알기 쉬운

건설공사 품질관리

2012년도

서울특별시 품질시험소

(http://quality.seoul.go.kr)
목 차

제1장 품질시험소 안내 ... 3
제2장 품질관리 일반 ... 7
제3장 도로포장의 품질관리 기준 ... 75
제4장 토질분야 시험방법 .. 85
제5장 재료분야 시험방법 ... 117
제6장 화학분야 시험방법 ... 149
제7장 별표 ... 199
 - 품질시험계획(규칙 제36조 관련) ... 201
 - 현장출장경비 및 품질시험비용 ... 202
 - 품질시험 활성화방안 주요내용 ... 212
제8장 별지 서식 .. 215
제9장 건설공사 품질관리 관련법규(발췌) ... 227
제10장 서울특별시 건설공사 품질관리 등에 관한 조례 237
제11장 레미콘·아스콘 품질관리 지침 ... 245
제12장 건설공사 품질관리 지침 ... 261
제1장 품질시험소 안내

Ⅰ. 품질시험소 연혁 ... 5
Ⅱ. 품질시험소 위치도 ... 5
Ⅲ. 조직 ... 6
Ⅳ. 각 과별 주요업무 ... 6
Ⅴ. 품질시험소의 법적 지위 ... 6

< 서울특별시 품질시험소 전경>
I. 품질시험소 연혁
- 1963. 6. 10: 토목시험소 설치
- 1981. 12. 1: 종합기술시험연구소 토목시험부로 직제개편
- 1983. 12. 31: 건설자재시험소로 직제개편
- 1997. 4. 21: 건설시험소로 직제개편
- 1999. 3. 15: 품질시험소로 직제개편(건설시험소, 공업시험소 통합)
- 1999. 9. 1: 신축청사 이전(동대문구 용두동 → 서초구 우면동)

II. 품질시험소 위치도

※ 교통편 : ① 지하철 3호선 양재역 7번출구 마을버스 ⑫번 승차, 한국교총 하차
 ② 지하철 4호선 선바위역 1번출구 마을버스 ⑬번 승차, 한국교총 하차
 ③ 강남역, 양재역에서 버스 3412번 승차, 한국교총 하차
Ⅲ. 조직

Ⅳ. 각 과별 주요업무

1. 총무과 : 민원실운영(☏ 3462-6714, fax 3462-4365)
2. 품질지도과 : 품질관리계획 적정성 확인 및 품질시험계획의 이행확인,
 품질관리 현장점검 기동반운영, 건설공사 품질관리교육,
 국제공인시험기관 인정업무
3. 토질시험과 : 토질시험, 도로포장 재료시험, 시공관련 시험
4. 재료시험과 : 콘크리트, 골재, 철근, 시멘트제품에 관한 시험
 - 연구분야 : 암석 시험방법에 따른 암 분류 방법 고찰
5. 화학시험과 : 도료, 방수재, 단열재 및 하수슬러지 발열량에 관한 시험
 - 연구분야 : 복개하천 하수가스조사·분석
6. 계량기검정과 : 각종 계량기의 검정, 검사 및 계량기 제작업 등록

Ⅴ. 품질시험소의 법적 지위

1. 품질시험·검사대행(국·공립시험기관) - 대통령령으로 지정
 (건설기술관리법 제25조)
2. 국제공인시험기관 - 지식경제부 인정 (국가표준기본법 제23조)
제2장 품질관리 일반

I. 품질관리 .. 9
II. 품질시험 및 검사 .. 16
III. 품질관리계획 ... 26
 - 품질관리계획 적정성 확인 점검표 ... 32
IV. 품질시험계획 ... 35
 - 품질시험계획의 이행확인 점검표 ... 38
V. 품질관리 현장확인 기동반 운영 ... 40
 - 현장품질관리 확인 점검표 .. 41
VI. 건설공사의 감독자 및 감리자 업무 .. 43
VII. 품질관리비의 산출 및 사용기준 ... 49
VIII. 주요 질의응답 .. 53
IX. 주요 지적사례 ... 63
X. 건설 관련 KS 규격 개정 · 폐지 소개 ... 72
Ⅰ. 품질 관리

1. 품질관리의 개요

건설공사에서 품질에 영향을 미치는 요소는 인력, 자재, 공법, 자금 등이 있는데 이러한 생산수단으로 빠르게(공정관리), 좋게(품질관리), 안전하게(안전관리), 값싸게(원가관리)라는 공사수행 목적을 달성하려고 노력하는 것이 각종관리의 목표이고, 이들 중 “좋게”에 초점을 맞추어 관리하는 것을 품질관리라 할 수 있다. 즉, 품질관리는 발주자의 요구에 맞는 품질을 경제적으로 만들어 내기 위한 모든 수단과 체계이다.

2. 품질관리의 목적

건설공사의 품질관리 목적이 합리적, 경제적, 내구적인 구조물을 만들어 내는 것으로 소정의 품질을 확보하고 품질을 종래 보다 향상 개선하며 또한 편차를 적게 하고 균일한 품질을 유지함으로서 예상되는 하자를 미연에 방지함으로서 건설공사 품질에 대한 신뢰성 확보 및 원가 절감.

3. 용어의 정의

가. 품질 : 제품 또는 서비스가 시범서나 설계서 절차서 등의 명시적인 요구사항이나 기대를 충족시키는 정도
나. 품질경영 : 품질방침, 목표 및 책임을 결정하고, 이들을 품질계획 수립, 품질관리, 품질보증, 품질개선과 같은 수단에 의해 품질시스템 내에서 실행하는 전반적 관리기능에 관한 모든 활동
다. 품질관리 : 품질에 대한 요구사항을 충족시키는데 사용되는 운영기법 및 활동
라. 품질보증 : 제품 또는 서비스가 주어진 품질요구를 충족시킬 것이 라는 적절한 확신을 주기 위해 품질시스템 내에서 수행되는 모든 계획적이고 체계적인 활동
제2장 품질관리 일반

마. 品質시스템 : 품질경영을 실행하는데 필요한 조직적 구조, 책임, 절차 과정 및 지원
바. 驗(Testing) : 試料 및 시험편에 대하여 그 特性을 조사하여 자료(Data)를 내는 것.
사. 檢査 (Inspection) : 시험결과를 判定基準과 비교하여 합격품과 불합격품의 判定을 내리는 것.
아. 矯正檢查(Calibration Inspection) : 사용중인 계량기를 표준기의 측정값과 비교하여 표준기에 맞도록 교정하는 것.

4. 품질관리의 진행 절차

| 계획(PLAN) | - 설계도서 검토 |
| - 품질관리계획서 및 품질시험계획서 작성 |

| 실행(DO) | -품질관리계획서 이행 |
| -품질시험계획서 이행 |

| 검토(CHECK) | -품질관리 · 시험계획과 실행을 비교 · 평가 |

| 조치(ACTION) | -검토결과로부터 이상원인 배제 및 조치 |
5. 품질관리 주요 벌칙규정(발췌)

가. 건설기술관리법

(1) 제42조(벌칙)

다음 각 호의 어느 하나에 해당하는 자는 2년 이하의 징역 또는 2천만 원이하의 벌금에 처한다.
1. 제24조제2항에 따른 품질관리계획 또는 품질시험계획을 수립·이행하지 아니하거나 품질시험 또는 검사를 하지 아니한 건설업자 또는 주택건설등록업자
2. 제24조의2제2항에 따른 한국산업표준에 적합하다는 인증을 받은 건설자재·부재를 사용하지 아니하거나 국토해양부장관이 적합하다고 인정한 건설자재·부재를 사용하지 아니한 건설업자, 주택건설등록업자, 레더믹스트콘크리트 또는 아스팔트콘크리트 제조업자

(2) 제6조의4(건설기술자의 업무정지 등)

① 국토해양부장관은 건설기술자가 다음 각 호의 어느 하나에 해당하면 2년 이내의 기간을 정하여 건설공사 또는 건설기술용역 업무의 수행을 정지시킬 수 있다
6. 제24조제2항에 따른 품질시험 또는 검사를 하지 아니한 경우

(3) 제21조의4(건설공사 등의 부실측정)

① 국토해양부장관, 발주청과 건설공사의 허가・인가・승인 등을 한 행정기관의 장은 다음 각 호의 어느 하나에 해당하는 자가 설계 등 용역, 「건축사법」제2조제3호에 따른 설계, 같은 조 제4호에 따른 건설공사의 감리 또는 건설공사를 성실히 수행하지 아니함으로써 부실공사가 발생하거나 발생할 우려가 있는 경우 및 타당성을 조사할 때 수요예측을 고의 또는 중대한 과실로 부실하게 하여 발주청에 손해가 끼친 경우 국토해양부장관, 발주청과 건설공사의 허가・인가・승인 등을 한 행정기관의 장은 다음 각 호의 어느 하나에 해당하는 자가 설계 등 용역,

(4) 제33조(감리원의 업무정지 등)

① 국토해양부장관은 감리원이 다음 각 호의 어느 하나에 해당하면 2년 이내의 기간을 정하여 책임감리 등의 업무의 정지를 명할 수 있다
1. 책임감리 등을 성실히 수행하지 아니함으로써 건설공사의 주요 구조부가 부실하게 되었거나 일반인에게 위해를 끼친 경우
제2장 품질관리 일반

2. 책임감리 등을 성실하게 수행하지 아니함으로써 건설업자 또는 주택건설등록업자가 규격에 미달하거나 부적합한 건설자재·부재를 사용하여 시공한 경우

3. 품질관리 지도·감독을 성실하게 수행하지 아니함으로써 건설업자 또는 주택건설등록업자가 제24조에 따른 품질관리계획 또는 품질시험계획에 따라 품질시험 또는 검사를 하지 아니하거나 품질시험의 성과를 조작한 경우

4. 건설공사가 설계도서와 그 밖의 관계 서류의 내용대로 시공되는지 여부에 대한 확인을 소홀히 하여 부실공사가 되거나 부실공사가 될 우려가 있을 경우

5. 제23조의2제3항에 따라 시공자가 작성한 시공 상세도면을 검토하지 아니하거나 시공자가 시공 상세도면을 작성하지 아니하고 시공하는 것을 묵인한 경우

6. 제27조제6항에 따른 감리보고서를 제출하지 아니하거나 감리보고서에 해당 건설공사의 주요 구조물에 대한 시공·검사·시험 등의 내용을 누락하거나 거짓으로 작성한 경우

나. 건설기술관리법 시행규칙

(1) 제10조(건설기술자의 업무정지기준) : 별표3 개별기준 바항
가) 품질시험을 제38조에 따른 품질시험기준에 따른 시험빈도의 2분의 1 이상을 실시하지 아니하거나 성과를 조작한 때 :
1차 경고, 2차 업무정지 1월, 3차 업무정지 2월, 4차 업무정지 3월
나) 검사를 실시하지 아니하거나 성과를 조작한 때 :
1차 경고, 2차 업무정지 1월, 3차 업무정지 2월, 4차 업무정지 3월
다) 시험횟수, 시험실면적 및 시험·검사요원이 제38조에 따른 기준에 미달하여 시정지를 받았으나 정당한 사유 없이 이를 이행하지 아니한 때 :
업무정지 1월
(2) 제28조제1항(건설공사 등의 부실측정기준 등) : 별표10의 5호

(가) 건설업자ㆍ주택건설등록업자 및 건설기술자 등에 대한 부실발견 측정기준

<table>
<thead>
<tr>
<th>번호</th>
<th>주 요 부 실 내 용</th>
<th>벌점</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>○ 토공사의 부실
- 설계도서(관련기준을 포함한다) 및 다른 기초글자와 절토·성토 등으로 인하여 토사붕괴 또는 지반침하가 발생한 경우</td>
<td>2또는3</td>
</tr>
<tr>
<td></td>
<td>○ 콘크리트면의 균열발생
- 구조물의 허용 균열폭보다 큰 균열이 발생했으나 구조검토를 하지 아니한 경우</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>○ 구조물의 허용 균열폭보다 작은 균열이 발생하였으나 균열의 진행 여부에 대한 관리와 보수·보강을 하지 아니한 경우</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>○ 청근의 배근·조립 및 강구조의 조립·용접·시공 상태의 불량
- 주요 구조부의 시공 불량으로 부재당 보수·보강이 3곳 이상 필요한 경우</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>○ 시공 상세도면 작성의 소홀
- 주요 구조부 시공 상세도면의 작성을 소홀히 하여 시공보완이 필요한 경우</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>○ 품질관리계획 또는 품질시험계획의 수립 및 실시의 미흡
- 품질관리계획 또는 품질시험계획을 수립할 때 그 내용의 일부를 누락하거나 기준에 미달하여 보완이 필요한 경우</td>
<td>2또는3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1또는2</td>
</tr>
<tr>
<td>1.4</td>
<td>○ 시험실의 규모·시험장비 또는 품질관리자 확보의 미흡
- 품질관리계획 또는 품질시험계획의 실시가 미흡하여 보완이 필요한 경우</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>○ 시험실의 규모·시험장비 또는 품질관리자 확보의 미흡
- 품질관리계획 또는 품질시험계획의 수립 및 실시의 미흡
- 품질관리계획 또는 품질시험계획을 수립할 때 그 내용의 일부를 누락하거나 기준에 미달하여 보완이 필요한 경우</td>
<td>2또는3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1또는2</td>
</tr>
<tr>
<td>1.5</td>
<td>○ 시험실의 규모·시험장비 또는 품질관리자 확보의 미흡
- 시험장비를 갖추지 않거나 품질관리자를 배치하지 않은 경우</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>○ 시험실·장비나 품질관리자에 대한 기준에 미달한 경우</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1.7</td>
<td>○ 콘크리트의 타설 및 양생과정의 소홀
- 콘크리트 배합시험을 실시하지 않은 경우, 콘크리트 타설계획을 수립하지 않은 경우, 거푸집 해체시기 및 타설순서를 준수하지 않은 경우</td>
<td>2또는3</td>
</tr>
</tbody>
</table>

- 13 -
제2장 품질관리 일반

<table>
<thead>
<tr>
<th>번호</th>
<th>주 요 부 실 내 용</th>
<th>벌점</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.17</td>
<td>슬럼프테스트, 염분함유량시험, 압축강도시험 또는 양생관리를 실시하지 않은 경우, 생산·도착시간 및 타설 완료시간을 기록·관리하지 아니한 경우, 기준을 초과하여 레미콘물타기를 한 경우</td>
<td>1또는2</td>
</tr>
<tr>
<td>1.21</td>
<td>계측관리의 불량
-계측장비를 설치하지 않은 경우 또는 계측장비가 작동하지 않는 경우
-특별시방서의 규정상 계측횟수가 미달하거나 잘못 계측한 경우
-측정기한이 초과하는 등 계측관리가 소홀한 경우</td>
<td>3
2
1</td>
</tr>
</tbody>
</table>

(나) 감리전문회사 및 감리원에 대한 부실벌점 측정기준

<table>
<thead>
<tr>
<th>번호</th>
<th>주 요 부 실 내 용</th>
<th>벌점</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>시공상세도면에 대한 검토의 소홀
-주요구조부 시공상세도면의 검토를 소홀히 하여 보완시공이 필요한 경우
-기타 구조부 시공상세도면의 검토를 소홀히 하여 보완시공이 필요한 경우</td>
<td>2또는3
1</td>
</tr>
<tr>
<td>2.7</td>
<td>품질관리계획(품질시험계획)의 수립과 시험성과에 관한 검토·확인의 불철저
-계획의 수립 또는 성과에 대한 검토·확인을 실시하지 않은 경우, 시공자가 시험장비를 갖추지 아니하거나 품질관리자 를 배치하지 않았는데도 시정지시 등 적정한 조치를 취하지 않은 경우</td>
<td>3
2
1</td>
</tr>
</tbody>
</table>
제2장 품질관리 일반

<table>
<thead>
<tr>
<th>번호</th>
<th>주 요 부 실 내 용</th>
<th>벌 점</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8</td>
<td>사용자재 적합성의 검토·확인의 소홀</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-레이콘·철근 등 주요자재 품질확인을 소홀히 한 경우</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-기타자재의 품질확인을 실시하지 아니한 경우</td>
<td>1</td>
</tr>
<tr>
<td>2.10</td>
<td>기록유지 및 보고의 소홀</td>
<td>1또는2</td>
</tr>
<tr>
<td></td>
<td>-감리업무수행지침서 등에 의한 기록유지 또는 보고의 소홀로 인하여 계획공정에 차질 또는 민원이 발생하거나 보완시공이 필요한 경우</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>감리업무의 소홀 등</td>
<td>2또는3 1또는2</td>
</tr>
<tr>
<td></td>
<td>-감리원의 자격미달 및 인원부족이 발생한 경우(감리전문회사만 해당한다)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-감리원이 현장을 무단으로 이탈한 경우(감리원만 해당한다)</td>
<td></td>
</tr>
</tbody>
</table>

다. 건설산업기본법

(1) 건설산업기본법 제82조 (영업정지 등)
① 국토해양부장관은 건설업자가 다음 각 호의 어느 하나에 해당하면 6개월 이내의 기간을 정하여 그 건설업자의 영업정지를 명하거나 영업정지를 갈음하여 5천만원 이하의 과징금을 부과할 수 있다.
⑥ 다목 「건설기술관리법」 제24조에 따른 품질시험 또는 검사를 성실히 수행하지 아니한 때.
제2장 품질관리 일반

Ⅱ. 품질시험 및 검사

1. 품질시험 및 검사의 실시

가. 건설업자 및 주택건설등록업자는 건설공사의 품질확보를 위하여 품질 및 공정관리 등 건설공사의 품질관리계획 또는 시험시설 및 인력 등 건설공사의 품질시험계획을 수립하고 이에 따라 품질시험 및 검사를 하여야 한다. (건설기술관리법 제24조제2항)

나. 품질시험 및 검사를 하거나 대행하는 자는 별지 제33호 서식의 품질시험 검사대장에 품질시험 검사의 결과를 적되, 전자적 처리가 불가능한 특별한 사유가 없으면 전자적 처리가 가능한 방법으로 작성 관리하여야 한다. (건설기술관리법 시행규칙 제39조제1항)

다. 건설공사현장에서 하는 것이 적절한 품질시험 및 검사는 건설공사현장에서 하여야 하며, 구조물의 안전에 중요한 영향을 미치는 시험종목의 품질시험을 실시할 때에는 발주자가 확인하여야 한다. (건설기술관리법 시행규칙 제39조제2항)

2. 품질시험 및 검사기준(영 제80조제2항)

가. 한국산업표준(KS) 또는 국토해양부장관이 정하여 고시하는 품질시험 기준

나. 건설공사 설계 및 시공기준(법 제34조제1항)

(1) 건설공사 설계기준

(2) 건설공사 시공기준 및 표준시행서 등

(3) 그 밖에 건설공사의 관리에 필요한 사항

- 16 -
3. 품질시험 및 검사를 실시하지 아니할 수 있는 재료(영 제80조제3항)
 가. 품질검사전문기관의 시험성적서가 제출되는 재료. 이 경우 시험성적서가 제출되는 재료는 발주자 또는 감리원의 봉인 또는 확인을 거쳐시험한 것을 한정한다.
 나. 산업표준화법에 따른 한국산업표준 인증제품(K.S 인증제품)
 다. 주택법 등 관계법령에 따라 품질검사를 받았거나 품질을 인증받은 재료
 라. 다만, 시간경과 또는 장소이동 등으로 인하여 재료의 품질 변화가 우려되어 발주자가 품질시험 또는 검사가 필요하다고 인정하는 경우에는 그러하지 아니하다.

4. 품질시험기준에 명시되지 아니한 자재
 가. 품질시험기준에 명시되지 아니한 자재는 당해 공사의 설계도서에 제시된 시험방법 및 빈도에 따라 품질을 확인하여야 한다.

5. 건설공사 품질관리를 위한 시설 및 품질관리자 배치기준
 가. 시험·검사항비 및 인력기준(시행규칙 제38조제2항, 별표 12)

<table>
<thead>
<tr>
<th>대상공사 구 분</th>
<th>공사 규모</th>
<th>시험·검사항비</th>
<th>시험실 규모</th>
<th>품질관리자</th>
</tr>
</thead>
<tbody>
<tr>
<td>특급품질관리대상공사</td>
<td>영 제79조제1항제1호 및 제2호에 따라 품질관리계획을 수립하는 건설공사로 총공사비가 100억원 이상인 건설공사 또는 연면적 5만m²이상인 대중이용건축물의 건설공사</td>
<td>영 제80조제2항에 따른 품질시험 및 검사를 실시하는 데에 필요한 시험·검사항비</td>
<td>100m² 이상</td>
<td>가. 특급품질관리자 1명 이상</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>나. 중급품질관리자 이상의 품질관리자 2명 이상</td>
</tr>
<tr>
<td>고급품질관리대상공사</td>
<td>영 제79조제1항제1호 및 제2호에 따라 품질관리계획을 수립하는 건설공사로 특급품질관리대상공사가 아닌 건설공사</td>
<td>영 제80조제2항에 따른 품질시험 및 검사를 실시하는 데에 필요한 시험·검사항비</td>
<td>50m² 이상</td>
<td>가. 고급품질관리자 이상의 품질관리자 1명 이상</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>나. 중급품질관리자 이상의 품질관리자 2명 이상</td>
</tr>
</tbody>
</table>
제2장 품질관리 일반

<table>
<thead>
<tr>
<th>대상공사 구분</th>
<th>공사 규모</th>
<th>시험・검사장비</th>
<th>시험실 규모</th>
<th>품질관리자</th>
</tr>
</thead>
<tbody>
<tr>
<td>중급품질관리대상 공사</td>
<td>총공사비가 100억원 이상인 건설공사 또는 연면적 5,000㎡ 이상인 다중이용건축물의 건설공사로서 특급 및 고급 품질관리 대상 공사가 아닌 건설공사</td>
<td>영 제80조제2항에 따른 품질시험 및 검사를 실시하는 테에 필요한 시험・검사장비</td>
<td>30㎡ 이상</td>
<td>가. 중급품질관리자 이상의 품질관리자 1명 이상 나. 초급품질관리자 이상의 품질관리자 1명 이상</td>
</tr>
<tr>
<td>초급품질관리대상 공사</td>
<td>영 제79조제2항에 따른 품질시험계획을 수립하여야 하는 건설공사로서 중급품질관리대상 공사가 아닌 건설공사</td>
<td>영 제80조제2항에 따른 품질시험 및 검사를 실시하는 테에 필요한 시험・검사장비</td>
<td>발주자와 계약한 면 적</td>
<td>초급품질관리자 이상의 품질관리자 1명 이상</td>
</tr>
</tbody>
</table>

※ 비고
발주청 또는 건설공사의 허가・인가・승인 등을 한 행정기관의 장이 특히 필요하다고 인정하는 경우에는 공사의 종류・규모 및 현지실정과 법 제25조에 따른 국・공립시험기관 또는 품질검사전문기관의 시험・검사대행의 정도 등을 고려하여 시험실 규모 또는 품질관리 인력을 조정할 수 있다.

나. 품질관리자의 자격인정범위

<table>
<thead>
<tr>
<th>등급</th>
<th>학력・경력 자</th>
<th>기술 자격 자</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 특급품질관리자</td>
<td>박사학위를 가진 사람으로서 3년 이상 품질관리업무를 수행한 사람</td>
<td>기술사</td>
</tr>
<tr>
<td></td>
<td>석사학위를 가진 사람으로서 9년 이상 품질관리업무를 수행한 사람</td>
<td>기사자격을 가진 사람으로서 10년 이상 품질관리업무를 수행한 사람</td>
</tr>
<tr>
<td></td>
<td>학사학위를 가진 사람으로서 12년 이상 품질관리업무를 수행한 사람</td>
<td>산업기사 자격을 가진 사람으로서 13년 이상 품질관리업무를 수행한 사람</td>
</tr>
<tr>
<td></td>
<td>전문대학을 졸업한 사람으로서 15년 이상 품질관리업무를 수행한 사람</td>
<td>건설재료시험기사 자격을 가진 사람으로서 8년이상 품질관리업무를 수행한 사람</td>
</tr>
<tr>
<td></td>
<td>고등학교를 졸업한 사람으로서 18년 이상 품질관리업무를 수행한 사람</td>
<td>건설재료시험산업기사 자격을 가진 사람으로서 11년이상 품질관리업무를 수행한 사람</td>
</tr>
<tr>
<td></td>
<td>영 제90조제1항에 따른 국공립시험기관 또는 범 법 제25조제1항에 따른 품질검사전문기관에서 10년이상 품질관리업무를 담당한 사람</td>
<td>건설재료시험기능사 자격을 가진 사람으로서 13년이상 품질관리업무를 수행한 사람</td>
</tr>
</tbody>
</table>
제2장 품질관리 일반

<table>
<thead>
<tr>
<th>동급</th>
<th>학력·경력자</th>
<th>기술자격자</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.고급 품질관리자</td>
<td>박사학위를 가진 사람으로서 1년이상 품질관리업무를 수행한 사람
석사학위를 가진 사람으로서 6년이상 품질관리업무를 수행한 사람
학사학위를 가진 사람으로서 9년이상 품질관리업무를 수행한 사람
전문대학을 졸업한 사람으로서 12년이상 품질관리업무를 수행한 사람
고등학교를 졸업한 사람으로서 15년이상 품질관리업무를 수행한 사람
영 제90조제1항에 따른 국공립시험기관 또는 법제25조제1항의 규정에 의한 품질시험검사전문기관에서 7년이상 품질관리업무를 담당한 사람</td>
<td>기사자격을 가진 사람으로서 7년이상 품질관리업무를 수행한 사람
산업기사 자격을 가진 사람으로서 10년이상 품질관리업무를 수행한 사람
건설재료시험기사 자격을 가진 사람으로서 5년이상 품질관리업무를 수행한 사람
건설재료시험산업기사 자격을 가진 사람으로서 10년이상 품질관리업무를 수행한 사람
영 제90조제1항에 따른 국공립시험기관 또는 법제25조제1항의 규정에 의한 품질시험검사전문기관에서 7년이상 품질관리업무를 담당한 사람</td>
</tr>
<tr>
<td>3.중급 품질관리자</td>
<td>석사학위를 가진 사람으로서 3년이상 품질관리업무를 수행한 사람
학사학위를 가진 사람으로서 6년이상 품질관리업무를 수행한 사람
전문대학을 졸업한 사람으로서 9년이상 품질관리업무를 수행한 사람
고등학교를 졸업한 사람으로서 12년이상 품질관리업무를 수행한 사람
영 제90조제1항에 따른 국공립시험기관 또는 법제25조제1항의 규정에 의한 품질시험검사전문기관에서 5년이상 품질관리업무를 담당한 사람</td>
<td>기사의 자격을 가진 사람으로서 4년이상 품질관리업무를 수행한 사람
산업기사의 자격을 가진 사람으로서 7년이상 품질관리업무를 수행한 사람
건설재료시험기사의 자격을 가진 사람으로서 5년이상 품질관리업무를 수행한 사람
건설재료시험산업기사 자격을 가진 사람으로서 7년이상 품질관리업무를 수행한 사람
건설재료시험기능사 자격을 가진 사람으로서 7년이상 품질관리업무를 수행한 사람</td>
</tr>
<tr>
<td>4.초급 품질관리자</td>
<td>학사학위를 가진 사람으로서 1년이상 품질관리업무를 수행한 사람
전문대학을 졸업한 사람으로서 1년이상 품질관리업무를 수행한 사람
고등학교를 졸업한 사람으로서 3년이상 품질관리업무를 수행한 사람
영 제90조제1항에 따른 국공립시험기관 또는 법제25조제1항의 규정에 의한 품질시험검사전문기관에서 2년이상 품질관리업무를 담당한 사람</td>
<td>기사의 자격을 가진 사람으로서 1년이상 품질관리업무를 수행한 사람
산업기사의 자격을 가진 사람으로서 1년이상 품질관리업무를 수행한 사람
건설재료시험기사· 건설재료시험산업기사· 건설재료시험기능사의 자격을 가진 사람</td>
</tr>
</tbody>
</table>

※ 비고: 학력·경력자 및 기술자격자에 대한 해당 전공학과의 범위, 경력 인정 방법 등은 영 제4조 및 영 별표1에 따라 국토해양부장관이 정하는 바에 따른다.
제2장 품질관리 일반

□ 시공관리업무란 ?

