碩士學位論文

發見學習 授業 戰略이 中學生들의 그래프 관련 科學學習에 미치는 影響

指導教授 康 禎 友

濟州大學校 教育大學院

物理教育 專攻

吳 仁 實

2000年 8月
발견학습 授業 戰略에 中學校学生的 그래프 관련 科學學習에 미치는 影響

指導教授 康 禎 友

이 論文을 教育學 碩士學位 論文으로 提出함.

2000年 6月 日

濟州大學校 教育大學院 物理教育専攻

提出者 呉 仁 實

吳仁實의 教育學 碩士學位論文을 認准함.

2000年 7月 日

審查委員長

審查委員

審查委員
발견학습 교수 전략이 중학생들의 그래프 관련 수학에 미치는 영향

吴 仁 實

濟州大學校 教育大學院 物理教育專攻

指導教授 康 禪 友

본 연구에서 개발한 협과 운동 단원 발견학습 수업 전략이 그래프 능력 향상과 탐구능력 향상 및 과학 관련 태도 함양에 효과적인가를 알아보기 위해, 중학교 1학년 학생들에게 수업처치 전과 후에 검사를 실시하였다.

수업 전 후 교과목 문항의 그래프 능력 검사로부터 좌표값 찾기, 내담 개념들에 대해서는 실험반이 통계적으로 유의미하여 발견학습 수업전략이 그래프 학습에 효과적이었고, 주관식 이유진술은 문항별로 분석해 본 결과 학생들의 심리적 특성이 다양하였으며, 좌표값 찾기, 자료 변환하기, 변수의 대응값 찾기, 외삽, 변인간 관계 전술하기에 대해서는 발견학습 수업 전략이 개념적 학습에 더 효과적으로 나타났다.

그리고 수업처치 후 탐구능력은 실험반이 더 크게 향상되었으며, 과학관련 태도의 변화에 있어서도 통계적으로는 실험반에 긍정적인 변화가 있었다.

이와 같은 결과로부터 발견학습 수업 전략은 중학생들에게 과학에 대한 관심과 흥미를 가지게 하여 그래프 관련 과학 개념 학습에 긍정적인 영향을 끼치며, 과학관련 태도를 함양하고, 탐구능력을 향상시키는데 효과적인 학습이 도 방법이라고 하겠다.

※ 본 논문은 2000년 8월 제주대학교 교육대학원 수학전공에 제출된 교육학 석사학위논문임

- i -
차 례

초 록 .. i
표와 그림차례 ... iv

I. 서론 ... 1
 1. 연구의 필요성과 목적 .. 1
 2. 연구 문제 .. 3
 3. 용어의 정의 .. 3
 4. 연구의 제한점 ... 5

II. 이론적 배경 .. 6
 1. 그래프의 역사적 배경과 정의 .. 6
 2. 그래프 이해 모형 ... 8
 3. 선 그래프 해석 과정 ... 12
 4. 그래프와 함수 ... 13
 5. 발전학습 수업모형 .. 17
 6. 선형 연구의 고찰 ... 22

III. 연구방법 및 절차 .. 26
 1. 연구대상 및 시기 .. 26
 2. 연구의 범위 및 절차 ... 26
 3. 발전학습 수업 프로그램 개발 및 적용 ... 27
 4. 검사 도구 ... 33
 5. 자료처리 및 분석 ... 34

 - ii -
IV. 연구 결과 및 논의 ... 35
 1. 그래프 능력 검사 결과 분석 ... 35
 2. 탐구능력 검사 결과 분석 ... 64
 3. 과학 관련 태도 검사 결과 분석 ... 65

V. 결론 ... 68
참 고 문헌 ... 70
Abstract .. 75

부록 1. 그래프 능력 검사 도구 ... 77
 2. 단원의 지도계획 .. 82
 3. 통제반에 투입한 전통적 학습지도안 83

감사의 글 .. 85
표 차례

표 1. 중학교 1학년 수학의 함수 단원 .. 16
表 2. 중학교 2학년 수학의 함수 단원 .. 16
表 3. 중학교 3학년 수학의 함수 단원 .. 17
表 4. 발전학습 모형에 의한 힘과 운동 단원 수업 전략 29
表 5. 본 연구에서 실험반에 투입한 발전학습 수업 전략에 의한 학습지도안 30
表 6. 그래프 능력 검사지의 하위요소와 문항번호 .. 35
表 7. 문항별 성취도의 상준유형 ... 36
表 8. 문항별 (하위요소) 성취도의 점담표 ... 39
表 9. 문항 1에 대한 이유 진술 내용 (축에 눈금 매기기) 43
表 10. 문항 2에 대한 이유 진술 내용 (축에 변수 지정하기) 44
表 11. 문항 3에 대한 이유 진술 내용 (좌표값 찾기) 45
表 12. 문항 4에 대한 이유 진술 내용 (점적기) ... 46
表 13. 문항 5에 대한 이유 진술 내용 (적절한 하나의 선 그리기) 47
表 14. 문항 6에 대한 이유 진술 내용 (자료 변환하기) 47
表 15. 문항 7에 대한 이유 진술 내용 (변수의 대응값 찾기) 48
表 16. 문항 8에 대한 이유 진술 내용 (내삼) ... 49
表 17. 문항 9에 대한 이유 진술 내용 (외삼) ... 49
表 18. 문항 10에 대한 이유 진술 내용 (변수간 관계 진술하기) 50
表 19. 학습 전 - 후의 ‘축에 눈금매기기’의 개념 유형 변화(실험반) 51
表 20. 학습 전 - 후의 ‘축에 눈금매기기’의 개념 유형 변화(통제반) 52
表 21. 학습 전 - 후의 ‘축에 변수 지정하기’의 개념 유형 변화(실험반) 53
表 22. 학습 전 - 후의 ‘축에 변수 지정하기’의 개념 유형 변화(통제반) 54
表 23. 학습 전 - 후의 ‘좌표값 찾기’의 개념 유형 변화(실험반) 54
表 24. 학습 전 - 후의 ‘좌표값 찾기’의 개념 유형 변화(통제반) 55
表 25. 학습 전 - 후의 ‘점적기’의 개념 유형 변화(실험반) 56
그림 1. Pinker의 그래프 이해 모형 ... 8
그림 2. Fisher의 그래프 이해 모형 ... 10
그림 3. 문중식·김범기의 선 그래프 이해 모형 ... 11
그림 4. 표상들 사이의 변역 ... 15
그림 5. 발전 학습 모형의 단계 .. 18
그림 6. 연구 절차의 순서도 ... 28
Ⅰ. 서 론

1. 연구의 필요성과 목적

그래프는 과학, 수학, 인문 사회 분야뿐만 아니라 신문이나 잡지에서의 정보 전달에 중요하게 사용되고 있다.

그래프는 분자나 언어로 표현하는 것보다 작은 공간에 많은 정보를 압축하여 전달할 수 있고, 그래프의 시각적 표현으로 인하여 표로 기록한 과학 자료보다 전체적인 경향을 쉽게 찾을 수 있을 뿐만 아니라, 그래프를 수학적으로 해석하고 변형하여 새로운 정보를 추론해 넣 수 있기 때문에 다양한 분야에서 그래프가 활용되고 있다. 특히 책이나 강의 또는 연구 발표에서 그래프로 표현하는 경향이 커지고 있다. 또한 과학에서는 실험에서 얻은 자료를 종합하여 유형, 경향 및 규칙성을 찾아내고 어떤 결론을 도출하거나, 제시된 그래프를 통하여 실험가설이나 통제된 변인 등을 찾을 수 있을 뿐만 아니라 어떤 자료의 내면, 외관은 물론 다른 자료와의 상관관계 및 인과 관계를 해석하는 데도 선 그래프가 중요한 역할을 담당하고 있다.

그러나 그래프는 그래프의 시각적인 정보와 논리적인 정보 사이의 혼란으로 인하여 그 해석과 이해를 어렵게 한다. 이에 대한 인지적인 분석과 그 어려움에 대한 해결책을 찾는 노력이 필요하다.

그래프는 과학 실험 과정에서 변수들 사이의 연속적인 관련성을 예측하고, 과학적인 자료를 간결하고 질서있는 방식으로 전달하는 유용한 수단이기 때문에 연속적인 변수들 사이에는 어떤 관계가 있는가를 알 수 있다. 그러므로 과학에서 특히 중요할 뿐 아니라 과학의 추상적인 개념을 전달하는데 매우 효과적이다. 과학의 개념이나 원리를 이해시키기 위한 실험 수업의 과정에서 교사는 학생들로 하여금 실험의 결과를 그래프로 표현해 보도록 하고, 나아가
표현된 어떤 그래프에서 변수 사이의 관계를 해석하도록 한다. 그럴 때 단
수의 학생들이 축정한 물리량을 그래프로 표현하거나 그래프 해석 능력의 부
족으로 인해 관련 과학 개념을 이해 못하며 과학과목을 어려워하고, 그래프만
나오면 싫어한다거나 찌름을 내는 등 과학 학습에 장애가 있다"라고 한다.
과학적 지식이 뛰어고 그 규모가 방대해짐에 따라 자료를 해석하고 요약할
수 있는 방법이 점차 중요해지고 과학 개념을 선 그래프를 이용하여 전달하
는 것이 학습자의 흥미를 유발하고 변수 관계의 이해에 도움을 주며, 분석적
사고를 진작시킬 수 있어서 효과적이고 유용하다.45)로 알려져 있지만 대부분
의 학생들은 그래프를 구성하거나 해석하는 능력을 쉽게 획득하지 못하고 있
는 것이 학교의 현실이다.
과학 수업에서 교사는 변수들 사이의 관계를 예측하고 그러한 관계를 정량
화하려고 할 때 그래프를 이용한다. 그러나, 학생들은 선 그래프에 관련된
수학적 지식을 충분히 배웠으면서도 협과 운동 관련 선 그래프 해석과 이해
에 상당한 어려움을 갖고 있다.57) 그럼에도 불구하고 교사들은 당연히 익숙하
게 학생들이 할 수 있으리라 생각하면서 속관적으로 그래프와 관련된 내용을
가르치지만, 표를 작성하고 그래프를 그리는 일에 시간과 노력을 소비하여 학
생들은 그래프를 어떻게 해석하는 것이 좋은지 또는 어떤 의미를 가지고 있
는지에 대한 관심을 보일 수 있는 어려움을 없애버리고 있다.81.
제 6차 중학교 과학 교육과정의 교과서에는 약 80개의 선 그래프가 과학적
개념을 전달하는데 이용되고 있으며, 협과 운동 단원에서는 운동을 그래프로
표현하거나 그 내용을 그래프 형태로 표현하고 있다. 그렇지만, 그래프를 어
렇게 해석하고 이해해야 하는지에 대한 구체적인 방법이나 절차에 대한 교
수·학습은 거의 없는 것이 현실이며, 이에 대한 연구가 활성화되어 있지도
않다.
그럼으로 중학생들이 과학 학습에서 그래프 능력을 향상시킬 교수·학습
방법을 모색하기 위하여 본 연구에서는, 학생들의 그래프 능력이 어느 정도인지
를 파악하고 이에 기초하여 본 연구자가 구안한 발전학습 모형에 의한 수업
전략을 실제 수업에 적용해 보려고 한다. 그림으로써 구안한 수업 전략이 중
학생들의 그래프 능력의 향상에 미친 영향과 학생들의 탐구능력 및 과학 관
련 태도 변화에 미치는 영향을 알아보고자 하는 것이 본 연구의 목적이다.

2. 연구 문제

본 연구에서는 중학교 1학년 학생들에게 구안한 발전학습 수업전략을 적용
해 다음과 같은 연구 문제를 해결하고자 한다.
1) 중학교 1학년 학생들이 그래프에 관련된 기능이 어느 정도인지, 즉 다양
한 그래프 구성 가능과 해석 기능이 있는가?
2) 그래프 능력을 향상시킬 수 있는 학습지도 방법을 연구·개발해 직접 적
용해 본으로써 과연 그 학습지도 방법이 그래프 능력을 향상시키는데 효과
적인가?
3) 그래프 능력 향상을 위한 발전학습 수업전략이 중학생의 그래프 능력과
과학 탐구능력 및 과학관련 태도 변화에 어떤 영향을 미쳤는가?

3. 용어의 정의

본 연구에 사용되고 있는 용어 중에서 선 그래프, 그래프 시각 정보, 선 그
래프 도식, 그래프 능력에 관한 정의는 다음과 같다.

1) 선 그래프

선 그래프는 모든 그래프 중에서 가장 정밀하고 복잡하다. 선 그래프들은
직각으로 두 가지 척도에 기초한다. 각 점은 수직선도와 수평선도를 갖는다.
선(혹은 곡선)은 점과 연결하여 선을 그린다. 선 그래프는 2차원적으로 변화
를 보여준다. 즉, 둘 혹은 그 이상의 수량 그룹들이 시간에 따라 변화하는 것

- 3 -
울 보여준다. 예를 들어, 그래프는 가스의 부피가 일정할 때 압력과 온도간의 관계를 보여줄 수 있다.

2) 그래프 시각 정보
눈의 방막에 생긴 상(視覺像)에 대한 지각이 의미가 있으려면, 앞고자 하는 정보를 연도록 하는 형태가 되어야 한다. 즉, 시각상이 그래프의 개념 정보에 포함된 수학적 요소를 상징화하는 데 적절한 형태가 될 때, 그래프를 쉽게 해석할 수 있다. S. Pinker는 이러한 지각 형태를 시각 묘사라고 하여 원(x)
(예, x는 원이다.), U모양(x), 가파름(x), 평행(x) 등과 위(x, y) (예, x는 y 위에 있다.), 근처(x, y), 높이(x, y), 평행(x, y) 수렴(x, y) 등의 형태에 관하여 자세히 기술하고 있다. 본 연구에서는 선 그래프의 특성상 시각상과 시각 묘사를 합쳐서 그래프 시각 정보로 정의한다.

3) 선 그래프 도식
선 그래프 도식은 과거의 선 그래프 해석에 관한 경험이나 학습을 통하여 얻은 정보를 바탕으로 기억체계에 형성된 것이며, 물리 내용과는 독립적으로 선 그래프에 관한 수학 개념을 포함한다. 선 그래프 도식은 시각상(視覺像)에서 발견된 정보를 개념 정보로 전환하거나, 원하는 개념 정보를 찾을 수 있도록 방향을 제시하고 연결하는 역할을 하여, 다양한 모양의 선 그래프에서 각 그래프의 전체 정황을 알 수 있도록 한다. 예를 들면, L형의 각 표에서 사선으로 추어진 경우의 선 그래프 도식은 x변수는 독립변수, y변수는 종속변수, x변수에 대한 y변수의 변화율이 일정하다는 것 등이며, x변수는 시간, y변수는 속도라고 할 때 이 그래프의 기울기는 가속도이며, 면적은 이동거리라는 것 등을 선 그래프 도식으로 정의한다.

