), respectively.

TY granger causality tests

[88] proposes a test of the causal relationship between two variables, known as Granger causal-

ity. A time series (X) is said to Granger cause another time series (Y) if the prediction error of

the current Y declines by using the past values of X in addition to the past values of Y. In the

test, the two variables are expressed by simple vector autoregression (VAR). The Granger cau-

sality test is easy to implement and can be applied in many types of empirical studies. Nonethe-

less, it also has some drawbacks. According to [89], first, the Granger causality test for

inferring the leads and lags among integrated variables can provide spurious regression results.

Second, it does not consider the effect of the number of lags even though this can affect the

performance of a causality test. In other words, the results of the Granger causality test depend

on the number of lags. Moreover, [90] insist that Granger causality can lead to drawing wrong

conclusions because of the dependence of the parameters.

[32] introduce a simple procedure involving the estimation of an augmented VAR. As [91]

states, the TY approach uses a modified Wald test to restrict the parameters of the VAR (m).

PLOS ONE Relationship between uncertainty in the oil and stock markets before and after the shale gas revolution

PLOS ONE | https://doi.org/10.1371/journal.pone.0232508 May 5, 2020 9 / 26

https://doi.org/10.1371/journal.pone.0232508


The VAR system is then augmented by the maximum order of integration (dmax). The VAR

(m + dmax) is estimated without the coefficients of the last lagged dmax vector. The Wald sta-

tistic asymptotically follows the chi-square distribution with degrees of freedom equal to the

number of the excluded lagged variables.

Several other methodologies have been developed since the TY causality test was intro-

duced. In view of the TY causality test being limited to finding linear cause-effect relationship,

nonlinear version Granger causality tests have been developed(e.g. [92] and [93]). We can

detect nonlinear interactions between the variables using these tests. By contrast, [94] proposes

an asymmetric causality test for the existence and direction of causality. Thus, the causality

between positive and negative shocks of variables can be determined in the method. In addi-

tion, [95] introduces a bootstrap panel causality method in order to account for both cross-sec-

tional dependence and slope heterogeneity ([96]). The approach is widely used to test for

causality in a panel framework in many empirical studies.

The TY Granger causality test has several advantages over other methods. First, it can pro-

vide a valid result regardless of whether a series is I(0), I(1), or I(2), not cointegrated, or cointe-

grated of any arbitrary order. Second, the TY test avoids the bias associated with unit root and

cointegration tests ([97], [98]) as it does not require pre-testing of the cointegrating properties

of the system. Third, we can explore the causality between variables with a possibly integrated

and cointegrated system using the augmented VAR model in the TY test because the long-run

information of the system in the general VAR model often disappears in the mandatory pro-

cess of first differencing and pre-whitening ([98], [91]). Therefore, we adopt TY causality test-

ing in this study. Furthermore, many recent studies adopt the approach of identifying causality

using the TY causality test ([99], [100], [101], [102], [103]).

We use the following three-variable VAR model:

Xt ¼ o1 þ
Xm

i¼1

y1;iXt� i þ
Xmþdmax

i¼mþ1

y1;iXt� i þ
Xm

i¼1

d1;iYt� i

þ
Xmþdmax

i¼m

d1;iYt� i þ
Xm

i¼1

g1;iZt� i þ
Xmþdmax

i¼m

g1;iZt� i þ �1;t;

ð4Þ

Yt ¼ o2 þ
Xm

i¼1

y2;iXt� i þ
Xmþdmax

i¼mþ1

y2;iXt� i þ
Xm

i¼1

d2;iYt� i

þ
Xmþdmax

i¼m

d2;iYt� i þ
Xm

i¼1

g2;iZt� i þ
Xmþdmax

i¼m

g2;iZt� i þ �2;t;

ð5Þ

Zt ¼ o3 þ
Xm

i¼1

y3;iXt� i þ
Xmþdmax

i¼mþ1

y3;iXt� i þ
Xm

i¼1

d3;iYt� i

þ
Xmþdmax

i¼m

d3;iYt� i þ
Xm

i¼1

g3;iZt� i þ
Xmþdmax

i¼m

g3;iZt� i þ �3;t;

ð6Þ

where X = log (OVX), Y = log (VIX), and Z = log (VKOSPI). The ω’s, θ’s, δ’s, and γ’s are the

parameters of the model. The �’s are the white noise error terms and dmax is the maximum

order of integration.

