3. 생리장애 원인과 대책

가. 생리장애

(1) 생리장애의 정의

작물의 영양생리적 원인에 의하여 발생하는 이상증상을 말할 때 주로 내부적인 원인에 의하여 발생하는 것을 장애(障害), 외부적인 원인에 의해서 나타나는 것을 장해(障害)라 한다(한국농업정보연구원, 2002). 작물에 발생하는 생리장에는 기상의 악화에 의해 나타나는 재해장해와 식물이 필요로 하는 양분의 불균형에서 오는 영양장애로 대별할 수 있지만 때로는 장애와 장해를 구분할 수 없는 경우가 많다. 일반적으로 장해에 속하는 증상은 대부분의 경우 근일하면서도 일시에 나타나는 경우가 많으며 공장부근에서 작물의 각종 가스피해와 제초제의 잘못 사용으로 나타나는 피해증상이 대표적인 장해증상이다. 작물의 영양생리장에는 생장에 필요한 각종 무기성분이 부족, 과잉, 혹은 불균형의 상태로 작물체내에 존재하게 되어 나타나는 문제로 양분의 결핍, 과잉증상은 영양장애의 전형적인 예이다.

기상장해 현상은 인위적으로 조절하기 힘들지만 양분의 장애는 적정량의 비료를 사용하고 토양을 적절히 선택, 관리하면 막을 수 있는 경우가 많다. 물론 토양의 풍부한 양분이 있다고 하여도 일조부족, 적온, 토양화학적 및 수분상태등이 작물의 제배에 맞지 않으면 작물의 양분 흡수능력이 감소되어 영양장애 증상을 보이는 경우가 많아 장해와 장애는 상호 복합적으로 발생하기도 한다.

시설재배에서 생리장애가 많이 발생하는 것은 작물기계 생육환경을 고려하지 않은 범위무리하게 작물을 알맞게 섬어서 야간의 적온, 주간의 고온등 온도조건의 불량, 거울절일조량 부족, 연작에 의한 토양의 양·수분 불균형등이 주요 원인이다. 그러므로 생리장애를 효과적으로 줄이기 위해서는 생육 초기부터 세심한 관리가 필요하다.

참외의 생육을 저하시키고 품질을 악화시키는 상품가격을 떨어뜨리는 주요 생리장애 현상으로 발효과, 열과, 기형과, 배림과, 녹색물부착과 및 파편오염과 같은 열에 나타나는 증상과 일마름증, 급성시들음증, 양분결핍 및 양분과다 등 악지에 나타나는 증상으로 크게 나뉘어진다(농촌진흥청, 2001).

나. 열에 나타나는 증상

(1) 발효과

1) 증상

발효과는 과일 외관상으로 특별한 증상이 없으나 과실을 절단하면 태조부와 인점
한 과육이 수첩상으로 변하고 심하게 발효된 것은 강한 발효취를 품기는 중상을 말한 다. 발효과는 증상에 따라 다음과 같이 구분이 되는데, 과숙되어 과실이 고르게 발효된 것을 정상발효, 과실의 외벽(과피에 가까운 부분)이 더더익고 내벽부 또는 테조부가 먼저 익는 현상을 이상발효, 테조부에 붓이 차 있는 경우 불완과 등으로 크게 구분되 며(서동환, 1998) 주로 발생되는 증상은 테조부에 붓이 차는 불완과의 발생비율이 높은 편이다.

발효과는 과일 수확시 잘린 과정부에서 과즙이 잘 따르지 않고 계속 흘러나오는 경우가 많고 봉에 떨어보면 2-3개 이하로 뚫거나 가라앉는 것을 발효과로 판정하며, 2-2.5cm 이 되는 것은 경미하지만 발효가 진행된 것으로 판단한다. 빵의 봉에 떨어 비중을 줄 하는 것은 정상과실보다 과일의 비중이 무겁기 때문이다 이러한 이유는 테조부내에 붓이 차 있는 경우가 많기 때문이다. 또 손으로 두드리면 뚫 “쭉쭉”하는 둥근한 소리가 나는 경우 정상과이지만 “딱딱”하는 밝은 소리가 나는 경우 발효과의 확률이 높다.

2) 원인
발효과 발생원인으로 토양수분 과다, 저온, 세력이 강한 농약에 접목, 일조부족, 저 질위 작과, 질소과나 및 석회부족등 많은 원인이 알려지고 있으나 발효과 발생에 대한 정확한 원인, 발생기작은 현재까지 보고되어 있지 않다.

원쪽 : 정상과, 오른쪽 : 발효과
발효과가 주로 발생되는 시기는 상대적으로 온도가 낮은 저온기에 잔은 경우로 인해 대기중 상대습도가 높고 토양수분이 과다할 때 많이 발생되며 기온이 높은 여름철 고 온기에는 거의 발생되지 않는다. 그러므로 발효과 발생은 토양수분 함량과 기상요인에 큰 영향을 받으며 발효과의 발생양상도 태우부에 묻어 차는 물 crian과의 형태로 발생된 다.