4) 그래프 능력(graphing ability)
본 연구에서 말하는 그래프 능력은 과학적 개념이 최대한 배제된 그래프를 작성(construction)하고 해석(interpretation)하기 위한 학생의 능력을 의미한다.
작성 능력에는 눈금 매기기, 축에 변수 지정하기, 점찍기/좌표값 찾기, 적절한 하나의 선 그리기, 자료 변환하기가 포함된다. 그리고 해석 능력에는 변수의 대응값 찾기, 내삼과 외삼, 변인간의 관계전술하기가 포함된다\(^{12}\).

4. 연구의 제한점

1) 본 연구를 수행하는데 있어 그 대상을 제주도 옥지역 중학교 1학년 2개 학급을 실험반과 통제반으로 하였기 때문에 실험처리 간의 상호작용에 따른 타당도에 문제가 있을 수 있어 실험 결과를 일반화하기는 어렵다.

2) 교수법 적용에 대한 교사·학생 변인을 최소화하려고 노력하였지만 연구의 성격상 완전히 변인을 통제하지 못하였으므로 그래프 능력의 향상 정도에 대한 해석에 한계가 있다.

3) 검사 도구를 지필 평가만을 사용했기 때문에 학생들의 사고를 정확히 알아내는데는 한계가 있을 수 있으며, 검사도구 자체의 타당성나 신뢰성 외 피검자의 검사도구에 대한 이해력이나 검사에 임하는 자세에 따라 검사의 결과가 영향을 받을 수 있어 그 해석에 제한이 따른다.
Ⅱ. 이론적 배경

1. 그래프의 역사적 배경과 정의

그래프와 같은 시각적 표현에 관한 역사적 기원은 Galilei(1564~1642) 시대 전까지 거슬러 올라 갈 수 있다. 이러한 시각적 표현은 도시의 위치를 실마리로 나타내기 위해 지도에서 좌표를 이용한 위치와 면적 등이 표현으로부터 시작되었다. 이것이 과학에서 좌표를 사용하게 된 계기가 되었다고 할 수 있다.

시대가 변하고 과학이 발전함에 따라 증가하는 이론이나 사실에 대한 시각적 표현은 어떤 현상에 대한 양적인 정보를 수집하고 재배열하며, 분석하고 이해하기 위한 도구로 발전하였다. 특히 수학의 발전과 천체의 기하학적 구조를 밝히려는 시도가 시각적 표현 방법의 발전에 크게 기여하였는데, 로마의 과학자 Macrobius는 황도 주위로 움직이는 행성의 운동을 시간으로 표현하였다. 그리고 프랑스의 수학자 Oresme는 횡축과 종축의 선을 처음으로 사용하였다. 이것이 바로 그래프의 시작이면서 그래프 표현의 시작이라 할 수 있다.

뿐만 아니라, 프랑스의 과학자이며 수학자인 Descartes는 해석 기하학적 그림 요소와 대수학적인 추상적 개념 체계를 통합하는 선 그레프를 발전시켜 효과적으로 사용할 수 있게 하였으며, 변수의 개념을 도입하여 하나의 식을 그래프로 표현할 수 있게 하였다. 그러나 그레프는 'picture'와 'graphic' 등과 용어나 개념이 비슷하여 그래프에 대한 개념을 정의하기는 쉽지 않다.

J. Bertine은 圖解(graphics)를 수학적 표현과 그림 등 다른 기호체계와 구분하기 위해 단일 의미를 지난 기호체계와 다중적 의미를 지난 기호체계로 구분하였다. 즉, 수학의 대수식은 기호 변수가 정의되고, 圖解는 각 기호에 유
일반 의미를 부여할 때 단일 의미를 지닌 기호체계가 된다. 하지만 회화와 같은 추상적인 그림은 그 속에 있는 각 기호의 의미가 유동적이며 주관적인 면을 갖고 있기 때문에 다중적 의미를 지닌 기호체계로 보았다. 그러나 그림과 수학은 단일 의미를 갖는 기호체계로 정보를 전달할 수 있다는 면에서 유사하다. 그렇지만 수학은 가능한 많은 수를 대수식에 대입하여 비교해야 하는 반면, 그림은 이 자료를 한 공간에 시각적으로 표현하여 비교해 볼 수 있다는 면에서 서로 구별된다.

따라서 그림이라는 용어 속에 그림과 그래프를 포함시킬 수 있다고 또한, 그림은 그림 속에 포함될 수 있다. 예를 들면, 전기력선 그림에서 선의 밀도에 전기장의 의미를 부여하면 단일 의미를 갖는 그림이 되고, 그래프에서 독립 변수에 시간, 종속 변수에 변위의 의미를 부여하면 시간과 변위를 나타내는 단일 의미를 갖는 기호체계가 되므로 그림 속에 포함된다. 그러나 그림은 전기력선과 같은 단순한 그림과는 전혀 다른 변수를 포함하는 상정적인 기호체계를 갖고 있어 구체적인 대상물이 아닌 추상적인 개념을 시각적으로 나타내 준다는 면에서 다른 그림들과 구별된다.

그래프는 형태에 따라 막대 그래프, 원 그래프, 선 그래프 등으로 구별할 수 있다. 이들 중 막대 그래프는 특별한 독립 변수에 대한 종속 변수의 비교에 유익한 반면, 과학에서 많이 이용하는 선 그래프는 변수 사이의 관계와 전체적인 경향성을 파악하는데 효과적이다. 또한, 선 그래프는 공간 관계를 표현해 주는 지도 또는 기하학적 도형에 비해 비공간적 관계를 표현하는데 주로 이용된다. 그리고 선 그래프에서 한 선의 길이는 한 변인의 값을 표시할 수 있다. 예를 들어 시간, 습력, 온도와 같은 변인들의 값은 선의 길이로써 표현할 수 있다. 그러나 선 그래프를 이해하기 위해서는 그림의 각 점을 조금씩 이해함으로써 가능하다. 즉 선 그래프는 한 변인의 변화에 대한 다른 변인의 변화를 나타내 주기 때문에 그림을 읽는 사람은 이차원 그래프 속의 한 점의 운동이 두 변인간의 변화를 나타낸다는 것을 알 수 있다.
2. 그래프 이해 모형

기존의 그래프에 관한 모형은 시각 묘사(visual description)와 그래프 도식(graph schema)을 강조한 Pinker의 모형과 정보 처리 일반론에 입각하여 그래프 이해를 기술한 Fisher의 모형 등이 있다.

1) Pinker의 그래프 이해 모형

Pinker의 모형에서는 막대 그래프를 중심으로 기술하였는데, 선 그래프를 포함한 그래프 이해에 관한 일반적인 모형을 《그림 1》과 같이 나타내고 있다.

![그래프 이해 모형](image)

《그림 1》 Pinker의 그래프 이해 모형

이 모형은 그래프 지각과 이해과정에서 중요한 두 유형의 실상 표상 즉, 시각 묘사(visual description)와 그래프 도식(graph schema)을 강조한다. 시각 묘사는 그래프에서 긴 막대, 짧은 막대, 직선, 곡선 등과 같은 시각적 특징을 포함한 지각된 요소를 표현하는 변수들의 구조나 공간적 관계를 표현한다(예, 삼각형 x는 원 y 위에 있다). 그리고 그래프에서 어떤 개념 정보를 끌어내려고 할 때 그래프 시각 요소의 어떤 면이 개념 정보 어떤 면을 표현하는지를 알아야 하는데, 이 때 이것을 매개하는 지식이
그래프 도식이다(예, 좌표 x축의 오른쪽 방향이 그 값이 증가하는 방향이다. 위치-시간 그래프에서 기울기는 속도이다).

또한, 이 모형은 그래프의 시각상(visual array)이 개념정보로 변환되는 과정을 단계적으로 표현하고 있다. 첫번째로 그래프의 시각성이 시각요소로 변환되고 나 다음, 두 번째로 시각 요소는 그래프 도식의 도움에 의해 관련 개념으로 변환된다. 세 번째로는 개념 정보를 이용하여 그래프와 관련된 문제의 답을 구하는 과정을 기술하고 있다. 이 때 <그림 1>을 보는 바와 같은 화살표로 표시되는 4개의 과정이 있다.

그 첫째 과정은, 시각요소에 관련된 그래프 도식을 활성화시키는 연결 과정(match process)으로 연결의 결과, 예증된 그래프 도식(instantiated graph schema)을 얻는다. 이것은 파라미터를 포함하는 일반적인 그래프 도식에서 문제에 관련된 변수를 포함하는 그래프 도식으로의 전환을 의미한다. 둘째 과정은, 예증된 그래프 도식을 통하여 개념들을 얻는 정보모음 과정(message assembly process)으로 예증된 그래프 도식을 통하여 개념들을 모으고 통합한다. 셋째 과정은, 이렇게 얻은 개념에 원하는 정보가 없을 때 새로운 정보를 얻기 위하여 다시 뒤로 되돌아가서 다른 방향에서 접근하게 하는 질문과정(interrogation process)이다. 넷째 과정은, 시각요소에 직접 얻을 수 없는 정보를 얻기 위하여 관련된 개념을 이용하여 새로운 개념을 유추해 내는 추론과정(inferential process)이다. 결국, 질문 과정과 추론 과정은 관련 개념을 이용하여 제시된 개념 문제를 풀 수 없을 때 일어날 수 있는 과정이다

2) Fisher의 그래프 이해 모형

Fisher의 그래프 이해 모형은 감각기록, 작동기억, 장기기억 등의 개념을 이용하여 시각적으로 표현된 정보를 인지적으로 처리하는 과정으로 나타내고 있다. 이 모형의 과정은 주의과정(attending), 범주화 과정(categorizing), 활성화 과정(activating), 통합과정(integration) 등의 4단계
로 나누어 설명할 수 있는데, 도식화하면 그림 2와 같다.

첫째, 주의조건은 그래프 자극이 주어져서 그래프에 주의가 집중되고 그래프상이 감각기록기에 만들어지는 과정이다.

둘째, 범주화 과정은 장기기억에 저장된 적절한 그래프 도식과 문제도식을 그래프상에 연결시키는 과정이다.

셋째, 활성화 과정은 적절한 그래프 도식과 문제도식을 작동기억으로 가르내는 과정이다.

넷째, 통합과정은 적절한 그래프 정보를 이용하여 문제의 답을 결정하는 과정으로 선택된 도식에 포함된 전략의 안내에 따라 각지각과정에 더 직접적인 요구를 하는 과정이다. 그러나 시각 정보가 적절한 그래프 도식을 선택하였다 해도 적절한 문제 도식을 선택하는 과정에서 실패하여 문제 해결을 하지 못하는 경우도 있다.

<그림 2> Fisher의 그래프 이해 모형
예를 들면, 속도와 시간의 그래프에서 가속도에 관한 정보를 얻고자 할 때는 속도-시간 그래프에서의 기울기가 속도의 시간 변화율이라는 그래프 도식을 충분히 활성화시켰다고 해도 속도의 시간 변화율이 가속도라는 개념을 모르면 가속도에 관한 정보를 얻을 수 없다. 이런 과정은 순서대로 일어나지 않고 처음의 주의 과정에서 그래프 자극이 선택된 도식과 통합되지 않는다면 더 깊은 주의를 기울여야 되어 그래프 자극에 직접한 다른 도식을 배합시키는 재분류 과정을 거치게 된다.

3) 문층식·김범기 모형

문층식과 김범기는 Bartlett의 도식 이론과 Piaget의 동화·조절 및 물리 개념이 포함된 그래프에 대한 학생들의 생각을 기초로 하여 선 그래프 이해 모형을 <그림 3>과 같이 제시하였다. 이 모형은 그래프에서 각각의 시각 정보를 이미 머리 속에 형성되어 있는 그래프 도식과 개념 도식을 이용하여 원하는 정보로 교환하는 과정을 기술하고 있다. 여기서 동화·조절(1)은 그래프의 해석과정이고, 동화·조절(2)는 그래프 이해 과정을 나타낸다. 즉, 선 그래프 해석과정과 이해 과정을 구분하여 서술하고 있다. 원하는 정보를 선 그래프에서 얻고자 할 때, 먼저 물음의 내용이 그래프 시각 정보를 갖추게 되고, 물음의 내용과 관련된 그래프 도식과 개념 도식을 인출하여 그래프 해석 과정과 이해 과정을 거치게 된다.

![그림 3] 문층식·김범기의 선 그래프 이해 모형
이 모형에서 해석 결과의 표시는 그래프 시각 정보의 삼각형과 그래프 도식의 사각형을 동화·조절한 그림 형태로 나타내고 있으며, 이해 결과의 표시는 해석 결과의 그림 형태와 개념 도식의 원을 동화·조절한 그림 형태를 나타내고 있다. 이 모형에서 원하는 정보가 그래프에 제시된 정보만으로 얻을 수 있는 경우에는 그래프 해석 과정만으로도 답을 얻을 수 있다. 그러나 그래프에 제시된 정보와 다른 개념을 필요로 하는 경우에는 이와 관련된 개념 도식을 이용하여 이해 과정을 거치게 된다.

3. 선 그래프 해석과정

선 그래프의 이해는 그래프 해석의 결과가 이미 존재하는 개념 도식에 동화될 때 일어난다. 그리고 그래프 해석 과정은 그래프의 시각적 정보가 의미 있게 될 때까지 반복적으로 일어난다. 이것은 선 그래프가 시각적이면서 주상적 개념을 포함하는 특성을 가지고 있기 때문이다. 이와 같은 특성이 선 그래프를 그래프 해석 과정과 이해 과정으로 구분하게 한다.

선 그래프 해석 과정에서는 첫째, 제시된 선 그래프의 시각 정보를 해석하는 것이 중요하다. 그래프의 시각정보에 관한 연구에서는 어떤 형태의 그래프가 어떤 특정의 정보를 전달하는데 유리한가를 제공해 주며, 선 그래프를 자료의 상정적 표상으로써 시각하는 것이 아니고 그림으로만 시각하는 학생들이 있다는 연구결과는 선 그래프 해석과의 상호작용이 원만하게 이루어지지 않기 때문이다. 그러므로 그래프에서 정보를 얻기 위하여 실제적으로 시각과정을 거치게 된다. 이 때 각 그래프(선·막대·원그래프, 통계지도 등)의 시각요소 우선 순위 (위치, 길이, 방향, 각, 면적, 채적, 곡선, 폭 너비 등의 순서임)에 따라 그래프의 이점을 설명할 수 있다. 물론, 눈의 망막에 생긴 상에 대한 시각이 의미가 있으려면, 경고자 하는 정보를 얻도록 하는 형태가 되어야만 한다. 즉, 시각상
이 그래프의 개념 정보에 포함된 수학적 요소를 상정화하는 데 적절한 형태가 될 때, 그래프를 쉽게 해석할 수 있다.

