Cholesky factorization and power method for positive (semi-)definite matrices

Sungsu Lim Applied Algorithm Lab Nov. 9, 2011

Power method for positive semi-definite matrices

4 References

Positive definite matrix

- A matrix $A \in \mathbb{R}^{n \times n}$ is positive definite if $\mathbf{x}^T A \mathbf{x} > 0$ for all $x \neq 0$.
- **Theorem** If *A* is a symmetric matrix, then the following statements are equivalent.
 - (a) A is positive definite.
 - (b) There is an invertible matrix B such that $A = BB^{T}$.

Proof

- (a) \Rightarrow (b): Since *A* is real and symmetric, it is orthogonally diagonalizable. $A = PDP^{T} = PD_{1}D_{1}P^{T} = (PD_{1}P^{T})(PD_{1}P^{T})$, where D_{1} is the diagonal matrix whose entries are the square roots of the eigenvalues of *A*. We can check that $B = PD_{1}P^{T}$ is symmetric and positive definite. Thus, $A = BB^{T}$ since $B = B^{T}$.
- (b) \Rightarrow (a): $\mathbf{x}^T A \mathbf{x} = \mathbf{x}^T B B^T \mathbf{x} = (B^T \mathbf{x})^T (B^T \mathbf{x}) = || B \mathbf{x} ||^2 > 0$ if $\mathbf{x} \neq 0$.

Cholesky factorization

- Every positive definite matrix A can be factored as A = LL^T where L is lower triangular with positive diagonal elements.
- Cost: (1/3)*n*³ flops
- *L* is unique, and it is called the Cholesky factor of *A*.
- The requirement that *L* has positive diagonal entries can be dropped to extend the factorization to the PSD case.
 In this case, Cholesky factorizations are not unique in general.
- Cholesky factorizations are important in many kinds of numerical algorithms, and programs such as MATLAB, *Maple*, and *Mathematica* have built-in commands for computing them.

Proof

• Induction on *n*. For n = 1, trivial. If $n \ge 2$, *A* is

$$\begin{bmatrix} a_{11} & A_{21}^T \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} l_{11} & L_{21}^T \\ 0 & L_{22}^T \end{bmatrix}$$
$$= \begin{bmatrix} l_{11}^2 & l_{11}L_{21}^T \\ l_{11}L_{21} & L_{21}L_{21}^T + L_{22}L_{22}^T \end{bmatrix},$$

where $I_{11} = \sqrt{a_{11}}$, $L_{21} = (1/I_{11})A_{21}$, and L_{22} is a solution of $A_{22} - L_{21}L_{21}^T = L_{22}L_{22}^T$.

• Schur complement $A_{22} - L_{21}L_{21}^T = A_{22} - (1/a_{11})A_{21}A_{21}^T$ is positive definite, because for any $\mathbf{v} \neq 0$ and take $\mathbf{w} = -(1/a_{11})A_{21}^T\mathbf{v}$

$$\mathbf{v}^{\mathsf{T}}(A_{22} - (1/a_{11})A_{21}A_{21}^{\mathsf{T}})\mathbf{v} = \left[\begin{array}{cc} \mathbf{w}^{\mathsf{T}} & \mathbf{v}^{\mathsf{T}}\end{array}\right] \left[\begin{array}{cc} a_{11} & A_{21}^{\mathsf{T}} \\ A_{21} & A_{22}\end{array}\right] \left[\begin{array}{cc} \mathbf{w} \\ \mathbf{v}\end{array}\right] > 0$$

Applications

Solving equations Ax = b with positive definite A = LL^T
 ⇒ factor A as A = LL^T

 \Rightarrow forward substitution $L\mathbf{z} = \mathbf{b}$, back substitution $L^T \mathbf{x} = \mathbf{z}$

- Inverse of a positive definite matrix A = LL^T
 ⇒ L is invertible (its diagonal elements are nonzero)
 ⇒ A is invertible and A⁻¹ = L^{-T}L⁻¹
- If A is very sparse, then L is often (but not always) sparse. If L is sparse, the cost of the factorization is much less than (1/3)n³.
- Computing the Cholesky decomposition is more efficient and numerically more stable than computing LU decompositions.