To test the hypothesis of “no Granger causality from Y to X,” we use the null hypothesis

H0 : d1;1 ¼ d1;2 ¼ . . . ¼ d1;m ¼ 0;
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against the alternative hypothesis

H1 : d1;1 6¼ d1;2 6¼ . . . 6¼ d1;m 6¼ 0:

We need to determine the optimal lag length (m) and maximum order of integration

(dmax) to implement the TY Granger causality test and we use the AIC, SC, final prediction

error (FPE), and Hannan–Quinn (HQ) information criteria to choose the appropriate lag

order (m) of VAR models (4)–(6). Furthermore, we use several unit root tests to find the maxi-

mum order of integration (dmax), as detailed in the following section.

Multivariate GARCH model

To enhance the robustness of the ARDL and TY causality tests, we use a multivariate model

introduced by [33] called the BEKK model. This model has been used extensively to examine

shock and volatility spillover effects ([104], [105], [106], [28], [107], [108], [109]).

In light of the evidence of the ARCH effects reported in Table 1, we exploit the econometric

specifications used to analyze the shock and volatility dynamics of the volatility indices, which

consist of the conditional mean equation and covariance models.

We first introduce the conditional mean equation, as defined by:

rt ¼ �m þ �t �t ¼
ffiffiffiffiffi
Ht
p

nt ð7Þ

where rt is a n × 1 vector of average log-returns for n different sectors, �m is the n × 1 mean of

the returns, and �t is an n × 1 vector of zero-mean error terms with conditional covariance

matrix Ht. νt is an n × 1 vector of standardized residuals.

For the conditional variance–covariance equations, we employ the BEKK–GARCH(1,1)

model. This model allows us to describe shock and volatility spillover effects. The conditional

covariance matrix of the BEKK model, Ht, is expressed as:

Ht ¼ C0C þ A0�t� 1�
0
t� 1

Aþ B0Ht� 1B; ð8Þ

where Ht is the n × n covariance matrix, A, B, and C are n × n matrices, and C is an upper trian-

gular matrix. Matrices A and B are ARCH and GARCH parameters, respectively. Furthermore,

�t−1 is the n × 1 vector of error terms in (7).

In this study, we use a three-variate(n = 3) BEKK model denoted by BEKK–GARCH(1,1).

That is, the return vector rt is a vector of (Xt − Xt−1, Yt − Yt−1, Zt − Zt−1)T, where X = log

(OVX), Y = log (VIX), and Z = log (VKOSPI). In matrix form, it can be written as:

h11;t h12;t h13;t

h21;t h22;t h23;t

h31;t h32;t h33;t

0

B
B
B
@

1

C
C
C
A
¼ C0C þ A0

�2
1;t� 1

�1;t� 1�2;t� 1 �1;t� 1�3;t� 1

�2;t� 1�1;t� 1 �2
2;t� 1

�2;t� 1�3;t� 1

�3;t� 1�1;t� 1 �3;t� 1�2;t� 1 �3
3;t� 1

0

B
B
B
@

1

C
C
C
A
A

þB0

h11;t� 1 h12;t� 1 h13;t� 1

h21;t� 1 h22;t� 1 h23;t� 1

h31;t� 1 h32;t� 1 h33;t� 1

0

B
B
B
@

1

C
C
C
A
;