물 crian과 증상

뿌리로부터 흡수되어 지상부로 이동되는 물의 양, 즉 일비액량 (Root driven xylem sap flow)은 토양수분함량, 하루중 시간, 작과 수 및 대목등에 영향을 받는다. 일반적으로 일비액량은 토양수분함량에 따라 증가하며 분비특성은 하루중 시간의 경과에 따라 증가하다 일물이 가까워질수록 감소하는 완만한 산모양을 나타낸다.
또한 세력은 강한 데목일수록 일비액량이 배울이 증가하고 검목표의 경우 자근묘에 비해 일비액량이 많다. 그리고 과일은 1개 작가시킨 경우 2개 작가시켰을때 보다 일비 액량이 증가한다(Yamasaki, 2003). 이러한 이유는 참외가 광합성을 통해 생성된 탄수 화물이 대부분 과일로 전류되지만 일부 탄수화물은 뿌리로도 공급된다. 뿌리에 광합성 산물이 많을시 뿌리내의 삼투압이 높아지는 경향이 있어 토양으로부터 수분의 유입이 증가하고, 따라서 뿌리로부터 줄기로 분비되는 일비액량이 증가하게 된다.

![그림 1. 하루중 일비액량 변화](image1.png) ![그림 2. 토양수분함량별 일비액량](image2.png)

참외의 시간 및 토양수분함량에 따른 일비액량 변화

표 58. 점목 및 작과수에 따른 일비액량 변화 (Yamasaki, 2003)

<table>
<thead>
<tr>
<th>구분</th>
<th>작과수</th>
<th>일비액량(ml/주/시간)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2주</td>
<td>5주</td>
</tr>
<tr>
<td>자근묘</td>
<td>1</td>
<td>13.1a</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11.9a</td>
</tr>
<tr>
<td>신토좌</td>
<td>1</td>
<td>15.2a</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13.8a</td>
</tr>
</tbody>
</table>

표 59. 발효와 발생에 대한 대목의 영향(부산원시, 1996)
<table>
<thead>
<tr>
<th>대목종류</th>
<th>발효율(%)</th>
<th>발효도(0-4)</th>
<th>과일무게(g)</th>
<th>당도(°Brix)</th>
</tr>
</thead>
<tbody>
<tr>
<td>신토란</td>
<td>22.6</td>
<td>0.63</td>
<td>372</td>
<td>13.4</td>
</tr>
<tr>
<td>홍토란</td>
<td>2.3</td>
<td>0.08</td>
<td>300</td>
<td>14.7</td>
</tr>
<tr>
<td>멜론공대</td>
<td>2.0</td>
<td>0.04</td>
<td>272</td>
<td>14.7</td>
</tr>
<tr>
<td>자근묘</td>
<td>0.0</td>
<td>0.03</td>
<td>284</td>
<td>15.2</td>
</tr>
</tbody>
</table>

과일의 생성은 일반적으로 세포분화, 세포분열, 세포의 팽창, 과피조직수 증가, 과피의 경화 등의 단계를 거치며 과일의 크기형장은 유입되는 물의 양에 따라 결정된다. 과일로 물이 유입되는 것은 과일내 양분, 양분 등의 축적에 따라 과일내 삼투압이 증가되므로 수분포텐셜 차이에 의해서 일어난다.

생육일수별 점진의 생장

참외의 경우 과일은 S 자모양의 생장특성을 나타내는데 착과 10일경부터 급속한 과일의 팽창이 이루어지게 되며 이 시기에는 하루에 약 10~40 g 정도 수분이 과일로 유입되며 특히 착과 15일경에는 최대 40g 무게증가를 나타낸다. 하지만 착과 23일 이후 착색기에는 2~5g 정도 무게증가를 나타내며 30일 정 수확기에는 거의 무게 변화가 없고 기상조건이 고온건조할 경우 과료포먼의 수분증산으로 인한 무게감소를 나타낸다.

또한 하루중 과일의 생성은 토마토의 경우 가시조건이 고온건조한 경우 낮동안은 과일의 생장이 적고 상대적으로 하루중 기온이 낮은 아침, 저녁에 과일의 생성이 이루어지며 상대적으로 습도가 높은 경우는 과일의 생성이 낮동안에도 이루어진다(Leonardi

표 60. 대기중 온도, 습도에 따른 수확기 과일의 증산량(g/시간)

<table>
<thead>
<tr>
<th>온도</th>
<th>습도</th>
<th>증산량(g/시간)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15℃, 90%</td>
<td>30℃, 50%</td>
<td></td>
</tr>
<tr>
<td>0.43±0.20</td>
<td>0.79±0.31</td>
<td></td>
</tr>
</tbody>
</table>

따라서 기상조건은 발효과정 유도하는 중요한 인자가 되며 과일표면 뿐만 아니라 임으로부터 수분의 증산은 기온이 낮고 습도가 높을 경우 현저히 줄어들게 된다.