Power method

Algorithm Power

- Input: PSD symmetric matrix $M \in \mathbb{R}^{n \times n}$, positive integer *t*
- Pick uniformly at random $\mathbf{x}_0 \sim \{-1, 1\}^n$
- for *i* = 1, . . . , *t*
 - $\mathbf{x}_i := M \mathbf{x}_{i-1}$
- return x_t

Theorem 1

For every PSD matrix *M*, positive integer *t* and parameter $\epsilon > 0$, with probability $\geq 3/16$ over the choice of \mathbf{x}_0 , the algorithm *Power* outputs a vector \mathbf{x}_t such that

$$\frac{\mathbf{x}_t^T M \mathbf{x}_t}{\mathbf{x}_t^T \mathbf{x}_t} \geq \lambda_1 (1-\epsilon) \frac{1}{1 + 4n(1-\epsilon)^{2t}}$$

where λ_1 is the largest eigenvalue of *M*.

Sungsu Lim (AALAB)

Lemma 2

Let $\mathbf{v} \in \mathbb{R}^n$ be a vector such that $\| \mathbf{v} \| = 1$. Sample uniformly at random $\mathbf{x} \sim \{-1, 1\}^n$. Then

$$P\left[|<\mathbf{x},\mathbf{v}>|\geq rac{1}{2}
ight]\geq rac{3}{16}.$$

Lemma 3

Let $\mathbf{x} \in \mathbb{R}^n$ be a vector such that $| \langle \mathbf{x}, \mathbf{v}_1 \rangle | \geq \frac{1}{2}$. Then, for every positive integer *t* and parameter $\epsilon > 0$, if we define $\mathbf{y} := M^t \mathbf{x}$, we have

$$\frac{\mathbf{y}^T M \mathbf{y}}{\mathbf{y}^T \mathbf{y}} \geq \lambda_1 (1-\epsilon) \frac{1}{1+4 \parallel x \parallel^2 (1-\epsilon)^{2t}}.$$

Proof of Lemma 2

- Let $\mathbf{v} = (v_1, \dots, v_n)$. Then $S = \langle \mathbf{x}, \mathbf{v} \rangle$ be a random variable with $E[S] = 0, E[S^2] = \sum v_i^2 = 1, E[S^4] = 3(\sum v_i^2) 2 \sum v_i^4 \le 3$.
- Paley-Zygmund inequality: If Z is a non-negative random variable with finite variance, then, for every 0 ≤ δ ≤ 1, we have

$$P[Z \ge \delta E[Z]] \ge (1-\delta)^2 \frac{(E[Z])^2}{E[Z]^2}.$$

(Proof: by Cauchy-Schwarz inequality)

• Take $Z = S^2$ and $\delta = 1/4$, we have

$$P\left[S^2 \geq \frac{1}{4}\right] \geq \left(\frac{3}{4}\right)^2 \cdot \frac{1}{3} = \frac{3}{16}.$$

Proof of Lemma 3

• Let us write x as a linear combinatioin of the eigenvectors

$$\mathbf{x} = a_1 \mathbf{v}_1 + \ldots + a_n \mathbf{v}_n$$

where $a_i = \langle \mathbf{x}, \mathbf{v}_i \rangle$. By assumption $|a_1| \ge 1/2$, and by orthonormality of the eigenvectors, $\|\mathbf{x}\|^2 = \sum a_i^2$. We have

$$\mathbf{y} = \mathbf{a}_1 \lambda_1^t \mathbf{v}_1 + \ldots + \mathbf{a}_n \lambda_n^t \mathbf{v}_n$$

and so

$$\mathbf{y}^T M \mathbf{y} = \sum a_i^2 \lambda_i^{2t+1}$$
 and $\mathbf{y}^T \mathbf{y} = \sum a_i^2 \lambda_i^{2t}$.