건설공사의 현장에서 공사의 설계서 검토·조정, 시공, 공정 또는 품질의 관리, 검사·검측·감리, 기술지도 등 건설공사의 시공과 직접 관련되어 행하여지는 업무를 말한다. (건설산업기본법 시행령 별표 5)

□ 건설공사(건설산업기본법 제2조4항)란 ?

토목공사·건축공사·산업설비공사·조경공사 및 환경시설공사 등 시설물 설치·유지·보수하는 공사(시설물을 설치하기 위한 부지조성공사를 포함한다), 기계설비 기타 구조물의 설치 및 해체공사 등을 말한다. 다만, 다음 각목의 1에 해당하는 공사를 포함하지 아니한다.

가. 전기공사업법에 의한 전기공사
나. 정보통신공사업법에 의한 정보통신공사
d. 소방시설공사업법에 의한 소방시설공사
라. 문화재보호법에 의한 문화재수리공사

□ 건설사업관리(건설산업기본법 제2조6항)란 ?

건설공사에 관한 기획·타당성조사·분석·설계·조달·계약·시공관리·감리·평가·사후관리 등에 관한 관리업무의 전부 또는 일부를 수행하는 것을 말한다.

6. 품질시험 및 검사의 대행

가. 근거 : 건설기술관리법 제25조1항

발주자, 건설업자 또는 주택건설등록업자는 대통령령으로 정하는 국공립시험기관 또는 국토해양부장관에게 등록한 자(이하 "품질검사전문기관"이라 한다)로 하여금 건설공사의 품질관리에 따른 시험·검사 등을 대행하게 할 수 있다.

나. 대행기관(2011. 9. 30 현재)

(1) 국공립시험기관(서울특별시품질시험소 등 50 개소)

※ 자격요건 : 시행령 90조에 의거 대통령령이 정하는 기관

1) 지방국토관리청
2) 지방중소기업청
3) 지정부 기술표준원
4) 특별시·광역시·도 및 특별자치도의 건설시험분야 시험소 및 사업소

- 20 -
제2장 품질관리 일반

5) 국방부 시설본부
6) 조달청 중앙보급창
7) 지방해양항만청
8) 국공립대학이 설립한 건설시험 관련 연구소

(2) 품질검사전문기관(146개소)
※ 자격요건 : 시행령 제91조의 규정에 의하여 국토해양부장관에게 등록
1) 한국수자원공사 및 한국농어촌공사
2) 인천국제공항공사
3) 한국건설생 활환경시험연구원 등

다. 대행 의뢰 방법

(1) 건설공사의 품질시험 및 검사의 대행 의뢰하려는 경우에는 별지 제42호 서식의 품질시험 검사의뢰서를 제출하여야 한다. (규칙 제46조제1항)
(1) 대행을 의뢰하려는 경우에는 그 의뢰 내용에 대하여 미리 당해 건설 공사의 발주자 또는 그 위임을 받은 자의 확인을 받아야 하며, 품질 시험 및 검사의 대행을 의뢰하기 위하여 시료를 채취하였을 때에는 발주자 또는 그 위임을 받은 자의 봉인을 받아야 한다. (규칙 제46조 제2항)
(3) 품질검사전문기관이 실시한 품질시험 및 검사의 성과는 해당 목적 외에 다른 목적으로 사용해서는 아니 된다. (규칙 제40조제2항)
(4) 건설업체 또는 주택건설등록업자는 품질검사전문기관에 품질시험 및 검사 등을 대행시키는 경우에는 해당 건설공사의 품질시험비용을 부담하여야 한다. (규칙 제41조제3항)
7. 품질관리계획과 품질시험계획의 비교

<table>
<thead>
<tr>
<th>구분</th>
<th>품질관리계획의 적정성 확인</th>
<th>품질시험계획의 이행 확인</th>
</tr>
</thead>
<tbody>
<tr>
<td>관련법규</td>
<td>건설기술관리법 제24조</td>
<td>건설기술관리법 시행령 제78조, 제79조, 제81조</td>
</tr>
<tr>
<td></td>
<td>건설기술관리법 시행규칙 제38조, 제39조, 제42조</td>
<td></td>
</tr>
<tr>
<td></td>
<td>건설기술관리법 시행규칙 제80조, 제83조</td>
<td>건설기술관리법 시행규칙 제36조</td>
</tr>
<tr>
<td>계획대상</td>
<td>전면책임감리 대상 건설공사로서 총공사비가 500억원 이상인 건설공사</td>
<td>총공사비 5억원 이상인 토목공사</td>
</tr>
<tr>
<td></td>
<td>다중이용건축물의 건설공사로서 연면적이 3만㎡ 이상인 건축물의 건설공사</td>
<td>연면적 660㎡이상인 건축물의 건축공사</td>
</tr>
<tr>
<td></td>
<td>해당 건설공사의 계약에 품질관리계획의 수립이 명시되어 있는 건설공사</td>
<td>총공사비 2억원 이상인 전문공사</td>
</tr>
<tr>
<td>작성자</td>
<td>건설업자 및 주택건설등록업자</td>
<td>건설업자 및 주택건설등록업자</td>
</tr>
<tr>
<td>내용</td>
<td>한국산업규격 케이에스 큐 아이에스오(KSQISO) 9001에 적합 (건설공사정보 등 26개 항목)</td>
<td>시험계획 횟수</td>
</tr>
<tr>
<td></td>
<td>시행령 제80조</td>
<td>시험시설 및 인력배치 등</td>
</tr>
<tr>
<td></td>
<td></td>
<td>시행규칙 제36조</td>
</tr>
<tr>
<td>확인시기</td>
<td>연 1회 이상</td>
<td>연 1회 이상</td>
</tr>
<tr>
<td>확인인</td>
<td>발주 또는 허가, 인가, 승인한 행정기관의 장</td>
<td>발주자</td>
</tr>
<tr>
<td></td>
<td>서울특별시품질시험소장 (수수료 : 1,388,640원)</td>
<td>서울특별시품질시험소장 (수수료 : 435,710원)</td>
</tr>
<tr>
<td>확인내용</td>
<td>품질관리계획 수립 및 적정여부 확인</td>
<td>품질시험계획 수립 및 이행여부 확인</td>
</tr>
</tbody>
</table>
9. ISO 소개
가. 명칭
1) 국제표준화기구(International Organization for Standardization)
나. 설립 : 1947년 2월 23일(사무국은 스위스 제네바에 위치)
다. 목적
1) 제품 및 서비스의 국제적 교환을 촉진하기 위한 국제규격의 제정 및 보급
2) 기술발전을 위한 정보, 지식의 국제간 교류촉진
라. 지위 : 비정부간 기구
마. ISO 품질시스템 규격
- KS Q ISO 9001 : 2009 품질경영시스템
- KS I ISO 14001 : 2009 환경영영상시스템
- KS Q ISO/IEC 17025 : 2009 시험 및 교정기관의 자격에 대한 일반 요구사항

10. 국제공인시험기관 인정제도
가. 한국인정기구(KOLAS)
(KOLAS : Korea Laboratory Accreditation Scheme)
1) 설립일자 : 1992. 12
2) 조직형태 : 정부기구
3) KOLAS 장 : 지식경제부 기술표준원장
4) 인정업무
 - 시험기관, 교정기관, 검사기관, 표준물질생산기관 인정
 - 인정기구 운영에 관한 대외 국제업무
제2장 품질관리 일반

나. 국제공인시험 기관의 체계

ILAC
○ 명칭 : 국제시험기관인정협력체
 (International Laboratory Accreditation Cooperation)
○ 설립 : 1977. 덴마크(본부-호주)
○ 목적
 - 시험소 인정제도에 관한 정보교환
 - 무역장벽 축소 및 국제무역 지원

APLAC
○ 명칭 : 아시아시험기관인정협력체
 (Asia-Pacific Laboratory Accreditation Cooperation)
○ 설립 : 1992. 홍콩에서 설립(본부-호주)
○ 목적
 - 아시아 지역의 시험소 인정제도의 공유
 - 다자간 상호 인정협정

KOLAS
○ 명칭 : KOLAS(한국 인정기구)
 (Korea Laboratory Accreditation Scheme)
○ 설립 : '92. 12
 (관련법-국가표준기본법 23조)
○ 역할
 - 국제공인시험기관 지정 및 사후관리
 - 국가간 시험소 상호인정 추진
 - 기타 국제협력을 위한 제반 활동

서울특별시 품질시험소
○ KOLAS(한국 인정기구)에서 인정한
 국제공인시험기관
 ※ 인정항목 21개

다. KOLAS의 역할
1) 적합성평가 총괄기구
 - 시험, 검사, 교정기관 인정 및 관련 활동
 - 인정기구 운영에 관한 대외 국제업무
제2장 품질관리 일반

2) 국제 상호인정 협정 체결기반 확립
 - 첨단장비 지원 및 인력양성 사업 등 인프라 구축
3) 각 부처 시험기관 지정제도의 KOLAS 수용 촉구
4) 적합성평가의 신뢰성 제고
 - 관련 서비스의 국내외 통용 촉진
 - 국가와 국민의 이익 증진

라. 국제공인시험기관이란
 지식경제부 기술표준원의 한국인정기구(KOLAS)에서 KS Q ISO/IEC
 17025에 따라 국제공인시험기관 평가사에 의해 시험기관의 경영시스템과
 기술능력을 평가받아 특정분야에 대한 시험능력이 있다는 것을 국제적
 으로 인정받은 시험기관

마. 국제공인시험기관의 특징
 1) 공인기관의 시험 결과에 대한 국제적 공인보장
 2) 시험성적서에 대한 신뢰성 확보로 대고객 이미지 향상
 3) 시험기관의 전문성 및 기술력 입증

바. 국제공인시험기관 인정 기본요건
 1) 법적으로 책임질 수 있는 조직
 2) 직원의 기술적 능력(자격)
 3) 시험장비의 적정성, 교정, 보수
 4) 적절한 시설 및 환경조건
 5) 시험품목의 샘플링, 취급, 수송
 6) 적절한 시설 및 환경조건
 7) 시험방법의 타당성과 적절성
 8) 국가 또는 국제표준에 대한 측정 및 교정의 소급성
 9) 숙련도 시험에의 참가
 10) 검증된 표준물질 사용과 활용 등
Ⅲ. 품질관리계획

□ 품질관리계획 이행절차

계획수립
(건설기술관리법 제24조 제2항)

○ 건설업자 또는 주택건설등록업자

제출
(건기법 시행령 제81조 제1항, 제2항)

○ 공사감독자 또는 감리원의 확인을 받아 공사 착공 전 발주자에게 제출하여야 한다.
○ 발주자 중 발주청이 아닌 자는 품질관리계획서를 허가 진 행기관의 장에게 제출하여야 한다.

검토
(건기법 시행령 제81조 제3항)

○ 발주자 또는 행정기관의 장은 품질관리계획을 검토하여 보완하여야 할 사항이 있는 경우 보완 요구

확인
(건설기술관리법 제24조 제3항)
(서울특별시 건설공사 품질관리 등에 관한 조례 제10조 제3항)

○ 건설공사의 허가, 인가, 승인하였거나 발주를 한 행정 기관의 장은 품질관리를 적정하게 실시 하는지 여부 확인(연 1회 이상, 준공 2개월 전까지)
○ 품질관리업체의 적정수행여부를 확인할 수 없을 때에는 서울특별시품질시험소장에게 대행 의뢰

완료
(건기법 시행령 제78조 제4항)
(서울특별시 건설공사 품질관리 등에 관한 조례 제10조 제4항)

○ 확인결과 시정이 필요하다고 인정하는 경우 건설업자 또는 주택건설등록업자는 지체 없이 이를 시정 후 그 결과를 발주자에게 통보하여야 한다.
제2장 품질관리 일반

1. 대상공사의 범위(영 제79조 및 시행규칙 제37조)

가. 전면책임감리 대상인 건설공사로서 총공사비 500억원이상 건설공사
나. 다중이용건축물의 건설공사로서 연면적 30,000㎡이상인 건축물의
 건설공사
※ 다중이용건축물 : 건축법 시행령 제5조제4항제4호
- 문화 및 집회시설(전시장 및 동·식물원을 제외한다), 종교시설,
 판매시설, 운수시설(여객용 시설만 해당한다), 의료시설 중 종합
 병원 및 숙박시설 중 관광숙박시설의 용도에 쓰는 바닥면적의
 합계가 5천 제곱미터 이상인 건축물
- 16층 이상인 건축물
다. 당해 건설공사의 계약에 품질관리계획의 수립이 명시되어 있는 건
설공사
라. 원자력시설공사와 건설공사상의 성질상 품질관리계획 또는 품질시
 험계획을 수립할 필요가 없다고 인정되는 공사(조경 식재공사, 가
 설물 설치공사, 철거공사)는 품질관리계획 또는 품질시험계획을 수
립하지 아니할 수 있다. 다만 설계도서에서 품질관리계획 또는 품
질시험계획을 수립하도록 되어 있는 조경 식재공사, 가설물설치공
사, 철거공사에 대하여는 품질관리계획 또는 품질시험계획을 수립
하고 품질시험 및 검사를 실시하여야 한다.

2. 품질관리계획의 수립(법 제24조제2항)

가. 건설업자 및 주택건설등록업자는 건설공사의 품질확보를 위하여
 품질관리계획 또는 품질시험계획을 수립하고 이에 따라 품질시험
 및 검사를 실시하여야 한다.
나. 건설업자 및 주택건설등록업자에 고용되어 품질관리 업무를 수행
하는 건설기술자는 품질관리계획에 따라 성실히 그 업무를 수행
하여야 한다.
다. 발주자는 품질시험 및 검사를 실시하여야 하는 대상공종 및 재료
(자재·부재 포함)를 설계도서에 구체적으로 명시하여야 한다. (영
 제78조제1항)

- 27 -
3. 품질관리계획의 수립기준(영 제80조제1항)
 가. 품질관리계획은 한국산업표준인 케이에스 큐 아이에스오[KS Q ISO 9001] 등에 따라 국토해양부장관이 고시하는 기준에 적합하여야 한다.

4. 품질관리계획의 수립절차(영 제81조)
 가. 건설업자 또는 주택건설등록업자가 품질관리계획을 수립한 때에는 공사감독자 또는 감리원의 검토·확인을 받아 건설공사를 착공(건설공사 현장의 부지정리 및 가설사무소의 설치 등의 공사 준비는 착공으로 보지 아니한다)하기 전에 발주자에게 제출하여 승인을 받어야 한다.
 나. 품질관리계획 또는 품질시험계획의 내용을 변경한 때에도 또한 같다.
 다. 건설공사의 발주자중 발주청이 아닌 자는 건설업자 또는 주택건설등록업자가 제출한 품질관리계획 및 품질시험계획의 내용을 해당 건설공사의 허가 등을 한 행정기관의 장에게 제출하여야 한다.
 라. 품질관리계획 또는 품질시험계획을 제출받은 발주자 또는 행정기관의 장은 품질관리계획 또는 품질시험계획의 내용을 검토하여 보완하여야 할사항이 있는 경우에는 건설업자 또는 주택건설등록업자로 하여금 보완하도록 하여야 한다.

5. 품질관리계획 확인 실시
 가. 확인시기 : 연 1회이상, 준공 2월 전까지(규칙 제42조제1항)
 나. 확인요령 : 규칙 제42조제2항(별표 13)
 다. 발주자가 확인을 한 경우에는 “품질관리 적정성 확인요령”에 따라 그 결과를 서면으로 작성하여야 한다.
 라. 발주자는 확인결과 시정이 필요하다고 인정하는 경우에는 당해 건설업자 또는 주택건설등록업자에게 시정을 요구할 수 있으며.
 마. 시정을 요구받은 건설업자 또는 주택건설등록업자는 지체없이 이를 시정한 후 그 결과를 발주자에게 통보하여야 한다.(영 제78조제4항)
바. 품질관리계획을 수립하여야 하는 건설공사의 허가·인가·승인 등을 하였거나 발주를 한 행정기관의 장 및 대통령령으로 정하는 기관의 장은 건설업자 또는 주택건설등록업자가 수립한 품질관리계획에 따라 품질관리를 적정하게 실시하는지의 여부를 확인할 수 있다.(법 제24조 제3항)
사. 행정기관의 장이 실시한 “품질관리의 적정성 확인”에 대한 결과는 “품질관리 적정성 확인 요령”에 따라 작성하여야 한다.
아. 건설공사의 품질관리가 적정하게 실시되고 있는지를 확인한 자는 그 확인 결과에 따라 필요한 조치를 하여야 한다.(영 제83조제1항)
자. 법 제24조제3항에 따른 품질관리의 적정성이 확인된 해에는 따로 확인을 하지 아니할 수 있다.(규칙 제39조제3항)

7. 서울특별시 건설공사 품질관리 등에 관한 조례 제9조, 제10조

8. 품질관리계획서 작성시 참고

가. 국토해양부 고시 제2010-1043(2010년 12월 27일)호 건설공사 품질관리 지침(10장) 참고
제2장 품질관리 일반

9. 품질관리계획과 KS Q ISO 9001 : 2009 규격의 관계

<table>
<thead>
<tr>
<th>품질관리계획 수립 및 운영요령</th>
<th>KS Q ISO 9001 : 2009 규격</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. 일반사항</td>
<td></td>
</tr>
<tr>
<td>1. 목적</td>
<td>0. 개요,</td>
</tr>
<tr>
<td>2. 적용범위</td>
<td>1. 적용범위, 2. 인용표준</td>
</tr>
<tr>
<td>3. 용어의 정의</td>
<td>3. 용어의 정의</td>
</tr>
<tr>
<td>II. 품질관리주체의 역할</td>
<td></td>
</tr>
<tr>
<td>1. 발주자의 역할(업무)</td>
<td></td>
</tr>
<tr>
<td>2. 감독/감리원 역할(업무)</td>
<td></td>
</tr>
<tr>
<td>3. 시공자의 역할(업무)</td>
<td>41 일반 요구사항, 421 일반사항, 71 제품설명의 기획, 823 프로세스의 모니터링 및 측정</td>
</tr>
<tr>
<td>III. 품질관리계획의 요건</td>
<td></td>
</tr>
<tr>
<td>1. 건설공사 정보</td>
<td>422 품질계획, 52 고객중심</td>
</tr>
<tr>
<td>2. 현장 품질방법 및 품질목표</td>
<td>51 경영자 의지, 53 품질방법, 541 품질목표, 542 품질경영 시스템 기획</td>
</tr>
<tr>
<td>3. 책임 및 권한</td>
<td>551 책임 및 권한, 552 경영대리인</td>
</tr>
<tr>
<td>4. 문서관리</td>
<td>423 문서관리</td>
</tr>
<tr>
<td>5. 기록관리</td>
<td>424 기록관리</td>
</tr>
<tr>
<td>6. 자원관리</td>
<td>61 자원 확보, 621 일반사항, 63 기반구조, 64 업무환경</td>
</tr>
<tr>
<td>7. 설계관리</td>
<td>73 설계 및 개발</td>
</tr>
<tr>
<td>8. 건설공사 수행 준비</td>
<td>52 고객의견, 721 제품과 관련된 요구사항 결정, 722 제품과 관련된 요구사항 검토</td>
</tr>
<tr>
<td>9. 계약변경</td>
<td>722 제품과 관련된 요구사항 검토</td>
</tr>
<tr>
<td>10. 교육훈련</td>
<td>622 적격성, 인식 및 교육훈련</td>
</tr>
<tr>
<td>11. 의사소통</td>
<td>553 내부 의사소통, 723 고객과 의사소통</td>
</tr>
<tr>
<td>12. 기자재의 구매관리</td>
<td>741 구매과정, 742 구매정보, 743 구매한 제품의 검증</td>
</tr>
<tr>
<td>13. 지급자재의 관리</td>
<td>754 고객재산</td>
</tr>
<tr>
<td>14. 하도급 관리</td>
<td>41 일반 요구사항, 741 구매과정, 742 구매정보, 743 구매한 제품의 검증</td>
</tr>
<tr>
<td>15. 공사 관리</td>
<td>751 생산 및 서비스 제품의 관리</td>
</tr>
<tr>
<td>16. 중점 품질관리</td>
<td>752 생산 및 서비스 제품에 대한 프로세스의 실행성확인/타당성 확인</td>
</tr>
<tr>
<td>17. 식별 및 추적</td>
<td>753 식별 및 추적성</td>
</tr>
<tr>
<td>18. 기자재 및 공사 목적물의 보존관리</td>
<td>755 제품의 보존</td>
</tr>
<tr>
<td>19. 검사장비, 측정장비 및 시험장비의 관리</td>
<td>76 모니터링장비 및 측정장비의 관리</td>
</tr>
<tr>
<td>20. 검사 및 시험, 모니터링</td>
<td>81 일반사항, 824 제품의 모니터링 및 측정</td>
</tr>
<tr>
<td>21. 불일치 공사의 관리</td>
<td>83 부적합 제품의 관리</td>
</tr>
<tr>
<td>22. 데이터의 분석</td>
<td>821 고객만족, 84 데이터의 분석</td>
</tr>
<tr>
<td>23. 시정조치 및 예방조치</td>
<td>851 지속적 개선, 852 시정조치, 853 예방조치</td>
</tr>
<tr>
<td>24. 자체 품질점검</td>
<td>81 일반사항, 822 내부점검</td>
</tr>
<tr>
<td>25. 건설공사 운영성과의 검토</td>
<td>56 경영감사, 81 일반사항</td>
</tr>
<tr>
<td>26. 공사준공 및 인계</td>
<td>424 기록관리, 751 생산 및 서비스 제품의 관리, 824 제품의 모니터링 및 측정</td>
</tr>
</tbody>
</table>
품질관리계획 적정성 확인 의뢰서

문서번호 시 행 일 자 년 월 일
수 신 서울특별시품질시험소장 발신 (인)
제 목 주소

서울특별시 건설공사 품질관리 등에 관한 조례 제10조제2항의 규정에
의하여 아래와 같이 품질관리계획 적정성 확인을 의뢰합니다.

<table>
<thead>
<tr>
<th>공사 명</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>공사 개요</td>
<td></td>
</tr>
<tr>
<td>발주자</td>
<td>(담당부서: 전화:)</td>
</tr>
<tr>
<td>감리자</td>
<td>(현장전화:)</td>
</tr>
<tr>
<td>시공자</td>
<td>(현장전화:)</td>
</tr>
<tr>
<td>총 공사비</td>
<td>(도급비:)</td>
</tr>
<tr>
<td>공사기간</td>
<td>년 월 일 ~ 년 월 일 ※월. 일 까지 표시</td>
</tr>
<tr>
<td>현공정</td>
<td>% (000 공종 진행중)</td>
</tr>
</tbody>
</table>

※첨부서류: 1. 품질관리계획서 1부
 2. 당해 공사시방서(특별시방서 포함) 1부.
제2장 품질관리 일반

품질관리계획 적정성 확인 점검표
(규칙 제39조제3항 및 규칙 제42조제2항 관련, 별표13)

1. 점검개요

<table>
<thead>
<tr>
<th>공사명</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>발주자</td>
<td></td>
</tr>
<tr>
<td>시공자</td>
<td></td>
</tr>
<tr>
<td>착공일</td>
<td>준공예정일</td>
</tr>
<tr>
<td>공사위치</td>
<td></td>
</tr>
<tr>
<td>공사금액</td>
<td>도급금액</td>
</tr>
<tr>
<td>공사감독자/감리자</td>
<td>소속: 성명: (인 또는 서명)</td>
</tr>
<tr>
<td>입회자</td>
<td>현장대리인: 성명: (인 또는 서명)</td>
</tr>
<tr>
<td>공사개요</td>
<td></td>
</tr>
<tr>
<td>첨부 (참고자료)</td>
<td></td>
</tr>
<tr>
<td>점검자</td>
<td>소속 및 직위 성명: (인 또는 서명)</td>
</tr>
<tr>
<td>소속 및 직위 성명: (인 또는 서명)</td>
<td></td>
</tr>
<tr>
<td>소속 및 직위 성명: (인 또는 서명)</td>
<td></td>
</tr>
</tbody>
</table>

점검일: 년 월 일
2. 품질관리계획에 대한 점검사항

<table>
<thead>
<tr>
<th>점검항목</th>
<th>점검사항</th>
<th>점검결과</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>가. 건설공사 정보</td>
<td>발주자 요구사항의 결정 및 충족 여부</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 나. 현장 품질방침 및 품질목표 | 1) 현장 품질방침의 수립 여부
2) 현장 품질목표 설정, 추진계획의 수립 및 실행 여부
3) 품질관리계획 실행과 관련하여 전 직원의 참 여를 위한 동기부여 여부 | | |
| 다. 책임 및 권한 | 1) 조직편성 및 적정인력 배치 여부
2) 각 조직 인원의 업무분장 실시 여부 | | |
| 라. 문서관리 | 1) 품질관리계획을 운영하는 방식의 적절성
2) 고객문서와 자료의 비치 및 관리 상태 | | |
| 마. 기록관리 | 품질기록의 보관 및 보호 상태 | | |
| 바. 자원관리 | 1) 품질관리(검사, 시험 등) 업무 수행자의 적격 인력 배치 여부
2) 품질관리에 필요한 자원(시설, 장비, 인력 등의 적정 확보 및 유지 여부 | | |
| 사. 설계관리 | 1) 설계계획의 수립 여부 및 적절성
2) 설계입력 기준의 적절성과 설계 출력물의 관 리여부
3) 설계검토, 설계검증 및 설계타당성 확인의 실 시 여부 및 방법의 적절성 | | |
| 아. 건설공사 수행 준비 | 설계도서, 법규 및 KS 규격 등의 시공 전 검토 여부 | | |
| 자. 계약변경 | 계약변경(설계변경 포함) 관리의 적절성 | | |
| 차. 교육훈련 | 품질에 영향을 미치는 업무를 수행하는 모든 종 사자의 교육훈련 실시 여부 | | |
| 카. 의사소통 | 1) 품질관리계획의 이행과 건설공사 운영을 위한 내·외부 의사소통의 적절성 여부
2) 민원, 발주자(감리자) 불만에 대한 처리 여부 | | |
<p>| 타. 기자재 구매 관리 | 기자재 수급계획의 수립, 검증, 식별, 보관, 재 고관리 및 주기적인 점검실시 여부 | |</p>
<table>
<thead>
<tr>
<th>점검항목</th>
<th>점검 사항</th>
<th>점검결과</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>파. 지급자재의 관리</td>
<td>지급자재 수급계획의 수립, 식별, 검증, 보관 (분실, 손상관리 포함), 재고관리의 적정 수행 여부</td>
<td></td>
<td></td>
</tr>
<tr>
<td>하. 하도급관리</td>
<td>1) 하도급에 대한 선정 및 평가 여부 2) 하도급에 대한 계약 및 이행상태 관리 여부</td>
<td></td>
<td></td>
</tr>
<tr>
<td>가. 공사관리</td>
<td>1) 품질에 영향을 미치는 공종의 파악, 관리계획의 수립 및 이행 여부 2) 안전관리 및 환경관리 여부 3) 시공 상태, 준공도의 관리 여부</td>
<td></td>
<td></td>
</tr>
<tr>
<td>너. 중점품질관리</td>
<td>중점품질관리 대상의 관리 여부</td>
<td></td>
<td></td>
</tr>
<tr>
<td>다. 식별 및 추적</td>
<td>1) 식별 및 추적관리 대상 파악 및 이행 여부 2) 검사 및 시험상태(검사대기, 검사중, 부적합) 식별 여부</td>
<td></td>
<td></td>
</tr>
<tr>
<td>라. 기자재 및 공사목적물의 보존 관리</td>
<td>기자재, 기 시공부위 및 완성된 시설물의 보존 상태</td>
<td></td>
<td></td>
</tr>
<tr>
<td>마. 검사장비, 측정 장비 및 시험장비의 관리</td>
<td>검사장비, 측정장비 및 시험장비 확보, 교정검사 실시 및 교정상태의 식별 여부</td>
<td></td>
<td></td>
</tr>
<tr>
<td>바. 검사 및 시험, 모니터링</td>
<td>1) 검사 및 시험계획에 대한 항목, 합격판정기준, 반도 등의 적절성 2) 자재 및 공정검사의 적기실시 여부와 검사 및 시험결과에 대한 기록의 적절성</td>
<td></td>
<td></td>
</tr>
<tr>
<td>사. 불일치 공사의 관리</td>
<td>불일치 공사(자재 포함), 하자발생에 대한 발주자(감리자)와의 처리방법 협의 및 이행의 적정성</td>
<td></td>
<td></td>
</tr>
<tr>
<td>아. 데이터의 분석</td>
<td>1) 개선을 위한 프로세스의 적절성 여부 2) 발주자(감리자) 불만에 대한 분석의 실시 여부 3) 품질개선을 위한 데이터의 수집, 분석 및 적용에 대한 이행 여부</td>
<td></td>
<td></td>
</tr>
<tr>
<td>자. 시정조치 및 예방조치</td>
<td>품질관리계획 운영과 관련하여 취해진 시정조치 및 예방조치의 적절성</td>
<td></td>
<td></td>
</tr>
<tr>
<td>차. 자체 품질점검</td>
<td>품질관리계획의 적합성, 효과성, 이행성 등에 대한 자체 품질점검을 실시하고 부적합할 경우 및 해당 필요한 조치의 실행 여부</td>
<td></td>
<td></td>
</tr>
<tr>
<td>카. 건설공사 운영성과의 검토</td>
<td>품질관리계획의 운영 전반에 대한 성과적인 성과 검토의 실시 여부</td>
<td></td>
<td></td>
</tr>
<tr>
<td>타. 공사 준공 및 인계</td>
<td>공사 준공 및 인계 관리의 적절성 여부</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IV. 품질시험계획