ð9Þ
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where

C ¼

c11 c12 c13

0 c22 c23

0 0 c33

0

B
B
B
@

1

C
C
C
A
;A ¼

a11 a12 a13

a21 a22 a23

a31 a32 a33

0

B
B
B
@

1

C
C
C
A
;B ¼

b11 b12 b13

b21 b22 b23

b31 b32 b33

0

B
B
B
@

1

C
C
C
A
:

According to the matrix equation of the BEKK–GARCH(1,1) model (9), the diagonal ele-

ments(aii and bii) in matrices A and B represent a sector’s own ARCH and GARCH effects,

respectively. By contrast, the off-diagonal elements of matrices A and B(aij and bij, i 6¼ j) cap-

ture the market shock and volatility spillovers, respectively. In detail, the off-diagonal elements

aij show the effect of index i’s change on index j’s volatility and the off-diagonal elements bij
measure the effects of past volatility of index i on index j’s conditional variance.

Empirical results

Unit root tests and bounds tests

Before we proceed with the ARDL bounds test, we test for the stationarity of the volatility indi-

ces. Because the ARDL bounds test assumes that the variables are I(0) or I(1), it is necessary to

determine their order of integration to avoid spurious results. We adopt the augmented

Dickey–Fuller (ADF), Phillips–Perron (PP), and Kwiatkowski–Phillips–Schmidt–Shin (KPSS)

tests to check the presence of a unit root.

Table 6 presents the results for the ADF, PP, and KPSS unit root tests for the three return

series. The results of the stationarity tests show that all log prices are non-stationary. However,

the unit roots for all the first differences of log prices can be rejected. In other words, the first-

differenced series for the three stock indices are stationary for the entire sample period (from

2009 to 2018). Therefore, we can conclude that all the variables are I(1).

To proceed with the ARDL bounds test, it is necessary to determine the lag structure of the

examined variables under models (1)–(3). We adopt the AIC to choose the appropriate lag

structure. Table 4 reports the selection of the optimal lag.

Table 7 presents the calculated F-statistics. Their values for (1) are FOVX(OVX | VIX,

VKOSPI) = 7.64; for (2) are FVIX(VIX | OVX, VKOSPI) = 25.29; and for (3) are FVKOSPI(V-

KOSPI | OVX, VIX) = 18.81. These results show that there are long-term relationships among

the volatility indices because their calculated F-statistics are above the upper bound critical

value of I(1) = 6.36 at the 1% significance level. In other words, the null hypothesis of no coin-

tegration among the variables in Eqs (1)–(3) is rejected. The presence of long-term relation-

ships suggests the existence of causal relationships among these volatility indices.

Table 6. The results of the ADF, PP, and KPSS unit root tests on data in log price and first-differenced forms.

Index ADF PP KPSS

Panel A: Log price

log (OVX) -3.9949‡ -3.6754‡ 2.6894‡

log (VIX) -6.7962‡ -4.8219‡ 12.163‡

log (VKOSPI) -5.7964‡ -4.1747‡ 14.134‡

Panel B: First difference

Δlog (OVX) -53.878‡ -54.6988‡ 0.1529

Δlog (VIX) -52.885‡ -54.3461‡ 0.0576

Δlog (VKOSPI) -50.126‡ -51.2814‡ 0.0828

https://doi.org/10.1371/journal.pone.0232508.t006
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TY granger causality tests

We implement the TY Granger causality test to investigate the direction of causality among

the volatility indices. As stated in the subsection TY Granger causality tests, we determine the

lag length (m) and maximum order of integration (dmax). To determine the optimal lag length

of the VAR system, we use four information criteria (AIC, HQ, SC, and FPE). Table 8 displays

the results of selecting the optimal lag (m = 7) of VAR models (4)–(6). In addition, based on

the unit root test, the maximum order of integration for the volatility indices is one

(dmax = 1).

