Assessment of Cognitive Workload Estimation Metrics for Younger & Older Drivers in a Driving Simulator

Joonwoo Son

HumanLAB
dGIST (Daegu Gyeongbuk Institute of Science & Technology)
Contents

- Backgrounds
- Research Method
- Sensitivity of Cognitive Workload Measures
- Discussion and Summary
Challenges in Auto UI

- Distraction Management
 - Restricted Glance Time
 - Limited Resources
- Integration with Smartphone
- More older drivers

Balance between Safety & Functionality
Challenges in automotive for older drivers

• Innovation Paradox
 • At least 25% of automobile buyers will be over age 50.
 • Ex) BMW iDrive
 ➔ Criticism from the consumers, predominantly age of 45+

• Different Learning Behavior
 • Older drivers:
 Distracted from the driving task when the cause of a warning was not clearly evident.
 • Younger drivers:
 Trust in warning systems often choosing to rely on.

Need to understand Older Drivers for Better Interface Design
Increasing traffic accident fatality as getting older

Driver Fatality Rate
(Per 100 Million Vehicle Miles Traveled)

Driver Age Group
(Source: FARS 2001 and NHTSA 2001)
Age-induced Limitation

- Sensation & Perception
 - Audition
 - Vision
- Movement Control
- Cognition
 - Working Memory (Short-term)
 - Multiple Task Demands
 - Visual Attention
 - Spatial Cognition
In-Vehicle Systems need to know driver’s states

- To activate assistant system when a driver needs assistance
- To provide in-vehicle information timely and affordable
Backgrounds

Research Objective

- Understanding the sensitivity of the cognitive workload measures
- Considering age differences

Driving Performance

Physiological Arousal

Eye Behavior
Contents

- Backgrounds
- Research Method
- Sensitivity of Cognitive Workload Measures
- Discussion and Summary
Research Method

Participants

- **Screening Criteria:**
 - Driving on average more than twice a week
 - Self-reported good health
 - Free from major medical conditions
 - Not take medications for psychiatric disorders
 - Score 27 or greater on the mini mental status exam
 - Not previously participated in a simulated driving study

<table>
<thead>
<tr>
<th>Group</th>
<th># of Subjects</th>
<th>Gender</th>
<th>Mean Age (S.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Younger (25-35)</td>
<td>15</td>
<td>M</td>
<td>27.9 (3.13)</td>
</tr>
<tr>
<td>Older (60-69)</td>
<td>15</td>
<td>M</td>
<td>63.2 (1.74)</td>
</tr>
</tbody>
</table>
Research Method
Experimental Setup

- Fixed-base Driving Simulator
 - STISIM Drive™ software with force feedback (30 Hz)
 - Physiological data (200Hz)
 - MEDAC System/3 unit (NeuroDyne Medical Corp., Cambridge, MA)
 - Eye behavior data (60Hz)
 - FaceLAB® 4.6 (Seeing Machines Ltd., Canberra, Australia)
 - A display beside the rear-view mirror
 - Elapsed time & Distance remaining
An auditory delayed recall task (N-Back Tasks)

- Each 2-min task consisted of a set of four 30s trials
- 0-Back (Non-delayed)

<table>
<thead>
<tr>
<th>Present</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

- 1-Back (1 digit delayed)

<table>
<thead>
<tr>
<th>Present</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall</td>
<td></td>
<td>x</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

- 2-Back (2 digit delayed)

<table>
<thead>
<tr>
<th>Present</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall</td>
<td></td>
<td></td>
<td>x</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Secondary task performance
- Significantly impacted by the difficult level and age

Engagement was high for all participants
- Attention did not appear to be withdrawn from the task

<table>
<thead>
<tr>
<th>Workload</th>
<th>Age</th>
<th>0-back</th>
<th>1-back</th>
<th>2-back</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25~35</td>
<td>0%</td>
<td>0.74%</td>
<td>6.25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0)</td>
<td>(2.87)</td>
<td>(8.35)</td>
</tr>
<tr>
<td>Non driving</td>
<td>60~69</td>
<td>2%</td>
<td>3%</td>
<td>33.13%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7.75)</td>
<td>(4.86)</td>
<td>(20.86)</td>
</tr>
<tr>
<td>Dual Task</td>
<td>25~35</td>
<td>0%</td>
<td>4.63%</td>
<td>7.08%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0)</td>
<td>(7.47)</td>
<td>(6.83)</td>
</tr>
<tr>
<td></td>
<td>60~69</td>
<td>0.67%</td>
<td>6.48%</td>
<td>37.29%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.14)</td>
<td>(6.70)</td>
<td>(17.46)</td>
</tr>
</tbody>
</table>
Research Methods
Procedure