<table>
<thead>
<tr>
<th>품질시험계획의 이행절차</th>
</tr>
</thead>
<tbody>
<tr>
<td>계획수립</td>
</tr>
<tr>
<td>(건설기술관리법 제24조제2항)</td>
</tr>
<tr>
<td>○ 건설업자 또는 주택건설등록업자</td>
</tr>
<tr>
<td>제출</td>
</tr>
<tr>
<td>(건기법 시행령 제81조제1항)</td>
</tr>
<tr>
<td>○ 공사감독자 또는 감리원의 확인을 받아 공사 착공 전 발주자에게 제출하여야한다.</td>
</tr>
<tr>
<td>○ 발주자중 발주청이 아닌 자는 품질시험계획서를 허가ㆍ인가ㆍ승인한 행정기관의 장에게 제출하여야 한다.</td>
</tr>
<tr>
<td>검토</td>
</tr>
<tr>
<td>(건기법 시행령 제81조제3항)</td>
</tr>
<tr>
<td>○ 발주자 또는 행정기관의 장은 품질시험계획을 검토하여 보완하여야 할 사항이 있는 경우 보완 요구</td>
</tr>
<tr>
<td>확인</td>
</tr>
<tr>
<td>(건기법 시행령 제78조제2항,5항)</td>
</tr>
<tr>
<td>○ 발주자는 품질시험계획에 따라 품질관리업무를 적정하게 수행하고 있는지 여부를 확인(연1회 이상)</td>
</tr>
<tr>
<td>○ 품질관리업무의 직접수행여부를 확인할 수 없을 때에는 서울특별시 품질시험소장에게 대행 의뢰</td>
</tr>
<tr>
<td>완료</td>
</tr>
<tr>
<td>(건기법 시행령 제78조제4항)</td>
</tr>
<tr>
<td>○ 확인결과 시정이 필요하다고 인정하는 경우 건설업자 또는 주택건설등록업자는 지체 없이 이를 시정 후 그 결과를 발주자에게 통보하여야 한다.</td>
</tr>
<tr>
<td>○ 의뢰자는 조치결과를 2월 이내에 시험소장에게 통보하여야 한다.</td>
</tr>
</tbody>
</table>
제2장 품질관리 일반

1. 수립 대상공사의 범위(영 제79조제2항)
 가. 총공사비 5억원이상인 토목공사
 나. 연면적 660㎡이상인 건축물의 건축공사
 다. 총공사비 2억원이상인 전문공사
 ※ 총공사비는 관급 자재비를 포함하되 토지 등의 취득·사용에 따른 보상비를 제외한 금액을 말한다(시행령 제79조)

2. 품질시험계획 수립(영 제79조제2항)
 가. 건설업자 또는 주택건설등록업자는 품질시험계획을 수립하여야 한다.
 나. 품질시험계획의 내용(규칙 제36 별표 11)
 ◦ 개요 ◦ 시험계획 횟수 ◦ 시험시설 ◦ 품질관리자 배치계획

3. 품질시험계획의 이행여부 확인 실시
 가. 발주자는 건설업자 또는 주택건설등록업자가 품질시험계획에 따라 건설공사의 시공 및 사용재료에 대한 품질관리 업무를 적정하게 수행하고 있는지 여부를 확인할 수 있다.(영 제78조제2항)
 나. 발주자가 품질관리업무의 적정수행여부를 확인하고자 하는 때에는 건설업자 또는 주택건설등록업자가 참여할 수 있도록 하여야 한다.
 (영 제78조제3항)
 다. 발주자는 확인 결과 시정이 필요하다고 인정하는 경우에는 당해 건설업자 또는 주택건설등록업자에게 시정을 요구할 수 있으며, 시정을 요구받은 건설업자 또는 주택건설등록업자는 지체 없이 이를 시정한 후 그 결과를 발주자에게 통보하여야 한다.(영 제78조제4항)
 마. 발주자는 품질관리업무의 적정수행 여부의 확인을 국공립시험기관에 의뢰하여 실시할 수 있다.(영 제78조제5항)

4. 서울특별시 건설공사 품질관리 등에 관한 조례 제11조
품질시험계획의 이행확인 의뢰서

문서번호
수신
제목

서울특별시 건설공사 품질관리 등에 관한 조례 제11조제4항의 규정에
의하여 아래와 같이 품질시험계획의 이행확인을 의뢰합니다.

<table>
<thead>
<tr>
<th>공 사 명</th>
<th>공사개요</th>
</tr>
</thead>
<tbody>
<tr>
<td>발 주 자</td>
<td>(담당부서: 전화:)</td>
</tr>
<tr>
<td>감 리 자</td>
<td>(현장전화:)</td>
</tr>
<tr>
<td>시 공 자</td>
<td>(현장전화:)</td>
</tr>
<tr>
<td>총공사비</td>
<td>(도급비:)</td>
</tr>
<tr>
<td>공사기간</td>
<td>년. 월. 일. ~ 년. 월. 일. ※ 월.일까지 기재</td>
</tr>
<tr>
<td>현 공 정</td>
<td>% (ooo 공종 진행중)</td>
</tr>
</tbody>
</table>

첨부서류 : 1. 품질시험계획서 1부
2. 당해 공사시방서(특별시방서 포함) 1부. 끝.
품질시험계획의 이행확인 점검표

1. 점검개요

<table>
<thead>
<tr>
<th>공 사 명</th>
<th>점검일 년 월 일</th>
</tr>
</thead>
<tbody>
<tr>
<td>발 주 자</td>
<td>(담당부서: 전화:)</td>
</tr>
<tr>
<td>감 리 자</td>
<td>(현장전화:)</td>
</tr>
<tr>
<td>시 공 자</td>
<td>(현장전화:)</td>
</tr>
<tr>
<td>공사 기간</td>
<td>년 월 일 ~ 년 월 일 ※ 월.일까지 기재</td>
</tr>
<tr>
<td>공 사 위치</td>
<td></td>
</tr>
<tr>
<td>총 공사 비</td>
<td>도급금액</td>
</tr>
<tr>
<td>공사 감독자 / 감리자</td>
<td>소속: 성명: (인 또는 서명)</td>
</tr>
<tr>
<td>입 회 자</td>
<td>현장대리인: 소속 성명: (인 또는 서명)</td>
</tr>
<tr>
<td>공 사 개 요</td>
<td></td>
</tr>
<tr>
<td>첨 부: 참고자료</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>점 검 자</th>
<th>소속 및 직위 성명 (인 또는 서명)</th>
</tr>
</thead>
<tbody>
<tr>
<td>소속 및 직위 성명 (인 또는 서명)</td>
<td></td>
</tr>
<tr>
<td>소속 및 직위 성명 (인 또는 서명)</td>
<td></td>
</tr>
</tbody>
</table>
2. 품질시험계획에 대한 점검사항(시행규칙 별표 13)

<table>
<thead>
<tr>
<th>점검 사 항</th>
<th>점검 결과</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>가. 품질시험·검사에 필요한 관련 자료의 구비·활용 여부</td>
<td></td>
<td></td>
</tr>
<tr>
<td>나. 품질시험계획 내용의 적정성 여부</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) 주요 자재의 검사 포함 여부</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) 주요 공정의 검사 포함 여부</td>
<td></td>
<td></td>
</tr>
<tr>
<td>다. 품질관리 관련 법령·규정, 품질시험계획에 필요한 품질관리자, 시설 및 장비 등의 적정 확보 여부</td>
<td></td>
<td></td>
</tr>
<tr>
<td>라. 품질시험계획에 의한 품질시험·검사의 적기·적정빈도실시 여부</td>
<td></td>
<td></td>
</tr>
<tr>
<td>마. 품질시험·검사한 성과의 기록유지 여부</td>
<td></td>
<td></td>
</tr>
<tr>
<td>바. 품질시험·검사 장비의 관리 여부</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) 교정검사 실시 및 교정상태의 식별표시</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) 검사장비·측정장비 및 시험장비의 적정관리</td>
<td></td>
<td></td>
</tr>
<tr>
<td>사. 부적합품 및 부적합 공정처리 등의 적정 여부</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ 비고

1. 품질관리계획에 대한 점검사항은 품질관리계획수립 대상공사에만 적용하며, 품질시험계획에 대한 점검사항은 품질시험계획수립 대상공사에 적용한다(단, 품질관리계획 내에 품질시험계획이 포함된 경우에는 품질시험계획에 대한 점검사항을 적용하여 점검할 수 있음)

2. 이 기준은 일반적인 공통사항에 대한 것이므로 당해 공사의 규모·특성·중요도 등에 따라서 필요한 부분을 추가·수정 또는 삭제하여 사용할 수 있다.

- 39 -
제2장 품질관리 일반

V. 품질관리 현장확인 기동반 운영

1. 근거

서울특별시 건설공사 품질관리 등에 관한 조례 제12조

2. 확인대상

가. 서울특별시 행정구역내에서 시행되는 건설공사
나. 서울특별시에서 발주하였거나 허가·인가·승인한 건설공사
다. 서울특별시 자치구청장이 기동점검을 요청하는 건설공사

3. 확인내용

가. 굽지 않은 레미콘의 공기량, 슬립프, 염화물함량 등에 관한 시험
나. 인터록킹 보도블록, 벽돌, 철근 등 사용자재의 적정여부
다. 품질시험 및 검사 이행여부 등
라. 현장 품질관리시험의 지도(시험실의 규모, 인력, 장비의 운영실태 등)

4. 인력 및 시험장비

가. 시험소 직원 1~2명
나. 시험장비 탑재차량 운영
현장품질관리 확인 점검표

| 확인일: 년 월 일 |

| 공 사 명 |
| 공사 위치 |
| 공사 금액 | 도급 금액 |
| 착 공일 | 준공 또는 준공 예정일 |
| 발 주자 |
시 공자	감 리 자
입 회자	공사시공자: 소속 성명: (인) 공사감리자: 소속 성명: (인)
레미콘 규격, 타설 위치 및 시료번호	공사개요:
	연 면 적: m²
	레미콘 타설 부위:
	레미콘 규격: - -
	타 설 량 : m³
확인자	소속 및 직위 성명
	소속 및 직위 성명
	소속 및 직위 성명

※확인일 레미콘 타설계획서 1부.
확인 사항

<table>
<thead>
<tr>
<th>구분</th>
<th>확인 내용</th>
<th>조치 의견</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 현장시험실 운영 상태</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 공기량측정</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. 슬립프시험</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 염화물측정</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. 강도 측정</td>
<td>압축강도</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>침강도</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. 확인사항</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. 시료채취</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
제2장 품질관리 일반

Ⅵ. 전설공사의 감독자 및 감리자 업무

1. 건설공사 감리체계

<table>
<thead>
<tr>
<th>공공공사</th>
<th>건설기술관리법</th>
</tr>
</thead>
<tbody>
<tr>
<td>진정감리</td>
<td>대상: 200억원 이상으로서 철도, 공항 등 22개 공종</td>
</tr>
<tr>
<td></td>
<td>성격: 발주기관 공사감독 대행</td>
</tr>
<tr>
<td></td>
<td>보수기준: 건설공사감리대가기준</td>
</tr>
<tr>
<td></td>
<td>감리: 감리전문회사</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>일반건축물</th>
<th>건축법/건축사법</th>
</tr>
</thead>
<tbody>
<tr>
<td>상주감리</td>
<td>대상: 모든 건축물 (건기법, 주택법 대상 제외)</td>
</tr>
<tr>
<td></td>
<td>상주감리: 바닥면적 합계 5,000m² 이상 건축공사 등</td>
</tr>
<tr>
<td></td>
<td>일반감리: 기타 일반건축물</td>
</tr>
<tr>
<td></td>
<td>성격: 공사감리</td>
</tr>
<tr>
<td></td>
<td>보수기준: 건축사 업무 및 보수기준</td>
</tr>
<tr>
<td></td>
<td>감리: 건축사사무소</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>민간공사</th>
<th>주택법</th>
</tr>
</thead>
<tbody>
<tr>
<td>민간감리</td>
<td>대상: 20세대이상 공동주택</td>
</tr>
<tr>
<td></td>
<td>300세대미만: 건축사(건축사학)</td>
</tr>
<tr>
<td></td>
<td>300세대이상: 건축감리전문회사, 종합감리전문회사(건기법)</td>
</tr>
<tr>
<td></td>
<td>성격: 공사감리</td>
</tr>
<tr>
<td></td>
<td>보수기준: 주택 감리대가 기준</td>
</tr>
</tbody>
</table>

※다중이용시설물은 건기법 적용 (보수기준, 감리전문회사 등)
제2장 품질관리 일반

2. 감독자의 업무범위

가. 건설공사감독자의 감독의무(법 제35조)

1) 발주청이 발주하는 건설공사의 공사감독자는 그 감독업무를 성실히 수행하여야 한다. [국토해양부(훈령 제2010-664호, 2010. 12. 30) "건설공사 감독자 업무지침"] 참고

나. 발주청의 업무범위(영 106조)

1) 발주청은 책임감리를 시행하는 공사에 대하여 소속직원으로 하여금 공사 시행에 따른 업무연락 및 문제점 파악, 용지보상 지원 및 민원 해결, 품질관리 및 안전관리에 관한 지도, 감리원이 확인한 설계변경에 관한 사항의 검토, 예비준공검사를 수행하여야 하며, 발주청 소속직원의 업무수행에 필요한 사항은 국토해양부장관이 따로 정할 수 있다.

2) 발주청의 소속직원은 1항에 따른 업무, 감리용역 발주자로서의 감독 업무, 감리용역업체와 계약으로 정한 사항, 그 밖에 국토해양부령으로 정하는 사항 외에는 정당한 사유없이 감리원의 업무에 개입 또는 간섭하거나 감리원의 권한을 침해해서는 아니 된다.

3. 감리자의 업무범위

가. 책임 감리원의 업무범위(영 제105조제1항)

1) 시공계획의 검토
2) 공정표의 검토
3) 건설업체 또는 주택건설업체가 작성한 시공 상세도면의 검토·확인
4) 시공이 설계도면 및 시방서의 내용에 적합하게 이루어지고 있는지에 대한 확인
5) 구조물 규격에 관한 검토·확인
6) 사용자재의 적합성 검토·확인
7) 건설업체 또는 주택건설등록업체가 수립한 품질관리계획의 검토·확인 및 지도, 품질시험 및 검사 성과에 관한 검토·확인
8) 재해예방대책의 확인, 안전관리계획에 대한 검토·확인, 그 밖에 안전관리 및 환경관리의 확인
9) 설계의 변경에 관한 사항의 검토·확인
10) 공사 전후 부분에 대한 조사 및 검사
11) 완공도면의 검토 및 준공검사
12) 하도급에 대한 타당성 검토
13) 설계내용의 현장조건 부합 및 실제 시공가능성 여부 등의 사전검토
14) 그 밖에 공사의 질적 향상 설계를 위한 필요한 사항으로서 국토해양부령으로 정하는 사항

나. 품질관리 관련 감리업무(책임감리 현장참여자 업무지침서)

1) 품질관리(또는 시험)계획의 관리(제28조)
 가) 감리원은 시공자가 공사계약문서에서 정한 품질관리(또는 시험)계획 요건대로 품질에 영향을 미치는 모든 작업을 성실히 수행하는지 검사·확인 및 관리할 책임이 있다.
 나) 감리원은 시공자가 품질관리계획 요건의 이행을 위해 제출하는 문서를 7일 이내에 검토·확인 후 발주청에 승인을 요청하여야 하며 발주청은 7일 이내에 승인하여야 한다.
 다) 감리원은 품질관리계획이 발주청으로부터 승인되기 전까지는 시공자로 하여금 해당업무를 수행하게 하여서는 안된다.
 라) 감리원이 품질관리(또는 시험)계획과 관련하여 검사·확인하여야 할 문서는 계획서, 절차서 및 지침서 등을 말한다.

2) 품질관리(또는 시험)계획의 이행확인(제29조)
 가) 감리원은 시공자가 작성한 품질관리(또는 시험)계획서에 따라 품질관리업무를 적정하게 수행하였는지의 여부를 검사하여야 하며, 검사 결과 시정이 필요한 경우에는 시공자에게 시정을 요구할 수 있으며, 시정을 요구받은 시공자는 이를 지체없이 시정하여야 한다.
 나) 감리원은 품질상태를 수시로 검사·확인하여 제시공 또는 보완공을 되지 않도록 부실공사를 사전에 방지토록 적극 노력하여야 한다.
제2장 품질관리 일반

3) 중점품질관리(제30조)

가) 감리원은 해당 건설공사의 설계도서, 시방서, 공정계획 등을 검토하여 품질관리가 소홀해지기 쉽거나 하자 발생빈도가 높으며 시공 후 시정이 어렵고 많은 노력과 경비가 소요되는 공종 또는 부위를 중점 품질관리 대상으로 선정하여 다른 공종에 비하여 우선적으로 품질관리 상태를 입회, 확인하여야 하며, 중점 품질관리 공종 선정시 고려해야 할 사항은 다음 각 호와 같다.

① 공정계획에 의한 월별, 공종별 시험종목 및 시험횟수
② 시공자의 품질관리자 및 공정에 따른 충원계획
③ 품질관리 담당 감리원의 인원수 및 직접 입회, 확인이 가능한 적정 시험횟수
④ 공중의 특성상 품질관리 상태를 육안 등으로 간접 확인할 수 있는지 여부
⑤ 작업조건의 양호, 불량 상태
⑥ 타 현장의 시공사례에서 하자발생 빈도가 높은 공종인지 여부
⑦ 품질관리 블랑 부위의 시정이 용이한지 여부
⑧ 시공 후 지중에 매몰되어 추후 품질확인이 어렵고 재시공이 곤란한지 여부
⑨ 품질 블랑시 인근부위 또는 타 공중에 미치는 영향의 대소
⑩ 시공이 광활한 지역에서 이루어져 접근이 용이한지 여부

나) 감리원은 다음 각 호의 내용을 포함한 공중별 중점 품질관리방안을 수립하여 시공자로 하여금 이를 실행하도록 지시하고 실행결과를 수시로 확인하여야 한다.

① 중점품질관리 공종의 선정
② 중점품질관리 공종별 시공중 및 시공후 발생 예상 문제점
③ 각 문제점에 대한 대책방안 및 시공지침
④ 중점품질관리 대상 구조물, 시공부위, 하자발생 가능성이 큰 지역 또는 부위선정
⑤ 중점품질관리대상의 세부관리항목의 선정
제2장 품질관리 일반

⑥ 중점품질관리공종의 품질확인 지침
⑦ 중점품질관리대장을 작성, 기록 관리하고 확인하는 절차

다) 감리원은 중점품질관리 대상으로 선정된 공종의 효율적인 품질관리를 위하여 다음 각 호와 같이 관리한다.
① 중점품질관리 대상으로 선정된 공종에 대한 관리방안을 수립하여 시행 전 발주기관에 보고하고 시공자에게도 통보
② 해당 공종 및 시공부위는 상황판이나 도면 등에 표기하여 발주청 직원, 감리원, 시공자 모두가 이를 항상 숙지토록 함
③ 공정계획시 중점 품질관리 대상 공종이 동시에 여러 개소에서 시공되거나 공휴일, 야간 등 관리가 소홀해질 수 있는 시기에 시공되지 않도록 조정
④ 필요시 해당부위에 “중점품질관리 공종” 팻말을 설치하고 주의 사항을 명기

라) 감리자는 시공자와 합의된 품질시험에 반드시 입회하여야 한다.
감리자가 합의된 장소 및 시간에 입회하지 않거나, 감리자가 달리 요구하지 않는 한, 시공자는 시험을 진행할 수 있으며 그러한 시험은 감리자의 입회하에 수행된 것으로 간주한다.

4) 레디믹스트 콘크리트(KS F 4009) 품질관리

가) 강도, 슬럼프 및 공기량, 염화물 함유량 만족 기준
 - 1회의 시험결과는 구입자가 지정한 호칭강도 값의 85%이상 이어야 한다.
 - 3회의 시험결과 평균값은 구입자가 지정한 호칭강도의 값 이상이어야 한다.
제2장 품질관리 일반

② 슬럼프 : 슬럼프는 다음 표에 따른다. (단위 : mm)

<table>
<thead>
<tr>
<th>슬럼프</th>
<th>슬럼프의 허용차</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>±10</td>
</tr>
<tr>
<td>50 및 65</td>
<td>±15</td>
</tr>
<tr>
<td>80이상</td>
<td>±25</td>
</tr>
</tbody>
</table>

③ 슬럼프 플로 : 슬럼프 플로는 다음 표에 따른다. (단위 : mm)

<table>
<thead>
<tr>
<th>슬럼프 플로</th>
<th>슬럼프 플로의 허용차</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>±75</td>
</tr>
<tr>
<td>600</td>
<td>±100</td>
</tr>
<tr>
<td>700</td>
<td>±100</td>
</tr>
</tbody>
</table>

- 슬럼프 플로 700은 과은골재 최대 치수가 15㎜인 경우에 한하여 적용

④ 공기량 : 공기량은 다음표에 따른다. (단위 : %)

<table>
<thead>
<tr>
<th>콘크리트의 종류</th>
<th>공 기 량</th>
<th>공기량의 허용차</th>
</tr>
</thead>
<tbody>
<tr>
<td>보통콘크리트</td>
<td>4.5</td>
<td>±1.5</td>
</tr>
<tr>
<td>경량콘크리트</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>포장콘크리트</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>고강 콘크리트</td>
<td>3.5</td>
<td></td>
</tr>
</tbody>
</table>

⑤ 염화물 함유량 : 레디믹스트 콘크리트의 염화물 함유량은 배출 지점에서 염화물 이온량으로서 0.3㎏/㎥이하이어야 한다. 다만, 구입자의 승인을 얻은 경우에는 0.6㎏/㎥이하로 할 수 있다.
제2장 품질관리 일반

Ⅶ. 품질관리비의 산출 및 사용기준

(시행규칙 제41조1항. 별표14, 개정 2010.12.20)

1. 일반사항

가. 발주자는 해당 건설공사의 품질확보를 위하여 필요하다고 인정하는 품질시험 및 검사의 종목・방법 및 횟수를 설계도서(수량산출서, 단가산출서 등)에 명시하여야 한다.
나. 건설업자 및 주택건설등록업자는 설계도서에 누락된 품질시험 및 검사의 종목・방법 및 횟수에 관해서는 감리자 및 발주자와 협의하여 설계도서에 반영하여야 한다.
다. 건설업자 및 주택건설업자는 시방서 등 설계도서를 검토하여 품질관리계획 또는 품질시험계획을 작성하고 이를 토대로 품질관리를 하여야 한다.
라. 건설업자 및 주택건설업자는 현장 품질시험의 원활한 실시를 위하여 발주자와 협의하여 현장여건을 고려한 적정 현장인력을 배치하여야 한다.

2. 품질관리비

가. 품질시험비

1) 품질시험에 필요한 비용으로서 인건비, 공공요금, 재료비, 장비손료, 시설비용, 시험・검사기구의 검정・교정비, 차량 관련 비용 등을 포함한다.
2) 품질시험인건비는 국토해양부장관이 고시하는 인건비 산출단위량기준을 토대로 「통계법」제3조에 따라 대한건설협회 및 한국엔지니어링진흥협회가 조사・공표하는 노임단가를 적용하되, 시험관리인의 인건비는 포함하지 않는다.
3) 공공요금은 정부가 고시하는 공공요금을 적용하되, 해당 시험에 소요되는 공공요금의 산출단위량 기준은 국토해양부장관이 정하여 관보에 고시한다.
4) 재료비는 인건비 및 공공요금의 100분의 1로 한다. 다만, 특별한 사유가 있는 경우에는 조달청장이 구매하는 물품의 가격을 기준으로 설비를 산출하여 적용할 수 있다.
5) 장비손료는 다음과 같은 사유에 의하여 산출한 금액 또는 품질시험 인건비의 100분의 1을 계상한 금액으로 한다.

\[((\text{산각율+수리율}) \times \text{기계가격/연간표준장비가동시간} \times \text{내용연수}) \times \text{장비가동시간} \]
제2장 품질관리 일반

※ 기계가격은 구입가격을 말한다.
※ 연간표준장비가동시간은 2천 시간으로 한다
※ 장비가동시간은 해당 시험을 위하여 실제 가동되는 시간을 말한다.
※ 내용연수는 기계류 및 계량기는 10년 유리류 및 금속류 등의 기구는 3년으로 한다.
※ 상각률 및 수리율은 다음의 값으로 한다.

<table>
<thead>
<tr>
<th>장비 구분</th>
<th>상각율</th>
<th>수리율</th>
</tr>
</thead>
<tbody>
<tr>
<td>모우터 및 기계</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>게 이 지 기계</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>유 리 류</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>금 속 류</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>게 이 지</td>
<td>1.0</td>
<td>0.6</td>
</tr>
</tbody>
</table>

6) 품질시험에 필요한 시설비용, 시험 및 검사기구의 검정·교정비는 품질시험비의 100분의 3을 계상한다.
7) 품질시험에 필요한 차량의 감가상각비, 유류비, 차량보험료 등 각종 경비는 실비 계상한다.
8) 외부 의뢰시험은 품질시험비의 한도 내에서 실시하며, 감리자와 협의하여 결정하여야 한다.

나. 품질관리활동비: 품질시험비용 제외한 품질관리활동에 필요한 비용으로 계상할 수 있는 항목은 다음과 같다.