Table 9 presents the results of the VAR model. First, these results suggest that both the null

hypothesis of “no Granger causality from OVX to VIX” and “no Granger causality from total

VIX to OVX” can be rejected at the 1% significance level. Regarding the OVX–VIX relation-

ship, the results suggest bi-directional causality between them. Second, contrary to our

Table 7. Results of the ARDL bounds tests.

Model Optimal lag (p, q, r) F-statistic Decision

FOVX(OVX | VIX, VKOSPI) (1,1,1) 7.64 Long-term relationship exists

FVIX(VIX | OVX, VKOSPI) (1,1,1) 25.29 Long-term relationship exists

FVKOSPI(VKOSPI | OVX, VIX) (1,2,1) 18.81 Long-term relationship exists

Critical values 1% 5% 10%

Lower bounds I(0) 5.15 3.79 3.17

Upper bounds I(1) 6.36 4.85 4.14

https://doi.org/10.1371/journal.pone.0232508.t007

Table 8. Lags under the different criteria for VAR models (4)–(6). ? indicates the lag order selected by the criterion.

Lag AIC HQ SC FPE

1 -17.2325 -17.2190 -17.19552 3.28e-8

2 -17.4113 -17.3897 -17.35214 2.74e-8

3 -17.4331 -17.4035 -17.35181 2.68e-8

4 -17.4366 -17.3989 -17.3331 2.67e-8

5 -17.4447 -17.3989 -17.31901 2.65e-8

6 -17.4454 -17.3915 -17.29745 2.65e-8

7 -17.4468? -17.3848? -17.27673? 2.64e-8?

8 -17.4444 -17.3744 -17.25215 2.65e-8

9 -17.4463 -17.3681 -17.23182 2.64e-8

10 -17.4413 -17.3551 -17.2046 2.66e-8

https://doi.org/10.1371/journal.pone.0232508.t008

Table 9. TY granger causality test.

Relation Chi-square Probability

Δlog (OVX)! Δlog (VIX) 21.1488‡ 0.0035

Δlog (VIX)! Δlog (OVX) 20.5662‡ 0.0044

Δlog (OVX)! Δlog (VKOSPI) 3.5194 0.8331

Δlog (VKOSPI)! Δlog (OVX) 16.2632† 0.0228

Δlog (VIX)! Δlog (VKOSPI) 474.8223‡ � 0.0000

Δlog (VKOSPI)! Δlog (VIX) 18.3266† 0.0105

https://doi.org/10.1371/journal.pone.0232508.t009
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expectations, the OVX had little to do with the changes in the VKOSPI. Rather, “no Granger

causality from total VKOSPI to OVX” can be rejected at the 5% significance level. Because the

results differ from our expectations, we examine the relationship between these two indices

over time in the following sections. Third, the null hypothesis of “no Granger causality from

VIX to VKOSPI” and “no Granger causality from VKOSPI to VIX” can be rejected at the 1%

and 5% significance levels, respectively. If we draw our conclusion using the 1% significance

level, there is unidirectional causality from the VIX to the VKOSPI.

BEKK-GARCH(1,1) model

We estimate the bivariate BEKK-GARCH (1,1) model’s parameters by using the maximum

likelihood method and the estimation results are given in Table 10.

In this study, we concentrate on the estimation results of the off-diagonal elements in

matrices A and B. The significant off-diagonal elements(a12, a21, a13, a31, a23, anda32) indicate

cross-volatility shock spillovers effects; whereas, the off-diagonal elements (b12, b21, b13, b31,

b23, andb32) imply cross-volatility volatility spillover effects.

In terms of shock spillover effects, the off-diagonal elements a21, a23, a31 and a32 are signifi-

cantly different from zero. In the case of volatility spillovers, the off-diagonal elements b12, b21,

b23, b31 and b32 are significantly different from zero.

These results indicate several things. First, the VIX and VKOSPI have a bi-directional spill-

over effect according to the elements a23, a32, b23 and b32. These results are consistent with the

causality test results in Table 9.