둘째, 선 그래프에서 얻은 시각 정보를 의미 있게 하는 데 필요한 그래프 도식을 이해하는 것이 중요하다. 도식은 전체적, 다면적인 물체나 사상을 확일적으로 표상할 수 있기 때문에 전체 경향의 분석과 개념주도적 처리 (conceptually driven processing)를 설명하는 데 도움이 된다. 그런데 도식은 과거에 감각을 통하여 지각되어 의식 속에 형성되고, 새로운 감각 경험이 추가되면서 계속 발전한다. 그리고 수학의 경험에 따라 그래프 도식의 구조가 다르게 형성된다. 따라서, 선 그래프 도식은 과거의 경험이나 학습을 통하여 얻은 정보를 바탕으로 기역체계에 형성된 것이며 과학 내용과는 대부분 독립적으로 신 그래프에 관한 수학개념을 포함한다.

셋째, 선 그래프에서 지각된 그래프 시각정보와 이미 형성되어있는 그래프 도식 사이의 동화·조절 작용을 통하여 그래프를 해석하게 됨을 이해하는 것이 중요하다. 여기서 동화는 외부로부터의 정보나 자극을 자신의 인지구조에 맞춰 소화시키는 과정을 의미하며, 조절은 외부의 요구에 응하여 자신의 인지 구조를 변형시키는 과정을 의미한다. 지각된 그래프 시각정보와 통합되거나 관련 없는 그래프 도식 사이에 동화·조절이 일어나면 그룹된 해석을 하게 되고, 그래프 시각정보와 관련된 그래프 도식이 거의 존재하지 않으면 그래프 시각정보를 그룹된 개념 정보와 바로 연결하여 그래프를 그림 모양대로 해석할 가능성이 크다.

4. 그래프와 함수

1) 함수의 역사와 정의

오늘날의 함수의 개념은 Leibniz(1646~1716)로부터 시작되었다고 할 수 있다. 그는 “변수 x값의 변화에 따라 다른 변수 y가 정해질 때, y는 x의 함수
다”라고 정의하였다. 처음 함수의 개념은 과학적 현상을 수학으로 나타내기 위한 시도로서 17세기에 출현하였으며, 계산 과정과 아주 밀접한 관련이 있었던 18세기에 접어들면서 변수의 개념이 기하학적 대상에 적용되었던 것에서 대수적인 함수 개념으로 대체되었다.

점차 시간이 지남에 따라 다루기 힘든 불분명한 변수의 개념에 대하여 많은 해석이 제시되었다. 즉, 미지수, 주어진 수, 변할 수 있는 수, 부정확한 수 등의 이름이 주어졌다. 그러나 그것들 중 어느 하나도 변화하는 과정을 설명하는 것하였다. 그래서 여러 학자들이 그래프적 표상을 이용하려는 연구를 시도하였으나 인정받지 못하였다. 궁극적인 해결 방법은 변수의 개념을 제거 하는 것이었고 정의에서 대수적이거나 그래프적 표현에 대한 언급을 십가 하는 것이었다.

그 결과 1837년 Dirichlet는 함수를 일대일 대응으로 정의하였다. 이것은 함수를 두 집합 사이의 대응 관계로 보는 견해로 집합을 실수체계로 특수화시킨 것이다. 현재 중등학교에 도입되고 있는 함수 개념은 Dirichlet의 정의를 이용한 것으로 “집합 X의 각 원소에 집합 Y의 원소가 1개씩 대응할 때 이 대응은 집합 X에서 집합 Y로의 함수라 하고, 이 함수를 f라 하면, 기호로 f : X → Y로 나타낸다”라고 정의하고 있다.②)

2) 함수의 그래프적 표상

함수에 대한 표상들에서 그래프, 표, 공식 등이 많이 이용되는데, 이러한 표상들 사이에는 한 표상에서 다른 것으로 변역이 가능하다. 즉 표를 그래프로, 그리고 그래프를 수식으로 전환할 수 있다는 것이다. C. Bukhard는 이러한 표상들 사이에 가능한 변역의 다양성을 그림 4와 같이 제시하였다.③)
여기서 번역은 표상에 대한 두 과정인 해석(interpretation)과 모델화(modeling)을 포함한다. C. Bukhard에 의하면, 해석은 그래프가 말하는 것을 듣는 것에 해당하며, 모델화는 그래프와 함께 이야기하는 방법과 같다. 즉, ‘대수식에서 그래프로의 번역이 모델화이고, ‘그래프에서 대수식’으로의 번역이 해석이다. 그러나 학생들은 그래프를 단지 부분적인 정보를 추출할 수 있는 영상으로만 여기기 때문에 그래프를 이해하는데 많은 어려움을 느끼게 된다[28].

이러한 그래프적 표상의 어려움에 대하여 T. Eisenberg는 학생들은 책과 강의에서 정보를 연속적으로 얻는데 비해 그래프 속의 정보는 비연속적이기 때문이라고 하였다[29]. 또한, J. Schwartz와 M. Yerushamy는 많은 학생들이 함수를 그래프적으로 사고하기보다는 기호적으로 생각하기를 더 좋아하며, 그래프의 시각 정보를 이해하는데 많은 어려움이 있다는 것을 지적하였다[30].

3) 중학교 수학의 교육과정 분석

중학교의 선 그래프에 관한 수학 교육과정을 분석하는 것은, 험과 운동 관련 선 그래프 해석과 이해를 위해서는 학생들이 수학에 관한 선 그래프를 이해하는 것이 무엇보다도 중요하기 때문이다. 제 6차 중학교 수학 교육과정의 선 그래프에 관한 내용을 학년별로 제시하면 <표 1>, <표 2>, <표 3>과 같다.

선 그래프에 관한 것은 1학년에서 함수의 대략적인 의미와 좌표에 대하여
학습하고 좌표축 그리고 변수에 대한 개념을 학습하며, 2학년에서는 일차함수의 그래프와 기울기, x 절편, y 절편 등에 대해서 그리고 3학년에서는 이차함수의 그래프와 포물선, 최대값, 최소값 등을 학습한다.

<표 1> 중학교 1학년 수학의 함수 단원

1. 함수
(1) 두 집합의 원소 사이의 대응
(2) 함수의 뜻
(3) 함수값의 변화
(4) 순서쌍의 좌표
(5) 함수의 그래프
<용어와 기호> 대응, 함수, 정의역, 공역, 함수값, 차역, 변수, 좌표, 순서쌍, x 좌표, y 좌표, 원점, 좌표축, x축, y 축, 좌표평면, 세 1, 2, 3, 4 사분면, 함수의 그래프, \(f : X \rightarrow Y, y=f(x) \)

<표 2> 중학교 2학년 수학의 함수 단원

1. 함수
(1) 일차함수와 그 그래프
(2) 일차함수의 활용
<용어와 기호> 일차함수, 기울기, x 절편, y 절편, 평행이등

중학교에서는 초등학교 과정에서의 비형식적인 함수 개념을 형식적 개념으로 전환하는 것이 중요하다. 이런 과정을 거치면, 다양하고 비형식적인 함수 모델의 제시를 통하여 단지 함수의 공식을 잊기하고, 식을 구하고, 그래프를 그리는 식의 기계적인 학습에서 벗어날 수 있다\(^{31}\).

- 16 -
5. 발견학습 수업모형

발견학습 (수업)모형은 학습자에게 가르치야 할 내용을 최종적인 형태로 제공하는 것이 아니라, 그 최종 형태를 학습자 스스로 조직하도록 요구되는 상황에서 일어나는 수업으로 과학의 개념이나 원리를 발견 또는 재발견하는 과정(탐구과정)을 학습자에게 체험시킴으로써, 과학의 성과와 탐구의 과정 및 기법을 통일적으로 파악시키려는 학습법이다.

발견학습 (수업)모형은 귀납적 방법으로 개념을 형성하는데 그 근거를 두고 있기 때문에 구체적인 사실간에 존재하는 규칙성을 찾아서 기술하도록 하는 것이다. 귀납적인 사고는 전조작기를 벗어나서 전형적인 구체적 조작기에 있는 학생들이 할 수 있는 활동이라고 볼 수 있으므로 발견학습 모형은 초등학교 중학년 이상의 학생들에게 적합한 모형이라고 할 수 있다.

Bruner는 발견학습에 의해서 학생들의 지적인 가능성을 증가시킬 수 있고 내적인 보상과 문제해결의 시도를 할 수 있다고 했으며, 비록 학습시간은 많이 걸리나 지식의 파장과 전이력은 높다고 지적하였다. 발견학습 (수업)모형의 단계는 <그림 5>와 같이 다섯 단계로 나눌 수 있다.
<그림 5> 발견 학습 모형의 단계

1) 제 1 단계: 자료제시 - 관찰
(자료 분배, 자유로운 조작활동, 자유로운 조립활동, 자료 관찰, 질문 유도, 관찰 결과 발표)

자료를 제시하는 것은 다음과 같은 역할을 한다. 첫째로 학생들에게 현실의 한 부분을 제공해 준다. 학생들과 친숙한 실험들자를 사용함으로써, 교사는 실제 세계의 한 조그만 부분을 교실로 들여올 수 있다. 실험을 사용하는 것은 교실에서 하는 과학활동을 실제 세계와 관련시켜 준다. 결국, 교실에서 얻은 지식과 기능을 현실 상황에 충분히 적용할 수 있게 된다.
자료제시의 또 다른 역할은 학생들이 실제적이며 구체적인 실례들을 관찰함으로써, 그들에게 탐구기능을 발달시킬 수 있는 실습의 기회를 제공한다는 것이다. 학생들은 보다 훌륭한 관찰자, 추리자가 될 뿐만 아니라 과학의 진정에서 이들 기능의 역할을 알게 된다34).
관찰을 하게 하는데 있어서 교사는 어떤 관찰이든 모든 관찰에 대해 수용적 태도이어야 하며, 그 모두를 똑같은 비중으로 존중해야 한다. 이 과정은 과학의 과정과 과학자의 활동에 보다 가까우므로 권장되는 것이다. 과학자들이 하나의 과정을 탐구하기 시작할 때는, 어느 관찰이 중요하고 어느 관찰이 중요하지 않은지 확실하지 않다.
교사는 학생들이 관찰한 모든 것을 받아들임으로써, 과학은 모든 해답이 미
리 결정되어 있는 순조로운 활동이라고 보다는, 종종 시행착오적이며 복잡한 일이라는 것을 학생들에게 전달할 수가 있다. 즉 모든 학생이 참여할 수 있는 활동으로 수업을 시작해야 학생들은 참여할 욕기를 갖게 된다. 모든 관찰을 다 수용하는 것은 모든 학생들이 열심히 참여하게 될 기회를 제공한다.

관찰의 정확성을 위해서 교사가 도울 수 있는 일에는 가능하면 학생 모두에게 각자의 자료를 제공해 주는 것이다. 이것이 불가능할 때는 시범심사용을 여러 번 반복할 수도 있다. 이것은 학생들에게 관찰할 많은 기회를 제공해 주게 된다. 교사가 도울 수 있는 또 다른 방법은 철판에 간단한 그림을 그리는 것이다. 이로써 학급의 모든 학생이 일어나는 현상을 명확히 볼 수 있고, 교사는 요점을 명확하게 할 수 있으며, 자료의 곁 필요한 요점을 강조할 수 있게 된다.

결론적으로 제 1단계에서 자료제시 관찰 단계의 목적은 여기에 제시된 자료는 학생의 주의 환경과 자연의 일부로서 자료를 제시하면 학생들로 하여금 쉽게 관심을 유도할 수 있으며 개념을 이끌어낼 뿐만 아니라 과정기술도 향상시킬 수 있기 때문이다. 이 단계에서 유의점은 학생이 뜻있는 발표를 하든, 그렇지 않던 간에 교사는 내용 자체에 개의치 말고 모두를 수용하는 태도를 지녀야 한다.

2) 제 2 단계 : 보충 자료제시 - 관찰
(보충 자료 제시, 자유로운 조작활동, 개념 파악 유도, 앞의 자료와 비교 관찰, 질문 유도, 관찰 결과 발표)

학생들이 추상적인 개념을 형성하고 이해하는 것을 도우려면, 교사의 둘째 단계로 진행하여 보충 자료를 제시해 준다. 이 활동은 학생들이 관찰을 하고 그들 나름대로 개념과 법칙을 형성할 기회를 추가로 더 제공해 준다. 또한 보충 자료는 학생들이 형성한 추상적 개념이 실제로 존재하는 규칙성에 근거한 것이며, 단지 공허한 언어에 불과하지 않다는 것을 보증해 준다.
보충 자료를 제시한 다음, 교사는 다시 학생들에게 관찰을 시켜야 한다. 이 때 교사는 추가 관찰과 처음 관찰 사이에 비슷한 점과 다른 점이 무엇인지 찾아낼 것을 요구하면서, 학생들이 자신들의 관찰 내용을 보다 잘 취사 선택해 볼 수 있도록 격려할 수 있다. 이 단계의 활동을 하는 동안 학생들이 해야 할 것은 단지 관찰만 하는 것이 아니고, 알아내고 있는 경향이나 개념에 직접 관련되는 관찰을 하는 것이다. 이 수업의 초점은 많은 관찰을 하는 것에서부터, 즉 모든 예로부터 유사점, 규칙성을 찾아내는 데에 이르기까지 중첩한다.

이 단계에서 교사는 먼저 했던 관찰과 새로운 관찰과의 유사성 즉, 같은 점이 무엇인가를 찾아내도록 유도해야 한다. 그래서 이 때에 직접적인 질문보다는 간접적인 질문을 통해서 학생들 스스로 입에서 유사점이 나오도록 유도해야 한다.

보충자료를 제시하는 기관은 발전학습 수업모형이 귀남적인 방법으로 개념을 형성하는데 근거를 두고 있기 때문이다. 귀남적인 방법이라 함은 여러 가지 사실에서 하나의 규칙성을 찾아내는데 있다. 그래서 규칙성이이라는 것이 하나의 일반화라고 한다면 일반화된 개념을 찾아내는데 그 근거를 두고 있다. 그러므로 보충 자료는 학생들로 하여금 더 많은 관찰을 하고 그 관찰을 통해서 유도되는 개념을 좀 더 확실하게 찾아내는데 목적이 있다.

3) 제 3단계 : 추리
(관찰 결과 발표, 질문유도, 규칙성 발견)

학생들이 많은 관찰을 할 기회를 가진 다음에 이들 관찰 결과로부터 어떤 개념을 발견할 수 있는지 학생에게 질문해야 한다. 본질적으로 교사는, 학생들로 하여금 법칙화하는 일반화 추리를 하게 해야 한다. 이들 추리는 자발적으로 될 수 있고, 부추겨져 될 수 있고, 혹은 먼저의 자료로 학생들의 주의를 다시 집중시켜야 할 경우도 있다. 여기서 교사의 질문 기술이 매우 중요하다.
학생들이 하나의 개념이나 일반화(범칙)를 형성하기 위해 여러 단편의 자료를 연결시킬 수 있을 때, 교사는 겪려하는 대도이면서 캐론을 태도를 유지해야 한다. 캐론은 태도는 수업의 주인잡을 학생에, 또 자료와 학생간의 상호작용에 둔다. 발전학습(수업)모형 활동은 학생과 교사간의 어림집작 개입으로 간주되어서는 안되며, 학생들이 환경의 한 조그만 부분에서 규칙성을 찾아내려는 적극적인 노력으로 간주되어야 한다.