<table>
<thead>
<tr>
<th>항목</th>
<th>내역</th>
<th>비고</th>
</tr>
</thead>
</table>
| 1) 품질관리자 인건비 | 시험관리인을 제외한 품질관리자의 인건비 | 1)별표 12에 따른 배치기준에 따라 건설현장에 배치되는 품질관리자의 인건비로, 「통계법」제3조에 따라 대한건설협회 및 한국엔지니어링협회가 조사·공표하는 노임단가를 적용한다
2) 시험관리인은 현장에 배치되는 품질관리자 중에서 최하위 등급자로 정하고, 시험관리인의 인건비는 간접노무비에 포함된 것으로 한다 |

제2장 품질관리 일반

<table>
<thead>
<tr>
<th>항 목</th>
<th>내 역</th>
<th>비 고</th>
</tr>
</thead>
</table>
| 2) 품질문서 | 1) 품질관리계획서 또는 품질시험계획서 작성비
 2) 품질관리절차서 작성비
 3) 부적격보고서와 그 밖의 품질관련 문서 작성비
 4) 품질관리계획서 또는 품질시험계획서 개정 작성비
 5) 품질관리 문서관리 비용 | 품질관리자 인건비의 100분의1을 계상한다. |
| 작성 및 관리 | 3) 품질관리 교육훈련비 1) 현장근로자의 품질관리 교육에 드는 교재비용, 초빙강사료 등 각종 비용
 2) 교육자료 준비비
 3) 품질관리 행사비
 4) 품질관리자 및 시험인력의 외부교육 참가비 | 품질 관련 교육훈련은 품질관리 계획서 또는 품질관리시험계획서 실시방법 등 구체적인 사항을 적고, 실시하는 것만을 말하며, 이를 위한 비용으로 품질관리자 인건비의 100분의1을 계상한다. |
| 관련 비용 | 4) 품질검사비 1) 품질시험결과의 검사에 드는 비용
 2) 내부 품질검사비
 3) 구매문서의 적합성 검토 및 구매품의 검사 | 품질시험비의 100분의1을 계상한다. |
| 3) 품질관리 | 5) 그 밖의 비용 | 그 밖에 해당 공사의 특수성을 고려하여 발주자가 인정한 예비비용 |
| 교육훈련비 | 그 밖에 해당 공사의 특수성을 고려하여 발주자가 인정한 예비비용 | 그 밖의 비용을 제외한 품질관리 활동비 총액[(1)+2]+3+4]의 100분의1을 초과할 수 없다. |

3. 품질관리비 사용 기준

가. 건설업자 및 주택건설등록업자는 품질관리비를 품질관리비 산출기준에 따른 용도 외에는 사용할 수 없다. 다만, 발주자 또는 건설공사의 허가·인가·승인 등을 한 행정기관의 장이 품질관리업무 수행과 관련하여 필요하다고 인정하는 경우에는 그러하지 아니하다.

나. 건설업자 및 주택건설등록업자는 품질관리비의 사용명세서 및 증빙서류를 갖추어 두고, 발주자 또는 감리원 등이 요청하는 경우에는 이를 제시하여야 한다.

다. 품질관리비는 발주자 또는 감리원이 확인한 시험성적서 등에 의한 품질 관리 활동실적에 따라 정산한다.
제2장 품질관리 일반

4. 품질관리비의 계상에서 정산까지의 절차

발주자(감리) ▼ 전설업체 ▼

- 물량내역서 작성
 · 품질관리비 산출
 매뉴얼에 의거
 (규칙 제41조)

제공

- 입찰공고

↓

- 입찰참여

↓

- 납찰 및 계약

품질관리 비 확정

감리검토 후 승인 또는 보완 요구

품질관리/시험계획

↓

- 품질관리비 사용내역서
 (실행예산) 발주자
 승인요청

추가 항목 발생

↓ YES

- 설계변경요구
 · 신공법, 신자재
 · 기타 경우

설계변경안 검토

↓ YES

- 설계변경 요구
 · 신공법, 신자재
 · 기타 경우

지도 · 감독
(법 제24조제7항)

품질관리비 집행

↓

- 정산
 · 시험성적서
 · 기타 서류 첨부

집행내역 검토

기성, 준공

- 승인

- YES
Ⅷ. 주요 질의응답

1. 품질계획 수립 및 이행확인

 질문 1

지하주차장으로 연결된 여러개 동의 아파트 건축시 품질관리계획 수립 대상 기준은?

⇒ 지상은 여러개 동으로 분리되어 있으나 지하가 연결된 구조라면 구체적인 사항은 당해 허가권자가 판단하여야 하나 건축법상 하나의 건축물로 볼 수 있으며(건설교통부 질의회신 32859-2000/10/09) 일반적으로 지하주차장으로 연결된 여러개 동의 아파트 연면적의 합을 기준 연면적으로 산정함.

예) 지하주차장으로 연결된 APT의 연면적이 3만제곱미터 이상인 때 품질시험 계획을 수립한 사례

 질문 2

품질계획 수립시 총공사비란?

⇒ 총공사비는 관급자재비를 포함하되 토지 등의 취득사용에 따른 보상비를 제외한 공사비를 말한다.

(총공사비 = 공사예정가 + 관급자재비 + 이전비)

※ 부가가치세 포함

예) 도급공사비만 적용하거나 장기계속공사의 1개 차수 공사비만을 적용하여 품질관리계획을 품질시험계획으로 수립한 사례
질문 3
사업승인은 1건으로 받았으나 2건으로 분리하여 공사계약 체결한 경우 품질관리계획 및 품질시험계획의 수립 단위는?

⇒ 전기법 제24조에 따라 건설업자 또는 주택건설등록업자는 건설공사의 품질향 보를 위하여 품질관리계획 또는 품질시험계획을 수립하여 실시하여야 하며, 건설공사 발주자는 건설공사의 계약을 하는 때에는 건설공사의 품질관리에 필요한 비용을 공사금액에 계상토록 하고 있습니다. 따라서 품질관리계획 또는 품질시험계획은 공사계약 건별로 수립하여 실시하여야 하며, 사업승인과는 무관함

질문 4
품질시험계획에 KS인증제품도 포함되나?

⇒ 발주자는 품질시험 및 검사 항목을 설계도서에 명시하도록 되어 있으며, 명시된 모든 재료에 대하여 품질시험계획을 수립하여야 한다.
예) 품질시험계획 수립시 철근 등 KS인증 제품은 품질시험 또는 검사를 실시하지 아니할 수 있다고 KS인증 제품을 누락한 사례

질문 5
건설현장 시험실의 시험·검사기기 설치 기준은?

⇒ 건설기술관리법 시행령 제80조제4항 및 동법 시행규칙 제38조제2항
관련 [별표12]의 규정에 의하여 건설 현장에 시험실을 설치하여야 하는 바, 동 시험실에는 해당 공사별로 설계도서에서 정한 품질시험 ․ 검사를 적정하게 수행하기 위한 시험기기 등을 설치하여야 하는 것으로 따로 정한 것은 없음

2. 시험실 규모 및 품질관리자 자격

 질문 1

시험실 및 품질관리자를 현장여건에 따라 축소 운영할 수 있는가?

⇒ 건설공사의 규모에 따라 품질시험검사장비, 시험실 규모, 품질관리자의 자격 기준 및 인원이 정해져 있습니다. 다만, 발주청 또는 건설공사의 허가 · 인가 · 승인 등을 한 행정기관장의 승인을 얻은 경우에는 공공이 유사하고 공사 현장이 인접한 건설공사를 통합하여 품질관리를 하거나 시험 ․ 검사장비 및 품질관리자를 건설공사의 공정에 따라 배치할 수 있음

예) 아파트 현장에서 공사초기와 완공단계라고 시공사 임의로 시험실 규모를 축소하고, 품질관리자를 부족하게 배치한 사례

 질문 2

품질관리자는 다른 업무를 겸직할 수 있나?

○ 건설현장의 품질관리를 위하여 품질관리자를 적정배치토록 규정(건설기술관리법 시행령 제80조제4항)하고 있으며, 현장대리인, 공무, 공사담당 등으로 지정된 자를 품질관리자로 겸임 배치는 불가함.

(건설교통부 건관58824-598, ‘97. 6. 5)

예) 품질관리자가 기술인협회에 등록된 현장과 실제 근무현장이 상이한 사례
질문 3

레미콘 관련시험을 레미콘공급회사에서 실시하고 있는데 가능하니?

⇒ 건설공사 현장에서 시험을 할 수 있도록 공사규모에 따라 품질관리자가 배치 되어 있으므로 레미콘 납품자가 시험을 실시하는 것은 불가함. 다만, 현장에서 시험이 불가한 경우는 서울특별시품질시험소, 국공립시험기관 또는 품질검사 전문기관에 의뢰할 수 있습니다.

예) 품질관리자, 감리원이 레미콘관련 시험 및 검사 방법을 알지 못하는 사례.

질문 4

시험실의 일부 공간을 일반사무실로 활용할 수는 없는가?

⇒ 건설공사의 규모에 따라 시험실의 규모는 정해져 있습니다. 다만, 발주청 또는 인가·허가·승인을 얻은 경우에는 시험실의 규모를 공정 또는 현지 실정 등을 감안하여 조정할 수 있으나, 시험 업무와 관련이 없는 사무실로 활용은 불가함.

3. 레미콘 품질관리

질문 1

시험, 검사, 교정검사의 차이점?

⇒ 試驗(Testing) : 試料 및 시험편에 대하여 그 特性을 조사하여 자료(Data)를 내는 것
⇒ 檢查 (Inspection) : 시험결과를 判定基準과 비교하여 합격품과 불합격품의
判定을 내리는 것
⇒ 矯正検査(Calibration Inspection) : 사용중인 계량기를 표준기의 측정값과
비교하여 표준기에 맞도록 교정하는 것

질문 2

레미콘은 KS인증 제품인데 시험을 해야 하나 ?

⇒시간경과에 장소 이동으로 재질 변화가 우려되는 재료는 시험 및 검사를 실시
하여야 한다.

질문 3

슬럼프의 허용 오차 단위는 ?

⇒ KS F 4009 개정(‘06.12.14)으로 ’07.7.1이후 ㎜단위로 변경

질문 4

압축강도 공시체는 몇개를 제작해야 하나 ?

⇒다량의 콘크리트 타설시 1Lot의 크기는 450㎥이며 9개 공시체 제작,

1회 시험은 150㎥당 3개 공시체 시험 평균값이며, 3회 시험으로 합부
판정을 하므로 450㎥당 9개의 공시체가 필요함.
⇒일타설량, 배합이 변경될 때마다 450㎥미만 경우도 1Lot의 공시체 제작
⇒7일강도 시험 또는 구조체 콘크리트의 강도추정을 위한 압축강도 시험에는

공시체를 추가로 제작
제2장 품질관리 일반

질문 5
압축강도 시험・검사 기준은?

⇒ 1회 시험결과 평균값은 호칭 강도값의 85%이상이고 (균질성 확보) 3회 시험결과 평균값은 호칭 강도값 이상이어야 한다.

질문 6
건설공사 품질시험기준의 시험빈도를 조정할 수 있나?

⇒ 발주자가 공사종류・규모 및 중요성, 현지실정 등을 감안하여 특히 필요하다고 인정하는 경우에는 시험빈도를 조정 할 수 있다.
(건설공사 품질관리 지침 제34조3항, 국토해양부 고시 제2010-1043호, 2010.12.27)
예) 시공사 품질관리자의 판단으로 시험을 하지 않은 사례

질문 7
버림콘크리트도 시험을 하나?

⇒ 건설공사에 사용되는 공종 및 재료에 대하여 품질확인을 위한 시험방법, 종목,빈도를 건설공사 품질시험기준으로 정하고 있으며, 이에는 사용공종 또는 재료의 용도, 중요성을 들여 시험기준으로 정한 것이 아니므로 “굳지 아니한 콘크리트”에서 정한 바와 같이 품질시험을 하여야 함.
질문 8
현장시험을 했는데 레미콘공장 점검을 또 해야 하나?

⇒ 감독자 또는 감리원과 시공자는 납품 레미콘공장에 대하여 반기별 1회 이상
 레미콘공장 정기점검표에 의거 점검하고, 감독자 또는 감리원은 점검결과를
 발주청 및 공급원 승인권자에게 보고하여야 한다.

예) 레미콘·아스콘 품질관리 지침을 숙지하지 않고 공장 점검을 하거나 공장
 점검을 한번도 하지 않은 사례

질문 9
레미콘은 공장 출발 후 몇 시간 내에 타설 완료하여야 하나?

⇒ 콘크리트를 비비기 시작하여 외기 온도가 25℃ 미만일 때에는 120분, 25℃
 이상의 경우에는 90분 이내에 콘크리트 치기를 완료.
 ※ 레미콘운반시간 : (공장출발 ~ 현장 도착시간) + 레미콘 타설시간

질문 10
콘크리트 강도 단위가 변했나?

⇒ 콘크리트강도 단위는 2003.1.1부터 kgf/cm²를 MPa(N/mm²)로 개정 시행
 (1kgf=9.8N, 1kgf/cm²=0.098N/mm², 1N/mm²=10.204kgf/cm²)

예) 시험성적서, 시험점사대장 등 관련서류에 아직도 kgf/cm²를 사용하는 현장 사례
제2장 품질관리 일반

4. 재료 및 토질시험

질문 1
철근도 시험해야 하나?

⇒ KS인증제품은 시험생략 가능
 - 빌려주고 받는 과정에서 일반철근(SD300)이 고강도 철근(SD400)으로 바뀔 우려
 - 사급자재인 경우 납품서, 시험성적서, 반입한 철근회사 등이 불일치
⇒ KS인증 제품이라고 하여 철근시험을 하지 않으면 철근의 품질이 저하될 우려가 있으므로 제조사별, 제품규격별로 현장 반입시 1회 이상 시험하는 것이 바람직함.

질문 2
품질관리의 외부기관 대행(아웃소싱) 가능 여부

⇒ 건기법 제24조제2항에서 건설업자 및 주택건설등록업자(시공사)는 건설공사의 품질관리를 위하여 품질관리계획 또는 품질시험계획을 수립하고 이에 따라 품질시험 및 검사를 실시하여야 하며, 시공사에 고용되어 품질관리업무를 수행하는 건설기술자는 품질관리계획 또는 품질시험계획에 따라 성실하게 그 업무를 수행하여야 한다고 규정하고 있음. 즉 건설공사 품질관리는 시공사가 직접 수행을 하여야 하고 규정하고 있음. 즉 건설공사 품질관리는 시공사가 직접 수행을 하여야 하며, 건설공사 품질관리를 위해 현장에 시험실을 설치하여 시험장비를 구비해야 함은 물론 시공사 소속의 품질관리자를 배치하여 야 함. 따라서 건설공사 품질관리를 해당공사의 시공사가 아닌 다른 업체에 대행(아웃소싱)하게 할 수 없음
질문 3

속빈 콘크리트블록의 치수 시험시 시료는 몇 개 인지?

⇒ 속빈 콘크리트블록의 검사방법은 겉모양, 치수는 3,000개를 1로트로 하여 1로트에서 무작위로 10개의 시료를 채취하여 시험을 하고 압축강도, 흡수율, 투수성은 3개의 시료를 채취하여 적합하면 합격으로 함.

질문 4

레미콘 강도시험용 공시체 제작시 몰드의 다짐 방법은?

⇒ 압축강도시험용 공시체 제작시 다짐은 150×300의 경우 3층, 100×200의 경우에는 2층으로 10cm²에 1회 비율로 다짐하여야 함.
⇒ 횡강도용 공시체 제작 및 다짐은 굵은골재의 최대치수가 50mm이하인 경우 15×15×55cm이고 2층 10cm²에 1회 비율로 다짐한다.

질문 5

철골 내화피복재의 시험 항목은?

⇒ 한국건설기술연구원장이 내화구조로 인정한 제품인지 여부를 확인
⇒ 업체로부터 내역을 제출받아 인정내용에 따른 적정량이 사용되었는지 여부를 확인
⇒ 외관, 두께, 밀도, 부착강도, 배합비 등을 확인한다.
⇒ 철골내화 피복재는 국토해양부 지방국토관리청, 서울시 품질시험소, 지방중소 기업청 등 국공립시험기관에 시험을 의뢰할 수 있다.
제2장 품질관리 일반

질문 6
가설강재 용접 작업시 품질관리 방안은?

⇒ 설계도서에서 용접길이와 용접봉 소요수량을 파악하여 시험시공 실시
⇒ 현장소장이 용접사 자격인증 부여
⇒ 용접방의 두께측정 및 용접 누락부분 여부확인
예) 보걸이, 스티프너, 강재연결 등에서 한 측면 또는 점용접으로 시공하는 사례
제2장 품질관리 일반

IX. 주요 지적사례

1. 품질관리계획 적정성 확인 점검시 주요 지적사항

1. 건설공사 정보

▶ 건설공사의 현장 특성상 적용 제외에 대한 상세내용 및 정당성 미기술
▶ 건설공사에 적용되는 프로세스와 상호작용 기술 누락

⇒ 어떤 요건이 적용될 수 없는 경우는 적용 제외에 대한 상세한 내용 및 사유 기재
⇒ 건설공사 핵심 프로세스간의 상호작용을 본사 및 현장 업무절차 등을 감안하여 규정 기술

2. 현장 품질방침 및 품질목표

▶ 현장 품질방침 및 품질목표 설정 부적절
▶ 품질목표 추진계획 미수립 및 추진실적 관리 소홀
▶ 현장 품질방침 및 품질목표의 의사소통(교육, 게시, 회의 등) 소홀

⇒ 품질목표는 품질방침과 구분하여 정량적, 정성적 측정이 가능하도록 설정
⇒ 품질목표 추진계획을 수립하고, 추진실적 관리
⇒ 주기적인 교육, 사무실 게시 등을 통해 의사소통 및 이해

3. 책임 및 권한

▶ 개인별 업무분장표 미작성 및 업무대행자 미 지정
▶ 품질관리계획서 준수와 관련된 자신의 역할 인식부족

⇒ 현장 내 전직원에 대한 개인별 업무분장을 시행하고 업무대행자 지정 및 운영
⇒ 품질관리계획서 운영을 품질담당자만의 역할이라는 인식 부식
제2장 품질관리 일반

4. 문서관리

▶ 품질관리계획서의 제·개정시 감리원의 검토, 발주자 승인 소홀
▶ 품질관리계획서 이용 가능성 결여(현장 내 미 배포)
▶ 외부 출처 문서의 관리 소홀

⇒ 품질관리계획의 제·개정시 감리 검토 및 발주자 승인 철저
⇒ 품질관리계획서를 현장 내(감리, 공무, 공사 등)에 적정 배포하고 주요 협력 업체에도 해당 절차서를 배포 활용할 수 있도록 하며, 품질관리계획서 배포 대장 작성 및 관리

5. 기록관리

▶ 현장에서 관리한 기록의 목록작성(기록관리대장) 및 관리 소홀
▶ 기록 보유기간의 미 설정, 관리책임자의 미 지정
▶ 공사관련자(발주자, 감리자, 하도급자 등)에게 제공할 기록의 종류 파악, 제공시기 및 방법의 관리 소홀

⇒ 품질기록 보관문서 목록 작성 비치
⇒ 색인목록, 분류기호, 생산년도, 보존기간 기재 및 관리책임자 지정
⇒ 공사 관련자에게 제공할 기록의 종류파악 및 제공

6. 자원관리

▶ 품질관리자 배치기준 미달 및 겸임배치
▶ 기반구조에 대한 유지관리(점검 등) 소홀

⇒ 건기법령에 따라 품질관리자 적정 배치 및 공무·공사부분 등과 겸임 금지 (기술인협회 등록)
⇒ 기반구조에 대한 주기적인(반기별 1회 이상) 점검실시
7. 설계관리

- 설계도서의 접수 · 배포 · 폐기대장 미 보유 및 도서 관리번호 미 부여
- 협력업체에 배포된 설계도서 관리책임자 미 지정

⇒ 각종 대장작성 보유(양식에 의거) 및 보유중인 설계도서에 관리번호 부여
⇒ 협력업체에 배포된 설계도서 관리책임자 지정

8. 건설공사 수행준비

- 설계도서간 모순되는 사항, 현장실정과 부합 여부 등의 검토 소홀

⇒ 설계도서간의 상호일치 여부, 현장여건과의 부합여부, 실제 시공 가능 여부, 공종간 상호 부합여부, 설계상의 누락, 오류 등 불명확 부분의 검토 실시 및 검토결과 문서화 작성 비치

9. 계약변경

- 설계변경, 계약변경 내용의 관련자 교육 등 인식증진 활동 소홀
- 구 도면 식별 등 관리 소홀(오용방지)

⇒ 설계변경, 계약변경 시 변경내용에 대한 관련자 교육실시
⇒ 구 도면에 “참고용”으로 마킹하거나 폐기하여 오용 방지

10. 교육훈련

- 교육훈련계획 미 수립 및 중요교육 누락
- 교육훈련 필요성 파악 및 관리 소홀
- 교육훈련 결과보고서 미 작성

⇒ 교육훈련의 필요성을 파악, 교육훈련 운영기준표를 작성한 후 법적 정기교육 (안전, 품질) 포함 교육훈련계획 수립
⇒ 교육훈련 결과(교육내용 포함) 기록유지 및 보고(현장소장)
제2장 품질관리 일반

11. 의사소통

 의사소통 대상 파악과 유형별 의사소통 방법의 결정소홀

⇒ 현장 특성에 맞는 “의사소통 관리기준” 작성 및 활용

12. 기자재 구매 관리

▶ 기자재 수급계획 미 수립 및 구매 지연
▶ 공장검사 계획서 미 수립 및 공장검사 소홀

⇒ 기자재 수급계획 수립 및 적기 구매
⇒ 공장검사계획 수립 및 공장검사 적기 시행

13. 지급자재의 관리

▶ 발주자의 지급자재가 없는 경우 불필요한 관리절차 수립
▶ 지급자재의 품질시험 및 검사소홀

⇒ 발주자의 지급자재가 없는 경우는 그 사유를 명기하고 내용 삭제
⇒ 지급자재도 사급자재와 동일하게 품질시험 및 검사

14. 하도급 관리

▶ 하도급의 필요성 파악 및 하도급 계획 미수립
▶ 하도급에 대한 지원업무 범위 불명확
▶ 하도급자가 보유할 기록의 종류, 제출 시기 및 방법 제시 누락

⇒ 하도급계획 수립 및 관리
15. 공사 관리

- 작업지침서 미수립 또는 내용 부적절(과거시방)
- 안전관리 및 환경관리 미흡

⇒ 공사 전 작업지침서 작성, 검토 후 시공
⇒ 안전관리 및 환경관리 일지 작성 및 보고

16. 중점 품질관리

▶ 중점품질관리방안(계획서) 미 수립 및 작성 소홀
▶ 중점품질관리 대상 공종의 관리 소홀

⇒ 공사 특성에 맞게 중점품질관리계획 수립 및 적용
⇒ 중점품질관리 대상 공종의 철저 관리
⇒ 작업자의 자격기준 및 자격 인정
⇒ 사용 장비의 기준설정 및 관리

17. 식별 및 추적

▶ 기자재 유형별 관리방안 미 수립
▶ 식별 및 추적관리 소홀
▶ 검사 단계별(검사대기, 검사 중, 합격, 불합격) 미 표시

⇒ 기자재 유형별 관리방안 수립 및 관리
⇒ 식별 및 추적 관리
⇒ 검사 단계별 시험상태 표기
제2장 품질관리 일반

18. 기자재 및 공사목적물의 보존관리

◦ 기자재 취급, 보관관리 소홀
◦ 완성된 시설물(목적물)의 관리소홀

⇒ 기자재 유형별 관리방안에 따라 취급 및 관리
⇒ 균열관리대장 작성 및 관리(규정에 맞게)

19. 검사장비·측정장비 및 시험장비의 관리

▶ 교정장비 관리소홀(미교정 및 고장장비 방치 등)
▶ 협력업체 보유장비에 대한 점검 미실시
▶ 기타 장비에 대한 주기적인 점검관리(주기, 기준, 방법) 소홀

⇒ 교정 장비에 대한 주기적인 교정 및 관리
⇒ 협력업체 보유 장비(당해 현장에 사용되는)에 대한 점검 실시(대장 작성시 포함)
⇒ 기타 장비에 대한 주기적인 점검

20. 검사 및 시험, 모니터링

▶ 자재검사(외부시험기관 의뢰)시 시험결과에 대한 합·부 판정 누락
▶ 시험계획 수립시 일부종목 누락 및 세부계획 수립 소홀
▶ 외부시험기관에 시험 의뢰시 시험시료에 대한 정보 기록관리 소홀
▶ 시험·검사계획서 미 수립(I.T.P)

⇒ 시험성적서와 자재 품질기준과 비교 합부 판정 후 판정자 서명 후 공람실시
⇒ 시험계획은 공사에 사용되는 모든 자재(KS포함)에 대하여 계획 수립
⇒ 품질시험검사의뢰서 시료내역 및 시방기준 난에 생산 업체명, 생산일자, 시험 번호 등 정보기록관리
⇒ 시험·검사계획을 수립·검층 체크리스트와 연계 시행
⇒ 품질시험계획 수립시 철근, 레미콘 등은 규격별로 세분하고 총 시험횟수의 서류구분(현장시험, 의뢰시험, 성적서 대체) 횟수 명기

21. 불일치 공사의 관리
불일치 상태에 대한 문서화 소홀(음성적 관리)
⇒ 부적합보고서 작성 및 관리

22. 데이터의 분석
▶ 데이터분석 대상의 파악 소홀(인식부족)
▶ 분석결과 조치 미흡
⇒ 데이터 분석의 범위 확대
⇒ 분석결과 관리범위를 벗어난 경우 시정 조치

23. 시정조치 및 예방조치
▶ 시정조치/예방조치의 문서화 소홀
▶ 부적합의 근본원인 분석과 재발 방지(발생방지)대책 소홀
⇒ 실제 또는 잠재적 부적합사항에 대해 시정조치/예방조치 요구서 발행
⇒ 부적합의 근본원인 분석과 재발방지대책 관리
제2장 품질관리 일반

24. 자체 품질점검

▶ 자체 품질점검계획 수립 소홀
▶ 자체 점검의 형식적인 실시

⇒ 자체 품질점검계획 수립
⇒ 점검항목과 점검주기 등을 포함한 자체 품질점검계획 수립
⇒ 본사 품질부서의 감사와 별개로 실시
⇒ 부적합의 근본원인 분석과 재발방지대책 관리

25. 건설공사 운영성과 검토

건설공사 운영성과 검토 미 실시

⇒ 1년에 1회 정도 건설공사 운영성과 검토 실시(본사 경영검토와 별개로 실시)

26. 공사 준공 및 인계

공사 준공 및 인계서류 사전파악 소홀

⇒ 공사 준공 및 인계 서류, 본사 이관문서, 사전파악 및 관리
⇒ 감리자 또는 발주자 인계문서(기록) 사전파악 및 관리

2. 품질시험계획 이행확인 점검 반복적 사항

지적 1

압축강도 시험시 공시체 단면적 일률적 적용

⇒ 교정검사를 필한 버니어캘리퍼스로 직접 몰드의 지름을 측정 단면적을 산출 적용하여야 하나, 일률적으로 7,854㎟ (78.54㎠)로 적용하고 있음

- 70 -
지적 2
KS 규격집을 CD로 관리할 경우 보완대책 미흡

⇒ CD로 관리할 경우 최소한 목록을 작성 관리하여야 하며, 규격집 비치 근본 취지를 실려 가능하면 현장에서 자주 활용되는 규격은 출력하여 활용할 수 있도록 규격집 관리가 필요하다고 봄.