증산이 일어나는 주요한 요인은 온도, 습도이며 아래 표에서처럼 4월 하순경 참외 수확기에 일반적으로 기상조건이 좋을 경우 하우스내의 온도는 30.6℃, 상대습도 26%이고 참외 잦의 온도는 27.6℃정도가 되는 것으로 측정되었는데 이러한 조건에서 수분이 대기중으로 증산되는 것은 약 3.14kPa 정도 압력이 형성된다. 하지만 강우시 대기온도는 17.3℃, 상대습도 90%이고 잦의 온도는 16.9℃로 0.16kPa의 압력이 형성되어 기상조건이 좋은 날은 비가 오는 날에 비해 약 20배나 높은 증산이 일어난다(권덕기 등, 2001).

식물이 출수하여 대기중으로 배출되는 수분의 약 80%정도를 잡을 동한 증산에 의존하며 뿌리에 의한 일비액량은 조건에 따라 다르지만 약 20%정도를 차지한다. 예를들면 이른 아침시간에 비해 해가 떠오르게 됨에 따라 대기의 온도는 크게 증가하게 될 것이고 대기중 증기압 기울기가 크게 증가하여 아침에 비해 6배 이상 증산율이 증가하게 된다.

따라서 토양수분이 과다한 조건에서 기상악화로 인해 증산이 역제될 경우 발효과정이 발생될 확률이 매우 높다.

표 61. 기상조건에 따른 참외의 증산에 영향을 주는 증기압 차이
표 62. 토양수분 및 기상조건에 따른 발효과 발생율(발효과수/총과일수)

<table>
<thead>
<tr>
<th>토양수분 (kPa)</th>
<th>고온건조</th>
<th>저온다습</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10(과습)</td>
<td>0/46</td>
<td>14/49</td>
</tr>
<tr>
<td>-80(건조)</td>
<td>0/53</td>
<td>0/48</td>
</tr>
</tbody>
</table>

따라서 토양수분이 과다하고 기상조건이 악화될 경우 뿌리에서 공급되는 물의 양은 많은 반면 중신은 크게 억제되고 과일내부로 물이 유입되어 발효과 발생율이 크게 증가하게 된다.

그리고 잔색기 이후에는 과일의 생장속도가 낮으므로 1회 전수량이 많으면 급격한 수분유입에 의해 발생과 발생이 증가한다. 따라서 전수간격을 줄여서 소량씩 자주 전수 하는 것이 발효과 발생을 억제하는 좋은 방법이라 하겠다.

표 63. 토양수분이 발효과 발생 및 품질에 미치는 영향(박동금등, 2000)

<table>
<thead>
<tr>
<th>관수점(kPa)</th>
<th>발효과율(%)</th>
<th>평균과중(g)</th>
<th>당도(°Brix)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>44.5</td>
<td>456</td>
<td>13.5</td>
</tr>
<tr>
<td>20</td>
<td>5.6</td>
<td>398</td>
<td>14.4</td>
</tr>
<tr>
<td>30</td>
<td>2.6</td>
<td>382</td>
<td>15.3</td>
</tr>
<tr>
<td>50</td>
<td>1.4</td>
<td>324</td>
<td>15.2</td>
</tr>
</tbody>
</table>

표 64. 1회 관수량에 따른 발효과 발생율(박동금등, 1995)
<table>
<thead>
<tr>
<th>관수간격, 관수량</th>
<th>발효도(0-4)</th>
<th>평균과중(g)</th>
<th>당도(°Brix)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5일간격 1회 10mm</td>
<td>1.1</td>
<td>457</td>
<td>13.4</td>
</tr>
<tr>
<td>15일간격 1회 30mm</td>
<td>1.6</td>
<td>410</td>
<td>12.6</td>
</tr>
</tbody>
</table>

표 65. 온도관리가 발효과 발생에 미치는 영향(강원대, 1990)

<table>
<thead>
<tr>
<th>작 형</th>
<th>온도관리</th>
<th>발효과율(%)</th>
<th>과중(g)</th>
<th>당도(°Brix)</th>
</tr>
</thead>
<tbody>
<tr>
<td>억제재배</td>
<td>고 온 구</td>
<td>4.7</td>
<td>319</td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td>저 온 구</td>
<td>32.1</td>
<td>347</td>
<td>12.3</td>
</tr>
<tr>
<td>촉성재배</td>
<td>고 온 구</td>
<td>4.0</td>
<td>164</td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td>저 온 구</td>
<td>59.1</td>
<td>185</td>
<td>13.1</td>
</tr>
</tbody>
</table>

위의 표에서 보듯이 촉성재배 및 억제재배등 저온기 재배에서 고흐온관리구는 저온구에 비해 발효과 발생율이 매우 낮으며 저온구에 비해 과중이 무겁고 당도가 높은 것은 위에 설명한 바와 같이 과일에 유입된 수분의 영향을 잘 나타낸다.