Proof of Lemma 3 (cont'd)

• Let k be the number of eigenvalues larger than $\lambda_1 \cdot (1 - \epsilon)$. Then,

$$\mathbf{y}^{\mathsf{T}} \boldsymbol{M} \mathbf{y} \geq \sum_{i=1}^{k} a_i^2 \lambda_i^{2t+1} \geq \lambda_1 (1-\epsilon) \sum_{i=1}^{k} a_i^2 \lambda_i^{2t}$$

We also see that

$$\begin{split} \sum_{=k+1}^{n} a_{i}^{2} \lambda_{i}^{2t} &\leq \lambda_{1}^{2t} (1-\epsilon)^{2t} \sum_{i=k+1}^{n} a_{i}^{2} \\ &\leq \lambda_{1}^{2t} (1-\epsilon)^{2t} \parallel \mathbf{x} \parallel^{2} \\ &\leq 4 a_{1}^{2} \lambda_{1}^{2t} (1-\epsilon)^{2t} \parallel \mathbf{x} \parallel^{2} \\ &\leq 4 \parallel \mathbf{x} \parallel^{2} (1-\epsilon)^{2t} \sum_{i=1}^{k} a_{i}^{2} \lambda_{i}^{2t}. \end{split}$$

Proof of Lemma 3 (cont'd)

So we have

$$\mathbf{y}^{\mathsf{T}}\mathbf{y} \leq (1+4 \parallel \mathbf{x} \parallel (1-\epsilon)^{2t}) \sum_{i=1}^{\kappa} a_i^2$$

.

giving

$$\frac{\mathbf{y}^{\mathsf{T}} M \mathbf{y}}{\mathbf{y}^{\mathsf{T}} \mathbf{y}} \geq \lambda_1 (1-\epsilon) \frac{1}{1+4 \parallel x \parallel^2 (1-\epsilon)^{2t}}.$$

Application

Graph partitioning: Let *M* be a matrix with eigenvalues $1 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$. If it is a symmetric matrix and all its eigenvalues are nonnegative, then it is positive semi-definite. In some cases, we want to compute the second largest eigenvalue. That is, we want to find a vector $\mathbf{x} \perp \mathbf{1}$ such that $\mathbf{x}^T M \mathbf{x} \leq (\lambda_2 - \epsilon) \mathbf{x}^T \mathbf{x}$. In face, we can modify Theorem 1.

Algorithm Power2

- Input: PSD symmetric matrix M, positive integer t, vector v₁
- Pick uniformly at random $\mathbf{x} \sim \{-1, 1\}^n$
- $x_0 := x \langle v_1, x \rangle \cdot v_1$
- for i = 1, ..., t
 - $\mathbf{x}_i := M \mathbf{x}_{i-1}$

• return **x**_t

Theorem 4

For every PSD matrix *M*, positive integer *t* and parameter $\epsilon > 0$, if \mathbf{v}_1 is a length-1 eigenvalue of *M*, then with probability $\geq 3/16$ over the choice of \mathbf{x}_0 , the algorithm *Power2* outputs a vector $\mathbf{x}_t \perp \mathbf{v}_1$ such that

$$\frac{\mathbf{x}_t^T M \mathbf{x}_t}{\mathbf{x}_t^T \mathbf{x}_t} \geq \lambda_2 (1 - \epsilon) \frac{1}{1 + 4n(1 - \epsilon)^{2t}}$$

where λ_2 is the second largest eigenvalue of *M*, counting multiplicities.

Some useful lecture notes

- Cholesky factorization: http://www.ee.ucla.edu/ vandenbe/103/lectures/chol.pdf
- Power method for PSD matrices: http://theory.stanford.edu/ trevisan/cs359g/lecture07.pdf