지적 3
터파기 후 기초지반에 대한 지지력시험 검사 미실시

⇒ 외부전문기관에 지지력시험을 의뢰한 경우 시공사는 시험결과 보고서를 제출 받아 지지력시험 결과치가 기준치(설계지지력)에 적합한지 여부(검사)를 실시 후 발주처(감리원)에 승인을 득하는 절차를 이행하여야 하나 미이행
⇒ 시험 결과치를 품질시험 검사대장에 등재하여 품질관리 필요

지적 4
품질관리자의 경력사항이 현재 근무처로 미등재

⇒ 근무지 이동과 동시에 한국건설기술인협회에 이동 근무처로 담당업무를 품질 관리자로 등재 후 근무하여야 하나 이동전 근무처로 등재된 경우
제2장 품질관리 일반

X. 건설 관련 KS 개정·제정·폐지 소개

□ 개정(2011년, 41건)

<table>
<thead>
<tr>
<th>규격번호</th>
<th>규격명</th>
<th>개정/월,일</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 3504</td>
<td>철근 콘크리트 붕강</td>
<td>03.02</td>
</tr>
<tr>
<td>D 3576</td>
<td>배관용스테인레스 강관</td>
<td>07.03</td>
</tr>
<tr>
<td>D 7002</td>
<td>PC강관 및 PC강연관</td>
<td>03.02</td>
</tr>
<tr>
<td>F 2431</td>
<td>프리페트 콘크리트의 압축강도 시험방법</td>
<td>10.12</td>
</tr>
<tr>
<td>F 2433</td>
<td>주입 모르타르의 블리딩률 및 팽창률 시험방법</td>
<td>10.12</td>
</tr>
<tr>
<td>F 2454</td>
<td>원심력으로 다져진 콘크리트의 압축강도 시험방법</td>
<td>10.12</td>
</tr>
<tr>
<td>F 2455</td>
<td>석회석 비민 콘크리트 중의 모르타르 밀도 결과로의 변화율 시험방법</td>
<td>10.12</td>
</tr>
<tr>
<td>F 2573</td>
<td>콘크리트용 순환 굴재</td>
<td>11.08</td>
</tr>
<tr>
<td>F 2633</td>
<td>자동문 개폐 장치의 시험방법</td>
<td>03.31</td>
</tr>
<tr>
<td>F 2801</td>
<td>콘크리트 원주 공시계를 성형하기 위한 몰딩</td>
<td>11.08</td>
</tr>
<tr>
<td>F 4002</td>
<td>속면 콘크리트 블록</td>
<td>10.07</td>
</tr>
<tr>
<td>F 4004</td>
<td>콘크리트 벽돌</td>
<td>10.07</td>
</tr>
<tr>
<td>F 4009</td>
<td>레드믹스트 콘크리트</td>
<td>07.11</td>
</tr>
<tr>
<td>F 4011</td>
<td>철근 콘크리트 케이블 트로프</td>
<td>10.12</td>
</tr>
<tr>
<td>F 4012</td>
<td>하수도용 콘크리트 밸브 블록</td>
<td>10.12</td>
</tr>
<tr>
<td>F 4020</td>
<td>철근 콘크리트 조립식 압가블록</td>
<td>10.12</td>
</tr>
<tr>
<td>F 4303</td>
<td>프리텐션 방식 원심력 PC 밸브</td>
<td>10.12</td>
</tr>
<tr>
<td>F 4571</td>
<td>콘크리트용 전기로 산화 슬래그 굴재</td>
<td>05.20</td>
</tr>
<tr>
<td>F 4723</td>
<td>복층 마감 도장제</td>
<td>10.07</td>
</tr>
<tr>
<td>F 4735</td>
<td>압축 성형 콘크리트 패널</td>
<td>03.31</td>
</tr>
<tr>
<td>F 4921</td>
<td>콘크리트용 에폭시 수지계 방수·방식재</td>
<td>11.09</td>
</tr>
<tr>
<td>F 4925</td>
<td>시멘트 액체형 방수제</td>
<td>11.09</td>
</tr>
<tr>
<td>F 5602</td>
<td>합성수지 장호목 형제</td>
<td>10.07</td>
</tr>
<tr>
<td>F 5660</td>
<td>폴리에스테르 홍은 단열제</td>
<td>10.07</td>
</tr>
<tr>
<td>F 8011</td>
<td>이동식 강관 비계용 부재</td>
<td>11.09</td>
</tr>
<tr>
<td>F 8024</td>
<td>흡착이 판</td>
<td>11.09</td>
</tr>
<tr>
<td>F 8081</td>
<td>수직 보호망</td>
<td>10.07</td>
</tr>
<tr>
<td>F 8082</td>
<td>추락 방호망</td>
<td>10.07</td>
</tr>
<tr>
<td>F 9002</td>
<td>경골 목조 건축물 구조부의 시공 표준</td>
<td>10.07</td>
</tr>
<tr>
<td>F 4802</td>
<td>유리섬유 강화 폴리에스테르 골판</td>
<td>11.09</td>
</tr>
<tr>
<td>F 4925</td>
<td>시멘트 액체형 방수제</td>
<td>11.09</td>
</tr>
<tr>
<td>M 3016</td>
<td>플라스틱의 밀도 및 비중 시험방법</td>
<td>12.02</td>
</tr>
<tr>
<td>M 3049</td>
<td>플라스틱의 비열용량 측정방법</td>
<td>12.02</td>
</tr>
<tr>
<td>M 3808</td>
<td>방포 플라스틱렌(PS) 단열제</td>
<td>07.08</td>
</tr>
</tbody>
</table>
제2장 품질관리 일반

<table>
<thead>
<tr>
<th>규격번호</th>
<th>규격 명</th>
<th>월, 일</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 5721</td>
<td>페인트 도막 박리제(불연성)</td>
<td>11.29</td>
</tr>
<tr>
<td>M 6080</td>
<td>노면 표지용 도료</td>
<td>09.08</td>
</tr>
<tr>
<td>M ISO 351</td>
<td>도료, 바니시 및 플라스틱-비회발분 함량측정</td>
<td>12.28</td>
</tr>
<tr>
<td>M ISO 972</td>
<td>발포 플라스틱-소형 화염의화된 수평 연소성 시험방법</td>
<td>12.23</td>
</tr>
<tr>
<td>K ISO 1068</td>
<td>지오텍스탈 및 관련제품-수직투수성 시험방법</td>
<td>12.28</td>
</tr>
<tr>
<td>L 1592</td>
<td>도자기질 타일 시멘트</td>
<td>05.06</td>
</tr>
<tr>
<td>L 1593</td>
<td>도자기질 타일용 접착제</td>
<td>12.26</td>
</tr>
</tbody>
</table>

☐ 제정(2011년, 8건)

<table>
<thead>
<tr>
<th>규격번호</th>
<th>규격 명</th>
<th>월, 일</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 7715</td>
<td>LED 도로 표지병</td>
<td>08.30</td>
</tr>
<tr>
<td>D 3688</td>
<td>고성능 철근 콘크리트용 봉강</td>
<td>10.26</td>
</tr>
<tr>
<td>D 5994</td>
<td>건축구조용 고성능 압연강재</td>
<td>10.26</td>
</tr>
<tr>
<td>M 3550-1</td>
<td>상수도시설 비굴착재관 보수용 경질 염화비닐 프로파일</td>
<td>04.19</td>
</tr>
<tr>
<td>M 3550-2</td>
<td>하수 배관시설 비굴착 재관 보수용 경질 염화비닐 프로파일</td>
<td>04.19</td>
</tr>
<tr>
<td>M 3550-6</td>
<td>수도 배관시설 비굴착 보수용 플라스틱에스티본 튜브</td>
<td>04.19</td>
</tr>
<tr>
<td>M 3550-8</td>
<td>하수 배관시설 비굴착 보수용 경질 염화비닐 튜브</td>
<td>04.19</td>
</tr>
<tr>
<td>M 3880</td>
<td>셀룰로오스 폼 단열재</td>
<td>02.08</td>
</tr>
</tbody>
</table>

☐ 폐지(2011년, 3건)

<table>
<thead>
<tr>
<th>규격번호</th>
<th>규격 명</th>
<th>월, 일</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 1957</td>
<td>청동 분석 방법</td>
<td>09.30</td>
</tr>
<tr>
<td>D 1961</td>
<td>특수 농쇠 분석 방법</td>
<td>09.30</td>
</tr>
<tr>
<td>D 2361</td>
<td>철분</td>
<td>03.25</td>
</tr>
</tbody>
</table>

※ 한국산업표준(KS) 구분(21개 부문)

<table>
<thead>
<tr>
<th>규격</th>
<th>부문</th>
<th>규격</th>
<th>부문</th>
<th>규격</th>
<th>부문</th>
<th>규격</th>
<th>부문</th>
</tr>
</thead>
<tbody>
<tr>
<td>KS A</td>
<td>기 본</td>
<td>KS G</td>
<td>일용품</td>
<td>KS M</td>
<td>화 학</td>
<td>KS V</td>
<td>조 선</td>
</tr>
<tr>
<td>KS B</td>
<td>기 계</td>
<td>KS H</td>
<td>식료품</td>
<td>KS P</td>
<td>의 료</td>
<td>KS W</td>
<td>항 공</td>
</tr>
<tr>
<td>KS C</td>
<td>전 기</td>
<td>KS I</td>
<td>환 경</td>
<td>KS Q</td>
<td>품질경영</td>
<td>KS X</td>
<td>정보산업</td>
</tr>
<tr>
<td>KS D</td>
<td>금 속</td>
<td>KS J</td>
<td>생 물</td>
<td>KS R</td>
<td>수송기계</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KS E</td>
<td>광 산</td>
<td>KS K</td>
<td>섬 유</td>
<td>KS S</td>
<td>서비스</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KS F</td>
<td>토 건</td>
<td>KS L</td>
<td>요 압</td>
<td>KS T</td>
<td>물 류</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
제3장 도로포장의 품질관리 기준

I. 도로포장의 구성요소 ... 77

1. 아스팔트포장의 구성요소 ... 77

2. 콘크리트포장의 구성요소 ... 77

II. 아스팔트콘크리트 포장 .. 78

1. 표층공 및 기층공 ... 78

2. 입도조정기층, 보조기층, 노상공 ... 81
제3장 도로포장의 품질관리 기준

Ⅰ. 도로포장의 구성요소

1. 아스팔트 포장의 구성요소

<table>
<thead>
<tr>
<th>코팅명</th>
<th>기재요소</th>
<th>등급요소</th>
</tr>
</thead>
<tbody>
<tr>
<td>Текс(436-4)</td>
<td>아스팔트 표층(T=50mm)</td>
<td>VAR VAR</td>
</tr>
<tr>
<td>Текс(436-4)</td>
<td>아스팔트 중간층(T=60mm)</td>
<td>VAR VAR</td>
</tr>
<tr>
<td>프라임코팅(MC-1)</td>
<td>아스팔트 기층(#467)</td>
<td>VAR VAR</td>
</tr>
<tr>
<td></td>
<td>보조기층(SB-1)</td>
<td>VAR VAR</td>
</tr>
<tr>
<td></td>
<td>동성방지층(SB-2)</td>
<td>VAR VAR</td>
</tr>
</tbody>
</table>

2. 콘크리트 포장의 구성요소

<table>
<thead>
<tr>
<th>코팅명</th>
<th>기재요소</th>
<th>등급요소</th>
</tr>
</thead>
<tbody>
<tr>
<td>콘크리트 슬래브(32Fbk45-5, T=300mm)</td>
<td>VAR VAR</td>
<td></td>
</tr>
<tr>
<td>콘크리트 슬래브(40Fbk7.2, T=150mm)</td>
<td>VAR VAR</td>
<td></td>
</tr>
<tr>
<td>동성방지층(SB-2)</td>
<td>VAR VAR</td>
<td></td>
</tr>
</tbody>
</table>
제3장 도로포장의 품질관리 기준

II. 아스팔트 컨크리트 포장

1. 표층공 및 기층공

가. 시험방법

(1) 아스팔트 표층 및 중간층은 교통하중이나 기상작용의 영향을 가장 많이 받는 부분이며, 여기에는 가열 아스팔트혼합물을 사용한다.

(2) 감독자는 현장에 플랜트를 설치하지 않고 제조공장에서 구입할 때에는 KS인증 제품을 사용하고 KS인증 제품을 사용하는 아래 흐름도의 “가”와 같은 배합설계 성과표를 제출받아야 하며, 비KS인증 제품 사용 시는 자체 시험을 실시하거나 시험소에 시험을 의뢰하여야 한다.

(3) 혼합물을 운반할 때에는 잘 청소한 덤프트럭을 사용하여야 하며, 이물질이 섞이는 것을 방지하기 위하여 시트 등으로 보호해야 한다.

(4) 시공자는 가열혼합물 포설 후 코어를 랜덤하게 채취하여 공사감독자에게 제출하여야 하며, 공사감독자는 자체시험을 실시하거나 시험소에 시험을 의뢰하여야 한다.

나. 시료 채취 방법(KS F 2350 요약)

금은 골재와 아스팔트 시멘트의 분리가 일어나기 않도록 하고 먼지나 이물질이 혼입되지 않도록 주의하고 아래 방법 중 택일하여 시료를 채취하여야 한다.
제3장 도로포장의 품질관리 기준

(1) 플랜트에서의 시료 채취
배출되는 배치로부터 서로 180° 범위로 채취하여 재혼합한 후 4분법에 의하여 소정량을 채취

(2) 차량에서의 시료 채취
차량 표면적을 6등분하여 약 30㎝깊이에서 6개소 이상의 시료를 채취하여 재혼합한 후 4분법에 의하여 소정량을 채취

(3) 도로에서의 시료 채취
미립도 13은(최대입자 통과체의 크기 19㎜) 645㎠보다 넓게 하여 포설된 총 두께까지 채취(시료는 1일 작업에 대하여 규격별, 생산 회사별 1개 이상 채취)

다. 아스콘의 품질기준

<table>
<thead>
<tr>
<th>시험 구분</th>
<th>시험종목</th>
<th>시험방법</th>
<th>판정기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>재료 시험</td>
<td>아스팔트 함량(%)</td>
<td>KS F 2354</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>기준밀도(g/㎤)</td>
<td>KS F 2446</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>공극율(%)</td>
<td>KS F 2349</td>
<td>3~8</td>
</tr>
<tr>
<td></td>
<td>포화도(%)</td>
<td>KS F 2349</td>
<td>60~75</td>
</tr>
<tr>
<td></td>
<td>안정도(N)</td>
<td>KS F 2337</td>
<td>3,500이상 (5,000)</td>
</tr>
<tr>
<td></td>
<td>호름값(1/100㎝)</td>
<td>KS F 2337</td>
<td>10~40</td>
</tr>
<tr>
<td></td>
<td>동적안정도(회/mm)</td>
<td>KS F 2374</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>간극률(VMA)(%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>인장강도비(TSR)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>추출 체가름</td>
<td>KS F 2502</td>
<td>서울특별시토목공사전문시방서 10-2-5참조</td>
</tr>
<tr>
<td></td>
<td>공사체 제작</td>
<td>KS F 2337</td>
<td>-</td>
</tr>
<tr>
<td>시공 시험</td>
<td>코아체취</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>코아두께(cm)</td>
<td>KS F 2367</td>
<td>설계시공두께의 -5%~+10% (서울시전문시방서토목편)</td>
</tr>
<tr>
<td></td>
<td>코아밀도(g/㎤)</td>
<td>KS F 2353</td>
<td>기준밀도의 96%이상 (서울시전문시방서토목편)</td>
</tr>
</tbody>
</table>
제3장 도로포장의 품질관리 기준

※ 간극률(VMA : Voids in Mineral Aggregate)
다져진 아스팔트 혼합물에서 골재 용적을 제외한 부분의 체적, 즉 공극과 아스팔트가 차지하고 있는 체적을 혼합물 전체 체적에 대한 백분율로 나타낸 것.

※ 최소 간극률(VMA)기준

<table>
<thead>
<tr>
<th>골재 최대치수(mm)</th>
<th>설계공극률(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>13</td>
<td>13.0</td>
</tr>
<tr>
<td>20</td>
<td>12.0</td>
</tr>
<tr>
<td>25</td>
<td>11.0</td>
</tr>
</tbody>
</table>

※ 인장강도비(TSR : Tensile Strength Ratio)
수분에 대한 아스팔트 혼합물의 내구성을 측정하는 방법으로서, 건조상태에서의 아스팔트 혼합물의 간접 인장강도와 수분 포화 후의 간접 인장강도 비

마포대교 확장공사 후 전경
2. 입도조정기층, 보조기층 및 노상공

가. 시험방법

(1) 재료는 내구적인 부순돌, 부순자갈 등을 모래 혹은 기타 적당한 재료와 혼합한 것을 사용하며 점토, 유기불순물, 먼지 등 유해물을 함유해서는 안되며 너무 남작하거나 가늘고 긴 골재를 포함하고 있지 않아야 한다.
(2) 사용되는 골재의 품질시험은 아래 흐름도와 같이 공종에 따른 시험을 실시하여야 한다.

【시험 흐름도】

- 재료시험
 ① 체가름시험
 ② 입도
 ③ 0.08mm체통과량
 ④ 밀도 및 흡수율
 ⑤ 마모
 ⑥ 노상토지지력비
 ⑦ (CBR)
 ⑧ 함수비
 ⑨ 입도
 ⑩ 세립토비율
 ⑪ 밀도
 ⑫ 액성한계
 ⑬ 소성한계
 ⑭ 노상토지지력비
 ⑮ (CBR)
 ⑯ 다짐
 ⑰ 함수비

- 포설
 ① 함수량시험

- 다짐
 ① 품질시험 및 검사
 ② 현장밀도시험

- 운반시험
 ① 품질시험

제3장 도로포장의 품질관리 기준
제3장 도로포장의 품질관리 기준

나. 시료채취방법

시료는 시험 대상 물량을 대표할 수 있도록 주의하여 충분한량을 채취하여 재혼합한 후 표면건조상태 이상의 건조시료는 시료분취기에 의하여 그 이외는 4분법에 의하여 소정량을 분취

다. 시험방법

(1) 재료시험

현장에 사용되는 입도조정기층재를 시료채취방법에 따라 입도 및 0.08㎜체통과량 시험은 1,000㎥마다 1점씩 그리고 액성한계, 소성한계, 노상토지저력비(CBR) 시험은 필요시마다 또한 다짐시험은 재질변화시마다 시료를 채취하여 시험

(2) 포설

현장에 입도조정 기층재를 포설한 후 다짐 전에 함수량을 측정하여 실내 다짐 시험시 측정한 최적함수비와 비교, 살수하여 다짐을 할 것인지 건조 후 다짐을 할 것인지 결정,※ 공사부서에서는 가급적 급속함수량 측정기를 준비하여 다짐 당일에 현장에서 감독 입회하에 함수비 측정실시

(3) 다짐

포설 후 다짐 전에 함수비를 측정한 결과에 따라 살수 또는 건조시켜 최적함수비가 되도록 하여 현장에서 다짐 완료 후 현장 밀도시험
라. 입도조정기층재의 품질기준

<table>
<thead>
<tr>
<th>시험구분</th>
<th>시험종목</th>
<th>시험방법</th>
<th>시험방도</th>
<th>판정기준</th>
<th>처리기간</th>
</tr>
</thead>
<tbody>
<tr>
<td>재료시험</td>
<td>밀도</td>
<td>KS F 2308</td>
<td></td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>밀도 및 흡수율</td>
<td>KS F 2503</td>
<td></td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>노상토지지력비 (CBR, (%))</td>
<td>KS F 2320</td>
<td></td>
<td>80이상</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>다짐</td>
<td>KS F 2312</td>
<td></td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>마모(%)</td>
<td>KS F 2508</td>
<td></td>
<td>40이하</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>체가름</td>
<td>KS F 2502</td>
<td></td>
<td>서울시전문시험방서 10-1-3 참조</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>함수비(%)</td>
<td>KS F 2306</td>
<td></td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0.08㎜ 통과량 (%)</td>
<td>KS F 2511</td>
<td></td>
<td>서울시전문시험방서 10-1-2 참조</td>
<td>4</td>
</tr>
<tr>
<td>시공시험</td>
<td>함수비(%)</td>
<td>KS F 2306</td>
<td>다짐 전 500㎥마다</td>
<td>최적함수비와 비교</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>현장밀도(g/㎤)</td>
<td>KS F 2311</td>
<td>다짐 후 500㎥마다</td>
<td>최대건조밀도의 95%이상</td>
<td>4</td>
</tr>
</tbody>
</table>

※ 단 시멘트 콘크리트포장 공법에서 콘크리트슬래브 바로 밑에 사용되는 보조기층은 수정 CBR치가 80이상 이어야 한다.

마. 보조기층재의 품질기준

<table>
<thead>
<tr>
<th>시험구분</th>
<th>시험종목</th>
<th>시험방법</th>
<th>시험방도</th>
<th>판정기준</th>
<th>처리기간</th>
</tr>
</thead>
<tbody>
<tr>
<td>재료시험</td>
<td>밀도</td>
<td>KS F 2308</td>
<td></td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>밀도 및 흡수율</td>
<td>KS F 2503</td>
<td></td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>노상토지지력비 (CBR, (%))</td>
<td>KS F 2320</td>
<td></td>
<td>30이상</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>다짐</td>
<td>KS F 2312</td>
<td></td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>마모(%)</td>
<td>KS F 2508</td>
<td></td>
<td>50이하</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>체가름</td>
<td>KS F 2502</td>
<td></td>
<td>서울시전문시험방서 10-1-2 참조</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>함수비(%)</td>
<td>KS F 2306</td>
<td></td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0.08㎜ 통과량 (%)</td>
<td>KS F 2511</td>
<td></td>
<td>서울시전문시험방서 10-1-2 참조</td>
<td>4</td>
</tr>
<tr>
<td>시공시험</td>
<td>함수비(%)</td>
<td>KS F 2306</td>
<td>다짐 전 500㎥마다</td>
<td>최적함수비와 비교</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>현장밀도(g/㎤)</td>
<td>KS F 2311</td>
<td>다짐 후 500㎥마다</td>
<td>최대건조밀도의 95%이상</td>
<td>4</td>
</tr>
</tbody>
</table>
제3장 도로포장의 품질관리 기준

바. 노상재의 품질기준

<table>
<thead>
<tr>
<th>시험구분</th>
<th>시험종목</th>
<th>시험방법</th>
<th>시험빈도</th>
<th>판정기준</th>
<th>처리기간</th>
</tr>
</thead>
<tbody>
<tr>
<td>재료시험</td>
<td>입도</td>
<td>KS F 2302</td>
<td>1) 토취장마다</td>
<td>서울시전문시험에 4-4 참조</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>셋기(세립토비율) (%)</td>
<td>KS F 2309</td>
<td>0~25</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>밀도</td>
<td>KS F 2308</td>
<td>0~25</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>노상토지지력비 (CBR, %)</td>
<td>KS F 2320</td>
<td>10이상</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>다짐</td>
<td>KS F 2312</td>
<td>-</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>함수비(%)</td>
<td>KS F 2306</td>
<td>-</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>시공시험</td>
<td>함수비(%)</td>
<td>KS F 2306</td>
<td>다짐 전 1,000㎥마다</td>
<td>최적함수비와 비교</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>현장밀도(g/㎤)</td>
<td>KS F 2311</td>
<td>다짐 후 1,000㎥마다</td>
<td>최대건조밀도의 95% 이상</td>
<td>4</td>
</tr>
</tbody>
</table>

동양최고의 진천 농다리
제4장 도질분야 시험방법

【시험 1】 모래치환법에 의한 흙의 밀도 시험 ... 87
【시험 2】 흙의 다짐 시험 ... 89
【시험 3】 곤재의 체가름 시험 ... 93
【시험 4】 곤은 곤재의 밀도 및 흡수율시험 ... 94
【시험 5】 흙의 밀도시험 ... 95
【시험 6】 로스앤젤레스 시험기에 의한 곤은 곤재의 마모시험 96
【시험 7】 노상도지지력비(CBR)시험 ... 99
【시험 8】 마찰시험기를 사용한 아스팔트혼합물의
소성흐름에 대한 지항력시험 .. 102
【시험 9】 다져진 역청혼합물의 걸보기비중 및 밀도시험 ... 104
【시험 10】 도로보수용 상온 아스팔트혼합물시험 ... 105
【시험 11】 역청포장혼합물의 홀트레킹시험 .. 106
【시험 12】 배수성아스팔트 혼합물의 실내투수시험 ... 109
【시험 13】 투수성포장체의 현장투수시험 ... 111
【시험 14】 흙(준설토)의 흡수비시험 ... 112
【시험 15】 도로의 평판재하시험 .. 115
【시험 1】모래치환법에 의한 흙의 밀도시험

1. 목 적 : 현장에서 최대입자 지름이 53㎜이하인 흙의 단위중량을 모래
치환법으로 결정하여 다짐정도를 파악
2. 시험빈도 : 500㎥마다, 층별 2차선 기준 200m마다
3. 시험규정 : KS F 2311 : 2001
4. 시험장비 : 단위중량측정기, 밑판, 유리판, 저울(10㎏/5g, 500g/0.1g), 건조기,
시험구멍을 파기 위한 기구(꼴, 순가락 등), 표준체(2000㎛, 75㎛),
시험용모래(2㎜체를 통과하고 75㎛체에 남는 모래를 물로 씻어서
잘 건조한 것)
5. 시험방법
 가. 시험실에서 시행하여야 할 시험
 (1) 병과 연결부 체적 교정
 (2) 시험용 모래의 밀도의 교정
 (3) 깔때기를 채우는데 필요한 시험용 모래의 질량 교정(W6)
 나. 현장에서의 시험순서
 (1) 측정전의 준비와 시험구멍의 굴착
 가) 시험장소의 지표면을 곧은 날로 수평으로 고른다. 이 때 지표면에 느슨한
 흙, 자갈 또는 먼지가 있으면 그것을 제거해야 한다.
 나) 편편히 고른 지표면에 밑판을 밀착시킨다.
 다) 밑판구멍 내측의 흙을 오거, 끌, 펑이 또는 순가락 등의 굴착기구를 사
 용하여 판다. 파낸 흙은 조금이라도 손실되지 않도록 주의하여 용기에
 넣는다.
 【시험 구멍의 최소체적】

<table>
<thead>
<tr>
<th>최대입자 지름(㎜)</th>
<th>시험구멍의 최소체적(cm³)</th>
<th>함수비 시험용 시료의 최소량(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.75</td>
<td>700</td>
<td>100</td>
</tr>
<tr>
<td>13.2</td>
<td>1,400</td>
<td>250</td>
</tr>
<tr>
<td>26.5</td>
<td>2,100</td>
<td>500</td>
</tr>
<tr>
<td>53.0</td>
<td>2,800</td>
<td>1,000</td>
</tr>
</tbody>
</table>
제4장 도질분야 시험방법

(2) 시험 구멍에서 파낸 흙의 질량 및 시험 구멍의 체적 측정
가) 시험 구멍에서 파낸 흙의 전체 질량 \(W_7 \)
나) 제량이 끝난 후 흙을 잘 혼합하고 함수비 시험용 시료를 취한다.
다) 흙의 함수량 \(\omega \)은 실내시험에 의하여 다음과 같이 구함
\[
\omega = \frac{\text{젖은 흙의 질량(g)} - \text{건조 흙의 질량(g)}}{\text{건조 흙의 질량(g)}} \times 100
\]
라) 모래를 채운 측정기의 질량 \(W_3 \)측정
마) 밀판 구멍에 깔때기를 맞추어 측정기를 세운다
바) 밸브를 열고 병 속의 모래 이동이 멈춘 것을 확인한 후 밸브를 잠근다.
사) 측정기와 남은 모래의 질량 \(W_8 \)측정
아) 시험 구멍 및 깔때기에 들어간 모래의 질량 \(W_9 \)을 구함.
\[
W_9 = W_3 - W_8
\]
자) 시험 구멍을 채우는 데 필요한 모래의 질량 \(W_{10} \)을 구함.
\[
W_{10} = W_9 - W_6
\]
※ 주의사항
① 흙수량 시험용 흙은 수분 증발이 되지 않도록 기밀 유지
② 건조 흙이란 110±5℃에서 항량 건조를 의미

(3) 실내에서의 시험(흙의 밀도 결정)
가) 시험구멍의 체적 \(V_0 \)
\[
V_0(㎤) = \frac{\text{시험 구멍을 채우는 데 필요한 모래의 질량}(W_{10})(\text{g})}{\text{시험용 모래의 밀도}(Y_s)(\text{g/㎤})}
\]
나) 흙의 습윤 밀도 \(Y_t \)
\[
Y_t(\text{g/㎤}) = \frac{\text{시험 구멍에서 파낸 흙의 습윤 흙의 질량}(W_7)(\text{g})}{\text{시험구멍의 체적}(V_0)(㎤)}
\]
다) 흙의 건조 밀도 \(Y_d \)
\[
Y_d(\text{g/㎤}) = \frac{Y_t}{1 + w/100}
\]