추리 단계의 의의로는 판찰에 대한 설명이나 판찰에 의한 사고활동의 결과라고 볼 수 있다. 즉, 판찰에서 얻은 데이터를 수집해서 이들 간의 관계나 이유를 설명하는 단계라고 할 수 있다.

이 단계에서 유의점으로는 학생들이 발표하는 결과를 보아 가면서 보충 자료가 더 필요하다고 생각된다면 보충 자료를 더 제시해 주어서 추리활동을 더 풍부하게 꼽어 나갈 수 있다. 자료제시, 판찰, 추리단계가 별개의 단계가 아니라 서로 병행해서 진행해 나가야 한다.

4) 제4단계: 정리
(추리 단계의 개념 정리, 학생의 토론, 개념정리)

학생들의 개념이나 일반화(범칙)을 도출해 냄 다음에, 교사는 그들이 그 추상적 개념을 정확하게 말로 나타내도록 도와서 수업이 정리되도록 해야 한다. 이것은 학생들로 하여금 가까이 있는 자료뿐만 아니라, 아직 대해 보지 않은 다른 예에까지 확장시키 설명하는 말로 개념을 정리하거나, 법칙을 설명하게 함으로써 이루어질 수 있다.

추상적인 개념은 특수한 용어보다는 일반적인 말로 서술되어야 한다. 만약 그 말을 칠판에 쓰거나, OHP로 투영해 줄다면 학생들은 보고 기호화 할 수 있어 오래 기억하게 된다.

칠판에 추상적 개념을 쓸 때, 교사는 그 말이 완전하고 정확하며, 학생들에게 이해되게하는가를 확실히 하기 위하여, 학생들이 그것을 비판적으로 검토하게

- 21 -
금 걱정이야 한다. 교사는 또한 제공된 예들에서 개념의 정의에 포함된 특성의 확인함으로써 학생들이 그 개념 정의의 적합성을 검토하게끔 도와줄 수 있다.

추상적인 개념을 판서하는 것은 또한 강화의 역할을 한다. 즉, 모든 학생들이 동시에 어떤 개념이나 범칙에 도달하지 못할 것이라는 점이다. 만약 추상적인 개념을 판서하지 않는다면, 몇몇 학생들은 그들의 배운 것에 대해 불확실한 채로 있게 될 수도 있다. 발전학습 (수업)모형은 학생들로 하여금 그들 나름의 추상적인 개념을 형성하도록 고안된 것임을 주지해야 한다.

5) 제5단계 : 응용
(개념의 일반화, 개념을 환경에 적용, 앞 단계의 간단한 평가, 차시예고)

이 단계에서는 학습한 추상적 개념을 확장시키거나 응용하는 단계로, 있을 지도 모르는 어느 불확실한 점을 학생이 해결하도록 돕는다. 지금까지 학생들은 그들이 도출한 개념이나 법칙을 잘 알고 있어야만 하는데, 이것이 항상 그럴지는 못하다.

이 응용단계에서 교사는 가르친 정보물 학생이 얼마나 잘 이해했는지를 알 아볼 기회를 갖게 된다. 이 단계에서 교실에서 얻은 지식이 어떻게 실생활에 적용·관련되는가를 알게끔 도와준다.

6. 선형 연구의 고찰

이 절에서는 과학 개념을 거의 포함하지 않고 일상적인 용어로 서술된 그 래프를 작성하고 해석하는 학생의 능력과 논리적 사고력 및 하위 논리의 관 청성에 관한 선형 연구를 고찰하였다.
1) 학생의 그래프 능력에 관한 선행 연구

D. L. McKenzie 등은 7-12학년 651명을 대상으로 선 그래프를 작성하고 해석하는 능력에 관한 연구에서 평균 정답률은 50% 정도이며, 11학년으로 외에 7학년에서 12학년으로 올라갈수록 점수가 점차적으로 증가한다는 결과를 제시하였다. 또한, 학생들은 하위요소인 적절한 하나의 선 그리기(26%), 축에 눈금 메기기(32%), 축에 변수 지정하기(40%) 등을 어려워한다고 하였다.

H. M. Brasell과 M. B. Rowe는 운동에 관련된 그래프 작성능력을 조사한 연구에서 과학적인 언어로 표현하는 것보다는 일상적인 언어로 서술된 문항과 서술서에서 그래프적으로 표시하는 문제의 정답률이 더 높다는 결과를 제시하였다. 또한, 학생들은 종속 변수와 독립 변수의 축을 반대로 나타내거나 적합하지 못한 눈금 표시등의 오류가 있으며, 두 변인 사이의 관계성을 인식하거나 그래프에 나타낸 점들의 경향성을 적절한 하나의 선으로 나타내는데 큰 어려움이 있다고 하였다.

김태선은 고등학생 943명을 대상으로 과학 관련 그래프 해석 능력을 측정한 연구에서 단순한 수학적 알고리즘을 필요로 하는 ‘좌표값 찾아보기’와 ‘좌표값 내림’ 등은 우수하였으나, 좀 더 깊은 추상적 사고를 필요로 하는 ‘두 변인 연관하기’와 ‘자료 변환’ 등의 기능은 매우 부족하다는 것을 지적하였다.

2) 그래프 능력을 발달적 본성으로 고찰한 선행 연구

그래프 능력을 발달적 본성으로 고찰한 선행 연구를 보면, 논리적 사고 구조의 발달과 그래프의 구성 및 해석을 관련지어 시도한 연구가 있다.

M. J. Wavering은 7학년 93명을 대상으로 실시한 그래프 작성에 관한 연구에서 순차 논리와 비례 논리가 변수의 관계를 이해하는데 필요하며, 그래프에 관련된 단순 논리로부터 복잡한 논리로의 전이는 그래프 작성을 지도하는데 중요한 요소로서 그래프를 이해하는데 반드시 고려되어야 한다는 것을 강조하였다. 그리고 학생들이 축에 눈금을 메기지 못하는 것은 논리적 사고력이 발달하지 못하였기 때문이라고 하였다.
D. D. Adams는 7-11학년 학생 350명을 대상으로 그래프 작성 및 해석 능력에 대한 연구에서 높은 인지 발달 단계의 학생들이 낮은 인지 발달 단계의 학생들보다 그래프 구성과 해석에 더 뛰어남을 알아내었다.

D. L. McKenzie와 M. J. Padilla는 과도기적 또는 형식적으로 분류된 8학년 학생들이 구체적 조작으로 분류된 학생들보다 그래프 성취 결과가 더 높은 경향이 있다고 하였다. 그들의 연구에 의하면 대부분의 8학년 학생들이 '구체적' 조작기이며, 그래프의 추상적인 성향에 어려움을 지니고 있다는 것이 다.

J. Bohrens는 9학년 학생 13명을 대상으로 논리적 사고력 검사와 그래프 능력 검사를 실시하고, 그래프 문제에 대한 추론 과정을 알아보기 위해 면담을 실시하였다. 연구 결과, 논리적 사고와 그래프 능력 사이에 낮은 상관관계 (.337)가 있으며, 학생들은 그래프가 두 변인간의 관계에 대한 수학적인 표상이라는 것과 높금이 그려진 축을 비율로 인식하지 못한다고 지적하였다.

C. A. Berg & D. G. Phillips는 7-11학년 72명을 대상으로 논리적 사고력과 그래프를 작성하고 해석하는 능력 사이의 관련성을 조사한 연구에서 공간적 사고나 비례적 추론 같은 논리적 사고 능력이 매우 부족한 학생이 많으며, 이러한 학생들이 그래프를 작성하고 해석하고자 할 때 심각한 어려움이 있다고 하였다.

W. M. Roth와 L. C. McGinn에 의하면, 불행하게도 많은 학생들이 그래프를 해석하거나 구성하는 고토의 기능을 사용할 수 있는 정신적 도구를 지니고 있지 않다고 한다. 논리적 사고 능력과 그래프를 구성하고 해석하는 능력 사이의 연결을 조사하는 공간적 사고나 비례적 추론 같은 논리적 사고 능력이 결손된 학생들이 많으며, 이러한 학생들이 그래프를 해석하거나 구성하고자 시도할 때 심각한 어려움을 지니고 있는 것으로 나타났다.

배려진 중학생 481명을 대상으로 그래프 능력과 논리적 사고력과 과학 탐구 능력의 관계를 비교한 연구에서 점적기(좌표값) 찾기, 변수의 대응값 찾기, 내삼과 외삼, 변인간 관계 진술 등은 우수하고, 축에 높금 배기기, 적절한
하나의 선 그리기와 같은 작성 능력이 매우 부족함을 지적하였다. 특히, 측에 눈금을 매길 때, 변인의 측을 바꾸어 표시하거나 주어진 자료를 측에 바로 눈금으로 표시하는 오류를 나타냈으며, 자료의 정확성을 알기 위해 적절한 하나의 선을 사용하는 기능에서 점과 점을 단순하게 연결하는 학생들이 많다고 하였다.12
III. 연구방법 및 절차

1. 연구대상 및 시기

본 연구의 대상으로 제주의 읍 지역에 소재하고 있는 중학교의 1학년 2개반을 실험반 23명(남 11명, 여 12명)과 통제반 24명(남 12명, 여 12명)으로 구분하여 수업처리를 하였다. 이는 연구 대상학교가 정상적인 교육과정 운영을 하여야 함으로 본 연구만을 위해 기준학급을 제조할 수 없었기 때문이다.

본 연구는 교육과정이 정상적으로 진행되는 상태에서 있는 그대로의 학급을 연구목적에 맞게 실험반과 통제반으로 구분하여 수업처리를 하였다. 수업처리를 하기 전인 1999년 10월 12일 사전 검사를 실시하고, 수업처리 후인 1999년 12월 24일 사후 검사를 실시하였다. 사전검사 결과를 통계 처리한 본 결과 두 집단은 동질 집단임을 알 수 있었다.

2. 연구의 범위 및 절차

본 연구에서는 먼저 중학교 1학년의 과학학습에서의 그래프 능력을 파악하고, 선형 연구12)에 사용한 그래프 능력 검사지를 기초로 하여 읍 지역 학생들의 수준에 맞게 연구자가 재구성하여 사용하였다(부록 1. 참조).

사전 검사에서 학생들의 그래프 관련 능력에 대해 알아본 결과를 기초로 학생들이 보다 쉽게 과학 학습에서 그래프 능력의 향상을 도와주는 발견학습 수업 전략을 수립하여 학습지도안을 구현한 다음, 통제반에는 전통적 학습지도안(부록 3. 참조)을, 실험반에는 발견학습에 의한 학습지도안을 적용하여 연구자가 수업처리를 하였다. 통제반과 실험반에서 실험한 연구자는 교육경력 4년의 여자 교사이다. 전통적인 수업은 교과서에 제시된 내용과 방법대로
로 예년에 하던 방식대로의 수업을 말한다. 수업은 1999년 10월 중순에서 12월말까지 7차시를 실시하였다.

통제반과 실험반에서 적용한 수업 내용 및 시간은 같고, 다만 교수 방법 및 수업 전략에만 차이를 두었다. 수립한 수업 전략의 효과를 검증하기 위하여 그래프 능력검사 점수를 수업 전·후에 통제반과 실험반에 각각 투여하여 그 그래프 능력의 변화 정도를 비교 분석하였다. 사전 검사와 사후 검사는 개별에 의한 신뢰도를 높이기 위해 동일한 문항으로 구성된 것을 사용하였으며, 사전 검사는 본 연구의 수업모형이 투입되기 3일 전에, 사후 검사는 수업이 모두 끝난 3일 후에 투입하였다. 또한, 과학 탐구능력 검사와 과학 관련 태도 검사를 수업처치 전·후에 실시하고 이에 관한 비교 분석을 통하여 발전학습 수업 전략의 탐구능력 향상과 과학 관련태도 형성에 미치는 영향도 알 아보았다. 전체적인 연구 절차는 <그림 6>과 같다.

3. 발견학습 수업 프로그램 개발 및 적용

발견학습은 상호 관련된 5단계, 즉 자료제시 및 관찰, 보충자료 제시 및 관찰, 추리, 경리, 용용 단계로 이루어진다. 자료제시 및 관찰 단계는 자료 제시를 통해 학생들의 관심을 유도할 수 있으며 개념을 이해할 수도 있고, 과정 기술도 향상시킬 수 있는 단계이므로 가능한 모든 학생이 개별적으로 그래프를 작성해 보도록 구성하였다.

보충자료 제시 및 관찰 단계에서는 추상적인 개념을 형성하고 이해하는 것을 돕기 위한 단계이므로 관찰을 통하여 그들 나름대로 개념과 법칙을 형성할 기회를 제공하여 추리 단계에서는 질문을 통하여 하나의 개념이나 일반화(법칙)를 형성하도록 구성하였다. 정리 단계에서는 추리 단계에 학생들이 이 끌어 냈던 개념이나 일반화(법칙)를 정확한 말로 나타내어 그들 나름대로 추상적인 개념을 형성하도록 하였다. 용용 단계에서는 교사가 가르친 정보를 학
생이 얼마나 잘 이해했는지를 알아 볼 기회를 갖게 되므로 실제 문제를 통하여 확인하도록 구성하였다.

과학 학습에서 그래프와 관련된 부분에 관한 구체적인 수업 프로그램은 단원의 지도계획을 <부록 2>와 같이 수립하였고, <표 4>와 같이 중학교 1학년 '알과 운동' 단원에 대한 수업전략을 수립하고, <표 5>에 예시된 것과 같은 발견학습 수업전략에 의한 학습지도안을 개발하여 실험반에 적용하였다.