그리고 중산은 동일한 기상조건하에서도 차량에 따라 큰 영향을 받으며 차량이 될 경우 중산효율이 떨어지게 된다(Leonardi 등, 2000). 그러므로 차량조건에서 잘의 양의 기공폐쇄, 온도가 낮아짐에 따른 과일표면에서의 중산감소 등을 초래, 발효과 발생이 증가하게 된다.

표 66. 차량정도가 발효과 발생율에 미치는 영향(강원대, 1990)

<table>
<thead>
<tr>
<th></th>
<th>10% 차량</th>
<th>20% 차량</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>51.5</td>
<td>71.0</td>
</tr>
</tbody>
</table>

이러한 중산 및 알비랙과 관련한 요인 외에도 발효과의 경우 칼슘함량이 상대적으로 낮은 편인데 이는 칼슘의 흡수가 대부분 식물체내에서 중산류를 통해 이동하므로 비교적 중산이 왕성한 부위에 칼슘함량이 많이 검출된다(Alarcon 등, 1999). 또한 칼슘의 부족한 경우에도 직접적인 발효증상이 나타나지 않는 것으로 보고되어 있고(성주과체류시험장, 2000) 발효과에서 칼슘 함량이 낮은 것은 중산이 상대적으로 억제되는 조건에서 재배되기 때문이다.
발효과 발생양상은 주로 물질과 형태가 많고 테과부의 발효와 함께 테과부내 물이 차 있는 것이 대부분이며 테과부내 발효최만 나는 경우는 비교적 적다. 참외의 발효최는 산소가 부족한 환경적 조건에서 식물체의 무기호흡에 의한 Alcohol Dehydrogenase (ADH), Puruvate Decarboxylase (PDC)등 효소활성이 증가하여 참외파된에 흡수된 Sucrose등 당성분이 에질알콜, 아세트알데하이드로 변화되어 생성되지만 흡기적인 조건에서는 뿌리의 근활력이 저하되어 수분의 흡수가 크게 저하된다(Liao와 Lin, 1995).

그리므로 발효과는 대부분 뿌리의 활력이 좋은 상태에서 과다한 수분의 흡수에 의해 상대적으로 많은 양의 물이 과일내부로 유입되어 1차적으로 물질과가 발생하며 이에 따라 중산이 역제된 조건에서 테과부내 세포의 붉은색 변상적인 생리작용이 이루어지지 않음에 따른 당의 2차적 대사로 발효최가 발생하는 것으로 추정된다.

3) 관리방법
발효과는 주로 착색기 이후 토양수분이 과다하고 적은, 다음으로 중간이 억제되는 기상조건하에 쉽게 발생될 수 있다.
따라서 발효과의 발생을 줄이기 위해서는 하우스 동과 동사이에서 강우 등에 의해 유입되는 물을 차단해야 하므로 처마바늘을 깨야 배설하고 하우스 주변의 배수로를 깊게 내어 외부환경으로부터 급격한 수분상승을 방지한다.
착색기 이후에는 1회 관수량을 10a당 1~2번 정도씩 하루 또는 이틀 간격으로 실시하여 한겨벽에 과다한 물이 공급되는 것을 피하고 관수시간은 아침 이른시간에 관수하여 관수된 물이 식물체에 의해 충분히 흡수, 중산되도록 하며 날씨가 흐리거나 강우등 기상환경이 불량할 경우 가급적 관수를 피하는 것이 좋다.
또한 관수재료로 분수호스 등이 많이 이용되고 있으나 참외시설재제지의 경우 트랙터 등 대형기계 등의 운행, 경운 및 성도 등에 따른 기존 작토층과의 경방층 형성을 위해 물의 수적배수가 불량한 곳이 많고(시설토양환경연구회, 2003) 분수호스로 관수할 경우 압력보상이 되지 않으므로 관수가 시작되는 하우스 입구쪽에는 상대적으로 불공급량이 많아 토양중 수분함량이 과다하게 높고 하우스 끝 부분은 판수량이 부족한 경우가 발생한다.
그리므로 포장내에 수분 분포의 불균형에 따라 과습한 부분의 토양에서 발효과 발생이 우려되므로 적절한 수시 관수를 이용한 관수방법을 사용하는 것이 효과적이라 하겠다.
또한 야간온도가 낮아 보온부적포를 덮는 시기에는 속바니에 작은 구멍을 일정하게 열어 터널내의 습도가 과단하게 상승하는 것을 피하는 것도 좋은 방법이다.