Second, the elements a21, b12 and b21 suggest that OVX and VIX have an influence on each

other. However, the element a12 is not significantly estimated in the BEKK model.

Third, the elements a31 and b31 are significantly estimated while a13 and b13 are not signifi-

cant. This means that OVX does not affect the VKOSPI’s change. These results are also consis-

tent with the causality test results in Table 9.

Sub-period analysis

In addition to investigating the relationship between the volatility indices for the entire period

(2009–2018), the total sample is examined for structural breaks in OVX by using the [110]

sequential breakpoint tests. According to the breakpoint tests, the entire sample is split into

two sub-periods after locating the date of 10/8/2014 as the breakpoint. Therefore, we analyze

two sub-periods, namely January 2, 2009–October 7, 2014 (sub-period 1), and October 8,

2014–December 28, 2018 (sub-period 2). The OVX time series for the two sub-periods are

illustrated in Fig 2 with the breakpoint. This sub-period analysis is often carried out in other

studies ([9, 27, 74, 111]).

In each sub-period, we repeatedly implement the ARDL bounds and TY Granger causality

tests to examine the cointegration and direction of causality between the volatility indices.

Table 10. BEKK model parameter estimates for the volatility indices. The standard errors of the estimated parameters are displayed in parentheses.

C (3 × 3) A (3 × 3) B (3 × 3)

0:0273z
ð0:0040Þ
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ð0:0046Þ
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B
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C
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https://doi.org/10.1371/journal.pone.0232508.t010
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This sub-period analysis aims to identify changes in the relationship between the volatility

indices over time.

Table 11 shows the results of the ARDL bounds test by sub-period. According to the calcu-

lated F-statistics, FVIX(VIX | OVX, VKOSPI) and FVKOSPI(VKOSPI | OVX, VIX) have

increased. On the contrary, the value of FOVX(OVX | VIX, VKOSPI) has decreased. Hence,

although there are long-term relationships among the volatility indices in both sub-periods,

the size of the cointegration changes over time.

Table 12 provides the results of the VAR model for the sub-period samples. Although there

is bi-directional causality between the OVX and VIX in sub-period 1, it is hard to state that

causation exists in sub-period 2. In the OVX–VKOSPI relationship, the null hypothesis of “no

Granger causality from OVX to VKOSPI” is rejected at the 5% significance level in sub-period

1. It seems that the OVX Granger-causes VKOSPI, but not the other way around in sub-period

Fig 2. The sub-periods and breakpoint for the OVX time series.

https://doi.org/10.1371/journal.pone.0232508.g002

Table 11. Results of the ARDL bounds tests by sub-period.

Sub-period 1

Model Optimal lag (p, q, r) F-statistic Decision

FOVX(OVX | VIX, VKOSPI) (1,1,1) 10.7566 Long-term relationship exists

FVIX(VIX | OVX, VKOSPI) (1,1,1) 13.6964 Long-term relationship exists

FVKOSPI(VKOSPI | OVX, VIX) (1,3,1) 12.7507 Long-term relationship exists

Sub-period 2

Model Optimal lag (p, q, r) F-statistic Decision

FOVX(OVX | VIX, VKOSPI) (1,1,3) 6.8848 Long-term relationship exists

FVIX(VIX | OVX, VKOSPI) (1,1,1) 15.48 Long-term relationship exists

FVKOSPI(VKOSPI | OVX, VIX) (1,2,1) 19.7431 Long-term relationship exists

Critical values 1% 5% 10%

Lower bounds I(0) 5.15 3.79 3.17

Upper bounds I(1) 6.36 4.85 4.14

https://doi.org/10.1371/journal.pone.0232508.t011
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1 but Granger-causality is not found in sub-period 2. In the VIX–VKOSPI relationship, the TY

Granger causality test results indicate that the VIX has an enormous influence on the VKOSPI

over time.

