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Introduction

Positive definite matrix

A matrix A ∈ Rn×n is positive definite if xT Ax > 0 for all x 6= 0.
Theorem If A is a symmetric matrix, then the following statements
are equivalent.
(a) A is positive definite.
(b) There is an invertible matrix B such that A = BBT .

Proof
(a)⇒(b): Since A is real and symmetric, it is orthogonally
diagonalizable. A = PDPT = PD1D1PT = (PD1PT )(PD1PT ),
where D1 is the diagonal matrix whose entries are the square
roots of the eigenvalues of A. We can check that B = PD1PT is
symmetric and positive definite. Thus, A = BBT since B = BT .
(b)⇒(a): xT Ax = xT BBT x = (BT x)T (BT x) =‖ Bx ‖2> 0 if x 6= 0.
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Cholesky factorization

Cholesky factorization

Every positive definite matrix A can be factored as A = LLT where
L is lower triangular with positive diagonal elements.

Cost: (1/3)n3 flops
L is unique, and it is called the Cholesky factor of A.
The requirement that L has positive diagonal entries can be
dropped to extend the factorization to the PSD case.
In this case, Cholesky factorizations are not unique in general.
Cholesky factorizations are important in many kinds of numerical
algorithms, and programs such as MATLAB, Maple, and
Mathematica have built-in commands for computing them.
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Cholesky factorization

Proof
Induction on n. For n = 1, trivial. If n ≥ 2, A is[

a11 AT
21

A21 A22

]
=

[
l11 0
L21 L22

] [
l11 LT

21
0 LT

22

]
=

[
l211 l11LT

21
l11L21 L21LT

21 + L22LT
22

]
,

where l11 =
√

a11, L21 = (1/l11)A21, and L22 is a solution of
A22 − L21LT

21 = L22LT
22.

Schur complement A22 − L21LT
21 = A22 − (1/a11)A21AT

21 is positive
definite, because for any v 6= 0 and take w = −(1/a11)AT

21v

vT (A22 − (1/a11)A21AT
21)v =

[
wT vT

] [ a11 AT
21

A21 A22

] [
w
v

]
> 0
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Cholesky factorization

Applications

Solving equations Ax = b with positive definite A = LLT

⇒ factor A as A = LLT

⇒ forward substitution Lz = b, back substitution LT x = z
Inverse of a positive definite matrix A = LLT

⇒ L is invertible (its diagonal elements are nonzero)
⇒ A is invertible and A−1 = L−T L−1

If A is very sparse, then L is often (but not always) sparse. If L is
sparse, the cost of the factorization is much less than (1/3)n3.
Computing the Cholesky decomposition is more efficient and
numerically more stable than computing LU decompositions.
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Power method

Algorithm Power

Input: PSD symmetric matrix M ∈ Rn×n, positive integer t
Pick uniformly at random x0 ∼ {−1,1}n

for i = 1, . . . , t
xi := Mxi−1

return xt

Theorem 1
For every PSD matrix M, positive integer t and parameter ε > 0, with
probability ≥ 3/16 over the choice of x0, the algorithm Power outputs a
vector xt such that

xT
t Mxt

xT
t xt

≥ λ1(1− ε)
1

1 + 4n(1− ε)2t

where λ1 is the largest eigenvalue of M.
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Power method

Lemma 2
Let v ∈ Rn be a vector such that ‖ v ‖= 1. Sample uniformly at random
x ∼ {−1,1}n. Then

P
[
| < x,v > | ≥ 1

2

]
≥ 3

16
.