(2) 열 과
1) 중상
수확이 가까운 과일과 과일의 꽃받침이나 과일표면에 방사상, 동심원상으로 갈라지는 중상으로 상품성을 떨어뜨리고 심하면 갈라진 곳이 부패하게 된다.

2) 원인

열과가 발생하는 적절적인 원인은 과일내부와 과일표면의 생장속도 차이에 의해 경화된 과피가 갈라져 생기게 된다. 과일이 비대성숙하면서 과피가 굳어져 신장의 여지가 적은 대신 비대후기 토양수분이 많아 수분의 흡수가 많고 과실내부가 급격한 평창이 이루어질 때 열과가 된다.

여린 열매의 열과는 온도관리가 문제인데 밤온도가 급격히 낮아지고 낮은도가 높을때 발생한다.

3) 대책

열매의 비대 초기에 급격한 토양수분의 변화가 없도록 하고 훈기에는 다습할 때 지나친 관습을 피한다. 또한 시절하우스 주위 배수구를 깊게 파서 외부의 수분이 유입되지 않도록 하여야 하고 건조할 경우에는 자주 관습하여 적절한 토양수분을 유지하여 열매가 정상적으로 생육할 수 있게 하고 충분한 일수를 확보하여 수분의 충산이 균형 있게 이루어 지도록 해야한다.

(3) 기형과

1) 중상

과실의 여겨부분이 호리병 모양이 되거나 과실이 비뚤어지고 길쭉하거나 납작한 모양등 여러 가지의 나쁜 모양으로 과일이 비대되는 중상을 말한다.

2) 원인

과실비대기에 일조가 부족하여 통화능력이 열어질 때나 초성가 장하여 착과가 늦어져 옳지 않은 상태가 되었을 때 그리고 포기당 착과수가 많아 과실간의 양분경합으로 정상적인 생육이 불가능할 때 발생된다. 또한 생장조정제가 한쪽에만 처리되어 과실의 비대가 불균일할 때도 발생된다.

3) 대책

광합성이 잘 이루어지도록 광환경을 개선하고 과다한 질소분裷이 공급되지 않도록 하고 착과된 과실에 충분한 양분이 공급될 수 있도록 포기당 착과수를 조절하고 양분이 저속적으로 공급될 수 있도록 관습으로 약 1,000밀도로 양분을 몰게 하여 공급한다. 또한 착과제 처리시 약액이 섭방 전체에 고무로 몰도록 해야 한다.
열과 기형과

(4) 배꼽과

1) 종상

꽃이 떨어진 부분이 크게 비대하여 과면으로부터 떨어나오거나 배꼽부분이 갈라져 불규칙하게 떨어 나는 증상으로 상품성을 크게 떨어뜨린다.

2) 원인

배꼽과는 양성화에서 일어나기 쉬우며 꽃눈 부분의 이상분화가 원인이라 추정하나 명확하지 않다. 또 암꽃이 마디를 건너뛰어 착생되므로 착과혈위가 높음때 배꼽과의 발생이 많은 것으로 보아 영양과잉, 옷자락에 의해 배꼽과의 발생이 용이하며 과실비대기에 토양수분 부족에 의해 초기 과실비대가 억제되면 배꼽과 발생이 현저히 증가한다.

3) 대책

꽃눈이 분화되는 유모기나 정식후 주간 25~30℃, 야간 15℃ 이상으로 유지시켜 주고 일조가 부족되지 않도록 주의한다. 또한 과실 비대초기에 지나친 고온, 진조가 되지 않도록 온도관리, 수분관리에 유의해야 한다.

(5) 녹색줄무늬과

1) 종상

수확기 과실이 꽃자르로부터 방사상으로 녹녹색의 줄무늬가 나타나는 것으로 종상이
가벼우면 수확할 때 없어지는 것도 있으나 심한 것은 줄무늬가 배꼽부분까지 생겨 품질에 나쁜 영향을 미친다.

2) 원인
발생원인은 유전적인 요인으로 추정하고 있으며 과다한 시비, 과습에 의해 잉과 줄기가 완성하게 발육되고 절소질 과다, 착과수가 적을때 그리고 초쇄가 강한 대목에 접목할 경우 초쇄가 완성하여 쉽게 발생된다.

3) 대책
포기당 착과수를 초쇄에 맞도록 유지하고 균형있는 시비와 착과제를 적정농도로 사용해야 한다.

(6) 과면오점과

1) 중상
과실비대 이후 과피에 갈색 또는 농녹색의 작은 반점이 개알모양, 얼룩무늬등으로 생기고 성숙하더라도 그대로 남아 상품성을 떨어 두린다.

2) 원인
발생원인은 분명하게 밝혀져 있지 않으나 갈색반점은 토양수분의 부족에 발생되고, 농녹색의 반점은 일조부족, 토양수분 및 공중습도 과다, 절소과다, 과다한 생장조정제의 사용 등에 의해 나타난다.