(4) 다짐기준

<table>
<thead>
<tr>
<th>구분</th>
<th>기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>노체</td>
<td>90% 이상</td>
<td>서울특별시 토목공사 전문시험서 참조</td>
</tr>
<tr>
<td>노상</td>
<td>95% 이상</td>
<td></td>
</tr>
<tr>
<td>동상방지층</td>
<td>95% 이상</td>
<td></td>
</tr>
<tr>
<td>보조기층</td>
<td>95% 이상</td>
<td></td>
</tr>
<tr>
<td>입도조정기층</td>
<td>95% 이상</td>
<td></td>
</tr>
</tbody>
</table>
【시험 2】흙의 다짐시험

1. 목 적 : 37.5㎜체를 통과한 흙의 건조밀도-함수비 곡선에 의해 최대건조밀도 및 최적함수비를 구하는 것이 목적

2. 시험빈도 : 골재원마다, 토질변화시마다

3. 시험규정 : KS F 2312 : 2001

4. 필요장비 : 몰드(지름150㎜, 100㎜), 랜머(4.5kg, 2.5kg), 저울(감도10g, 5g), 표준체(37.5㎜, 19.0㎜), 건조기, 곧은 날, 스페이서 디스크, 거름종이 등

5. 시험방법

가. 시료의 다짐 방법, 준비 방법 및 시료의 사용방법

(1) 다짐방법

<table>
<thead>
<tr>
<th>다짐방법의 호칭명</th>
<th>랜머 질량 (kg)</th>
<th>몰드 안지름 (cm)</th>
<th>다짐 층수</th>
<th>1층당의 다짐회수</th>
<th>하용최대입자지름 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.5</td>
<td>10</td>
<td>3</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>B</td>
<td>2.5</td>
<td>15</td>
<td>3</td>
<td>55</td>
<td>37.5</td>
</tr>
<tr>
<td>C</td>
<td>4.5</td>
<td>10</td>
<td>5</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>D</td>
<td>4.5</td>
<td>15</td>
<td>5</td>
<td>55</td>
<td>19</td>
</tr>
<tr>
<td>E</td>
<td>4.5</td>
<td>15</td>
<td>3</td>
<td>92</td>
<td>37.5</td>
</tr>
</tbody>
</table>

※ 선택 방법 : 시험 목적과 시료의 최대 입자지름

- 89 -
제4장 도질분야 시험방법

(2) 건조법 : 시료전량을 최적함수비가 얻어지는 함수비까지 건조하고 다진 때 물을 가하여 필요한 함수비로 조정하는 방법
(3) 습윤법 : 자연함수비에서 건조 또는 물을 가함으로써 시료를 필요한 함수비로 조정하는 방법
(4) 반복법 : 동일한 시료를 함수비를 바꾸어 반복 사용하는 방법
(5) 비반복법 : 항상 새로운 시료를 함수비를 바꾸어 사용하는 방법

나. 시료 준비

(1) 시료분취기 또는 4분법에 따라 필요량을 분취한다. (E 방법)

<table>
<thead>
<tr>
<th>시료준비 및 사용방법의 조합</th>
<th>몰드의 지름 (cm)</th>
<th>허용최대입자지름 (㎜)</th>
<th>시료의 최소 필요량</th>
</tr>
</thead>
<tbody>
<tr>
<td>건조법으로 비반복법</td>
<td>15</td>
<td>37.5</td>
<td>6kg씩 필요 6무더기</td>
</tr>
</tbody>
</table>

다. 시험 순서

흙의 다짐에 의한 함수비 - 건조밀도 곡선 작성을 위한 시험
(1) 몰드와 밑판의 질량(\(M_1\))를 단다.
(2) 시료를 몰드에 넣어 소정의 다짐방법(E방법)으로 다진다.
다진은 상고하고 평평한 바닥 위에서 하며 다진 후 각 층의 두께가 같아지도록 한다.
※ 주의 사항
① 각 층 사이의 밀착을 좋게 하기 위하여 다진 각 층의 윗면에 주걱 등으로 가로세로 선을 긋는다.
② 15cm몰드인 경우는 시료를 몰드에 넣기 전에 몰드에 스페이서 디스크를 놓고 거름종이를 간다.
(3) 다진 후의 시료 윗면은 몰드의 약간 위가 되도록 한다. 다만 10㎜를 초과해서는 안된다.
(4) 다진 후, 칼라를 떼어내고 몰드 상부의 여분의 흙을 곧은 날로 주의 깊게 치아내어 평면으로 다짐질한다. 돌멩이 등을 제거함으로 인해 표면에 생긴 구멍은 입자지름이 작은 흙으로 메운다.
5) 몰드와 밑판의 외부에 붙은 흙을 잘 닦아내고 전체 질량(\(M_2\))을 단다.
제4장 도질분야 시험방법

※ 주의사항

① 15cm 몰드인 경우는 몰드와 밑판의 전체질량을 측정 전에 밑판을 떼어내고 몰드에서 거름종이 및 스페이서 디스크를 꺼낸다.

(6) 시료추출기를 이용하여 다진 시료를 몰드에서 꺼내고 함수비(\(\omega\))를 구한다

\[
\omega = \frac{\text{젖은 흙의 수분의 질량}}{\text{마른 흙의 무게}} \times 100 = \frac{W_a - W_b}{W_b - W_c} \times 100
\]

\(W_a\) : 용기와 젖은 흙의 질량(g)
\(W_b\) : 용기와 마른 흙의 질량(g)
\(W_c\) : 용기의 질량(g)

※ 주의 사항

① 함수비 측정은 측정개수가 1개인 경우는 다진 흙의 중심부에서, 2개인 경우는 상부 및 하부에서 채취한다.

② 함수비 측정에 필요한 시료의 최소 질량(KS F 2306:2000)

<table>
<thead>
<tr>
<th>시료의 최대 입자 지름(㎜)</th>
<th>시료의 질량</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>5 ～ 30kg</td>
</tr>
<tr>
<td>37.5</td>
<td>1 ～ 5kg</td>
</tr>
<tr>
<td>19</td>
<td>150 ～300g</td>
</tr>
<tr>
<td>4.75</td>
<td>30 ～100g</td>
</tr>
<tr>
<td>2</td>
<td>10 ～30g</td>
</tr>
<tr>
<td>0.425</td>
<td>5 ～ 10g</td>
</tr>
</tbody>
</table>

(7) 예상되는 최적함수비를 포함하여 6～8종류의 다른 함수비로 다짐을 반복한다.

라. 시험결과처리

(1) 다진 흙의 습윤밀도(\(Y_t\))

\[Y_t = \frac{M_2 - M_1}{V}\]

\(Y_t\) : 흙의 습윤밀도(g/cm³), \(V\) : 몰드의 용량(cm³)
\(M_1\) : 몰드와 밑판의 질량(g), \(M_2\) : 다진 흙의 전체질량(g)

- 10cm 몰드 \(V=1,000\text{cm}^3(1,000\pm10\text{cm}^3)\)
- 15cm 몰드 \(V=2,209\text{cm}^3(2,209\pm26\text{cm}^3)\)
제 4 장 도질분야 시험방법

2) 다진 흙의 건조밀도 (Y_d)

$$Y_d = \frac{Y_t}{1 + \frac{\omega}{100}}$$

Y_d : 흙의 건조밀도 (g/cm3)
ω : 함수비 (%)

(3) 최대건조밀도 ($Y_{d_{max}}$), 최적함수비 (ω_{opt}) 산출

건조밀도를 세로축에 함수비를 가로축에 취하여, 축정치를 기입하고 이들을 매끈한 곡선을 연결하여 건조밀도-함수비 곡선으로 한다.
이 곡선의 건조밀도 최대치를 최대건조밀도 ($Y_{d_{max}}$), 거기에 대응하는 함수비를 최적함수비 (OMC, ω_{opt})로 한다.

다짐곡선의 작도
【시험 3】골재의 체가름시험

1. 목 적 : 골재의 입도분포를 구하기 위함
2. 시험빈도 : 1,000㎥마다, 골재원마다, 재질변화시마다
3. 시험규정 : KS F 2502 : 2010
4. 시험장비 : 저울(0.1%이상의 정밀도), KSA 5101-1~3규정에 의한 시험용체
5. 시험방법
 가. 시료준비
 (1) 4분법이나 시료분취기를 사용하여 소정량 만큼 체취한다.

굵은 골재의 최대치수 (㎜)	소요량 (㎏)
40	8
80	16

 (2) 시료를 105 ±5℃ 온도에서 24시간 일정 질량이 될 때까지 건조한다.
 나. 체의 크기 및 기준

<table>
<thead>
<tr>
<th>구분</th>
<th>통과수</th>
<th>통과 중량 백분율 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75㎜</td>
<td>50㎜</td>
</tr>
<tr>
<td>보조기층재</td>
<td>SB-1 100</td>
<td>95-100</td>
</tr>
<tr>
<td></td>
<td>SB-2 -</td>
<td>80-100</td>
</tr>
<tr>
<td>입도조정기층재</td>
<td>B-1 -</td>
<td>95-100</td>
</tr>
<tr>
<td></td>
<td>B-2 -</td>
<td>80-95</td>
</tr>
</tbody>
</table>

다. 시험순서

(1) 필요한 체를 체눈이 큰 것이 위로 가도록 팬과 함께 조립하고 체가름시험기에 장치한다.
(2) 체질은 위, 아래, 수평으로 시료가 끊임없이 체면을 균등하게 운동하도록 하며 1분 동안에 각 체를 통과하는 것이 전 시료 무게의 0.1%이하로 될 때까지 작업을 한다.
(3) 각 체에 남는 시료의 질량과 팬에 남은 질량을 저울로 달고 각 체의통과량을 전 질량에 대한 백분율로 계산한다.
【시험 4】굵은골재의 밀도 및 흡수율시험

1. 목적 : 굵은골재의 밀도, 겉보기밀도 및 흡수율을 측정하는 방법

2. 시험빈도 : 골재원마다, 재질변화시마다

4. 시험장비 : 저울(시료 질량의 0.1% 이내 읽을 수 있는 것), 3㎜ 또는 그 이하의 철선으로 만든 철망태, 물탱크, 5㎜체

5. 시험방법

가. 시료

(1) 5mm체 에 남는 굵은 골재로 1회의 시험 사용 최소 질량은 굵은골재 최대 치수(㎖ 표시)의 0.1배를 kg으로 나타낸 양으로 한다.

나. 시험순서

(1) 시료를 철망에 넣고, 수중에 진동을 주어 입자표면과 입자 간의 부착 공기를 제거한 후 (20±5)℃의 물속에 24시간 담근다.
(2) 20±5℃의 물속에서 시료의 수중 질량(C)과 수온을 측정.
(3) 철망태와 시료를 수중에서 꺼내 물기를 제거한 후 시료를 흡수천에 굴러고, 눈에 보이는 수막을 제거하여 표면건조포화상태의 질량(B) 측정.
(4) 105±5℃에서 일정 질량이 될 때까지 건조 시키고, 실온까지 냉각하여 절대건조상태의 질량(A)을 측정.

다. 결과계산

1) 절대건조상태의 밀도

\[\frac{A}{B - C} \times \rho_w \]

\(A \) : 절대건조상태의 시료의 질량(g)
\(B \) : 표면건조포화상태의 질량(g)
\(C \) : 시료의 수중질량(g)
\(\rho_w \) : 시험온도에서의 물의 밀도(g/㎤)

2) 표면건조포화상태의 밀도

\[\frac{B}{B - C} \times \rho_w \]

3) 진밀도

\[\frac{A}{A - C} \times \rho_w \]

4) 흡수율

\[\frac{B - A}{A} \times 100 \]
【시험 5】흙의 밀도시험

1. 목 적 : 흙입자의 밀도를 결정하기 위함
 ※ 흙입자의 밀도란 : 흙의 고체부분의 단위체적당 질량이다.

2. 시험빈도 : 공재원마다, 재질변화시마다

3. 시험규정 : KS F 2308 : 2006

4. 시험장비 : 100㎖이상의 용적측정용 플라스크, 저울(감도0.001g)

5. 시험방법
 가. 시료준비
 (1) 시료는 9.5㎜체를 통과하는 흙 입자의 분리기구 또는 흙의 파쇄기구를 사용하여 흙 입자를 충분히 분리하여 노건조 후 질량 25g이상을 준비 한다.
 나. 시험방법
 (1) 피크노미터의 질량을 측정한다.
 (2) 피크노미터에 증류수를 채우고 전 질량 m_a'와 피크노미터 안의 수온 T' 측정한다.
 (3) 시료를 피크노미터에 넣고 다시 증류수를 가하여 그 전량이 피크노미터 용량의 2/3가 되도록 한 후 끓이는 기구를 사용하여 일반적인 흙에서 10분 이상 시료가 흘러넘치지 않도록 주의하면서 끓인다.
 (4) 피크노미터를 실온이 될 때까지 식힌 후 증류수를 가하여 체우고 바깥면을 마른천으로 조심스럽게 닦은 후 전 질량 m_b와 내용물의 온도 T를 측정한다.
 (5) 피크노미터의 내용물의 전량을 균일하게 (110±5)℃에서 일정질량이 될 때까지 노 건조 후 질량을 측정한다.
 다. 계산식
 (1) 온도 T℃에서의 증류수를 채운 피크노미터의 질량

 $m_s = \frac{\rho_w(T)}{\rho_w(T')} (m_{a'} - m_f) + m_f$
제4장 도질분야 시험방법

\[m_a : \text{온도 } T^\circ \text{C} \text{에서의 증류수를 채운 피크노미터의 질량 (g)} \]
\[m_a' : \text{온도 } T' \circ \text{C} \text{에서의 증류수를 채운 피크노미터의 질량 (g)} \]
\[T' : \text{ma'} \text{를 측정하였을 때의 피크노미터의 내용물의 온도 (}^\circ \text{C)} \]
\[m_f : \text{피크노미터의 질량 (g)} \]
\[\rho_w(T) : T^\circ \text{C} \text{에서의 증류수의 밀도} \]
\[\rho_w(T') : T' \circ \text{C} \text{에서의 증류수의 밀도} \]

2) 흙 입자의 밀도

\[\rho_s = \frac{m_s}{m_s + (m_a - m_b)} \rho_w(T) \]

\[\rho_s : \text{흙 입자의 밀도 (g/㎤)} \]
\[m_s : \text{노 건조 시료의 질량 (g)} \]
\[m_b : \text{온도 } T^\circ \text{C} \text{의 증류수와 시료를 채운 피크노미터의 질량 (g)} \]
\[T : \text{mb} \text{를 측정하였을 때의 피크노미터의 내용물의 온도 (}^\circ \text{C)} \]

【시험 6】로스엔젤레스 시험기에 의한 굵은골재의 마모시험

1. 목 적 : 굵은골재의 마모정도를 구하기 위함.
2. 시험빈도 : 골재원마다, 재질변화시마다
4. 시험장비 : 로스엔젤레스 시험기(안지름710±5㎜, 안쪽길이 510±5㎜ 의 강제 원통), 구강제, 평균지름약46.8㎜, 1개의 질량 390～445g)
제4장 도질분야 시험방법

5. 시험방법

가. 시료준비 및 시험기구

(1) 안지름 710±5㎜, 안쪽길이 510±5㎜의 수평회전축이 달린 강제원통

(2) 입도구분에 따른 철구의 수 및 구의 전체무게 및 회전수

KD F 2508 [표1]

<table>
<thead>
<tr>
<th>입도구분</th>
<th>구의 수</th>
<th>구의 전체질량(g)</th>
<th>회전수 (30~33/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12</td>
<td>5000 ± 25</td>
<td>500 회</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>4580 ± 25</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>3330 ± 25</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>2500 ± 25</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>12</td>
<td>5000 ± 25</td>
<td>1,000 회</td>
</tr>
<tr>
<td>F</td>
<td>12</td>
<td>5000 ± 25</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>12</td>
<td>5000 ± 25</td>
<td></td>
</tr>
</tbody>
</table>

(3) 시험하는 과정은 물로 씻은 후, 105±5℃의 온도에서 일정질량이 될 때까지 건조한다. 입도구분에 따른 시료의 질량은 KD F 2508의 표2와 같음.

나. 시험순서

1) 시료의 전질량(M₁)이 표2에 적합하다는 것을 확인한다
2) 시료의 입도 구분에 따라 표1에 적합하도록 구를 고르고 이것을 시료와 함께 원통에 넣어 덮개를 부착하고 매분 30~33회의 회전수로 입도구분에 맞게 회전 시킨다
3) 시료를 시험기에서 거내 1.7㎜의 매탕으로 취다. 이때, 습식으로 쳐도 좋다.
4) 체에 남은 시료를 물로 씻은 후 105±5℃의 온도에서 일정 질량이 될 때까지 건조시킨 다음 질량(M₂)을 채다.

다. 결과계산

(1) 아래 식에 따라 산출 후 반올림하여 소수점 1자리로 끝낸다

\[\frac{M_1 - M_2}{M_1} \times 100 = \text{마모감량}(R\%) \]
제 4장 도질분야 시험방법

\[M_1 : \text{시험 전의 시료질량 (g)} \]
\[M_2 : \text{시험 후 망체 1.7㎜에 남는 시료의 질량 (g)} \]

라. 판정기준

보조기층재료 : 50% 이하
입도조정기층재료 : 40% 이하

※ KS F 2508 [표 2]

<table>
<thead>
<tr>
<th>입도구분</th>
<th>입자 지름의 범위 (㎜)</th>
<th>시료의 질량 (g)</th>
<th>시료의 전체질량 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10 ~ 15</td>
<td>1,250 ± 10</td>
<td>5,000 ± 10</td>
</tr>
<tr>
<td></td>
<td>15 ~ 20</td>
<td>1,250 ± 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 ~ 25</td>
<td>1,250 ± 25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 ~ 40</td>
<td>1,250 ± 25</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>15 ~ 20</td>
<td>2,500 ± 10</td>
<td>5,000 ± 10</td>
</tr>
<tr>
<td></td>
<td>20 ~ 25</td>
<td>2,500 ± 10</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5 ~ 10</td>
<td>2,500 ± 10</td>
<td>5,000 ± 10</td>
</tr>
<tr>
<td></td>
<td>10 ~ 15</td>
<td>2,500 ± 10</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>2.5 ~ 5</td>
<td>5,000 ± 10</td>
<td>5,000 ± 10</td>
</tr>
<tr>
<td>E</td>
<td>40 ~ 50</td>
<td>5,000 ± 50</td>
<td>10,000 ± 100</td>
</tr>
<tr>
<td></td>
<td>50 ~ 65</td>
<td>2,500 ± 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65 ~ 80</td>
<td>2,500 ± 50</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>25 ~ 40</td>
<td>5,000 ± 25</td>
<td>10,000 ± 75</td>
</tr>
<tr>
<td></td>
<td>40 ~ 50</td>
<td>5,000 ± 50</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>20 ~ 25</td>
<td>5,000 ± 25</td>
<td>10,000 ± 50</td>
</tr>
<tr>
<td></td>
<td>25 ~ 40</td>
<td>5,000 ± 25</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>10 ~ 20</td>
<td>5,000 ± 10</td>
<td>5,000 ± 10</td>
</tr>
</tbody>
</table>
【시험 7】노상토 지지력비(CBR) 시험

1. 목 적 : 노상토의 지지력을 평가하기 위함
2. 시험빈도 : 골재원 마다
3. 시험규정 : KS F 2320 : 2000, 부속서 1참조
4. 시험방법

가. 시료준비
(1) 시료의 준비는 다짐시험 시료의 준비와 동일하며, 다짐시험에서 얻은 최적함수비(O.M.C)로 하여 골고루 섞은 후 밀폐하여 12시간 이상 방치시킨다.(다짐 1점에 노건조 시료 약 6kg)

나. 시험순서
(1) 시료를 물드에 넣어 각각 92회, 42회, 17회의 다짐에 의하여 공사체를 각 3개씩 만든다.(허용 최대입자 크기 37.5㎜ 일 경우)
(2) 다짐시에는 물드를 조립 후 스페이서 디스크와 여과지를 깔고 다짐을 하고, 다짐 완료시에는 스페이서 디스크와 디스크 칼라를 제거하고 무게를 측정한 후 물드를 뒤집어서 재조립 하고, 스페이서 디스크 부분에 하중판(무게 1.25kg의 하중판 4개)을 올려놓은 뒤 4일간 물에 담근다.

<CBR 시험기>
제4장 도질분야 시험방법

(3) 수침이 끝난 시료를 빼내어 CBR 시험기에 장치한 후 분당 1㎜의 속도로 관입량이 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 7.5, 10.0 및 12.5㎜일 때 각각의 하중계의 눈금을 기록한다.

(4) 관입시험 결과로부터 구한 하중을 관입피스톤의 단면적으로 나누어서 하중강도(MN/m²)로 표시하고 하중강도-관입량 곡선을 그린다(별첨그림1 참조) 곡선2와 같이 하중강도-관입량 곡선이 상향으로 오목할 경우에는 그림과 같이 변곡점에서 접선을 그어 접선과 가로축의 교점을 관입점의 원점으로 하여 하중강도-관입량 곡선을 수정한다.

(5) 하중강도-관입량 곡선의 관입량 2.5㎜ 및 5.0㎜에서의 하중강도를 읽고 다음 식으로 CBR 값을 계산한다.

\[CBR = \frac{\text{시험하중강도}}{\text{표준하중강도}} \times 100 \]

가) 표준하중강도는 아래표의 값을 이용

<table>
<thead>
<tr>
<th>관입량 (㎜)</th>
<th>표준하중강도(MN/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>6.9</td>
</tr>
<tr>
<td>5.0</td>
<td>10.3</td>
</tr>
</tbody>
</table>

나) CBR는 통상 관입량 2.5㎜에서의 값을 취한다. 관입량 5.0㎜에서 CBR 2.5㎜의 것보다 클 경우에는 새로 공시체를 만들어서 재시험을 한다. 그러나 똑같은 결과를 얻었을 때는 5.0㎜ 것의 CBR을 취한다.

다. 결과 작성

(1) 각각의 3개 평균치에서 구한 CBR 및 건조밀도곡선과, 함수비 및 건조밀도 곡선과의 종축에 건조밀도, 횡축에 함수비, CBR 값을 취해서 아래 그림과 같이 그린다. 그림에서 소요의 다점방법에 대응하는 건조밀도로 수평선을 그어 CBR 과 건조밀도 곡선과의 교점을 구한다. 이 교점에서 수선을 내려면 횡축과의 교점이 노반재료의 수정 CBR이 된다(그림 참조)
제4장 도질분야 시험방법

진조밀도, 함수비, CBR 관계도

최적 함수비

최대 건조밀도

수정 CBR

함수비(%) CBR(%) 건조밀도 (g/cm²)

3 4 5 6 7 8 0 50 100

80 70 60 50 40 30 20 10

수정 7.5mm 관밀
수정 5.0mm 관밀
수정 2.5mm 관밀

최적 함수비

92회
42회
17회
제4장 도집분야 시험방법

라. 판정기준

<table>
<thead>
<tr>
<th>분 류</th>
<th>수정 CBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>동상방지층</td>
<td>10이상</td>
</tr>
<tr>
<td>보조기층재</td>
<td>30이상</td>
</tr>
<tr>
<td>입도조정기층재</td>
<td>80이상</td>
</tr>
</tbody>
</table>

【시험 8】마찰시험기를 사용한 아스팔트혼합물의 소성흐름에 대한 저항력 시험

1. 목 적 : 마찰시험기를 사용하여 측면에 하중을 작용시킨 아스팔트포장용 혼합물의 원주형 공시체의 소성흐름에 대한 저항력을 측정하기 위함

2. 시험빈도 : 1일 1회이상

3. 시험규정 : KS F 2337 : 2007

4. 시험장비 : 형틀, 공시체추출기, 다짐용 해머, 재하헤드, 재하잭, 푸루빙링

5. 시험방법

가. 시험순서

(1) 시험용 아스콘 재료(약 1,200g)를 건조기에 넣어 153~160℃ 온도까지 가열하고 140~148℃ 온도로 다짐한다.
(2) 공시체 형틀과 다짐용 해머 표면을 깨끗이 한후, 90~150℃의 온도로 가열한다.
(3) 형틀 밑면에 거름종이를 넣고 형틀 속에 아스콘혼합물을 넣고 가열한 스펙타리나 홇순으로 혼합물의 표면을 잔디하게 고른다.
(4) 칼라를 다시 붙이고 다짐해머(4.5kg)를 450㎜의 높이에서 자유 낙하시켜 50회 또는 75회 타격한다.(다짐기는 분당 60~70회 다짐)
(5) 칼라를 제거하고, 뒤집어서 재조립한 후 공시체 표면에 동일한 수로 타격을 하여 다진다.(다져진 공시체의 높이가 63.5㎜±1.27㎜가 되도록 하되 다를 경우에는 안정도 값을 보정해준다.)
제4장 도질분야 시험방법

(6) 다짐을 끝낸 후 충분한 부착력이 생기도록 공기중에서 형틀에 넣어 둔채로 써헌 후 추출기를 이용하여 추출한 후 실온에서 12 시간 둔다.
(7) 시험용 공시체 수는 1조당 3개 이상의 공시체를 준비한다.
(8) 성형된 공시체의 공기중 무게, 수중무게, 표면건조포화상태의 무게를 측정하여 실측밀도를 구하고, 4분법에 의하여 두께를 측정한다.
(9) 항은수조(깊이 150㎜ 이상, 온도 60±1℃, 공시체를 수조의 밑면 위 50㎜의 높이로 유지하기 위한 선반이나 유공판이 있는 것)에 30~40분 동안 수침시킨다.
(10) 수침 후 마샬안정도 시험기에 올려놓고 기기를 작동한다.
 ※ 수조에서 공시체를 거내어 최대하중을 측정할 때까지의 시험에 소요된 시간은 30초 이내이어야 한다.

나. 합격 판정 기준

<table>
<thead>
<tr>
<th>구분</th>
<th>WC-1,2,3,4</th>
<th>WC-5,6</th>
<th>BB-2(#467)</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>마샬안정도(N)</td>
<td>5,000이상</td>
<td>5,880이상</td>
<td>3,500이상</td>
<td></td>
</tr>
<tr>
<td>흐름값(1/100㎝)</td>
<td>20~40</td>
<td>15~40</td>
<td>10~40</td>
<td></td>
</tr>
<tr>
<td>공극율(%)</td>
<td>3~6</td>
<td>3~5</td>
<td>3~10</td>
<td></td>
</tr>
<tr>
<td>포화도(%)</td>
<td>65~80</td>
<td>70~85</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

※ 잔류안정도 : 물의 영향을 받기 쉽다고 생각되는 혼합물 또는 그와 같은 장소에 포설되는 혼합물의 안정도

잔류안정도(%) = \[
\frac{60℃, 48시간 수침 후의 안정도(N)}{처음 안정도(N)}
\]
【시험 9】다져진 역청 혼합물의 겉보기 비중 및 밀도시험

1. 목 적 : 실내시험에 의하여 정해진 실측밀도를 기준으로 하여 현장에 포설된 역청혼합물의 다질정도 파악

2. 시험빈도 : 1일 1회 이상

4. 시험방법

가. 파라핀에 의한 피복여부 결정
 (1) 공시체내에 흡수된 체적당 함수량을 구한다.

 \[
 \text{체적당 함수량(\%) = } \frac{B - A}{B - C} \times 100
 \]

 \(A\) : 공기 중에서 건조된 시료의 질량(g)
 \(B\) : 공기 중에서 표면건조된 포화시험의 질량(g)
 \(C\) : 수중에서의 시료 질량(g)

 (2) 단위체적당 함수량이 2%를 초과하면 4.나에 따라 시험하고, 2%를 초과하지 않으면 4.다에 따라 시험한다.

