환경부 제정

하수도시설기준

2011

한국상하수도협회

2.3 매설위치 및 깊이 …		
2.3.1 매설위치		
2.3.2 매설깊이		
2.4 관거의 보호 및 기초		130
2.4.1 외압에 대한 된	¹ 거의 보호 ·····	
2.4.2 관거의 내면보	호	
2.4.3 기초공		
2.5 관거의 접합과 연결		141
2.5.1 관거의 접합 …		
2.5.2 관거의 연결 …		
2.6 역사이펀		148
2.7 맨홀		152
		152
		159
2.8 우수조정지		163
2.8.1 위치		
2.8.2 구조형식		
2.8.3 우수방류방식		
2.8.4 계획강우의 확	률년수	
2.8.5 유입우수량의	산정	
2.8.9 여수토구		170
2.9 합류식하수도 우천시	. 방류부하량 저감시설	171
		171
2.9.2 처리방법의 선	정	174
2.9.3 배수설비 및 된	<u> </u> 거의 방류부하 저감대책	178
2.9.4 우수토실 및 5	E구의 방류부하 저감대책 ········	179

〈표 2.4.1〉 관종에 따른 기초

관	지반 종	경 질 토 보 통 토	연 약 토	극 연 약 토
- 강 성 관	철근콘크리트관	벼개동목기초 쇄석기초 모래기초	콘크리트기초	말뚝기초 철근콘크리트기초
	도관	벼개동목 쇄석기초 모래기초	쇄석기초 콘크리트기초	철근콘크리트기초
- 연 성 기	경질염화비닐관	모래기초	모래기초 베드토목섬유(bed geotextile)기초 소일시멘트(soil cement)기초	베드토목섬유기초 소일시멘트기초 사다리동목기초 말뚝기초 콘크리트+모래기초
관	덕타일주철관, 강관	모래기초	모래기초	모래기초 사다리동목기초 콘크리트+모래기초

주: 1) 암반에 매설하는 경우는 응력을 균등히 분포시킬 수 있는 구조의 기초로 한다.

〈표 2.4.2〉 지반의 구분 예

지반	대표적인 토질
경 질 토	경질점토, 역혼토 및 역혼사
보 통 토	모래, 롬(loam) 및 사질점토
· 연 약 토	실트(silt) 및 유기질토
<u></u> 극연약토	매우 연한 실트 및 유기질토

(1)에 대하여

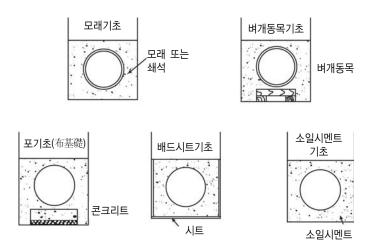
1) 강성관에서 사용되는 기초공의 종류는 [그림 2.4.1]과 같다.

申개동목기초

보통지반에서 관거의 경사를 정확히 유지하고 접합을 용이하게 하기 위한 목적으로 주로 철근콘크리트관에 사용하는 매우 단순한 기초방식이다. 일반적으로 벼개동목기초의 구조는 관 1개에 대하여 2~3개의 받침을 놓고, 그 위에 관을 부설하여 쐐기로 안정시키는 방식이다. 시공시에는 횡목설치에 유의하여야 하며 횡목을 견고하게 지반에 고정하고, 동시에 일정한 높이로 설치되도록 하여야 한다.

② 모래기초 및 쇄석기초

지반이 연약한 경우 및 관거에 미치는 외압이 큰 경우에 채택한다. 모래 또는 쇄석 등을 관거 외주 (하부)에 밀착되도록 견고히 관거를 지지한다. 이 기초가 관거에 접하는 폭(또는 받침각)에 따라 관거


132 하수도시설기준

²⁾ 지반의 구분 예를 나타내면 〈표 2.4.2〉와 같다.

(2)에 대하여

1) 연성관에서 사용되는 기초공의 종류

연성관에서 사용되는 기초공의 종류는 [그림 2.4.4]와 같다. 연성관에서도 강성관의 기초와 마찬가지로 관체의 보강 혹은 관거의 침하방지를 주목적으로 하는데, 연성관의 기초공은 원칙적으로 자유받침의 모래기초가 바람직하다. 또한 관 하단에 까는 모래의 두께는 $100\sim300\,\mathrm{mm}$ 로 하는 것이 바람직하다. 특히, 관 상단에서 $200\,\mathrm{mm}$ 까지는 양질의 토사로 충분히 다짐시공 되어야 하며 모래로 사용되는 것이 바람직하다. 즉 연성관의 기초는 관 주변을 모래로 완전히 쌓는 360° 모래기초가 바람직하다.

[그림 2.4.4] 연성관의 기초공의 종류의 예(시공받침각 360°)

① 관체의 보강을 주목적으로 한 기초

지반의 조건에 따라서 관체측부흙의 수동저항력을 확보하기 위해 소일시멘트(soil cement)기초, 베드 토목섬유(bed geotextile)기초 등을 이용하기도 한다.

② 관거의 부등침하 방지를 주목적으로 한 기초

극히 연약한 지반에서 부등침하가 우려되는 경우에는 말뚝기초 및 콘크리트+모래기초 등과 2.4.3, (1)에서 기술한 기초공을 병용할 수 있지만 벼개동목기초, 콘크리트+모래기초와 관체 사이에 충분한 모래를 깔아 틈이 없게 할 필요가 있다. 참고로 말뚝기초란 극연약지반으로 거의 지내력을 기대할 수 없는 경우에 사용되며, 사다리동목의 밑을 말뚝으로 받치는 형태이다.

2) 연성관의 강도계산

- ① 연성관에 작용하는 하중
- a. 매설토에 의한 수직토압은 연성관의 상부토압에 의해 관 측부의 매설토와 관거가 똑같이 변형하기 때문에 관거에 작용하는 하중은 관거 폭만의 토압으로 하고 매설토에 의한 수직토압은 식 (2.4.1)에 의한다.