We strengthen the results of the TY Granger causality tests by using the BEKK-GARCH

model and the estimation results for the BEKK-GARCH model are given in Table 13. From

the results, the following facts can be found: (1) We find a strong bi-directional shock spillover

between the OVX and VIX in sub-period 1 but the bi-directional shock spillover does not

occur in sub-period 2. (2) This relationship change happens similarly between the OVX and

VKOSPI. (3) The VIX and VKOSPI have a strong bi-directional relation regardless of the peri-

ods. Furthermore, the value of a23 rises from 0.2850 to 0.4336 through sub-period 1 and 2,

which means that the transmissions from the VIX to VKOSPI in sub-period 2 are stronger

than those in sub-period 1.

Discussion in terms of shale gas and risk management

As mentioned above, several events have caused a large price change in the crude oil market.

Among these, the advent of the shale gas revolution has directly affected oil prices and revolu-

tionized the U.S. energy sector, including prices and consumption ([112]). Many studies on

the effect of shale gas have been reported ([113], [114], [115], [116], [117]).

Table 12. Results of the TY granger causality tests by sub-period. The optimal lag is m = 2 for both sub-periods.

Relation Sub-period 1 Sub-period 2

Chi-square Probability Chi-square Probability

Δlog (OVX)! Δlog (VIX) 10.3075‡ 0.0058 2.4829 0.2890

Δlog (VIX)! Δlog (OVX) 21.8181‡ � 0.0000 5.7428 0.0566

Δlog (OVX)! Δlog (VKOSPI) 6.6280† 0.0364 1.2069 0.5469

Δlog (VKOSPI)! Δlog (OVX) 2.9162 0.2327 5.3936 0.0674

Δlog (VIX)! Δlog (VKOSPI) 208.7702‡ � 0.0000 261.4142‡ � 0.0000

Δlog (VKOSPI)! Δlog (VIX) 5.9136 0.0520 1.8910 0.3885

https://doi.org/10.1371/journal.pone.0232508.t012

Table 13. BEKK model parameter estimates for the volatility indices by sub-period.

Sub-period 1
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https://doi.org/10.1371/journal.pone.0232508.t013
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The Fig 3 illustrates the annual shale gas production, the exports and imports of crude oil

data(Source: U.S. Energy Information Administration). From the figure, as shale gas produc-

tion grows, exports of crude oil definitely increase. By contrast, imports of crude oil decrease

dramatically. This fact suggests that shale gas production has affected the import and export of

crude oil.

In the previous section, we use the two sub-periods, January 2, 2009–October 7, 2014 (sub-

period 1), and October 8, 2014–December 28, 2018 (sub-period 2). According to [116], the

price of oil experienced one of its largest declines in modern history between June 2014 and

December 2014. Therefore, we can regard these two sub-periods as the period during which

Fig 3. U.S. shale production and export and import from 2007 to 2018.

https://doi.org/10.1371/journal.pone.0232508.g003
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the shale gas revolution took place (sub-period 2) and the period before it happened (sub-

period 1), respectively.

The following conclusions are obtained by interpreting the sub-period empirical results

shown in Section 5 in terms of the shale gas.

In sub-period 1, that is, in times of low shale gas production, the U.S. stock and crude oil

markets are closely linked according to the sub-period analysis, whose results are consistent

with several studies ([118], [119], [120], [121], [122]). Meanwhile, because of the increase in

production of shale gas in sub-period 2, dependence on crude oil imports has decreased, and

the bi-directional relationship between the stock market and the oil market has disappeared.

Of course, the shale gas revolution is not the only direct cause of the change in the relation-

ship between the OVX and VIX. There are many factors that have affected the relationship

between the two markets, but what we want to argue here is that shale gas is the one of main

factors that has caused the change. As you can see from Fig 3, the shale gas revolution would

have had a major effect on the crude oil market and on the oil-related market and we regard

the effect as a change in the relationship between the OVX and VIX. The arguments made

through this research process can be found in other papers. To study the changes according to

the shale gas production, there are several studies that have implemented sub-period analysis.