 연구의 설계
 선행 연구 조사 및 교과서 내용 분석
 적용 차시별 계획 수립
 평가 도구의 검토

 사전 검사 실시
 그래프 관련 내용 수집 및 자료 분석
 자료 분석에 의한 수업 전략 고안
 수업 전략에 의한 학습지도안 개발

 고안한 수업 전략과 전통적 수업에 따라 통계학과 실험반 각각 수업처리

 사후검사 실시

 검사 결과 분석 및 통계 처리
 수업 모형 적용 결과 정리

 <그림 6> 연구 절차의 순서도

- 28 -
<table>
<thead>
<tr>
<th>학습 주제</th>
<th>차시</th>
<th>자료제시 및 관찰</th>
<th>보충자료제시 및 관찰</th>
<th>추리</th>
<th>정리</th>
<th>응용</th>
</tr>
</thead>
<tbody>
<tr>
<td>힘의 크기</td>
<td>5-6</td>
<td>추의 개수를 달려서 용수철을 늘려보면, 원이를 측정하여 그 관계를 그래프로 나타내어 보자.</td>
<td>학생들이 그린 그래프를 제시하여 잘못된 것을 고려해 유리를 쓴다.</td>
<td>실험결과를 그래프로 어떻게 작정해야 하나?</td>
<td>측에 변수를 어떻게 정하고 논급 간격은 얼마로 나타내나?</td>
<td>그 래프 위에 적힌 점들을 보고 변수 간 관계를 어떻게 알 수 있나?</td>
</tr>
<tr>
<td>무게와 질량</td>
<td>8-9</td>
<td>추의 개수를 달려서 용수철을 울로 추의 무게를 측정하여 그 관계를 그래프로 나타내어 보자.</td>
<td>조별 테이터를 가지고 모든 실험에 그러한 그래프를 보고 잘못된 점과 잘못된 점을 한다.</td>
<td>같은 장소에 서 질량과 무게는 어떤 관계가 있나?</td>
<td>추의 질량과 무게는 어떤 관계가 있나?</td>
<td>그 래프에 서 점들이 하나의 선으로 그리는 이유는?</td>
</tr>
</tbody>
</table>
표 5
본 연구에서 실험반에 투입한 발견학습 수업전략에 의한 학습지도안

<table>
<thead>
<tr>
<th>단원</th>
<th>IV. 협력 운동</th>
<th>차시</th>
<th>5-6차시/27</th>
<th>졸수</th>
<th>233-236</th>
</tr>
</thead>
<tbody>
<tr>
<td>주제</td>
<td>협력 크기</td>
<td>일시</td>
<td>1999년 10월 18일</td>
<td>월요일 교시</td>
<td></td>
</tr>
<tr>
<td>학습문제</td>
<td>• 물체에 작용하는 협력 크기는 우선적으로 길이 변화로 알 수 있다.</td>
<td>학습 자료</td>
<td>용수철, 점등이 같은 수 5개, 스탠드, 자, TP 필름, 그레프용지</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 실험 결과를 그래프로 그리고 해석하는 방법을 안한다.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>단계</td>
<td>학습 과정</td>
<td>교수 - 학습 과정</td>
<td>시간</td>
<td>지도상의 유의점</td>
<td></td>
</tr>
<tr>
<td>탐색 및 문제 파악</td>
<td>• 물체에 협력 작용하면 어떻게 되나?</td>
<td>교사 활동</td>
<td>학생 활동</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 물체에 작용하는 협력 크기가 다르다면 어떻게 알 수 있나?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 물체에 작용하는 협력 크기는 어떻게 측정하나?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>학습목표 제시</td>
<td>• 물체에 작용하는 협력 크기를 적용한 협력 크기를 알 수 있을까요?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>자료 제시 및 관찰</td>
<td>• 용수철이 늘어나는 정도를 이용해서 작용한 협력 크기를 알 수 있을까요?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>진정</td>
<td>• 학습문제를 확인한다.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>자료 제시 및 관찰</td>
<td>• 협력 크기를 측정하는데 주로 사용하는 것은?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 실험, 무피, 길이의 단위는 무엇인가?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 물체를 용수철에 매달면 늘어나는 데 이것은 무슨 협력 때문인가?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 주의 깊게 관찰하면서 용수철이 늘어난 길이를 측정하여 그 관계를 그래프로 나타내어 보자.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 실험 안내서를 참고로 하여 실험을 하도록 하고, 준비된 것 이외에 필요한 실험기구는 조별로 준비하게 한다.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 실험 준비물(용수철, 주, 자, 스탠드, TP필름 등)을 준비하고 실험에 들어간다.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 실험안내서를 보고 실험의 목표를 확인한다.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 30 -
<table>
<thead>
<tr>
<th>자료 제시</th>
<th>자료 제시</th>
<th>• 실험 과정에 그래프는 각 자가 TP 필름에 그려보도록 한다.</th>
<th>• 실험안내서를 참고로 하여 실험을 한다.</th>
</tr>
</thead>
<tbody>
<tr>
<td>및 관찰</td>
<td>및 관찰</td>
<td>• 조별로 돌면서 그래프를 어떻게 그리는지를 유심히 관찰한다.</td>
<td>• 실험 과정에 그래프는 각 자가 그린다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>보충 자료 제시</th>
<th>보충 자료 제시</th>
<th>• 학생들이 그린 그래프 몇 개를 클라 OHP로 다른 학생들에게 제시하여 잘 못 그린 것이 옳게 그린 것을 클라 이유를 보도록 한다.</th>
<th>• 제시된 그래프를 보고 옳게 그린 것과 틀리게 그린 것을 고르고, 이유를 쓴다.</th>
</tr>
</thead>
<tbody>
<tr>
<td>및 관찰</td>
<td>및 관찰</td>
<td>• 각 조에서 나온 데이터를 가지고 적절 모눈질판에 그래프를 그려본다.</td>
<td>• 한 조의 데이터를 가지고 선생님이 그래프를 그리고는 과정을 관찰한다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>축에 변수 지정하기, 점 찍기, 하나의 선으로 나타내기, 눈금 표시하기 등이 잘되고 안된 그래프를 고른다.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>결과</th>
<th>결과</th>
<th>• 추외 개수가 증가함에 따라 용수철이 늘어남은 걸리는 어떻게 되고 있나?</th>
<th>• 실험 데이터를 그래프로 나타내어 하나의 선으로 연결해보니가 아주 긴단하게 알 수 있었다.</th>
</tr>
</thead>
<tbody>
<tr>
<td>추리</td>
<td>추리</td>
<td>• 위와 같은 사실을 어떻게 알 수 있나?</td>
<td>• 그래프로 나타내야 하는 이유를 토의한다.</td>
</tr>
<tr>
<td>및 추리</td>
<td>및 추리</td>
<td>• 실험결과를 그래프로 어떻게 작성해야 하는지를 위해서 적은 내용을 토대로 서로의 의견을 토의해 실험 데이터를 그래프로 어떻게 그리야 하는지를 토의하게 한다.</td>
<td>• 용수철도 추외 개수에 비교해서 늘어난다.</td>
</tr>
</tbody>
</table>

- 31 -
<table>
<thead>
<tr>
<th>개념</th>
<th>정리</th>
<th>설명</th>
<th>펼기</th>
<th>치사</th>
<th>응용</th>
<th>응용별전</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• 과학 실험이나 난 데이터 그래프로 나타내는 이유와 그래프의 중요성과 설명성을 설명한다.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 이 실험이나 난 데이터는 무엇인지 질문한다.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 독립변수(추의 개수)와 종속변수(높이와 길이)를 어느 축에 설정할까?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 데이터를 가장 잘 나타낼 수 있도록 축에 눈금을 나타내는 방법은?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 그래프 위에 적절한 점들을 왜 하나의 선으로 표시하는가?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 수학적에 추의 개수를 증가시키면 수학적 수는 늘어나는가?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 수학적에 추의 개수를 증가시키면 수학적 수는 늘어나는가?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 32 -
4. 검사도구

1) 그래프 능력 검사 도구

그래프 능력을 측정하기 위한 검사 도구로는 7-12학년 학생의 그래프 능력을 측정하기 위해 D. L. Mckenzie와 M. J. Padilla가 개발한 TOGS\(^{35}\)(The Test of Graphing Skills in Science)를 우리 나라 중·고등학교 학생들의 수준에 맞게 변형한 것이\(^{12}\) (내적 신뢰도: Cronbach’s \(\alpha\) 0.86)을 참고하였다. 원래 TOGS는 총 26문항의 것을 중학교 1학년 수준에 맞게 총 10문항으로 축소하고 각 코인의 선단형 문항에 그 유용성을 하도록 재구성하여 사용하였다 (부록 1. 참조).

2) 과학 탐구 능력 검사 도구

본 연구에 사용된 과학 탐구 능력 검사 도구는 J. C. Bruns 등이 7-12학년의 과학 탐구 능력을 측정하기 위한 선단형 평가지인 TIPS\(^{2}\)\(^{12}\)(Test of Integrated Process Skills)로 소요시간은 25~45분이다. TIPS II는 가설 설정, 변인 확인, 조작적 정의, 실험설계, 그래프화/차료 해석 등의 탐구 요소로 구성된 총 36문항으로 이루어져 있다. 이 검사 도구의 신뢰도 (Cronbach’s \(\alpha\)) 는 0.86, 평균 난이도와 평균 변수로는 각각 0.53, 0.35이다.

3) 과학 관련 태도 검사 도구

각 범주마다 10문항씩 총 40문항으로 하였으며 신뢰성의 척도 Cronbach's α 계수는 .892이다.

5. 자료처리 및 분석

1) 그래프 능력 검사 결과 분석

자관식 응답은 각 문항별로 응답 반도를 SPSS 통계 프로그램에 의해 실험 반과 통제반의 수업처리 전·후의 그래프 능력의 형성 정도를 동일집단 내에서 두 집단간 비교하였다. 그리고 주관식 이유 진술형 응답은 유형별로 분류한 다음, 주관식 이유 진술 유형별 반도수를 조사하여 실험반과 통제반의 수업처리 전과 후의 그래프 능력 형성 유형을 비교 분석하였다.

2) 탐구능력 검사 결과 분석

탐구능력 검사 분향치의 채점 결과는 총 36문항을 각 1점씩으로 하여 SPSS 통계 프로그램으로 통제반과 실험반의 수업처리 전·후의 관계에 대하여 t-검증을 하였다.

3) 과학 관련 태도 검사 결과 분석

과학 관련 태도 검사의 각 문항은 5단계로 점수화하여 리커르트 척도 (Likert scale)에 의해 공정적 진술인 '매우 그렇다'는 5점, '그렇다'는 4점, '보통이다'는 3점, '아니다'는 2점, '전혀 아니다'는 1점으로 채점한 후, SPSS 통계 프로그램에 의해 4개의 범주별로 통제반과 실험반의 수업처리 전과 후의 과학 관련 태도 변화를 비교 분석하였다.
IV. 연구 결과 및 논의

발견학습 모형에 의한 과학수업 프로그램이 중학생들의 그래프 작성과 해석에 관한 학습지도에 효과적인가를 알아보기 위해 수업처치 전·후에 실시한 그래프 능력 검사와 과학 탐구능력 검사 그리고 과학 관련 태도 검사에 대해 고찰해 보겠다.

1. 그래프 능력 검사 결과 분석

그래프 능력 검사에 대한 학생들의 응답을 먼저 객관식 부분과 주관식 이유 진술 부분으로 나누어, 객관식 부분은 문항별로 수업처치 전·후의 응답 유형과 정답률로 비교하고, 주관식 부분은 각 문항에 따라 이유 진술 내용을 동일한 개념 유형별로 분류하여 수업처치에 따른 개념 변화의 정도를 비교·분석하였다. 그리고 학생 개인의 문항별 개념유형 변화를 수업처치 전과 후에 조사하여 비교해 보겠다.

그래프 능력을 알아보기 위한 그래프 능력 검사의 문항별 그래프 요소를 보면 <표 6>과 같다.

<표 6> 그래프 능력 검사의 하위요소와 문항 번호

<table>
<thead>
<tr>
<th>그래프 능력</th>
<th>하위요소</th>
<th>문항 번호</th>
</tr>
</thead>
<tbody>
<tr>
<td>작 성</td>
<td>축에 눈금 메기기</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>축에 변수 지정하기</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>좌표값 찾기/점짜기</td>
<td>3, 4</td>
</tr>
<tr>
<td></td>
<td>적절한 하나의 선 그리기</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>자료 변환하기</td>
<td>6</td>
</tr>
<tr>
<td>해 석</td>
<td>변수의 대응값 찾기</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>내용과 외상</td>
<td>8, 9</td>
</tr>
<tr>
<td></td>
<td>변인간 관계 진술</td>
<td>10</td>
</tr>
</tbody>
</table>
1) 객관식 응답의 분석

수업 처치 전. 후 실험반과 통제반의 객관식 응답 유형과 정답률의 변화를
문항별로 나타내면 <표 7> 및 <표 8>와 같다.

