
Some Useful Vector Identities

¶ A⋅B×C=B⋅C×A=C⋅A×B

¶ A×(B×C)=B (A⋅C)-C(A⋅B)

¶ ∇(ψV)=ψ∇V+V∇ψ

¶ ∇⋅(ψA)=ψ∇⋅A+A⋅∇ψ

¶ ∇×(ψA)=ψ∇×A+∇ψ×A

¶ ∇⋅(A×B)=B⋅(∇×A)-A⋅(∇×B)

¶ ∇⋅∇V=∇ 2V

¶ ∇×∇×A=∇(∇⋅A)-∇ 2A

¶ ∇×∇V=0

¶ ∇⋅(∇×A)=0

¶ ⌠
⌡V

(∇⋅A) dv=⌠⌡○S
A⋅ds (Divergence theorem)

¶ ⌠⌡S
(∇×A)⋅ds=⌠⌡○C

A⋅dl (Stokes's theorem)

Gradient, Divergence, Curl, and Laplacian Operations
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Cylindrical Coordinates (r,ф,z)
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Spherical Coordnates (R,θ,ф)
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Three Basic General Orthogonal Coordinate System

Base Vectors Metric Coefficients Differential Volume

au1 au2 au3 h1 h2 h3 dv
Cartesian Coord.

ax ay az 1 1 1 dxdydz
(x,y,z)

Cylindrical Coord.
ar aΦ az 1 r 1 rdrdΦdz

(r.Φ,z )

Spherical Coord.
aR aθ aΦ 1 R Rsinθ R2sinθdRdθdΦ

(R,θ,Φ)

A A = A1u1 + A2u2 + A3u3
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