Lemma 3

Let x ∈ Rn be a vector such that | < x,v1 > | ≥ 1
2 . Then, for every

positive integer t and parameter ε > 0, if we define y := M tx, we have

yT My
yT y

≥ λ1(1− ε)
1

1 + 4 ‖ x ‖2 (1− ε)2t .
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Power method

Proof of Lemma 2
Let v = (v1, . . . , vn). Then S =< x,v > be a random variable with
E [S] = 0, E [S2] =

∑
v2

i = 1, E [S4] = 3(
∑

v2
i )− 2

∑
v4

i ≤ 3.
Paley-Zygmund inequality: If Z is a non-negative random variable
with finite variance, then, for every 0 ≤ δ ≤ 1, we have

P[Z ≥ δE [Z ]] ≥ (1− δ)2 (E [Z ])2

E [Z ]2
.

(Proof: by Cauchy-Schwarz inequality)
Take Z = S2 and δ = 1/4, we have

P
[
S2 ≥ 1

4

]
≥
(

3
4

)2

· 1
3
=

3
16
.
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Power method

Proof of Lemma 3
Let us write x as a linear combinatioin of the eigenvectors

x = a1v1 + . . .+ anvn

where ai =< x,vi > . By assumption |a1| ≥ 1/2, and by
orthonormality of the eigenvectors, ‖ x ‖2=

∑
a2

i . We have

y = a1λ
t
1v1 + . . .+ anλ

t
nvn

and so

yT My =
∑

a2
i λ

2t+1
i and yT y =

∑
a2

i λ
2t
i .
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Power method

Proof of Lemma 3 (cont’d)
Let k be the number of eigenvalues larger than λ1 · (1− ε). Then,

yT My ≥
k∑

i=1

a2
i λ

2t+1
i ≥ λ1(1− ε)

k∑
i=1

a2
i λ

2t
i .

We also see that

n∑
i=k+1

a2
i λ

2t
i ≤ λ2t

1 (1− ε)2t
n∑

i=k+1

a2
i

≤ λ2t
1 (1− ε)2t ‖ x ‖2

≤ 4a2
1λ

2t
1 (1− ε)2t ‖ x ‖2

≤ 4 ‖ x ‖2 (1− ε)2t
k∑

i=1

a2
i λ

2t
i .

Sungsu Lim (AALAB) Cholesky factorization and power method... Nov. 9, 2011 11 / 15



Power method

Proof of Lemma 3 (cont’d)
So we have

yT y ≤ (1 + 4 ‖ x ‖ (1− ε)2t)
k∑

i=1

a2
i

giving
yT My
yT y

≥ λ1(1− ε)
1

1 + 4 ‖ x ‖2 (1− ε)2t .
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Power method

Application
Graph partitioning: Let M be a matrix with eigenvalues
1 = λ1 ≤ λ2 ≤ . . . ≤ λn. If it is a symmetric matrix and all its
eigenvalues are nonnegative, then it is positive semi-definite. In some
cases, we want to compute the second largest eigenvalue. That is, we
want to find a vector x ⊥ 1 such that xT Mx ≤ (λ2 − ε)xT x. In face, we
can modify Theorem 1.

Algorithm Power2

Input: PSD symmetric matrix M, positive integer t , vector v1

Pick uniformly at random x ∼ {−1,1}n

x0 := x− < v1,x > ·v1

for i = 1, . . . , t
xi := Mxi−1

return xt
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Power method

Theorem 4
For every PSD matrix M, positive integer t and parameter ε > 0, if v1 is
a length-1 eigenvalue of M, then with probability ≥ 3/16 over the
choice of x0, the algorithm Power2 outputs a vector xt ⊥ v1 such that

xT
t Mxt

xT
t xt

≥ λ2(1− ε)
1

1 + 4n(1− ε)2t

where λ2 is the second largest eigenvalue of M, counting multiplicities.

Sungsu Lim (AALAB) Cholesky factorization and power method... Nov. 9, 2011 14 / 15



References

Some useful lecture notes
Cholesky factorization:
http://www.ee.ucla.edu/ vandenbe/103/lectures/chol.pdf
Power method for PSD matrices:
http://theory.stanford.edu/ trevisan/cs359g/lecture07.pdf
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