<표 7> 문항별 객관식 응답 유형

<table>
<thead>
<tr>
<th>구분</th>
<th>수업 전</th>
<th>수업 후</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>빈도수(백분율)</td>
<td>빈도수(백분율)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>실험 집단</td>
<td>1</td>
<td>(4.3)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(17.4)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>(47.8)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>(0)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>(30.4)</td>
</tr>
<tr>
<td>통제 집단</td>
<td>1</td>
<td>(25.0)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(25.0)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>(20.8)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>(8.3)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>(20.8)</td>
</tr>
<tr>
<td>실험 집단</td>
<td>1</td>
<td>(8.7)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(25.0)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>(43.5)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>(21.7)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>(0)</td>
</tr>
<tr>
<td>통제 집단</td>
<td>1</td>
<td>(12.5)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(0)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>(58.3)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>(25.0)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>(4.2)</td>
</tr>
<tr>
<td>실험 집단</td>
<td>1</td>
<td>(34.8)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(17.4)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>(0)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>(0)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>(47.8)</td>
</tr>
<tr>
<td>통제 집단</td>
<td>1</td>
<td>(4.2)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(8.3)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>(4.2)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>(0)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>(83.3)</td>
</tr>
<tr>
<td>구분</td>
<td>수렴 전</td>
<td>수렴 후</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>빈도수(백분율)</td>
<td>빈도수(백분율)</td>
</tr>
<tr>
<td>문항 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>실험 집단</td>
<td>①</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>②</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>③</td>
<td>20 (87.0)</td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>2 (8.7)</td>
</tr>
<tr>
<td></td>
<td>⑤</td>
<td>0 (0)</td>
</tr>
<tr>
<td>무응답</td>
<td>1 (4.3)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>통제 집단</td>
<td>①</td>
<td>1 (4.2)</td>
</tr>
<tr>
<td></td>
<td>②</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>③</td>
<td>23 (95.8)</td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>⑤</td>
<td>0 (0)</td>
</tr>
<tr>
<td>문항 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>실험 집단</td>
<td>①</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>②</td>
<td>5 (21.7)</td>
</tr>
<tr>
<td></td>
<td>③</td>
<td>9 (39.1)</td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>8 (34.8)</td>
</tr>
<tr>
<td></td>
<td>⑤</td>
<td>0 (0)</td>
</tr>
<tr>
<td>무응답</td>
<td>1 (4.3)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>통제 집단</td>
<td>①</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>②</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>③</td>
<td>6 (25.0)</td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>18 (75.0)</td>
</tr>
<tr>
<td></td>
<td>⑤</td>
<td>0 (0)</td>
</tr>
<tr>
<td>문항 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>실험 집단</td>
<td>①</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>②</td>
<td>16 (69.6)</td>
</tr>
<tr>
<td></td>
<td>③</td>
<td>6 (26.1)</td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>1 (4.3)</td>
</tr>
<tr>
<td></td>
<td>⑤</td>
<td>0 (0)</td>
</tr>
<tr>
<td>무응답</td>
<td></td>
<td></td>
</tr>
<tr>
<td>통제 집단</td>
<td>①</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>②</td>
<td>20 (83.3)</td>
</tr>
<tr>
<td></td>
<td>③</td>
<td>4 (16.7)</td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>⑤</td>
<td>0 (0)</td>
</tr>
<tr>
<td>구분</td>
<td></td>
<td>수업 전</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>빈도수(백분율)</td>
</tr>
<tr>
<td>실험</td>
<td>①</td>
<td>18 (78.3)</td>
</tr>
<tr>
<td>집단</td>
<td>②</td>
<td>2 (8.7)</td>
</tr>
<tr>
<td></td>
<td>③</td>
<td>2 (8.7)</td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>1 (4.3)</td>
</tr>
<tr>
<td></td>
<td>⑤</td>
<td>0 (0)</td>
</tr>
<tr>
<td>문항 7</td>
<td></td>
<td>15 (62.5)</td>
</tr>
<tr>
<td>통제</td>
<td>②</td>
<td>6 (25.0)</td>
</tr>
<tr>
<td>집단</td>
<td>③</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>⑤</td>
<td>3 (12.5)</td>
</tr>
<tr>
<td>실험</td>
<td>①</td>
<td>0 (0)</td>
</tr>
<tr>
<td>집단</td>
<td>②</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>③</td>
<td>3 (13.0)</td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>13 (56.5)</td>
</tr>
<tr>
<td></td>
<td>⑤</td>
<td>7 (30.4)</td>
</tr>
<tr>
<td>문항 8</td>
<td></td>
<td>0 (0)</td>
</tr>
<tr>
<td>통제</td>
<td>②</td>
<td>0 (0)</td>
</tr>
<tr>
<td>집단</td>
<td>③</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>6 (25.0)</td>
</tr>
<tr>
<td></td>
<td>⑤</td>
<td>18 (75.0)</td>
</tr>
<tr>
<td>실험</td>
<td>①</td>
<td>0 (0)</td>
</tr>
<tr>
<td>집단</td>
<td>②</td>
<td>2 (8.7)</td>
</tr>
<tr>
<td></td>
<td>③</td>
<td>16 (69.6)</td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>3 (13.0)</td>
</tr>
<tr>
<td></td>
<td>⑤</td>
<td>2 (8.7)</td>
</tr>
<tr>
<td>문항 9</td>
<td></td>
<td>0 (0)</td>
</tr>
<tr>
<td>통제</td>
<td>②</td>
<td>10 (45.7)</td>
</tr>
<tr>
<td>집단</td>
<td>③</td>
<td>10 (45.7)</td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>3 (12.5)</td>
</tr>
</tbody>
</table>
그래프를 작성할 때, 가장 기본이 되는 축과 관련된 축에 눈금 메기기와 축에 변수 지정하기의 정답률은 수업 전지 전 실험반이나 통제반이 모두 30%이 하로 낮게 나타나 학생들이 어려워하는 내용임을 알 수 있다. 그리고 정답기, 좌표값 찾기, 변수의 대응값 찾기, 자료 변환하기의 항목들은 <표 8>과 같이 정답률이 60% 이상으로 나타나 쉽게 습득할 수 있는 능력을 알 수 있다.

축에 눈금을 메기기를 묘는 문항 1의 수업 전 사전검사 정답률은 통계반이 20.8%, 실험반이 30.4%로 매우 낮은 편이나, 축에 눈금 메기기는 아직 학생들이 어려워하고 있는 것으로 보이고, 사후검사 정답률은 통계반이 41.7%, 실험반이 34.8%로 통계반의 증가폭이 20.9%로 실험반의 증가폭이 4.4%보다 높게 나타났다. 이는 전통적 수업이 단시간에 축에 눈금을 메기도록 하는 능력을 향상시키는데 더 효과적임을 알 수 있다. 그러나 수업 전·후의 변화는 통제반의 유의도 p(=0.617)>0.05, 실험반이 p(=0.401)>0.05로 두 집단 모두 통계적으로 무의미하다.

<표 8>에서 축에 변수를 정하도록 한 문항 2의 정답률을 보면, 수업 전 사전검사에서 실험반이 8.7%, 통제반의 정답률이 12.5%이다. 이는 오답을 한 학
생들의 이유진술 내용을 분석해 본 결과 가르축의 변수에 모의 절연의 단위를 주의깊게 보지 않았기 때문일 것이다. 그렇지만, 수업 후 사후검사의 정답률은 실험반이 21.7%, 통제반이 25.0%로 실험반의 정답률 증가율이 더 높게 나타났다. 그러나 통제반의 유의도 \(p(=0.077)=0.05\), 실험반이 \(p(=0.291)=0.05\)로 두 집단 모두 통계적으로 무의미한 변화를 보였다.

좌표값을 찾도록 하는 문항 3에 대해서는 <표 8>을 보는 바와 같이 수업 전 사전 검사의 정답률이 실험반이 47.8%, 통제반이 83.3%로 통제반이 훨씬 높게 나타났다. 그리고 수업처치 후 실험반은 54.2%로 수업처치 전보다 6.4%로 높아졌고, 통제반은 78.3%로 수업처치 전보다 5%로 줄어들어 발전학습 수업전략이 좌표값을 찾는데는 더 효과적임을 알 수 있다. 그리고 수업 전·후의 변화를 살펴보면 통제반이 유의도 \(p(=0.356)=0.05\)로 통계적으로 무의미하 고, 실험반이 \(p(=0.049)<0.05\)로 발전학습 수업전략이 그래프 능력 향상에 더 효과적이었음을 알 수 있다.

점찍기를 묻는 문항 4의 경우는 <표 8>을 보는 바와 같이 수업 전후 정답률이 통제반과 실험반이 85% 이상으로 모두 높게 나타나 학생들이 쉽게 습득할 수 있는 능력을 알 수 있다. 수업 후 통제반은 정답률이 사전검사에서와 같고, 실험반이 4.3%로 증가하였다. 이는 점찍기 문항의 사전 검사 정답률이 높은 것에 기인하는 것으로 한두 명만 제외하고는 모두가 그래프에서 좌표값을 갖고 점찍는 능력은 습득되었음을 알 수 있다. 그러나 수업 전·후의 변화는 통제반이 유의도 \(p(=0.368)=0.05\), 실험반이 \(p(=0.502)=0.05\)로 두 집단 모두 통계적으로 무의미하다.

적절한 하나의 선을 그리도록 한 문항 5의 경우는 <표 8>과 같이 수업 전 두 집단 모두 정답률이 25% 이하로 학생들이 매우 어려워하고 있으며, 수업처치 후의 정답률은 통제반이 58.3%, 실험반은 52.5%로 두 집단 모두 30% 이상 증가를 보이고 있다. 특히 통제반의 경우 주입식의 전통적인 수업이 적절한 하나의 선을 그리도록 하는데는 통계적으로 유의도 \(p(=0.000)<0.05\)로 의미있는 변화를 보임을 알 수 있다.
표로 나온 자료를 그래프로 변환하도록 하는 문항 6은 수업처리 전·후의 정답률을 비교해 보면 <표 7>을 보면 바와 같이 실험반은 1명이 늘고, 통제반은 1명이 감소를 보이고 있는데, 아직까지는 독립변수와 종속변수를 구분하는 어려움이 있다는 것을 알 수 있다. 그리고 수업처리 전·후의 변화도 두 집단 모두 통계적으로 의미가 없었다.

변수의 대응값을 찾도록 한 문항 7의 경우, 수업처리 전 정답률이 두 집단 모두 60% 이상으로 학생들이 잘하는 기능으로 보이고, <표 8>에서 수업처리 후 변화를 보면 두 집단 모두 증가를 보이고 통계적으로도 실험반이 유의도 p(=0.449)>0.05, 통제반은 P(0.101)>0.05를 보여 두 집단 모두 통계적으로 의미가 없었다.

내삽을 묻는 문항 8은 논리적 사고를 요구하기 때문에 학생들이 어려워하는 데 실험반이 56.6%로 다소 높은 정답률을 보이고 있다. 그러나 수업 후 43.5%로 감소를 하였고, 통제반은 약간의 증가를 보여 그 기능을 습득하기도 어려운 것임을 알 수 있다. 수업 전·후의 변화를 보면 실험반이 유의도가 p(=0.040)<0.05, 통제반이 p(=0.048)<0.05로 두 집단 모두 통계적으로 의미있는 변화를 보이고 있다.

외삽을 묻는 문항 9도 내삽과 마찬가지로 학생들이 어려워하는 기능인데 통제반은 사후에 감소하였고, 실험반이 26.1%의 증가를 보이고 있는 것으로 보아 학생들이 스스로 추리력을 해 보도록 하는 발견학습 수업정략이 이 기능을 향상시키는데는 더 효과적임을 알 수 있다. 그러나 수업처리 전·후의 변화는 통제반이 유의도 p(=0.579)>0.05, 실험반이 p(=0.057)>0.05로 두 집단 모두 통계적으로 무의미하였다.

수업처리 전·후 실험반과 통제반의 사고관계 정답률의 변화를 문항별로 나타내면 <표 8>과 같고, 수업 전·후의 집단 간 정답률의 변화를 살펴보면 통제반은 p(=0.418)>0.05로 그 변화가 의미가 없었고, 실험반이 p(=0.046)<0.05로 유의미한 변화를 보여 학생들의 사고의 힘을 키워주는 발견학습 수업정략이 전반적인 그래프 능력을 향상시키는데 전통적 수업방식보다는 더 효과적임을 알
수 있다.

2) 주관식 응답의 분석

그래프 능력 검사에서 각 문항에 대해 학생들이 응답 이유로 진술한 것을 분석하여 학생들의 문항별 그래프의 개념 유형을 알아보고, 실험반과 통제반에 대하여 문항별로 수업차지 전·후의 개념 유형 변화를 분석해 보았다.

(1) 그래프 작성 능력 관련 문항의 분석(문항 1~6)

문항 1은 '축에 눈금 매기기'에 관한 기능을 평가하는 것으로 주어진 자료를 그래프로 나타내고자 할 때, 축에 눈금을 적절하게 나타내는가를 알고자 하는 문항이다. 객관식 문제에 답을 하게 된 이유를 진술하도록 하는 유형별로 나타낸 <표 9>를 보면 과학자적 개념으로의 변화가 실험반이 8.7%에서 13.0%로, 통제반은 8.3%에서 12.5%로 약간 증가되었음을 알 수 있다. 주어진 자료를 보고 눈금을 일정한 간격으로 최고 값을 표시할 수 있도록 눈금을 표시해야 하는데, 정답을 표시한 학생들 중에도 일정한 간격으로 되어 있는 것만을 본다거나 자료의 값을 그대로 눈금으로 표시한 것을 선택했다는 학생들이 있었다. 수업차지 후에도 정답을 한 학생 중에 눈금 간격만을 보고 답을 표시했다는 학생이 나타나는 것으로 보아 두 가지를 고려하지 못하는 것일 것이다. 그리고 수업차지를 한 후에도 오답을 한 학생들 중에는 주어진 자료를 그래프 축에 그대로 표시되여 선택했다고 하는 것으로 보아 자료에 맞게 축에 눈금을 일정한 비율로 표시한다는 것을 잘 알지 못하였다.

문항 2는 축에 변수를 정하도록 한 문항인데, <표 10>은 이유 진술한 것을 유형별로 나타낸 것이다. <표 10>을 보면 보기 1번과 4번이 변수지정이 잘 되었는데 단위가 다르게 되어 있어 학생들이 흔동한 것 같고, 보기 2번을 택한 학생들은 독립변수와 종속변수를 제대로 구분하지 못함을 알 수 있다. 보기 3번을 택한 학생들은 시간이 호르는 수록 물의 온도가 높아진다는 단순한 생각에서 시간에 따른 물의 온도 변화 그래프로 착각한 것 같다. 수업차지 후
축에 변수를 정하는 문제에 대한 학생들의 개념 변화는 통계학에서는 약 12%가 늘긴 했지만 수업처치 후에도 오개념이 완전히 치유되지 않았음을 알 수 있다.

<table>
<thead>
<tr>
<th>구분</th>
<th>개념 유형</th>
<th>이유 진술 내용</th>
<th>실험반</th>
<th>통제반</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>수업 전</td>
<td>수업 후</td>
</tr>
<tr>
<td>A</td>
<td>농급이격이 일정하고 범위가 적당해서</td>
<td>2(8.7)</td>
<td>3(13.0)</td>
<td>2(8.3)</td>
</tr>
<tr>
<td>B</td>
<td>표의 값은 나타내기에 적절한 간격으로 되어 있어서</td>
<td>3(13.0)</td>
<td>5(21.7)</td>
<td>1(4.2)</td>
</tr>
<tr>
<td>C</td>
<td>농급 표시가 잘 되어 있어서</td>
<td>1(4.3)</td>
<td>0(0)</td>
<td>2(8.3)</td>
</tr>
<tr>
<td>D</td>
<td>최고 범위를 표현할 수 있을까 크지 않아서</td>
<td>1(4.3)</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>E</td>
<td>무응답</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>F</td>
<td>농급이 좀 더 맞아야 보기 편하기 때문에</td>
<td>1(4.3)</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>G</td>
<td>농급 간격이 일정해서</td>
<td>0(0)</td>
<td>2(8.7)</td>
<td>0(0)</td>
</tr>
<tr>
<td>H</td>
<td>농급 간격이 일정하고 최고 범위를 표현할 수 있어서</td>
<td>0(0)</td>
<td>0(0)</td>
<td>1(4.2)</td>
</tr>
<tr>
<td>I</td>
<td>최고 범위를 표현할 수 있어서</td>
<td>0(0)</td>
<td>0(0)</td>
<td>3(12.5)</td>
</tr>
<tr>
<td>J</td>
<td>표의 값이 그대로 농급으로 표시되어서</td>
<td>0(0)</td>
<td>0(0)</td>
<td>1(4.2)</td>
</tr>
<tr>
<td>K</td>
<td>무응답</td>
<td>0(0)</td>
<td>1(4.3)</td>
<td>1(4.2)</td>
</tr>
<tr>
<td>L</td>
<td>y축은 표의 값과 같고 x축은 최고 농급 표시가 가능해서</td>
<td>2(8.7)</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>M</td>
<td>최고 값의 표시가 가능해서</td>
<td>2(8.7)</td>
<td>1(4.3)</td>
<td>4(16.7)</td>
</tr>
<tr>
<td>N</td>
<td>표의 값과 같아서</td>
<td>0(0)</td>
<td>2(8.7)</td>
<td>1(4.2)</td>
</tr>
<tr>
<td>O</td>
<td>농급 간격이 일정해서</td>
<td>0(0)</td>
<td>3(13.0)</td>
<td>1(4.2)</td>
</tr>
<tr>
<td>P</td>
<td>최고 값의 표시가 가능해서</td>
<td>0(0)</td>
<td>0(0)</td>
<td>1(4.2)</td>
</tr>
<tr>
<td>Q</td>
<td>농급이 표의 값과 같아서</td>
<td>10(43.5)</td>
<td>3(13.0)</td>
<td>3(12.5)</td>
</tr>
<tr>
<td>R</td>
<td>적절한 것을 찾으면 된다</td>
<td>0(0)</td>
<td>1(4.3)</td>
<td>0(0)</td>
</tr>
<tr>
<td>S</td>
<td>농급이 표의 값과 같고, 간격이 일정해서</td>
<td>0(0)</td>
<td>2(8.7)</td>
<td>0(0)</td>
</tr>
<tr>
<td>T</td>
<td>무응답</td>
<td>1(4.3)</td>
<td>0(0)</td>
<td>1(4.2)</td>
</tr>
<tr>
<td>U</td>
<td>농급 간격이 일정해서</td>
<td>0(0)</td>
<td>0(0)</td>
<td>2(8.3)</td>
</tr>
</tbody>
</table>