3) 대책
적정토양 수분을 유지하고 특히 생육주기에 과다한 절소질 비료 시용을 피한다. 그리고 착과수를 조절하고 환기를 청결히 해야 한다.

다. 잎과 줄기에 나타나는 증상

(1) 잎마름증

1) 증상
처음에는 착과마디 부근의 잎이 황색으로 변하고 진전되면 조직이 죽으면서 전체가 잎마름 증상을 나타낸다.

2) 원인
노균병, 황가루병등 병해에 기인하는 경우가 있고 과다착과, 토양수분 부족, 마그네슘결핍에 의한 경우가 있다.
과다착과시 동화양분이 과실중으로 주로 전류되어 과실비대가 끝나고 당도가 오르는 시기에 잎이 말라 죽는데 2~3일 내에 급격히 반연하여 수확을 순조롭게 하지 못하는 경우도 있다. 점착체배시 대목과의 친화성이 나쁘면, 수분의 흡수가 순조롭지 못할 때도 발생한다.

3) 대책
수분관리에 유의하고 진조할 경우 복가지를 신장시키는 것이 좋으며 또 착과수를 조절하고 초盛大래 양과 양분관리를 하여야 하므로 관수비 필수원소가 포함된 양분, 특히 마그네슘의 함유된 비료를 함께 관주하는 것이 좋다.
(2) 급성시들음증

1) 증상

참의 수확기 무렵 낮동안은 잎이 시들고 지녀때가 되면 회복되다가 얼마동안 지나지 않아 반이되어도 위조증상이 회복되지 않고 고사하는 증상으로 포장의 일부 또는 전면에서 나타난다. 호리년이 계속될 때는 심성해 보이다 햇빛이 나면 감자기 시들어 버린다.

2) 원인

원인은 뿌리의 수분흡수 능력은 약하고 지상부에서 고온, 강한 햇빛으로 인한 증산이 강할 때 수분의 불균형에 의해 식물이 말라 고사하게 된다. 따라서 뿌리의 세력이 지상부보다 약하고 뿌리혹선충등의 감염으로 뿌리의 수분흡수 능력이 저하되어 있고 심한 경우로 인한 지하부 과습으로 근황력이 저하, 또는 염류질적으로 인해 수분의 흡수가 원활하지 않음때 쉽게 발생한다. 그러므로 급성시들음증은 과일이 비대 최성기 때 수분을 많이 필요로 하고 여름철 고온기에 주로 발생하게 된다.

3) 대책

먼저 외부의 수분이 시설내로 과다하게 유입되는 것을 막기 위해 하우스 주위 배수를 철저히 해야 하고 또 관수량을 지나치게 많이 하여 뿌리의 활력을 저하시키는 것을 막아야 하며 연작장애 등으로 인한 시설토양의 성토시 수적배수가 많아져 과습하게 될 수 있으므로 심토반전 등을 통한 수적배수를 향상시켜야 하며 선충감염을 막기 위하여 정식전 약제방제를 하는 것이 좋다. 그리고 하우스내 온도가 지나치게 상승하는 것을 막기 위하여 고온기에는 환기가 필요하다.

라. 양분결핍 증상

(1) 생리장애 발생관련

생리장애 증상은 1차적으로 농으로 쉽게 관찰 될 수 있는 것으로 일반적으로 생육상태(초장, 잎의 형태등), 세입의 발생이상, 특정부위의 과사, 전체적인 형태이상 발생, 염색의 변화(변화부위, 순서, 전면 또는 암목간 변색, 반접모양등) 및 뿌리의 발육상태 등을 조사하게 된다. 그러나 많은 경우에는 빠른 관졌을 하기 어려우므로 2차적인 정밀검사를 하게 된다.