[123] examines the effect of the shale gas revolution on North American and European natural

gas markets through two sub-periods, the pre-revolution period and the post-revolution

period. Similarly, [124] investigate the effects of oil price shocks on the stock returns in the oil

industrial chain companies and inspect the differences between the two periods. Although

[124] focus on the oil price shock itself, they explain the shale gas solution as the cause of the

oil price shock.

In the Introduction, we said that checking the volatility of crude oil prices and establishing

an appropriate strategy is important for risk management. In terms of the management of

derivative asset portfolios, volatility risk plays a crucial role. Therefore, in order to manage the

portfolios of crude oil or its derivatives, we need to examine the volatility of crude oil, or the

OVX, carefully. Research on portfolio risk management using volatility indices continues to be

reported ([46], [47], [48]). However, it mainly uses the VIX to investigate hedging ability.

Risk management for crude oil has also been studied and these studies focus on price risk

not volatility risk. For example, there are studies that calculate the optimal portfolio weight or

the hedge ratio of a crude oil portfolio using several models, such as GARCH and BEKK mod-

els ([125], [126, 127]). In addition, some studies examine the volatility spillovers between

crude oil and other assets and also determine the optimal weights and hedge ratio of the port-

folios according to the estimated spillover effects ([105, 121], [128]).

The difference between the existing studies and this study is that we use volatility indices to

identify the relationship between crude oil and the stock market. The volatility index repre-

sents a measure of the risk and it implies the market participants’ expectations for the market.

Therefore, we can see whether the expected risk predicted by each market participant affects

the expectations of other market participants by looking at the changes in the relationship

between the volatility indices. Our empirical results indicate that forecasts of risks to crude oil

and risks to the stock market were mutually influenced prior to 2014, but recently the effects

have been reduced. Furthermore, we explain the relationships between the U.S. and South

Korea stock markets, and between crude oil and the South Korean stock market with respect

to the volatility indices. The studies that examine the relationship between crude oil and U.S.

stock markets are quoted in Section 2. There are also studies on the effect of changes in crude

oil prices on the South Korean economy ([129], [130], [131]), but they use crude oil prices and

the South Korean stock market index not volatility indices. Likewise, [132] and [133] examine
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the relationship between stock prices in the U.S. and South Korean stock markets, but they use

stock indices.

We can manage the volatility risk arising from the crude oil price fluctuations by calculating

optimal portfolio weights and hedge ratios. Assume that an investor attempts to hedge expo-

sure to crude oil price fluctuation for a portfolio of oil and stocks. Then, the investor wants to

minimize the risk of his/her oil-stock portfolio without reducing its expected returns. Accord-

ing to [33], conditional volatilities can be used to construct optimal portfolio weights

wS0
t ¼

hS
t � hS0

t

hO
t � 2hSO

t þ hS
t

; with wS0
t ¼

0; if wS0
t < 0

wS0
t ; if 0 � wS0

t � 1

1; if wS0
t > 1

8
>>><

>>>:

where wS0
t is the weight of oil in the crude oil and stock portfolio at time t and hS

t ; h
O
t ; and hSO

t

are the conditional volatility of oil and stock and conditional covariance between oil and stock

returns at time t, respectively. Therefore, when we calculate the conditional volatilities by

using some models, such as the GARCH and BEKK models, we obtain a dynamic hedge ratio.

Furthermore, given an OVX derivatives and stocks portfolio, we can also apply this process to

calculate the optimal hedge ratio.

Concluding remarks

This study investigates the relationship between the uncertainties in oil prices and stock mar-

kets (United States and South Korea). The motivation for conducting this study is the lack of

empirical results on the relationship between the volatility of oil prices and of the U.S. and

South Korean stock markets. South Korea relies on imports for most of its crude oil consump-

tion, which implies that the country’s economic status might be affected by a change in oil

prices. Another motivation is South Korea’s dependence on the United States. South Korea is

one of the United States’ most important strategic and economic partners in Asia. Therefore,

we aimed to confirm the extent to which uncertainty in the U.S. stock market affects uncer-

tainty in the South Korean stock market.