Subject Arrives (5 min)
- Consent & Overview (5 min)
- Physio. Sensor Attach. (5~10 min)
- Survey (Pre sim) (10 min)
- Set up (FaceLab, etc) (10 ~ 20 min)
- Sim. Training (10 min)
- Rest & Physio. Baseline (10 min)

Main Experiment
- N-Back Task Training (10 ~ 20 min)
- N-Back Task Baseline (10 min)
- Rest (5 min)
- Driving & N-Back Experiment (20 ~ 25 min)
- Exit Car & Rest (5 min)

Post Survey (10 min)
- Subject Departs
Contents

- Backgrounds

- Research Method

- Sensitivity of Cognitive Workload Measures

- Discussion and Summary
Cognitive Workload Measures: Overall Sensitivities

<table>
<thead>
<tr>
<th>Methods</th>
<th>Measures</th>
<th>Descriptions</th>
<th>Main Effect</th>
<th>Pair-wise Sensitivity</th>
<th>Age Effect</th>
<th>Level*Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>BL-0B</td>
<td>0B-1B</td>
<td>IB-2B</td>
<td>RC-0B</td>
</tr>
<tr>
<td>Secondary Task</td>
<td>ER</td>
<td>Error rate of secondary task scores</td>
<td>0.000</td>
<td>-</td>
<td>0.068</td>
<td>0.000</td>
</tr>
<tr>
<td>Driving Performance</td>
<td>SPD</td>
<td>Mean speed</td>
<td>0.000</td>
<td>0.000</td>
<td>0.598</td>
<td>0.589</td>
</tr>
<tr>
<td></td>
<td>SDSPD</td>
<td>Standard deviation of speed</td>
<td>0.005</td>
<td>0.002</td>
<td>0.504</td>
<td>0.713</td>
</tr>
<tr>
<td></td>
<td>SRR</td>
<td>Steering wheel reversal rate</td>
<td>0.000</td>
<td>0.000</td>
<td>0.008</td>
<td>0.193</td>
</tr>
<tr>
<td></td>
<td>SDLP</td>
<td>Standard deviation of lane position</td>
<td>0.000</td>
<td>0.662</td>
<td>0.001</td>
<td>0.022</td>
</tr>
<tr>
<td>Physiology</td>
<td>IBI</td>
<td>Mean inter-beat interval</td>
<td>0.000</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>HR</td>
<td>Mean heart rate</td>
<td>0.000</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>SDHR</td>
<td>Standard deviation of heart rate</td>
<td>0.002</td>
<td>0.651</td>
<td>0.090</td>
<td>0.121</td>
</tr>
<tr>
<td></td>
<td>HRV</td>
<td>Heart rate variability</td>
<td>0.018</td>
<td>0.476</td>
<td>0.019</td>
<td>0.538</td>
</tr>
<tr>
<td></td>
<td>SCL</td>
<td>Mean skin conductance level</td>
<td>0.000</td>
<td>0.015</td>
<td>0.007</td>
<td>0.140</td>
</tr>
<tr>
<td></td>
<td>SDSCL</td>
<td>Standard deviation of skin conductance level</td>
<td>0.172</td>
<td>0.957</td>
<td>0.713</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>ST</td>
<td>Mean skin temperature</td>
<td>0.586</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>SDST</td>
<td>Standard deviation of skin temperature</td>
<td>0.562</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Eye Behavior</td>
<td>SDHG</td>
<td>Standard deviation of horizontal gaze</td>
<td>0.000</td>
<td>0.000</td>
<td>0.013</td>
<td>0.409</td>
</tr>
<tr>
<td></td>
<td>SDVG</td>
<td>Standard deviation of vertical gaze</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.099</td>
</tr>
<tr>
<td></td>
<td>HG</td>
<td>Mean horizontal gaze</td>
<td>0.000</td>
<td>0.000</td>
<td>0.892</td>
<td>0.347</td>
</tr>
<tr>
<td></td>
<td>VG</td>
<td>Mean vertical gaze</td>
<td>0.001</td>
<td>0.377</td>
<td>0.076</td>
<td>0.653</td>
</tr>
<tr>
<td></td>
<td>PD</td>
<td>Pupil Diameter</td>
<td>0.291</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>BF</td>
<td>Blink Frequency</td>
<td>0.387</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>BD</td>
<td>Blink Duration</td>
<td>0.727</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>PERCLOS</td>
<td>Percentage of eyelid closure over the pupil over time</td>
<td>0.245</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Cognitive Workload Measures: Driving Performance