작물의 영양진단 방법에는 여러 가지가 있으나 결핍의 초기상태에는 단순한 빠른 방법으로 정확하게 진단한다는 것은 거의 불가능한 경우가 많으며 특히 미량원소의 경우
더욱 그러하다.
결핍증상이 작품의 어느 부분에 발생하기 쉬운가는 원소에 따라서 특정적인 경향이 있다. 즉 성장점으로부터 결핍증이 발생하기 쉬운 원소와 아래의 능은 앞으로부터 중상이 나타나기 쉬운 원소가 있다. 이것은 원소에 따라 석물체내에서 이동성, 특히 결핍될 때 생육에 가장 필요한 부분으로 이동해서 이용되기 쉬운 원소와 반면 석물체의 조직중에 고정되어 있으면 다시 이동하기 어려운 성질을 가진 원소가 있기 때문이다.
따라서 결소, 인산등과 같이 석물체내에서 재이용되기 쉬운 원소는 아래길로부터 결핍증이 발생한다. 이들 원소가 결핍되면서 세균을 자라게 하기 위해 아래길로부터 새로운 임으로 이들 성분이 이동하기 때문에 아래길의 농도가 감소하게 되므로 앞의 순서에 따라 결핍증상이 나타나는 일이 많다.
반면에 칼슘, 봉소, 철결핍은 생장점이나 선단의 상위엽부터 결핍증상이 나타나고, 망간, 물리브텐, 구리의 결핍은 상위엽에서 야연은 하위엽에서 결핍증상이 나타나는 일이 많지만 품종이나, 재배환경 특성에 따라 반드시 상위엽 또는 하위엽에서 결핍증상이 나타난다고 단언하기가 어려운 설정이다.
칼리, 고토의 결핍증상은 아래길에서 나타나기 쉽다고 말하지만 이것은 원칙이며 가리나 고토가 부족한 조건에서 과실이 급속하게 비대될 때에는 이들 원소를 다양으로 필요하기 때문에 과실부근의 임으로부터 결핍증상이 나타나는 경우가 많다.
결소의 과영증상은 엽색이 급하게 되어 작물 전체가 영양생장이 과도하게 되는 것은 잘 알려져 있다. 결소외에도 원소의 과영에는 상위엽에서 중상을 나타내는 원소와 하위엽에서 이상증상을 나타내는 원소로 크게 나뉘어 진다(시설재배문화환경연구회, 2002). 상위엽에서 과영증상을 나타내는 대표적인 예는 중금속 원소의 과영에 의한 천결핍 황화증상이다. 중금속 원소가 과영으로 존재하면 뿔리포이이나 석물체내에서 결함작용으로 천의 흡수를 저해한다는지 채내의 이동을 방해하여 천 결핍증상을 유발하기 쉽다. 이같은 중상은 세일부분으로부터 황화증상이 먼저 생긴다. 망간이나 니켈 등 생체내에서 이동하기 쉬운 원소는 이들 중금속에 의해 나타나는 특징적인 반점이 상위엽에 나타나는 일이 많다.
원소의 결핍이나 과영에 의해 나타나는 증상은 표와 같다.
표 67. 양분결핍, 과잉장애의 전형적인 지상부 증상

<table>
<thead>
<tr>
<th>증상</th>
<th>부위 및 형태</th>
<th>결핍원소</th>
<th>과잉원소</th>
</tr>
</thead>
<tbody>
<tr>
<td>황화현상</td>
<td>상위엽, 하위엽</td>
<td>천, 황 (아연, 망간, 구리)</td>
<td>구리, 아연, 니켈, 망간</td>
</tr>
<tr>
<td>생장정지</td>
<td>상위엽</td>
<td>붉소, 갈슘</td>
<td>붉소</td>
</tr>
<tr>
<td>반점증상</td>
<td>대형반점, 소형반점</td>
<td>가리</td>
<td>망간, 니켈, 인산</td>
</tr>
<tr>
<td>기형, 근열</td>
<td>잉, 줄기</td>
<td>물리브텐</td>
<td></td>
</tr>
<tr>
<td>고사증상</td>
<td>잉, 가장자리</td>
<td>가리</td>
<td>붉소(인산)</td>
</tr>
</tbody>
</table>

()안은 특정작물에서 나타나는 경우가 있음

(2) 양분결핍 증상 및 대책

영양장애 조기진단의 일차적인 요건은 장애증상 관찰의 오차를 최소화하는 일이나. 외부에 나타나는 증상을 조사할 때는 되도록 증상발생 초기에 세밀히 관찰해야 정확한 진단을 기대할 수 있다. 정확한 진단을 위해서는 여러 가지 결핍증상을 숙지할 필요가 있으며 원소별 이상증상 사전은 다음과 같다.

노엽 이상 → 잉 전체 황화 → 염백녹색 암계림 → N 결핍

아니오

임주위부터 황화

아니오

염백이 적지색화

아니오

고사반점 형성

새 잉 이상
1) 질소결핍

질소부족시 생장이 느리고 아래잎이 황화되며 생육이 위축된 잔은 황화현상이 전체로 퍼진다. 질소부족이 심할 경우 일 전체가 황화되며 잎이 고사한다.

대책으로는 요소는 살포후 24시간 후에는 흡수, 동화되므로 결과 시 요소0.1%액을 4-5일 간격으로 살포한다. 토양에 사용할 경우 5-6일 정도 경과하면 염색이 녹색으로 변하고 생장이 회복된다. 질소결핍시 풀질, 수량이 감소하지만 과잉일 경우 발효과 및 풀질이 저하되므로 토양분석에 의한 적정량의 비료를 시용해야 한다.