나. 파라핀 피복에 의한 공시체의 겉보기 비중 측정
 (1) 25±3℃에서 건조한 후 공기 중 공시체의 질량(A) 측정
 (2) 건조 공시체의 표면을 파라핀으로 피복하여 공극을 없앤 후 25±3℃에서 30분간 냉각 후 공기 중 공시체의 질량(D) 측정
 (3) 피복한 공시체를 25℃ 수조에서 30분간 침수 후 수중질량(E) 측정

 \[
 \text{겉보기 비중 = } \frac{A}{D - E - \frac{D - A}{F}}
 \]

 \(A\) : 건조 공시체의 공기 중 질량(g)
 \(D\) : 피복한 건조 공시체의 공기 중 질량(g)
 \(E\) : 피복한 건조 공시체의 수중 질량(g)
 \(F\) : 파라핀의 겉보기 비중(¹)
제4장 도질분야 시험방법

(4) 공시체의 밀도(㎝³/g) = 겉보기 비중 × 0.997

\[0.997 : 25℃에서의 물의 밀도(㎝³/g) \]

다. 파라핀을 피복하지 않고 겉보기 비중 측정

(1) 수중에서의 시료질량 : 25℃에서 3~5분 동안 담근 후 수중질량 측정
(2) 공기중에서 표면건조 포화 시료의 질량
(3) 완전히 건조한 시료의 공기 중 질량

\[
\text{겉보기 비중} = \frac{A}{B - C}
\]

A: 공기 중에서 건조한 시료의 질량(g)
B: 공기 중에서 표면 건조한 시료의 질량(g)
C: 수중에서의 시료 질량(g)

(4) 공시체의 밀도(㎝³/g) = 겉보기 비중 × 0.997

\[0.997 : 25℃에서의 물의 밀도(㎝³/g) \]

5. 판정기준

- 밀도 : 기준밀도의 96% 이상
- 두께 : 설계두께의 -5 ~ +10%

【시험 10】도로보수용 상온 아스팔트 혼합물시험

1. 목적 : 마샬시험기를 이용하여 측면에 하중을 작용시킨 상온 아스팔트 혼합물에 대한 원주형 공시체의 소성효과에 대한 저항력을 측정하기 위함

2. 시험빈도 : 구매시마다

4. 시험방법

가. 시험순서

(1) 시험용 시료 혼합물(약 1200g × 12개)의 온도가 29±5℃가 되도록 한다.
(2) 다판용 해머의 타격면과 몰드, 밀판, 칼라 및 스펙토불러를 깨끗이 준비한다.
제4장 토질분야 시험방법

(3) 몰드 밑면에 거름종이를 넣고 몰드속에 혼합물을 끌고 마샬시험용 다짐봉으로 양면을 각 50회 다진다.
(제작후 공시체의 높이가 63±2.5㎜이상 차이나는 공시체는 버린다)
(4) 제작된 공시체는 상온의 조건에서 16~19시간 방치한다.
(5) 처음안정도는 공시체를 2시간 양생(25±1℃) 후 마샬시험기를 이용하여 분당 50±5㎜의 재하속도로 공시체를 압축한다.
(6) 마샬 안정도는 공시체 제작후 17시간동안 실온에 방치한 후 2시간동안 25±1℃의 공기욕조기 안에서 양생시킨 후 마샬시험기를 이용하여 분당 50±5㎜의 재하속도로 공시체를 압축한다.
(7) 잔류안정도는 25±1℃의 항온수조에서 48시간동안 수침시킨 후 마샬시험기를 이용하여 분당 50±5㎜의 재하속도로 공시체를 압축한다.

\[
\text{잔류 안정도(%) = } \frac{\text{25℃에서 48시간 수침후 안정도(N)}}{\text{2시간양생후의 처음 안정도(N)}} \times 100
\]

나. 합격판정기준

<table>
<thead>
<tr>
<th>구분</th>
<th>단위</th>
<th>기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>안정도(25℃)</td>
<td>N</td>
<td>2,500이상</td>
<td></td>
</tr>
<tr>
<td>흐름 값</td>
<td>1/10㎜</td>
<td>20 ~ 40</td>
<td></td>
</tr>
<tr>
<td>수침 잔류 안정도</td>
<td>%</td>
<td>75 이상</td>
<td></td>
</tr>
<tr>
<td>공 극 둥</td>
<td>%</td>
<td>3 ~ 15</td>
<td></td>
</tr>
</tbody>
</table>

【시험 11】역청 포장 혼합물의 휠트래킹 시험

1. 목 적: 역청 포장용 혼합물을 롤러 다짐한 공시체에 시험 차륜 하중을 반복적으로 가하여 동적 안정도 및 변형률을 측정
2. 시험규정: KS F 2374 : 2010
3. 시험장비: 공시체몰드, 다짐롤러 콤팩터, 휠트래킹 시험기
4. 시험방법

가. 공시체제작

(1) 사각 공시체 몰드(300×300×50㎜)를 3개 이상 준비한다.
(2) 마샬르다짐 방법에 따라 적정 공극률을 산출, 이것을 기준으로 마샬시험 공시체 밀도를 산출, 공시체의 용적(300×300×50㎜=4500㎤)에 곱하여 혼합물의 소요량을 구한다.
(3) 조립된 공시체 몰드와 다짐용 롤러 콤팩터의 표면을 깨끗이 한 후, 이들 온도 130~150℃의 온도로 가열 후 혼합물을 다짐몰드에 넣고 몰드주위를 홀손으로 한바퀴 다지고, 중앙이 솟아오르도록 소형 삽으로 가볍게 정형한 후 롤러 콤팩터로 다진다. (최대다짐하중은 8820N)
(4) 공시체는 제작 후 실온에서 12시간 이상 방치 양생함.
(5) 양생이 끝난 공시체는 몰드에서 탈형하여 밀도를 측정함.
(6) 공시체의 롤러 콤팩터 다짐방향을 반드시 기록함.

<슬래브콤팩터 시험기>
나. 시험순서
(1) 시험횟수는 한 종류의 혼합물에 대하여 3회 이상으로 한다.
(2) 시험개시 5시간 전에 공시천을 60±2℃ 항온실에서 양생함.
(3) 공시천은 시험기에 고정하고 온도계의 끝을 공시천 표면의 시험차륜이 주행하지 않는 부분에 고정시킴
(4) 공시천 표면이 시험온도 60±0.5℃를 확인하고 온도가 안정된 후 시험차륜을 직진 왕복 주행시킴 (※시험차륜하중 686±10N)
(5) 변형량의 측정은 최초에 중앙부를 통과하는 때의 다이얼 게이지의 눈금을 원점으로 하며 1분, 5분, 15분, 30분, 45분, 60분이 경과한 때의 침하 깊이를 측정 기록한다.
(6) 변형속도의 계산은 변형량이 일정화되는 45분, 60분의 15분간의 변형량을 측정하여 구한다.

변형속도(RD, mm/min) = \frac{d_{60} - d_{45}}{15}

RD : 변형속도(mm/min)

d_{60} : 60분에서의 변형량(㎜)

d_{45} : 45분에서의 변형량(㎜)

(7) 총변형량 측정은 최초에 시험 차륜이 중심부를 통과한 1회를 “0”으로 정하고, 다짐 횟수가 2,520회(60분소요)일 때 침하깊이(총변형량, ㎜)를 기록한다.
(8) 동적안정도(DS)는 공시천의 표면으로부터 1㎜ 변형하는 데 소요되는 시험차륜의 통과횟수로써 다음 식으로 구함

DS = 42 \times \frac{t_2\cdot t_1}{d_2\cdot d_1} \times C

DS : 동적안정도(회/㎜)

d_1 : t_1(일반적으로 45분)에서의 변형량(㎜)

d_2 : t_2(일반적으로 60분)에서의 변형(㎜)

C : 크랭크에 의한 변속 구동형시험기를 사용한 경우의 보정계수 = 1.0
【시험 12】배수성 아스팔트 혼합물의 실내 투수 시험

1. 목 적: 도로포장용 배수성 아스팔트 혼합물의 투수성을 실내에서 평가하는 시험으로 투수 성능을 확보하고자 함

2. 시험규정: KSF 2494: 2007

3. 시험장비: 투수시험기, 저울, 스토크워치, 버니어캘리퍼스

4. 시험방법

가. 시료의 준비

(1) 지름 약100㎜의 원주형 시편 준비한다.

(2) 시편의 지름과 두께를 버니어캘리퍼스를 이용 0.1㎜까지 측정
4장 토질분야 시험방법

나. 시험순서

(1) 시험 횟수는 한 종류의 혼합물에 대하여 3회 이상으로 한다.
(2) 투수시험기의 수조에 물을 채우고 25℃로 유지한다.
(3) 공시체를 시험기에 고정하고 공기가압을 가한 후 물공급 순환 모터를 작동
 배수구로부터 훌링량이 거의 일정할 때 까지 유지
(4) 일정한 시간 내에 배수되는 물의 양을 측정한다.
(5) 투수계수 산출

\[
K_T = \frac{L}{h} \times \frac{Q}{A(t_2-t_1)}
\]

\(L\) : 시편의 두께(㎜)
\(A\) : 시편의 단면적(㎟)
\(h\) : 수위차(㎜)
\(t_2\) : 측정개시 시간(초), \(t_1\) : 측정개시 시간(초)
\(Q\) : \(t_1 \sim t_2\) 에 배수된 수량(㎜³)

＜실내투수시험기＞
제4장 도질분야 시험방법

【시험 13】투수성 포장체의 현장 투수 시험

1. 목 적: 베·투수성 포장 구조체에 대한 현장에서의 투수성능을 평가하기 위한 투수량을 구하는 시험

2. 시험규정: KSF 2394 : 2004

3. 시험장비: 투수시험기, 분동, 스톱워치, 유성점토, 시험수

4. 시험방법

가. 투수시험기 설치

(1) 포장노면의 먼지 등을 제거한 다음, 현장 투수시험기를 포장 표면에 설치한다.
(2) 저판 주위에 유성 점토를 부착하여 노면과의 접촉면으로부터의 누수를 방지한 후, 저판위에 분동을 올려놓는다.

| 투수시험 모형도 | 현장투수시험 사진 |
제4장 도철분야 시험방법

나. 시험순서

(1) 스텐드파이프에 초기위치 표시하고 400ml 내려간 위치를 표시하여 경과 시간을 초 (초) 스톱워치로 측정하며 각 측정마다 1분 정도의 간격을 둔다.

(2) 3회의 평균 시간을 초 단위로 산출한다. 이 평균시간은 물 400ml의 유하시기는 시간이다.

※ 서울시 저소음·배수성 아스팔트 포장 시방서 기준 : 측정기구내 물 400㎖를 주입하고 포장체를 통해 빠져 나가는데 걸리는 시간 측정(품질기준 10초 이내)

【시험 14】 흙(준설토)의 함수비시험

1. 목 적 : 항온 건조로를 사용하여 흙의 함수비를 구함

2. 시험빈도 : 필요시마다

4. 시험방법 :

가. 시료준비

(1) 시험의 목적 및 시료의 입자 지름에 따라 적당량을 취한다.

【참고】 시료로서 필요한 최소 무게의 표1과 같이 굵은 입자가 많은 흙의 수록 많이 취한다.
제4장 토질분야 시험방법

〈표1〉 함수비 측정에 필요한 시료의 최소 무게의 기준

<table>
<thead>
<tr>
<th>시료의 최대 입자 지름(mm)</th>
<th>시료의 최소 무게</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>5 ~ 30kg</td>
</tr>
<tr>
<td>37.5</td>
<td>1 ~ 5kg</td>
</tr>
<tr>
<td>19</td>
<td>150 ~ 300g</td>
</tr>
<tr>
<td>4.75</td>
<td>30 ~ 100g</td>
</tr>
<tr>
<td>2</td>
<td>10 ~ 30g</td>
</tr>
<tr>
<td>0.425</td>
<td>5 ~ 10g</td>
</tr>
</tbody>
</table>

나. 시험순서

1) 용기의 무게 \(m_c \)를 단다.
2) 시료를 용기에 넣고 전무게 \(m_a(g) \)를 단다.
3) 시료를 용기별로 항온 건조로에 넣고 110±5℃에서 일정 무게가 될 때까지 노건조 한다.
4) 노건조시료를 용기별로 데시케이커를 옮기고, 거의 실온이 될 때까지 식힌 후 전무게 \(m_b \)를 단다.
5) 계산

\[
w = \frac{m_a - m_b}{m_b - m_c} \times 100
\]

\(w \) : 함수비(%)
\(m_a \) : 시료와 용기의 질량(g)
\(m_b \) : 노 건조 시료와 용기의 질량(g)
\(m_c \) : 용기의 질량(g)
제4장 도질분야 시험방법

【참고】 준설토 함수비 시험용 시료채취 및 시험의뢰 방법

<table>
<thead>
<tr>
<th>구분</th>
<th>시료 채취방법</th>
<th>시험 의뢰방법</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>현행</td>
<td>현장에서 하수와 함께 시료채취</td>
<td>현장에서 시료를 채취하여 년 1~3회 정도 시험의뢰</td>
<td></td>
</tr>
<tr>
<td>개선방안</td>
<td>중간적치장 도착즉시 및 반출 직전 시료를 채취하되 시료는 평균치(대표성)가 확보되도록 채취</td>
<td>준설방법별로 중간적치장에서 시료(반입즉시, 반출직전)를 채취하여 일정 주기별로 반복적인 시험을 실시하되, 시료채취방법, 계절, 시간 및 시료채취자 등에 따라 차이가 발생될 수 있는 사항이므로 가능한 시험회수를 증가시켜 평균치를 산출</td>
<td></td>
</tr>
</tbody>
</table>

※ 준설공사 관리방법 개선방안 :
부시장방침 제102호(2003.11.20, 서울시 기술심사담당관)

【시험접수 방법 개선】
① 시료용기는 품질시험소 일괄 제작 후 배포하는 지정된 용기만을 사용 함.
② 시료는 의뢰자(감독관)의 날인 후 봉인(밀봉)상태로 접수 함.
③ 시료 용기 뚜껑에 인식표를 부착함.

의뢰기관	0 0 구청 0 0 과
공 사 명	000 준설공사
의뢰자(감독관)	홍 길 동
채취장소	00구 00동 00번지
채취 일	0000. 00. 00

<지정된 준설토 시료 용기>
【시험 15】도로의 평판재하 시험

1. 목 적: 도로의 노상, 노반의 지지력 계수를 구하기 위함

2. 시험규정: KS F 2310 - 2000

3. 시험빈도:

<table>
<thead>
<tr>
<th>구분</th>
<th>시험빈도</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>노 체</td>
<td></td>
<td></td>
</tr>
<tr>
<td>노 상</td>
<td></td>
<td></td>
</tr>
<tr>
<td>보조기층 및 동상방지층</td>
<td></td>
<td></td>
</tr>
<tr>
<td>입도조정기층</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>구분</th>
<th>시험빈도</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>노 체</td>
<td>3층 포설 후 150m마다 (층다짐시: 2차선 기준)</td>
<td>재료최대치수 37.5mm이상인 경우</td>
</tr>
<tr>
<td>노 상</td>
<td>2층 포설 후 200m마다 (층다짐시: 2차선기준)</td>
<td>현장밀도시험 불가능시</td>
</tr>
<tr>
<td>보조기층 및 동상방지층</td>
<td>보조기층 및 동상방지층 완성 후 100m마다 : 2차선 기준 500m마다 (폭이 넓은 광활한 지역의 성토 작업시)</td>
<td>현장밀도시험 불가능시</td>
</tr>
<tr>
<td>입도조정기층</td>
<td>충렬 200m마다 : 2차선 기준 500m마다 (폭이 넓은 광활한 지역의 성토 작업시)</td>
<td></td>
</tr>
</tbody>
</table>

4. 시험기구

재하판, 잭, 변위계, 침하량 측정장치 (변위계 부착장치를 갖춘 3m 이상의 지지보와 지지다리), 지지력 장치 (굴삭기, 덤프트럭 등)

5. 시험방법 및 순서

가. 시험방법

(1) 지반을 수평하게 고르고, 필요하면 얇게 모래를 깐다.
(2) 재하판을 설치한다.
(3) 재하판 위에 잭을 놓고 지지력 장치와 조합하여 소요반력을 얻을 수 있도록 한다.
(4) 침하량 측정장치를 재하판 및 지지력 장치의 지지점에서 1m 이상 멀어져 배치하고 변위계를 부착한다.
제4장 도길분야 시험방법

(5) 미리 하중강도 35kN/m² 상당의 하중을 가하고 나서 하중을 0으로 제거하여 변위계의 눈금을 잡고 침하의 원점으로 한다.

(6) 하중강도가 35kN/m²씩 하중을 단계적으로 증가하여, 하중을 올릴 때마다 그 하중에 의한 침하의 진행이 멈추는 것을 기다려 하중계와 변위계의 눈금을 잡는다.
※ 1분간의 침하량이 그 하중강도에 의한 단계에서의 침하량의 1%이하가 되면 침하가 멈춘 것으로 본다.
(7) 침하량이 15mm에 달하거나 하중강도가 현장에서 예상할 수 있는 가장 큰 접지 압력의 크기 또는 지반의 항복점을 넘으면 시험을 멈춘다.

6. 시험결과

지지력 계수는 하중강도-침하량 곡선에서 일정 침하량일 때의 하중강도를 구한다.

\[K_s = \frac{P}{S} \]

\(K_s \) : 지지력 계수(MN/m²)
\(P \) : 하중강도(kN/m²)
\(S \) : 침하량(mm)
※ 아스팔트포장 : 0.25cm, 콘크리트포장 : 0.125cm 침하량 때의 \(K_s \)를 구함.
제5장 재료분야 시험방법

【시험1】 골재의 체가름 시험 .. 119
【시험2】 레디믹스트 콘크리트 시험 .. 123
【시험3】 원심력 철근 콘크리트관 시험 125
【시험4】 보차도 포장용 판석 시험 128
【시험5】 콘크리트벽돌 시험 .. 131
【시험6】 속빈 콘크리트블록 시험 .. 134
【시험7】 보차도용 콘크리트 인터로킹 블록 시험 137
【시험8】 석재의 압축강도 시험 ... 140
【시험9】 철근콘크리트용 봉강 시험 142
【시험10】 알루미늄 및 알루미늄 합금 압출 형제 시험 145
제5장 재료분야 시험방법

【시험 1】 골재의 체가름시험

1. 목 적: 골재의 크고 작은 알이 혼합되어있는 정도의 골재입도 파악

2. 시험빈도: 골재원마다, 1,000㎥마다
 ※ 알카리 골재 반응 시험: 골재원마다, 6개월 1회 이상
 ※ 안정성: 골재원마다, 1년 1회 이상
 ※ 염화물 함유량(바다모래인 경우): 공급회사별, 1일 3회 이상

3. 시험규정: KS F 2502

4. 필요장비: 저울, 매회, 체가름시험기, 건조기, 시료팬 등

5. 시험방법 흐름도

 시료 준비
 ↓
 시료 건조
 ↓
 체가름
 ↓
 체별 잔유량 계량
 ↓
 결과 계산

- 시료채취: 대표적인 시료를 사분법 또는 시료 분취기 사용 채취
- 시료량: 5㎏(굵은골재최대치수25㎜기준), 500g(잔골재)
- 105±5℃에서 일정 질량이 될 때까지 건조
- 1분 동안에 각 체에 통과하는 것이 전 시료 질량의 0.1% 이하로 될 때까지 체가름 작업
- 각 체에 남은 시료를 전시료 질량의 0.1% 이상까지 정확하게 측정한다.
- 체별 통과량 및 통과 백분율 계산(소숫점이하 첫째자리까지 계산 후 정수로 끝 맞춤)
제5장 재료분야 시험방법

6. 콘크리트용 골재입도 : KS F 2526, KS F 2527

가. 잔골재의 입도

<table>
<thead>
<tr>
<th>체의 호칭 치수(㎜)</th>
<th>체를 통과하는 중량 백분율(%)</th>
<th>콘크리트 잔골재 (F 2526)</th>
<th>부순 잔골재 (F 2527)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>95 ~ 100</td>
<td>90 ~ 100</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>80 ~ 100</td>
<td>80 ~ 100</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>50 ~ 85</td>
<td>50 ~ 90</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>25 ~ 60</td>
<td>25 ~ 65</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>10 ~ 30</td>
<td>10 ~ 35</td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td>2 ~ 10</td>
<td>2 ~ 15</td>
<td></td>
</tr>
</tbody>
</table>

나. 굵은골재 입도

<table>
<thead>
<tr>
<th>골재번호</th>
<th>체의 크기 (㎜)</th>
<th>각 체를 통과하는 중량 백분율(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>467</td>
<td>굵은골재 40~5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>부순 굵은골재</td>
<td>100</td>
</tr>
<tr>
<td>57</td>
<td>굵은골재 25~5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>부순 굵은골재</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>부순굴은골재 4</td>
<td>100</td>
</tr>
</tbody>
</table>
다. 물리적 성질

<table>
<thead>
<tr>
<th>시험 종류</th>
<th>굵은굴재</th>
<th>잔굴재</th>
<th>시험 방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>밀도(절대건조) (g/cm³)</td>
<td>2.5이상</td>
<td>2.5이상</td>
<td>KS F 2503 (굵은굴재) KS F 2504 (잔 굴재)</td>
</tr>
<tr>
<td>흡수율(%)</td>
<td>3.0이하</td>
<td>3.0이하</td>
<td>KS F 2503 (굵은굴재) KS F 2504 (잔 굴재)</td>
</tr>
<tr>
<td>안정성(%)</td>
<td>12이하</td>
<td>10이하</td>
<td>KS F 2507</td>
</tr>
<tr>
<td>마모율(%)</td>
<td>40이하</td>
<td>-</td>
<td>KS F 2508</td>
</tr>
<tr>
<td>0.08㎜체 통과량(%)</td>
<td>1.0이하</td>
<td>7.0이하</td>
<td>KS F 2511</td>
</tr>
<tr>
<td>정토딩어리(%)</td>
<td>0.25이하</td>
<td>1.0이하</td>
<td>KS F 2512</td>
</tr>
<tr>
<td>염화물함유량(%)</td>
<td>-</td>
<td>0.04이하</td>
<td>KS F 2515</td>
</tr>
</tbody>
</table>

7. 체가름시험표 및 입도곡선

<table>
<thead>
<tr>
<th>체 가 름 시 험 표(작성 예)</th>
</tr>
</thead>
<tbody>
<tr>
<td>시험번호 : 접수일 : . . .</td>
</tr>
<tr>
<td>시료종류 : 모래</td>
</tr>
<tr>
<td>시료무게(T) : 508.8g</td>
</tr>
<tr>
<td>체의크기 (mm)</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>2.5</td>
</tr>
<tr>
<td>2.0</td>
</tr>
<tr>
<td>1.2</td>
</tr>
<tr>
<td>0.6</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>0.18</td>
</tr>
<tr>
<td>0.15</td>
</tr>
<tr>
<td>PAN</td>
</tr>
</tbody>
</table>
제5장 재료분야 시험방법

[그림: 체기름도곡선]

<table>
<thead>
<tr>
<th>체의크기 (mm)</th>
<th>풍과율 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100.0</td>
</tr>
<tr>
<td>4.75</td>
<td>97.8</td>
</tr>
<tr>
<td>2.36</td>
<td>85.5</td>
</tr>
<tr>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>1.18</td>
<td>70.0</td>
</tr>
<tr>
<td>0.6</td>
<td>55.1</td>
</tr>
<tr>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>0.3</td>
<td>22.6</td>
</tr>
<tr>
<td>0.18</td>
<td>-</td>
</tr>
<tr>
<td>0.15</td>
<td>4.9</td>
</tr>
<tr>
<td>pan</td>
<td>-</td>
</tr>
</tbody>
</table>

[그림: 골재체기름시험기]
【시험 2】 레디믹스트 콘크리트시험

1. 목 적: 주문자에게 운반되는 굳지 않은 콘크리트의 압축강도 확인

2. 시험빈도: 시험횟수는 450㎥를 1로트로 하여 150㎥당 1회의 비율로 한다. 다만, 인수·인도 당사자 간의 협정에 따라 검사 로트의 크기를 조정 할 수 있다.
 ※ 레디믹스트 콘크리트의 강도는 3회의 시험결과에 의해 검사로트의 합부가 결정된다. 시험횟수는 원칙적으로 150㎥에 1회로 규정되어 있기 때문에 검사로트의 크기는 450㎥가 된다. 또한 1회 타설량이 450㎥를 넘을 때는 그 전량을 검사로트로 생각하여 3회의 시험을 행해도 좋은 경우가 있기 때문에 이러한 때는 구입자와 생산자의 협의에 의해 그 검사로트의 크기를 결정 한다.
 ※ 1회 시험결과는 임의의 1개 운반차로 부터 채취한 시료로 3개의 공시체를 제작하여 시험한 평균값으로 한다.

3. 시험규정: KS F 4009, 2403(공시체 제작 방법), 2405(압축강도 시험 방법)

4. 필요장비: 압축강도 시험기, 버어니어캘리퍼스, 수조 등

5. 시험방법
 ○ 압축강도 시험 (KS F 2403, 2405)
 ※ 20ℓ 이상 대표적인 시료 채취
 ※ 재료분리가 일어나지 않도록 주의
 ▼
 공 시 체 제작 (다짐봉 사용시)
 ○ 1회 시험에 3개 제작(원주형)
 ○ 압축강도
 공 시 체
 Ø15×30cm 굵은골재 최대치수 50㎜이하
 Ø10×20cm 굵은골재 최대치수 25㎜이하
 3층 10㎠에 1회 이상 비율 다짐
 2층 10㎠에 1회 비율 다짐
제5장 재료분야 시험방법

공 시 체 캐핑

- 캐핑층의 두께 : 공시체 지름의 2%이내
- 몰드 떼어내기 전
 - 공시체 제작 6~24시간 후 시멘트페이스트 (물 : 시멘트비 27~30%)로 캐핑
- 캐핑을 하지 않을 때는 끝면을 연마 마무리
- 몰드 떼어낸 후
 - 콤파운드를 130~145℃로 가열 용해 후 캐핑
 - 시멘트 페이스트로 캐핑

몰 드 제 거

- 몰드 제거시까지 젖은 천으로 덮어 건조 방지
- 공시체 제작 후 16~72시간 이내 제거

공 시 체 양 생

- 20±2℃에서 물속 또는 상대습도 95% 이상 상태로 양생

강 도 시 험

- 재하속도 압축 : 매초당 0.6±0.4MPa(=N/㎟)
- 강도계산
 - 압축강도 = 최대하중
 공시체단면적

※ 강도 시험에서 공시체의 재령은 지정이 없는 경우 28일, 지정이 있는 경우는 구입자가 지정한 일수로 한다.

6. 검사기준(KS F 4009)

- 강 도
 1) 1회의 시험 결과는 구입자가 지정한 호칭 강도값의 85%이상
 2) 3회 시험 결과 평균값은 구입자가 지정한 호칭 강도값 이상
【시험 3】 원심력 철근 콘크리트관 시험

1. 목 적 : 원심력 철근 콘크리트관의 강도 확인

2. 시험빈도 : 보통관의 균열강도 검사는 샘플링으로 하고 1조의 관에서 1개 샘플링한다. 샘플링 하는 경우의 1조의 개수는 관의 종류 및 호칭 지름이 다르면마다 통상 아래표의 정도이다

<table>
<thead>
<tr>
<th>종류</th>
<th>호칭지름(㎜)</th>
<th>1조의 개수</th>
</tr>
</thead>
<tbody>
<tr>
<td>직 관</td>
<td>150~350</td>
<td>500개</td>
</tr>
<tr>
<td></td>
<td>400~900</td>
<td>200개</td>
</tr>
<tr>
<td></td>
<td>1,000~1,800</td>
<td>150개</td>
</tr>
<tr>
<td></td>
<td>2,000~2,400</td>
<td>130개</td>
</tr>
<tr>
<td></td>
<td>2,600~3,000</td>
<td>100개</td>
</tr>
<tr>
<td>이형관</td>
<td>T자관, Y자관</td>
<td>150~900</td>
</tr>
<tr>
<td></td>
<td>곡관, 지관</td>
<td>150~300</td>
</tr>
</tbody>
</table>

3. 시험규정 : KS F 4403

4. 필요장비 : 외압강도 시험기
제5장 재료분야 시험방법

5. 시험방법

1) 공시관을 대 위에 수평으로 놓고 폭대기부 및 밑부에 두께 약 20mm인 고무판과 약 150×150mm인 각재를 둘어서 한다. 다만, 밑부분의 각재는 생략할 수 있다.