A: 과학자적 개념, B-U: 오개념, ()는 백분율

- 43 -
<table>
<thead>
<tr>
<th>구분</th>
<th>개념유형</th>
<th>이유 전술 내용</th>
<th>실험반</th>
<th>통제반</th>
</tr>
</thead>
<tbody>
<tr>
<td>보기 1</td>
<td>A</td>
<td>물의 광량에 따른 100°C가 되는지 결정 시간을 조사하고 있어</td>
<td>2(8.7)</td>
<td>1(4.2)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>물이 약간 많아지면 시간이 길어지므로</td>
<td>0(0)</td>
<td>2(8.7)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>농분의 절단이 나타나 있어서</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>무영달</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>보기 2</td>
<td>E</td>
<td>물의 양이 많아짐에 따라 100°C가 되는지 결정하는 시간을 알기 위해서</td>
<td>2(8.7)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>물의 질량이 kg으로 계산한 시간에 나타나야 하므로</td>
<td>2(8.7)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>물의 양의 단위로 mL가 되어야 하므로</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>무영달</td>
<td>2(8.7)</td>
<td>1(4.2)</td>
</tr>
<tr>
<td>보기 3</td>
<td>I</td>
<td>시간이 흐를수록 물의 온도가 높아지기 때문에</td>
<td>9(39.1)</td>
<td>3(13.0)</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>절단이 다른 물이 100°C까지 되는지 결정하는 시간을 나타내므로</td>
<td>0(0)</td>
<td>1(4.3)</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>무영달</td>
<td>1(4.3)</td>
<td>1(4.3)</td>
</tr>
<tr>
<td>보기 4</td>
<td>L</td>
<td>물의 양에 따라 100°C가 되는데 걸리는 시간을 구하는 것이므로</td>
<td>1(4.3)</td>
<td>3(13.0)</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>물의 양(mL)에 따른 시간을 나타내야 하므로</td>
<td>3(13.0)</td>
<td>5(21.7)</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>무영달</td>
<td>1(4.3)</td>
<td>0(0)</td>
</tr>
<tr>
<td>보기 5</td>
<td>O</td>
<td>물이 100°C 되는 시간을 알고자 하기 때문에</td>
<td>0(0)</td>
<td>1(4.2)</td>
</tr>
</tbody>
</table>

A : 과학적 개념, B-O : 개개년, ()는 백분율

문항 3은 그래프와 어떤 점이 주어지면 그 점의 좌표값을 정확하게 잡을 수 있는지를 알아보는 문항이다. 좌표값을 찾을 때는 주어진 점에서 x축과 y축에 수직이 되는 직선을 그려서 그 높이를 잡으면 되는데, 수업치기 후 과학적 개념으로의 변화가 100%를 보는 바와 같이 실험반이 47.8%에서
69.6%로 증가를 보이고 있고, 통제반은 70.8%에서 66.7%로 오히려 감소를 보이고 있다. 이는 점에서 축에 수적이 되는 점선을 직접 그리지 않고 대충 뉴 짐작으로 점의 좌표값을 찾는데서 기인한 것이라 생각이 되고, 발견학습 수업 이 전통적 수업보다 개념 변화에 더 많은 영향을 미쳤음을 알 수 있다.

<표 11> 문항 3에 대한 이유 진술 내용 (좌표값 찾기)

<table>
<thead>
<tr>
<th>구분</th>
<th>개념 유형</th>
<th>이유 진술 내용</th>
<th>실험반</th>
<th>동제반</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>수업 전</td>
<td>수업 후</td>
</tr>
<tr>
<td>보기5</td>
<td>A</td>
<td>18<x<24, y 값은 20이므로</td>
<td>11(47.8)</td>
<td>16(69.6)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>x 값 먼저, y 값이 나중에 알아서</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>무응답</td>
<td>0(0)</td>
<td>2(8.7)</td>
</tr>
<tr>
<td>보기1</td>
<td>D</td>
<td>y 값이 20, x 값이 21이어서</td>
<td>3(13.0)</td>
<td>3(13.0)</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>가로줄 먼저 알고, 세로줄 알아서</td>
<td>4(17.4)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>무응답</td>
<td>1(4.3)</td>
<td>0(0)</td>
</tr>
<tr>
<td>보기2</td>
<td>G</td>
<td>b점을 x축과 y축에 연결해 보니까</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>b점을 18<x<24, 20<y<25이니까</td>
<td>3(13.0)</td>
<td>1(4.3)</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>무응답</td>
<td>1(4.3)</td>
<td>1(4.3)</td>
</tr>
<tr>
<td>보기3</td>
<td>J</td>
<td>순서쌍은 (x, y)로 표시되므로</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
</tbody>
</table>

A: 과학자적 개념, B~J: 오개념, ()는 백분율

문항 4는 어떤 자료의 좌표값이 주어지면 그래프 위에 점을 제대로 찍는지를 확인하는 문항이고, <표 12>은 답을 하게 된 이유진술 내용을 유형별로 정리한 것이다. <표 12>을 보면, 과학자적 개념으로의 변화가 실험반에서는 69.6%에서 73.9%로 성공을 한 학생들의 대부분이 점찍기를 잘하고 있고, 통제반에서는 33.8%에서 83.3%로 많은 증가를 보이고 있는데, 이것은 수업적비전무응답을 했던 62.5%에 해당하는 많은 학생들이 과학자적 개념으로의 개념변화가 되었음을 나타내고 있다. 점찍기 기능은 대부분의 학생들이 잘하는 기능으로 몇몇의 오답을 한 학생들 중에는 좌표값 (x, y)를 혼동하는 학생도 있었음을 이유진술을 한 내용으로 확인할 수 있었다.
<표 12> 문항 4에 대한 이유 진술 내용 (점찍기)

<table>
<thead>
<tr>
<th>구분</th>
<th>개념 유형</th>
<th>이유 진술 내용</th>
<th>실험반</th>
<th>통제반</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>수업 전</td>
<td>수업 후</td>
</tr>
<tr>
<td>보기 3</td>
<td>A</td>
<td>졸표값이 (12, 15)인 것이 점 c이다</td>
<td>16(69.6)</td>
<td>17(73.9)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>순서쌍의 (x, y)로 나타내야까</td>
<td>1(4.3)</td>
<td>1(4.3)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>점 c가 양쪽 보기에 비슷해서</td>
<td>2(8.7)</td>
<td>3(13.0)</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>무응답</td>
<td>1(4.3)</td>
<td>0(0)</td>
</tr>
<tr>
<td>보기 1</td>
<td>E</td>
<td>점 a가 더 가깝기 때문</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>무응답</td>
<td>0(0)</td>
<td>1(4.3)</td>
</tr>
<tr>
<td>보기 2</td>
<td>G</td>
<td>(12, 15)에 있기 때문</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>보기 4</td>
<td>H</td>
<td>점 c의 x 값이 15에 가까워서</td>
<td>0(0)</td>
<td>1(4.3)</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>y 값이 정확히 20이며므로</td>
<td>1(4.3)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>무응답</td>
<td>1(4.3)</td>
<td>0(0)</td>
</tr>
<tr>
<td>부답</td>
<td>K</td>
<td>무응답</td>
<td>1(4.3)</td>
<td>0(0)</td>
</tr>
</tbody>
</table>

A: 과학적 개념, B-K: 오개념, ()는 백분율

문항 5는 '적절한 하나의 선 그리기'에 관한 기능을 평가하는 문항으로 과학 실험 과정에서 얻은 자료를 그래프 상에 점을 적고 적절한 하나의 선으로 나타냄으로써 특립변수와 종속변수간의 관계를 예측하는 매우 중요한 기능이다. <표 13>는 학생들이 답을 하게 된 이유를 유형별로 묶어 놓은 것으로 실험반은 13.0%에서 43.5%로 30.5%의 증가율을 보이고, 통제반은 0%에서 37.5%로 증가를 보이고 있다. <표 13>을 통해 알 수 있는 것처럼 실험반은 하나의 선을 곡선으로 해야 한다고 답했던 학생들의 수가 수업처치 후 많이 줄었고, 통제반은 점들을 단순하게 연결했던 학생들의 수가 많이 줄어든 것으로 보아 발견학습 수업이나 전통적 수업이 모두 개념 변화에 기여했음을 알 수 있다. 그러나 수업 후에도 단순히 점들을 연결해야 한다고 생각하는 학생들이 실험반이나 통제반 모두 약 20% 정도가 있어 수업처치 후에도 오개념이 지속되고 있음을 알 수 있다.
표 13 문항 5에 대한 이유 진술 내용 (적절한 하나의 선 그리기)

<table>
<thead>
<tr>
<th>구분</th>
<th>개념 유형</th>
<th>이유 진술 내용</th>
<th>실험반</th>
<th>통계반</th>
</tr>
</thead>
<tbody>
<tr>
<td>보기</td>
<td></td>
<td></td>
<td>수업 전</td>
<td>수업 후</td>
</tr>
<tr>
<td>2</td>
<td>A 오차가 있으면 가장 많은 점을 지나는 직선이어야</td>
<td>3(13.0)</td>
<td>10(43.5)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>B 처음과 끝점을 이루면 된다</td>
<td>2(8.7)</td>
<td>1(4.3)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>C 무응답</td>
<td>0(0)</td>
<td>1(4.3)</td>
<td>0(0)</td>
</tr>
<tr>
<td>보기</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D 실험에 오차가 있으면 직선이 많은 점을 자انا 한다</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>E 무응답</td>
<td>0(0)</td>
<td>1(4.3)</td>
<td>0(0)</td>
</tr>
<tr>
<td>보기</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F 꼭선으로 이어가 실험결과의 관계를 쉽게 파악할 수 같다</td>
<td>8(34.8)</td>
<td>3(13.0)</td>
<td>3(12.5)</td>
</tr>
<tr>
<td></td>
<td>G 실험에 오차가 있으면</td>
<td>1(4.3)</td>
<td>0(0)</td>
<td>3(12.5)</td>
</tr>
<tr>
<td>보기</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>H 점들을 모두 통과하여 직선이므로</td>
<td>7(30.4)</td>
<td>6(26.1)</td>
<td>16(66.7)</td>
</tr>
<tr>
<td></td>
<td>I 무응답</td>
<td>1(4.3)</td>
<td>1(4.3)</td>
<td>2(8.3)</td>
</tr>
<tr>
<td>무답</td>
<td>J 무응답</td>
<td>1(4.3)</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
</tbody>
</table>

A: 과학자적 개념, B~J : 오개념, ()는 백분율

표 14 문항 6에 대한 이유 진술 내용 (자료 변환하기)

<table>
<thead>
<tr>
<th>구분</th>
<th>개념 유형</th>
<th>이유 진술 내용</th>
<th>실험반</th>
<th>통계반</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>수업 전</td>
<td>수업 후</td>
</tr>
<tr>
<td>보기</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A 측 설정이 많 되었고, 계급의 크기가 작게 되면 의 위치가 많이 달라지지 않게 하여</td>
<td>2(8.7)</td>
<td>8(34.7)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>B 적한 설정에서 보여야</td>
<td>5(21.7)</td>
<td>6(0)</td>
<td>6(25.0)</td>
</tr>
<tr>
<td></td>
<td>C 멀어질수록 눈이에 따라 멀어지 멀어져 오르는지 알 수 있어서</td>
<td>2(8.7)</td>
<td>2(8.7)</td>
<td>8(33.3)</td>
</tr>
<tr>
<td></td>
<td>D 점의 위치가 정확하고 계급의 크기가 알맞게</td>
<td>2(8.7)</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>E 축의 범위가 적당해서</td>
<td>3(13.0)</td>
<td>0(0)</td>
<td>3(12.5)</td>
</tr>
<tr>
<td></td>
<td>F 무응답</td>
<td>2(8.7)</td>
<td>1(4.3)</td>
<td>3(12.5)</td>
</tr>
<tr>
<td>보기</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>G 표의 값과 일치한다</td>
<td>2(8.7)</td>
<td>3(13.0)</td>
<td>2(8.3)</td>
</tr>
<tr>
<td></td>
<td>H 계급과 도수가 잘 맞게 되어서</td>
<td>2(8.7)</td>
<td>2(8.7)</td>
<td>2(8.3)</td>
</tr>
<tr>
<td></td>
<td>I 무응답</td>
<td>2(8.7)</td>
<td>1(4.3)</td>
<td>0(0)</td>
</tr>
<tr>
<td>보기</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>J 표의 값과 같아서</td>
<td>1(4.3)</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>K 무응답</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
</tbody>
</table>

A: 과학자적 개념, B~K : 오개념, ()는 백분율
문항 6은 실험 결과 나온 자료를 그레프로 제대로 변환시킬 수 있는지를 묻는 문항으로 과학자적 개념의 변화는 <표 14>에서 알 수 있듯이 실험반이 8.7%에서 34.7%로 26%로 증가하고, 통제반은 아무런 변화가 없어 발전학습 수업이 더 효과가 있다고 하겠다. 자료의 값은 그레프에 나타내는데 있어 많은 학생들이 오개념을 가지고 있었는데, 보기 3은 선택한 학생들 중에는 종속 변수와 독립변수를 제대로 구분하지 못해 G와 H 유형의 개념이 지속될을 알 수 있다.

(2) 그래프 해석 능력 관련 문항의 분석(문항 7~10)

문항 7은 특정한 x값(또는 y값)이 주어지면 그에 대응하는 y값(또는 x값)을 찾을 수 있는지를 알아보는 '변수의 대응값 찾기'에 관련 기능을 평가하는 문항이다. <표 15>을 보면 과학자적 개념으로의 변화는 실험반이 60.9%에서 78.3%로, 통제반은 62.5%에서 66.6%로 실험반의 증가율이 더 높아 발전학습 수업전략이 과학자적 개념으로 변화를 일으키고 있음을 알 수 있다.