We address this issue by applying two frequently used methods, namely the ARDL bounds

test and TY Granger causality test, to three volatility indices (the OVX, VIX, and VKOSPI).

Additionally, we investigate whether the relationship between them changes over time through

a sub-period analysis. In order to enhance the robustness of the test results, we employ the

BEKK-GARCH model. The empirical results provide a number of interesting conclusions

with useful practical implications. Our main findings can be summarized as follows.

First, the results of the ARDL bounds tests indicate that there is a long-run relationship

between the oil and stock market implied volatility indices. The sub-period analysis results

also suggest that this relationship is constant.

Second, we find bi-directional Granger causality between the OVX and VIX for the whole

sample period, which is consistent with [67]’s results. However, the sub-period analysis finds

no statistically significant Granger causality between them in sub-period 2. This finding sug-

gests that the influence between the oil and U.S. stock markets has changed dramatically

because of a certain event. Many studies show that this event is related to the shale gas revolu-

tion ([113], [134], [135], [136], [137], [138], [112], [139]).

Third, through the sub-period analysis, we confirm that the relationship between the OVX

and VKOSPI has changed over time. The OVX Granger causes the VKOSPI during sub-period

1, although there is no Granger causality between them during sub-period 2. These changes
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may have occurred because of a number of factors; however, one of the main factors is the

effect of the shale gas revolution, as noted above.

Lastly, according to the results of the TY Granger causality test in the sub-period analysis,

there is unidirectional Granger causality from the VIX to VKOSPI in both sub-periods. In

other words, shocks to the U.S. market also affect the South Korean market significantly and

this phenomenon has continued for the past decade.

To summarize, the future expectations of the U.S. and South Korean stock markets are less

sensitive to the risk of crude oil fluctuations than before, and shale gas production in the

United States may be one of reasons for this decrease in sensitivity. Furthermore, the influence

of the U.S. stock market on the South Korean stock market has increased. That is, future

expectations of the U.S. market have a significant effect on predictions for the South Korean

market.

This study is noteworthy in that the influence of crude oil volatility on the U.S. and South

Korean stock markets has decreased significantly. In addition, it is remarkable that the influ-

ence of the U.S. stock market on the South Korean stock market has increased.

We present some applications and implications based on this study’s results. First, for both

investors and policymakers, the key application of our work is properly forecasting financial

market volatility. In particular, changes in the VIX in the U.S. stock market are strongly related

to those in the South Korean stock market. In other words, we can increase the predictive

power of the future VKOSPI in the South Korean stock market using the movement of the VIX.

As [140] claim, forecasting volatility indices may be more beneficial to the decision-making of

all stock market participants (including financial traders, manufacturers, and policymakers).

Second, because volatility indices are used to hedge volatility risk, our findings will help to man-

age volatility risk in crude oil portfolios. According to [141] and [67], OVX derivatives, futures,

and options can be a financial tool to hedge volatility risk. Furthermore, volatility indices have

become a popular asset class for investors considering diversifying their portfolio strategy.

Thus, our empirical findings can be used to examine and evaluate volatility derivatives, such as

OVX options and futures. Third, contrary to expectations, South Korea, an emerging market,

has not been sensitive to crude oil risks lately. There are many reasons for this, but oil import

diversification may be one of them. Therefore, this study can be seen as evidence of the effect of

crude oil import diversification for oil-importers, and in particular, South Korea.

Possible future studies include research on optimal portfolio weights and hedge ratios with

respect to the sub-period data used in this study. In addition, we can consider the causality

between the positive and negative shocks of volatility indices by using nonlinear causality tests.

In other words, it is necessary to ascertain how they affect and receive each other when market

risk increases and when it decreases.
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