2) 인산결핍

인산결핍시 생육초기에는 인산이 부족할 때 잎이 작고 색이 절어지며 잎면에 갈색 반점이 생기고 점점 커져 고사하게 된다. 생육중간에 인산이 부족하면 잎의 색이 절어지고 아래잎부터 갈변하여 심할 경우 흰갈색으로 고사한다.

대책으로 인산결핍이 나타나면 제1인산칼리 또는 제1인산칼슘 0.3%액을 엽면 살포하는 것이 가장 신속한 방법수단이며 인산을 추비할 시 고토가 부족하지 않은지 살펴 고토 10kg/10a를 동시에 시용한다.
3) 칼리결핍
생육 초기 참외는 칼리가 결핍시 앱의 생명이 느리고 색이 검어지며 아래일 선단에서 먼저 황화된 다음 잔채로 퍼져 암갈색 반점이 크게 나타난다. 잎의 가장자리의 황화증상은 먼저 아래일에서 나타나고 빠르게 넓혀져서도 나타나며 잎맥사이는 황화되며 잎맥은 녹색을 띠게 되며 잎 내면에서 황화되는 고토결핍과는 구별되며 된다.
결핍증이 나타나면 제1인산칼리 0.3%액을 염면살포하고 토양에 시행하도 빠르게 흡수되므로 6kg/10a정도 시행한다.

4) 석회결핍
칼슘결핍은 잎잎이 닭목색으로 변하며 잎잎부에 잎맥사이가 황화되는 것이 특징이다. 생육 초기 결핍이 심하면 잎맥만 전환녹색을 띠고 잎 전체가 황화되고 심장이 억제되며 위축된다. 잎의 어린잎에 칼슘이 부족하면 생장점이 길변 고사하며 심장이 정지되고 잎이 황화된다.
염화칼슘이나 제1인산칼슘 0.3%액을 새잎이 나는 부분에 여러번 염면살포 하고, 석회비료를 물에 타서 50kg/10a 추비한다

5) 고토결핍
고토결핍의 전형적인 증상으로 잎 주변에서 조금 벌어져서 안쪽 잎맥사이가 갈색 반점이 생겼다가 심하면 잎맥만 남아 그물망처럼 된다. 결핍은 아래일에 먼저 나타난 잎맥사이 황화가 진전, 잎이 완전히 노랗게 되고 심한 경우 적갈색으로 고사하며 칼슘결핍과 구분이 어렵지만 주로 아래일에서 먼저 발생하는 점이 다르다.
고토는 염면으로부터 홍수가 빠르므로 황산마그네슘 1%액을 10일 간격으로 5~6회 염면살포하고 토양에 시행할 시 석회고토 80kg/10a를 물에 녹여 추비한다.

6) 철결핍
정상잎에 비해 새잎의 잎맥사이가 황화되고 심하면 백화되지만 잎이 좋기에서 벗어지지 않는다. 어린잎의 경우 첫분이 결핍되면 새로 나온 잎이 먼저 황화되고 잎 전체가 잎맥만 녹색을 띠고 황록색으로 변한다.
황산철1철이나 염화철용액 0.2%액을 염면살포조차도 철은 채내에서 이동성이 낮아 염면살포에도 철용액이 묻는 부분만 녹색으로 되고 묻지 않은 부분은 결핍증이 치료되지 않는다는. 오 후 4시 이후 햇빛이 약할 때 염면살포하고 유안, 염화가리 등 산성비료를 주는 것이 철 흡수에 도움이 된다.
7) 봉소결핍
생육 초기 봉소 결핍시 생장점이 심하게 억제되거나 잎이 황화되고 반점이 잎 전면에 부분적으로 발생하고 잎이 뒤로 굽어진다. 잎과 줄기가 위축되고 소형화, 기형화되며 더욱 전전되면 잎이 저저분하고 부분적으로 괴사되며 화아가 형성되지 않고 퇴화된다(연일권동, 2003).
봉사군 엽면 살포하는 것이 좋으나 잎에 피해를 주기 쉬우므로 주의해야 하며 가벼운 봉소결핍증이 발생할 때 봉사를 0.5-1.0kg/10a되게 주비한다.

8) 구리결핍
결핍시 줄기의 생장이 억제되고 잎잎의 잎끝이 낙하산처럼 아래로 처지게 되고 담록색을 띠고 잎면에는 암갈색의 반점이 나타난다. 구리가 부족하게 되면 생장점부위가 생장이 저지되고 화아도 형성되지 않으며 결수이 거의 안 나오고 잎은 작고 부드러으며 잎기구 주름진다(연일권동, 2003).
0.2-0.4% 황산농액이나 4-4석 보르도액을 되도록 빨리 살포하며 작물을 심기전에 황산농을 4kg/10a 붉에 녹여 사용하든지 혹은 용성인비에 혼합해 전면 살포한다.

9) 망간결핍
칼리결핍
석회결핍
고토결핍
붕소결핍

구리결핍
망간결핍