Driving Performance Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Reference</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPD (Mean speed)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.598</td>
<td>0.589</td>
<td>0.002</td>
</tr>
<tr>
<td>SRR (Steering wheel reversal rate)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.008</td>
<td>0.193</td>
<td>0.000</td>
</tr>
<tr>
<td>SDLP (Standard deviation of lane position)</td>
<td>0.000</td>
<td>0.662</td>
<td>0.001</td>
<td>0.022</td>
<td>0.465</td>
</tr>
</tbody>
</table>
Cognitive Workload Measures: Physiological Arousal

<table>
<thead>
<tr>
<th>Physiology</th>
<th>HR</th>
<th>Mean heart rate</th>
<th>0.000</th>
<th>0.002</th>
<th>0.001</th>
<th>0.001</th>
<th>0.000</th>
<th>0.251</th>
<th>0.371</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRV</td>
<td></td>
<td>Heart rate variability</td>
<td>0.018</td>
<td>0.476</td>
<td>0.019</td>
<td>0.538</td>
<td>0.695</td>
<td>0.340</td>
<td>0.396</td>
</tr>
<tr>
<td>SCL</td>
<td></td>
<td>Mean skin conductance level</td>
<td>0.000</td>
<td>0.015</td>
<td>0.007</td>
<td>0.140</td>
<td>0.358</td>
<td>0.467</td>
<td>0.150</td>
</tr>
</tbody>
</table>
Cognitive Workload Measures: Eye Behavior

<table>
<thead>
<tr>
<th>Eye Behavior</th>
<th>SDHG</th>
<th>Standard deviation of horizontal gaze</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>SDVG</td>
<td>Standard deviation of vertical gaze</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>VG</td>
<td>Mean vertical gaze</td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>0.377</td>
<td>0.076</td>
</tr>
</tbody>
</table>
Contents

- Backgrounds
- Research Method
- Sensitivity of Cognitive Workload Measures
- Discussion and Summary
Discussion
Measures for Detecting Cog. Load

• No measure was significant affected by age
 • Older drivers have lower mean values in physiological data, But not significant
 • Measures can be applied for both of younger and older drivers
• The best measures for detecting cognitive demands
 • Heart rate: Sensitive & Independent indicator of changes in cognitive workload
 • Brookhuis and De Waard
 • Heart rate increased with heightened task demand, such as entering a traffic circle, and dropped as task demands decreased, for instance, driving on a two-lane highway.
 • Mehler et al.
 • A near linear increase in heart rate and skin conductance appeared across the demand levels. The most useful measure in estimating the difficult level of cognitive workload in a driving environment.
Discussion

Measures for Detecting Cog. Load

• Eye Movement Measures
 • Can detect relatively high cognitive workload
 • Horizontal gaze variation
 • Concentration of gaze with added cognitive demand
 • Not only cognitive demand with reasonable sensitivity but also visual distraction with high accuracy
 • Limitation of FaceLAB
 • Pupil diameter & Blink characteristics were not affected by cog. load

• Driving Performance Measures
 • Can detect relatively high cognitive workload
 • Steering wheel reversal rate has shown good sensitivity
 • Distinguish most levels of cognitive demand except the highest cognitive workload
 • Sensitivity of SRR might be degraded on road environment, because the results of SRR were conducted from straight highway driving
Multiple Tasks

- Characteristics of Older Adults
 - More poorly performing two tasks at once
 - The magnitude of the age difference increases with the task difficulty
 - Where tasks are relatively simple, older adults perform as well as younger

- Designing for Older Adults
 - Not to require the combined performance of tasks.
Sensitive measures for detecting cognitive workload

- Best performance and sensitivity
 - Heart Rate (HR)
- Physiological Domain
 - Skin Conductance Level (SCL)
 - Good performance with slightly lower sensitivity than HR
- Eye Behavior Domain
 - S.D. of Horizontal Gaze
- Driving Performance Domain
 - Steering reversal rate
 - Useful measure by combining with the other domains’ measures
Thank You For Your Attention!
(Contact: json@dgist.ac.kr)