
* 라플라스변환에 대한 기본적인 일반식

공     식 명명법, 설명
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변환의 정의, 역변환
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함수의 적분
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합성

(convolution)
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1-e-ps

⌠
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e-stf(t)dt 주기 p를 가지는 주기함수 f



* Laplace변환표
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F(s)=ℒ{f(t)} f(t)
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