2) 하중은 관체에 거의 균등하게 분포하도록 연직으로 가한다.

3) 균열강도 시험은 균열 하중에 유효 길이 L을 곱한 값까지 관체에 하중을 가하고 관체에 나비 0.05mm를 초과하는 균열의 유무를 조사한다.

4) 파괴강도 시험은 관체에 하중을 가해 나가서 관체에 나비 0.05mm를 초과하는 균열이 발생했을 때의 하중과 시험기가 표시하는 최대 하중을 구하고 각각의 값을 유효길이 L로 나누어 균열 하중 및 파괴 하중을 산출한다.

6. 검사기준(KSF 4403, 표 2)

가. 외압강도

1) 외압강도 검사는 균열강도 및 파괴강도에 대하여 한다.

2) 균열 강도 검사는 1조의 관에서 1개의 공시관을 샘플링, 상기 시험방법에 따라 시험하여 관체에 나비 0.05mm를 초과하는 균열이 없으면 그 공시관을 대표하는 조를 합격으로 한다.

이 검사에 합격하지 않을 때는 그 조에서 다시 2개의 공시관을 샘플링하여 검사하고 2개 모두 합격하면 불합격 관을 제외한 그 조를 합격으로 하고 1개라도 합격하지 않으면 그 조를 불합격으로 한다.

3) 파괴강도 검사는 정기적인 샘플링 방식으로 상기 시험방법에 따라 시험하여 균열하중 및 파괴 하중의 아래 표의 규정에 적합하면 합격으로 한다.
제5장 재료분야 시험방법

나. 시험기준 (KS F 4403 보통관 2종 기준)

<table>
<thead>
<tr>
<th>호 칭</th>
<th>균열하중 2종 (kN/m)</th>
<th>파괴하중 2종 (kN/m)</th>
<th>비 고</th>
</tr>
</thead>
<tbody>
<tr>
<td>150～250</td>
<td>16.7</td>
<td>25.6</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>17.7</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>19.6</td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>21.6</td>
<td>32.4</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>23.6</td>
<td>35.4</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>25.6</td>
<td>38.3</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>29.5</td>
<td>44.2</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>32.4</td>
<td>49.1</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>35.4</td>
<td>53.0</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>38.3</td>
<td>57.9</td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td>41.3</td>
<td>61.9</td>
<td></td>
</tr>
<tr>
<td>1,100</td>
<td>43.2</td>
<td>65.8</td>
<td></td>
</tr>
<tr>
<td>1,200</td>
<td>45.2</td>
<td>71.7</td>
<td></td>
</tr>
<tr>
<td>1,350</td>
<td>47.1</td>
<td>81.5</td>
<td></td>
</tr>
<tr>
<td>1,500</td>
<td>50.1</td>
<td>91.3</td>
<td></td>
</tr>
<tr>
<td>1,650</td>
<td>53.0</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>1,800</td>
<td>56.0</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>2,000</td>
<td>58.9</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>2,200</td>
<td>61.9</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>2,400</td>
<td>64.8</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>2,600</td>
<td>67.7</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>2,800</td>
<td>70.7</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>3,000</td>
<td>73.6</td>
<td>148</td>
<td></td>
</tr>
</tbody>
</table>
제5장 재료분야 시험방법

【시험 4】보차도 포장용 판석 시험

1. 목 적 : 보차도 포장용 판석의 품질확인

2. 시험빈도(흡수율 및 휨강도 기준)
 - 10,000개 미만 : 5개
 - 10,000 ~ 100,000개미만 : 10개
 - 100,000초과 : 50,000개마다 5개씩 추가

3. 시험규정 : KS F 2530-1

4. 필요장비 : 비어니어캘리퍼스, 휨강도시험기, 건조기, 수조, 저울 등

5. 시험방법
 가. 시료준비 : 보차도 포장용 판석 완제품 그대로 이용
 나. 비어니어캘리퍼스로 치수 측정
제5장 재료분야 시험방법

다. 횡강도 시험
1) 24시간 수침 후 꺼낸 즉시 시험
2) 지 간 : 240㎜(다만, 차도용 판석 200㎜의 지점간거리 140㎜)
3) 횡강도 = \(\frac{3p\ell}{2bd^2} \) MPa(=N/㎟)

 \(p \): 최대파괴하중(N)
 \(\ell \): 지간(㎜)
 \(b \): 지점간에 직각 방향의 평균 나비(㎜)
 \(d \): 판석의 평균 두께(㎜)

라. 흡수율
1) 시험체의 절건질량 \(m_1 \) : 105±2℃ 건조기에서 24시간 이상 건조 후 실내에서 30분동안 식힌 후 질량 측정
2) 시험체의 표건질량 \(m_0 \) : 20±5℃의 물에 48시간 수침 후 표면수를 닦은 다음 무게측정 표건질량
3) 흡수율 계산 = \(\frac{m_0 - m_1}{m_1} \times 100(\%) \)

마. 시험방법 흐름도

1. 시료에 번호 부여 및 기재
2. 시료의 길이1회, 나비·높이를 2회 측정하여 평균치수 기록
3. 건조기(105±2℃)에서 24시간 건조 후 건조질량 측정
4. 3의 시료를 수조(20±5℃)에서 48시간 수침 후 겍내어 질량측정
5. 4와 같이 질량 측정한 시료로 횡강도 시험 실시
6. 시험결과에 의해 시험성과표 작성
제5장 재료분야 시험방법

6. 검사기준 (KS F 2530-1)

가. 모양 및 치수

<table>
<thead>
<tr>
<th>종류</th>
<th>호칭치수</th>
<th>치수</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(단위: mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>가로</td>
</tr>
<tr>
<td>포장용 판석</td>
<td>보도용 판석</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>차도용 판석</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>허용차</td>
<td>±2</td>
</tr>
</tbody>
</table>

나. 휨강도

1) 포장용 판석: 5.0MPa (=N/mm²) 이상
 ※ 시료의 길이가 지간과 시료두께를 합한 치수보다 적어 휨강도 시험이 불가능한 경우 압축강도 시험을 실시하여 80.0 MPa 이상이면 휨강도 시험은 생략할 수 있다.

다. 흡수율: 3% 미만

라. 판정

1) 치수
 점사는 10,000개 미만은 5개, 10,000개부터 100,000개 미만은 10개, 100,000개 초과시에는 50,000개마다 5개를 추가한 시료를 무작위로 채취하여 6의 가 규정에 적합하면 그 시료가 대표하는 로트 전부를 합격으로 한다.

2) 흡수율 및 휨강도
 점사는 10,000개 미만은 5개, 10,000개부터 100,000개 미만은 10개, 100,000개 초과시에는 50,000개마다 5개를 추가한 시료에서 흡수율 및 휨강도 시료를 채취하여 6의 나. 다. 규정에 적합하면 그 시료가 대표하는 로트 전부를 합격으로 한다. 다만, 휨강도 시험이 불가능한 경우에는 KS F 2519에 따른다.
【시험 5】 콘크리트벽돌 시험

1. 목 적: 콘크리트벽돌의 품질확인

2. 시험빈도: 30,000매마다 1 LOT(1Lote당 10개)

3. 시험규정: KS F 4004

4. 필요장비: 버너어캘리퍼스, 압축강도시험기, 건조기, 수조, 저울

5. 시험방법

가. 치 수: 버너어캘리퍼스로 측정

나. 압축강도 (3개)

1) 2시간이상 수침 후 시험

2) 전체면에 고르게 가압

3) 가압속도: 매초당 0.2~0.3N/mm²

4) 계 산: \[
\frac{\text{최대하중}}{\text{가압면단면적}} \text{ N/mm}^2
\]
제5장 재료분야 시험방법

다. 흡수율 (3개)

1) 표건질량 : 온도 20±5℃의 물속에서 24시간 흡수시킨 후 물속에서 꺼낸 후 표면물기를 닦아낸 후 바로 측정 때의 질량

2) 절건질량 : 온도105±5℃에서 24시간 건조 후 상온까지 냉각 했을 때의 질량

3) 흡수율 : \(\frac{\text{표건질량} - \text{절건질량}}{\text{절건질량}} \times 100(\%) \)

4) 시험방법 흐름도

① 시료에 번호 부여 및 기재

↓

② 시료 치수측정(10개)

↓

③ 시료를 건조기(105±5℃)에 24시간 건조 후 건조질량 측정(3개)

↓

④ 20±5℃의 맑은 물속의 수조에 24시간 수침 후 물기를 닦고 표건질량 측정(3개)

↓

⑤ ②치수 측정 후 3개의 시료를 2시간이상 맑은 물속에 수침 후 꺼내 압축방법시험 (최대하중 기록)

※ ③, ④와는 별개의 시료로 강도시험

↓

⑥ 시험결과에 의해 시험성과표 작성
6. 검사기준

가. 모양치수 및 허용차

<table>
<thead>
<tr>
<th>모양</th>
<th>치 수 (㎜)</th>
<th>비 고</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>길 이</td>
<td>높 이</td>
</tr>
<tr>
<td>기본벽돌</td>
<td>190</td>
<td>57</td>
</tr>
<tr>
<td>이형벽돌</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>홍블록, 동근모접기 벽돌과 같이 기본벽돌과 동일한 크기인 것의 치수 및 허용차는 기본벽돌에 준한다.</td>
<td></td>
</tr>
</tbody>
</table>

나. 압축강도 및 흡수율

<table>
<thead>
<tr>
<th>구 분</th>
<th>기건비중</th>
<th>압축강도 N/㎟</th>
<th>흡수율 (%)</th>
<th>비 고</th>
</tr>
</thead>
<tbody>
<tr>
<td>A종</td>
<td>1.7미만</td>
<td>8이상</td>
<td>-</td>
<td>경량골제</td>
</tr>
<tr>
<td>B종</td>
<td>1.9미만</td>
<td>12이상</td>
<td>-</td>
<td>경량골제</td>
</tr>
<tr>
<td>C종</td>
<td>1급</td>
<td>16이상</td>
<td>7이하</td>
<td>내력용</td>
</tr>
<tr>
<td></td>
<td>2급</td>
<td>8이상</td>
<td>10이하</td>
<td>비내력용</td>
</tr>
</tbody>
</table>

d. 검 사

1) 치수는 10개의 시료가 모두 기준에 맞을 때 합격

2) 압축강도, 흡수율 및 기건 비중은 각각 3개의 시료가 모두 기준에 맞을 때 합격
제5장 재료분야 시험방법

【시험 6】 속빈 콘크리트블록 시험

1. 목 적 : 주로 건축물에 사용하는 속빈 콘크리트블록의 품질확인

2. 시험빈도 : 3,000매당 (1 LOT)
 가. 겉모양, 치수 : 1 LOT에서 10개
 나. 압축 강도, 흡수율, 투수성, 기건비중 : 1 LOT에서 3개

3. 시험규정 : KS F 4002

4. 시험장비 : 압축강도시험기, 건조기, 수조, 저울, 버어니어캘리퍼스 등

5. 시험방법
 가. 치 수 : 버어니어 캘리퍼스로 측정
 나. 기건비중
 1) 시험체는 블록 전체모양 그대로로 사용
 2) 계산 = \[
 \frac{\text{시험체의 질량 (g)}}{
 \text{시험체의 순체적 (mL)}}
 \]
제5장 재료분야 시험방법

다. 압축강도

1) 가압양면을 블록의 세로축에 직각이 되도록 평활하게 마무리 한다.
2) 타액 물속에 2시간 이상 수침
3) 가압속도 : 매초당 0.2 ~ 0.3 N/㎟
4) 압축강도(N/㎟) : \(\frac{\text{최대하중}}{\text{가압 전 단면적}} \)

라. 흡수율

1) 표건질량 \((m_0) \) : 20 ± 5℃ 물 속에서 24시간 수침 후 꺼내 표면물기를 닦고 바로 측정 했을 때의 질량
2) 절건질량 \((m_1) \) : 105 ± 5℃에서 24시간 건조 후 상온까지 냉각 했을 때의 질량
3) 흡수율 계산 : \(\frac{m_0 - m_1}{m_1} \times 100(\%) \)
4) 시험방법 호름도

① 시료에 번호 부여 및 기재

↓

② 시료 치수측정

↓

③ 시료를 건조기(105±5℃)에 24시간 건조 후 질량 측정(3개)

↓

④ ③의 건조된 시료3개를 수조에 24시간 수침 후 표건질량 및 흡수율 측정

↓

⑤ ②의 치수측정 후 시료 3개를 2시간이상 타액 물속에 수침 후 압축강도시험 실시(최대하중 기록)

↓

⑥ 시험결과에 의해 시험성과표 작성
제5장 재료분야 시험방법

6. 검사기준

가. 모양 및 치수

<table>
<thead>
<tr>
<th>모양</th>
<th>치수 (m/m)</th>
<th>허용차</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>길이</td>
<td>높이</td>
<td>두께</td>
</tr>
<tr>
<td>기본블록</td>
<td>390</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>이형블록</td>
<td>가로근용 블록</td>
<td>모서리용블록</td>
<td>기본블록과 동일한 크기인 것의 치수 및 허용차는 기본블록에 준함</td>
</tr>
</tbody>
</table>

나. 압축강도 및 흡수율

<table>
<thead>
<tr>
<th>구분</th>
<th>기전비중</th>
<th>전단면적에 대한 압축강도 N/mm²</th>
<th>흡수율 %</th>
<th>투수성 (㎖/㎡·h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A종 블록</td>
<td>1.7 미만</td>
<td>4 이상</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B종 블록</td>
<td>1.9 미만</td>
<td>6 이상</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C종 블록</td>
<td>-</td>
<td>8 이상</td>
<td>10 이하</td>
<td>300 이하</td>
</tr>
</tbody>
</table>

※ 전단면적이란?
가압면(길이×두께)으로서 속빈부분 및 양끝의 오목하게 들어간 부분의 면적도 포함
※ 투수성 블록은 방수블록에만 적용

다. 검 사

1) 치수는 10개 모두 기준에 맞을 때 합격
2) 압축강도, 흡수율, 투수성, 기전비증은 각각 3개의 시료가 기준에 맞을 때 합격
【시험 7】보차도용 콘크리트 인터로킹 블록 시험

1. 목적 : 보차도용 콘크리트 인터로킹 블록(이하 블록)의 품질확인

2. 시험빈도
 가. 10,000개 미만 : 5개
 나. 10,000 ~ 100,000개 미만 : 10개
 다. 100,000개초과 : 50,000개마다 5개씩 추가

3. 시험규정 : KS F 4419

4. 필요장비 : 버어니어캘리퍼스, 트램프시험기, 건조기, 수조, 저울 등

5. 시험방법
 가. 시료준비 : 보도 및 차도용 블록은 완제품 그대로 이용
 블록(S형, U형, R형 등) 시료는 블록모양 그대로 시험하되 블록 모양 그대로 트램프시험이 불가능 할 경우 시료를 200×60×60㎜ 크기로 절단 후 시험, 시료를 200×60×60㎜ 크기로 절단할 수 없을 때는 더 작은 치수로 시험할 수 있으나, 시간은 시료 높이의 2배 이상으로 하며 시료 길이는 시간에 시료 높이를 합한 치수 이상으로 한다.
제5장 재료분야 시험방법

나. 버어니어캘리퍼스로 치수 측정
다. 횡강도 시험
1) 24시간 수침 후 끌어낸 즉시 시험
2) 지간 : 140㎜
3) 횡강도 = \(\frac{3p\ell}{2bd^2} \) MPa (=N/㎟)
 p : 최대파괴하중(N)
 \(\ell \) : 지간(㎜) = 140㎜
 b : 지점간에 직각 방향의 평균 나비(㎜)
 d : 블록의 평균 두께(㎜)
라. 흡수율
1) 시험편 : 횡강도시험이 끝난 후 1매의 시료에서 2개의 시험편을 취한다.
2) 시험체의 질량무게(\(m_1 \)) : 105±5℃ 건조기에서 24시간 이상 건조 후 실온에서 무게 측정
3) 시험체의 표면무게(\(m_0 \)) : 20±5℃의 물에 24시간 수침 후 표면수를 닦은 다음 무게측정 표면무게
4) 흡수율 계산 = \(\frac{m_0 - m_1}{m_1} \times 100(\%) \)
 ※ 흡수율은 2매 시험편 각각의 값을 평균한 값으로 나타냄
마. 시험방법 흐름도

 ① 시료에 번호 부여 및 기재
 ↓
 ② 시료의 길이1회, 나비·높이 2회 측정하여 평균치수 기록
 ↓
 ③ 시료를 24시간 수조에 수침 후 끌어내어 일정지간(140㎜)에서 횡강도시험 실시
제5장 재료분야 시험방법

↓

④ 힘강도시험을 끝난 시편을 건조기에서 24시간 건조 후 건조무게 측정

↓

⑤ ④의 시료를 수조(20±5℃)에서 24시간 수침 후 꺼내어 무게측정

↓

⑥ 시험결과에 의해 시험성과표 작성

6. 검사기준 (KS F 4419)

가. 모양 및 치수

(단위 : mm)

<table>
<thead>
<tr>
<th>구분</th>
<th>두께</th>
<th>허용차</th>
</tr>
</thead>
<tbody>
<tr>
<td>보도용, 차도용</td>
<td>60</td>
<td>±3</td>
</tr>
<tr>
<td>I블록, O블록, S블록, R블록, D블록, HEXA블록, G블록의 모양, 길이, 나비는 부도1에 따른다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>가로, 세로 : ±2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>두께 : ±3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ 유색층이 있는 경우 힘강도 시험이 끝난 후 1매의 시료에서 2개의 시험편을 취하여 유색층의 최소 두께를 측정 표면에서 8mm이상이어야 함

나. 힘 강 도

1) 보통블록 : 보도용 5.0MPa (=N/㎟)이상
2) 투수성블록 : 보도용 4.0MPa (=N/㎟)이상, 차도용 5.0MPa (=N/㎟)이상

다. 흡 수 율 : 평균 7%이하, 개개 10%이하
라. 투수계수 : 0.1mm/sec이상 (시료 3개 평균)
마. 판정 : 보통블록은 시료 전부가 위 가), 나), 다) 기준에 맞으면 합격으로 하며 1개라도 기준미달이면 불합격
제5장 재료분야 시험방법

【시험 8】 석재의 압축강도 시험

1. 목 적 : 천연산 석재의 압축강도 시험 등으로 암종을 관정

2. 시험빈도 : 골재원마다, 재질의 변화시마다

3. 시험규정 : KS F 2519

4. 필요장비 : 건조기, 수조, 압축강도시험기, 버어니어캘리퍼스 등

5. 시료준비 : 지름 또는 횡방향 치수가 5㎝이상인 직육면체, 사각형기둥 또는 원주형 공시체 (예 : 5×5×5㎝)
* 탄성파시험 (예 : 5×5×15㎝)
* 압축강도 각 시험조건마다 5개 이상
※ 가압면과 지지면이 평행하게 시편 제작하여야 하며 높이가 지름 또는 횡방향 치수보다 작으면 안된다.

6. 시험방법

가. 압축강도
1) 건조상태 : 60±2℃ 건조기에서 48시간 건조 후 시험
2) 습윤상태 : 22±2℃의 물속에서 48시간 수침 후 수조에서 꺼낸 즉시 표면수를 닦고 시험
3) 압축강도 = \(\frac{\text{파괴하중}}{\text{하중지지면}} \) MPa (=N/㎟)
4) 가압속도 : 매초당 1㎫ (N/㎟), 매분 약 1㎜속도

나. 흡수율
1) 건조 무게(A) : 105±2℃ 건조기에서 24시간 건조 후 꺼내 실내에서 30분동안 식힌 후 즉시 무게(g)를 측정
2) 표면건조 무게(B) : 20±5℃ 물속에서 48시간 수침 후 꺼내 표면의 물기를 닦고 즉시 무게(g)를 측정
3) 흡수율 = \((B - A) \div A \times 100(\%) \)
다. 비중

1) 물속 무게 \((C)\) : 물속에서 0.1g까지 측정할 수 있는 저울로 물속에서 무게 \((g)\)를 측정

2) 표면건조 포화상태에서의 비중 \(= A + (B - C)\)

7. 시험방법 흐름도

① 시료에 번호부여 및 기재
↓
② 치수측정 및 기록
↓
③ 건조기 \((105\pm5^\circ C)\)에 24시간 건조 후 무게 측정
↓
④ 20±5°C 수조에 48시간이상 수침
↓
⑤ 수조에서 꺼낸 시료의 무게 측정
↓
⑥ 시험기기 위에 시료를 올려놓고 하중을 가하여 파괴될 때의 값 읽기 및 기록
↓
⑦ 시험실에서 시험한 자료를 컴퓨터에 입력
↓
⑧ 시험결과 성과표 출력
【시험 9】철근콘크리트용 봉강 시험

1. 목적: 철근콘크리트 보강에 사용되는 원형철근 및 이형철근에 대하여 구조물이 받는 각종 하중, 온도변화, 기상작용, 지반의 지지력 등을 고려하여 구조물에 적합한 재료의 품질확인

2. 시험규정: KS D 3504

3. 시험빈도
 가. 제조회사별
 나. 인장 시험편 및 굽힘 시험편의 수는 동일 해작들에 속하고, 공정지름 별 각각 1개, 다만 50톤 초과 시 각각 2개(KS 기준)
 다. 제품규격별 100톤마다, 용접 이음부위는 500개소마다. (국토해양부 기준)

4. 시험용 기구

<만능재료시험기>
제5장 재료분야 시험방법

5. 시험방법

가. 인장강도

1) 시료는 각 규격별로 약 45㎝ 정도 길이로 준비
2) 시료의 중앙부 표시
3) 중앙부를 기준으로 하여 좌·우로 표점거리를 규격별로 4군데 표시(2호8d, 3호4d)
4) 중앙부를 기준으로 하여 평행부에 직경별로 3군데 표시(2호10d, 3호8d)
5) 평행부 표시부분을 기기에 물린 후 작동하여 시료가 절단 될 때까지 힘을 가하여 인장강도 하중을 구한다.

※ 2호 25㎜미만, 3호 25㎜이상

나. 항복점

인장강도 시험 중 시험편의 평행부가 항복하기 이전의 최대하중을 단면적으로 나누어 항복하중을 구한다.

다. 연신율

인장강도 시험이 끝난 후 2등분이 된 시료를 맞추어 중앙부를 기준으로 좌·우 표점거리 표시부분을 비어니어캘리퍼스로 측정하여 늘어난 길이를 구한다.

라. 검사기준(KS 규정집 참조)

<table>
<thead>
<tr>
<th>종 류</th>
<th>이 형</th>
<th>봉 강</th>
</tr>
</thead>
<tbody>
<tr>
<td>기 호</td>
<td>SD300</td>
<td>SD350</td>
</tr>
<tr>
<td>인장강도(N/㎜)</td>
<td>440이상</td>
<td>490이상</td>
</tr>
<tr>
<td>항복점 또는 0.2% 항복강도(N/㎜)</td>
<td>300이상</td>
<td>350이상</td>
</tr>
<tr>
<td>연신율(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2호</td>
<td>16이상</td>
<td>18이상</td>
</tr>
<tr>
<td>3호</td>
<td>18이상</td>
<td>20이상</td>
</tr>
<tr>
<td>급협각도</td>
<td>180°</td>
<td>180°</td>
</tr>
</tbody>
</table>
제5장 재료분야 시험방법

6. 시험방법 흐름도

① 시료에 중앙부 표시

↓

② 중앙부 기준으로 좌·우 표점 거리를 구경별 3군데 표시

↓

③ 시험기에 평행부 표시부분을 기계에 물린 후 작동

↓

④ 시료가 절단 될 때까지 휨을 가하여 하중값 기록

↓

⑤ 인장강도 시험이 끝난 후 절단된 시료를 맞춤

↓

⑥ 중앙부를 기준으로 좌·우 표점거리 표시 부분 측정, 늘어난 길이를 구함

↓

⑦ 시험실에서 시험한 자료를 컴퓨터에 입력 시험결과표 측정
【시험 10】알루미늄 및 알루미늄 합금 압출 형재 시험

1. 목적: 창호, 난간 등에 사용되는 합금 압출 형재에 대하여 각 종 풍압, 압축 강도, 인장강도, 차량 충격하중 등을 고려 자재사용 용도에 따라 적합한 재료의 품질확인

2. 시험규정: KS D 6759

3. 시험빈도

가. KS 기준
- 인장시험 및 경도 시험은 종류, 질별 및 단면 치수가 같은 형재에 대해 1m당 3kg이하인 것을 원칙적으로 1000kg 또는 그 끝수, 1m 당 3kg을 초과하는 것을 원칙적으로 2000kg 또는 그 끝수를 1조로 하여 각 조에서 임의로 1개를 취하여 시험이를 만든다

나. 국토해양부 기준
- 제조회사별
- 제품규격 마디
- 1m당 3kg이하 : 1ton 또는 그 끝수마다
- 1m당 3kg초과 : 2ton 또는 그 끝수마다

4. 시험용 기구

<만능재료시험기>
제5장 재료분야 시험방법

5. 시험방법

가. 강도 시험(인장, 항복, 연선율 등)

1) 알루미늄 및 알루미늄 합금 압출 형재 시편

<table>
<thead>
<tr>
<th>시험편</th>
<th>채취 위치의 두께</th>
</tr>
</thead>
<tbody>
<tr>
<td>5호 시험편</td>
<td>20mm이하</td>
</tr>
<tr>
<td>4호 시험편</td>
<td>20mm를 초과 하는 것</td>
</tr>
<tr>
<td>13B호 시험편</td>
<td>4호 및 5호 시험편을 채취 할 수 없는 경우</td>
</tr>
<tr>
<td>KS 규정 참조</td>
<td>4호, 5호 및 13B호 시험편을 채취 할 수 없는 경우</td>
</tr>
</tbody>
</table>

※ 인장, 압축, 항복강도, 굽힘시험 : 3개(동일 시편)

2) 시료의 중앙부 표시

3) 중앙부를 기준으로 하여 좌·우로 표점거리 표시

4) 평행부 표시부분을 기기에 물린 후 작동하여 시료가 절단 될 때까지 힘을 가하여 인장강도 하중을 구한다

나. 항복점

인장강도 시험 중 시험편의 평행부가 항복하기 이전의 최대하중을 단면적으로 나누어 항복하중을 구한다.

다. 연선율

인장강도 시험이 끝난 후 2등분이 된 시료를 맞추어 중앙부를 기준으로 좌·우 표점거리 표시부분을 비어니어 캐리퍼스로 측정하여 늘어난 길이를 구한다.

라. 검사기준(KS 규정집 참조)
제5장 재료분야 시험방법

6. 시험방법 흐름도

① 시료에 중앙부 표시 ↓

② 중앙부 기준으로 좌·우 표점 거리 표시 ↓

③ 시험기에 평행부 표시부분을 기계에 물린 후 작동 ↓

④ 시료가 절단 될 때까지 휨을 가하여 하중 값 기록 ↓

⑤ 인장강도 시험이 끝난 후 절단된 시료를 맞춤 ↓

⑥ 중앙부를 기준으로 좌·우 표점거리 표시 부분 측정, 늘어난 길이를 구함 ↓

⑦ 시험실에서 시험한 자료를 컴퓨터에 입력 시험결과표 측정