<table>
<thead>
<tr>
<th>구분</th>
<th>개념 유형</th>
<th>이유 진술 내용</th>
<th>실험반</th>
<th>통제반</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>수업 전</td>
<td>수업 후</td>
<td>수업 전</td>
</tr>
<tr>
<td>보기 1</td>
<td>A</td>
<td>60km/h에서 최고 그어보면 0.05L가 나온다</td>
<td>14(60.9)</td>
<td>18(78.3)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>제일 가까워서</td>
<td>3(13.0)</td>
<td>1(4.3)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>무응답</td>
<td>1(4.3)</td>
<td>0(0)</td>
</tr>
<tr>
<td>보기 2</td>
<td>D</td>
<td>20×0.05+60의 비례식으로 풀어서</td>
<td>2(8.7)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>60km/h에서 0.05L가 나올 것 같아서</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>무응답</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>보기 3</td>
<td>G</td>
<td>계산해 보니까</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>무응답</td>
<td>2(8.7)</td>
<td>1(4.3)</td>
</tr>
<tr>
<td>보기 4</td>
<td>I</td>
<td>60×0.05+1로 풀어서</td>
<td>1(4.3)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>무응답</td>
<td>0(0)</td>
<td>2(8.6)</td>
</tr>
<tr>
<td>보기 5</td>
<td>K</td>
<td>점이 0.08~0.1L 사이에 있어서</td>
<td>0(0)</td>
<td>1(4.3)</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>무응답</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
</tbody>
</table>

A: 과학자적 개념, 나머지: 오개념, ()는 백분율
<table>
<thead>
<tr>
<th>구분</th>
<th>개념 유형</th>
<th>이유 진술 내용</th>
<th>실험반</th>
<th>통계반</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>수업 전</td>
<td>수업 후</td>
<td>수업 전</td>
</tr>
<tr>
<td>보기 4</td>
<td>A</td>
<td>점들을 하나의 선으로 연결해 봤을 때 높이가 0.05에 가까워서</td>
<td>8(34.8)</td>
<td>9(39.1)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>60km/h보다 연료가 적게 들 것 같아서</td>
<td>4(17.4)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>무응답</td>
<td>1(4.3)</td>
<td>1(4.3)</td>
</tr>
<tr>
<td>보기 1</td>
<td>D</td>
<td>무응답</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>보기 2</td>
<td>E</td>
<td>계산해 보니까</td>
<td>0(0)</td>
<td>1(4.3)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>무응답</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>보기 3</td>
<td>G</td>
<td>속력을 줄이면 연료가 더 많이 들기 때문</td>
<td>1(4.3)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>무응답</td>
<td>2(8.7)</td>
<td>1(4.3)</td>
</tr>
<tr>
<td>보기 5</td>
<td>I</td>
<td>60km/h로 천천히 달렸으니까</td>
<td>3(13.0)</td>
<td>6(26.1)</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>대장 직선을 그어 보았을 때 가장 가깝다.</td>
<td>3(13.0)</td>
<td>3(13.0)</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>무응답</td>
<td>1(4.3)</td>
<td>2(8.7)</td>
</tr>
</tbody>
</table>

A : 과학적 개념, B~K : 오개념, ()는 백분율

<표 17> 문항 9에 대한 이유 진술 내용 (외삽)

<table>
<thead>
<tr>
<th>구분</th>
<th>개념 유형</th>
<th>이유 진술 내용</th>
<th>실험반</th>
<th>통계반</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>수업 전</td>
<td>수업 후</td>
<td>수업 전</td>
</tr>
<tr>
<td>보기 4</td>
<td>A</td>
<td>100km/h에서 0.1L이고, 10km/h 증가할 때 0.01L씩 증가하기 때문에</td>
<td>2(8.7)</td>
<td>8(34.8)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>무응답</td>
<td>1(4.3)</td>
<td>1(4.3)</td>
</tr>
<tr>
<td>보기 1</td>
<td>C</td>
<td>무응답</td>
<td>0(0)</td>
<td>2(8.7)</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>연료가 적게 들 것 같다</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>보기 2</td>
<td>E</td>
<td>대장 직선을 그었을 때 110km/h에서는 0.09L이니까</td>
<td>1(4.3)</td>
<td>2(8.7)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>무응답</td>
<td>1(4.3)</td>
<td>1(4.3)</td>
</tr>
<tr>
<td>보기 3</td>
<td>G</td>
<td>100km/h보다 연료가 더 많이 들 것 같아서</td>
<td>3(13.0)</td>
<td>7(30.4)</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>예상으로</td>
<td>11(47.8)</td>
<td>2(8.7)</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>무응답</td>
<td>2(8.7)</td>
<td>0(0)</td>
</tr>
<tr>
<td>보기 5</td>
<td>J</td>
<td>속력이 빨라지면 연료가 많이 드니까</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>비례식으로</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>무응답</td>
<td>2(8.7)</td>
<td>0(0)</td>
</tr>
</tbody>
</table>

A : 과학적 개념, B~L : 오개념, ()는 백분율
문항 8은 내용을 요하는 그래프가 주어졌을 때, 그 경향을 찾을 수 있는지를 알고자 하는 ‘내간’에 관한 기능을 알아보기 위한 문항으로 <표 16>에서 보는 바와 같이 관계적 개념으로의 변화가 실험반이 4.3%, 통제반이 8.4%로 낮은 편이고, 많은 학생들이 수업처치 후에도 단순히 60km/h보다 속도가 느리니가 연료가 적게들 것이라고 생각하는 학생들이 있었다.

문항 9는 그래프에서 그 경향성을 파악하여 외상을 구하도록 하는 문항으로, <표 17>에서 보는 바와 같이 관계적 개념으로의 변화가 실험반이 26.1%의 증가를 보이고, 통제반은 12.5%로 오히려 감소를 보이고 있는데 속력 100km/h보다 연료가 더 많이 들 것 같은 G형의 개념 유형으로 강화되거나 지속된을 알 수 있다.

<표 18> 문항 10에 대한 이유 진술 내용 (변수간 관계 진술하기)

<table>
<thead>
<tr>
<th>개념 유형</th>
<th>이유 진술 내용</th>
<th>실험반</th>
<th>통제반</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>화물의 물수록 식물의 키가 커지다가 어느 정도 크면 일정해진다</td>
<td>(3.0)</td>
<td>(4.17)</td>
</tr>
<tr>
<td>B</td>
<td>화물의 크기가 물수록 식물의 키는 점점 커진다</td>
<td>(6.26)</td>
<td>(2.87)</td>
</tr>
<tr>
<td>C</td>
<td>화물의 크기에 식물의 키는 별로 상관없다</td>
<td>(2.87)</td>
<td>(1.43)</td>
</tr>
<tr>
<td>D</td>
<td>식물의 키가 자라에 따라 화물이 커지지만 어느 정도가 되면 화물의 크기도 일정해진다</td>
<td>(2.87)</td>
<td>(2.87)</td>
</tr>
<tr>
<td>E</td>
<td>식물의 크기가 물수록 화물이 크다</td>
<td>(1.43)</td>
<td>(3.13)</td>
</tr>
<tr>
<td>F</td>
<td>화물의 크기가 너무 작으면 식물은 잘 자라지 않는다</td>
<td>(0.0)</td>
<td>(1.43)</td>
</tr>
<tr>
<td>G</td>
<td>화물이 너무 커도 식물은 잘 자라지 않는다</td>
<td>(0.0)</td>
<td>(2.87)</td>
</tr>
<tr>
<td>H</td>
<td>화물의 크기는 식물의 키에 적당해야 한다</td>
<td>(0.0)</td>
<td>(0.0)</td>
</tr>
<tr>
<td>I</td>
<td>식물의 키가 자라다가 어느 정도가 되면 일정해진다</td>
<td>(3.48)</td>
<td>(26.2)</td>
</tr>
<tr>
<td>J</td>
<td>물을 많이 물수록 식물의 키가 정점 자란다</td>
<td>(0.0)</td>
<td>(1.43)</td>
</tr>
<tr>
<td>K</td>
<td>무응답</td>
<td>(1.43)</td>
<td>(1.43)</td>
</tr>
</tbody>
</table>

A: 관계적 개념, B~K: 오개념, ()는 백분율
문항 10은 그래프에서 두 변수간의 관계를 묘는 문항으로 종속변수에 따른 독립변수의 변화가 어떠한지를 묘는 문항인데 표 18에서 보는 바와 같이 과학자적 개념으로의 변화가 실험반은 3.4% 증가를 보이고, 통제반은 4.2%의 감소를 보이고 있다. <표 18>을 보면 그래프에서 화분의 크기가 식물의 성장에 영향을 줄을 알아야 하는데, 식물의 키가 어느 정도 자라면 성장이 멈출 것이라는 생각 때문에 개념변화가 되지 않은 것으로 볼 수 있다. 오히려 식물의 키가 어느 정도 자라면 성장이 멈출 것이라는 I형의 개념이 통제반은 오히려 강화되고 있음을 알 수 있다.

3) 문항별 개념 유형의 변화

지금까지의 문항별 개념 유형의 분석에서 통제반과 실험반의 개념 유형을

표 19. 학습 전·후의 '측면 눈금매기기'의 개념 유형 변화(실험반)

전후	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	계
A	2																					2
B	3	1																				3
C	1		1																			1
D		1																				1
E																						
F																						1
G																						
H																						
I																						
J																						
K																						
L																						1
M																						2
N																						
O																						
P																						2
Q																						10
R																						
S																						
T																						
U																						
계	3	5	1	1	1	2	1	2	1	2												

A : 과학자적 개념
수업처치 전·후로 비교해 보았으나, 이러한 비교는 학생들이 학습 전과 후에 어떤 유형의 개념들은 얼마나만큼씩의 비율로 가지고 있는지를 나타낼 뿐 학생 개개인이 있어서 학습 전의 개념이 학습 후 어떻게 변했는지는 알 수가 없다. 그러므로 문항별 개념 유형의 변화에서는 학습 전과 후 학생 개개인에게 일어난 개념 변화를 추적해서 그 결과를 비교해 보았다.

(a) 측에 논금 매기기 문항의 개념 유형 변화(문항1)
학습 전·후에 통제반과 실험반에서 일어난 '측에 논금 매기기'에 대한 개념 유형의 변화는 <표 19>, <표 20>과 같다. 학습 후에 있어서 개념 변화를 일으킨 학생들의 비율을 보면 통제반에서는 75%(18명), 실험반에서는 91.3%(21

표 20. 학습 전·후의 '측에 논금매기기'의 개념 유형 변화(통제반)

단위:명	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	계	
A	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
B	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
C	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
D	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
E	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
F	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
G	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
H	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
I	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
J	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
K	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
L	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
M	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
N	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
O	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
P	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Q	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
R	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
S	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
U	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
계	4	4	1	1	4	1	1	1	3	2	1	2	24										

A : 과학자적 개념
(b) 측에 변수 정하기 문항의 개념 유형 변화(문항2)

학생 전·후에 통제반과 실험반에서 일어난 '측에 변수 징하기'에 대한 개념 유형의 변화는 <표 21>, <표 22>과 같다. 학습 후에 개념 변화를 일으킨 학생들의 비율은 통제반에서는 87.3%(20명), 실험반에서 73.9%(17명)으로 통제반에서의 개념 변화율이 더 높았으며, 개념 변화를 일으킨 학생들 중 과학자적 개념 유형으로의 변화를 일으킨 학생의 비율은 통제반이 12.5%(1명→4명)의 증가를 보이고, 실험반이 0%(2명→2명)로 아무런 변화가 없었다. 따라서 측에 변수 정하기 개념에 있어서는 전통적 학습지도를 한 통제반이 발견 학습 수업전략의 실험반보다 과학자적 개념확득에 더 효과적이라 볼 수 있다.

<표 21> 학습 전·후의 '측에 변수 징하기'의 개념 유형 변화(실험반)

<table>
<thead>
<tr>
<th>번호</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>계</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>계</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

A: 과학자적 개념
<표 22> 학습 전·후의 '측면 변수 지정하기'의 개념 유형변화(통제반)

<table>
<thead>
<tr>
<th>장·후</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>계</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>계</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

A : 과학자적 개념

(c) 좌표값 찾기 문항의 개념 유형 변화(문항3)

학습 전·후에 통제반과 실험반에서 일어난 '좌표값 찾기'에 대한 개념 유형의 변화는 <표 23>, <표 24>와 같다. 학습 후에 있어서 개념 변화를 일으킨 학생들의 비율을 보면 통제반에서는 37.5%(9명), 실험반에서 43.5%(10명)

<표 23> 학습 전·후의 '좌표값 찾기'의 개념 유형 변화(실험반)

<table>
<thead>
<tr>
<th>장·후</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>J</th>
<th>계</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>계</td>
<td>16</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

A : 과학자적 개념

- 54 -
으로 실험반에서의 개념 변화율이 더 높으며, 개념 변화를 일으킨 학생들 중 과학자적 개념 유행으로의 변화를 일으킨 학생의 비율도 통계반이 4.2%((17명 → 16명)로 줄고, 실험반이 21.7%(11명 → 16명)의 증가를 보이고 있다. 따라서 발견학습 수업 전략이 그레프 능력을 향상시키고 과학자적 개념 형성에 더 효과적이라 할 수 있다. 그리고 수업처치 후에도 D형의 개념이 실험반에서는 지속되며, 통계반에서는 오히려 강화됨을 알 수 있다.

〈표 24〉 학습 전·후의 ‘좌표값 찾기’의 개념 유행 변화(통계반)

<table>
<thead>
<tr>
<th>단위:명</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>계</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>계</td>
<td>16</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

A : 과학자적 개념

(4) 점찍기 문항의 개념 유행 변화(문항4)

학습 전·후에 실험반과 통계반에서 일어난 ‘점찍기’에 대한 개념 유행의 변화는 〈표 25〉, 〈표 26〉과 같다. 학습 후에 있어서 개념 변화를 일으킨 학생들의 비율을 보면 실험반에서는 30.4%(7명), 통계반에서 70.8%(17명)으로 통계반에서의 개념 변화율이 더 높으며, 개념 변화를 일으킨 학생들 중 과학자적 개념 유행으로의 변화를 일으킨 학생의 비율도 통계반이 50.0%((8명 → 20명), 실험반이 4.3%(16명 → 17명)의 증가를 보이고 있다. 따라서 점찍기 문항의 경우는 전통적 교수방법이 그레프 능력을 향상시키고 과학자적 개념 형성에 더 효과적이라 할 수 있다. 그리고 수업처치 후에도 실험반과 통계반에서는 C형의 개념이 지속되고 있음을 알 수 있다.
(표 25) 학습 전·후의 '점찍기'의 개념 유형 변화 (식험반)

<table>
<thead>
<tr>
<th>전후</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>계</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>14</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

A : 과학자적 개념

(표 26) 학습 전·후의 '점찍기'의 개념 유형 변화 (통제반)

<table>
<thead>
<tr>
<th>전후</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>계</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>계</td>
<td>20</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

A : 과학자적 개념

(e) 적절한 하나의 선 그리기 문항의 개념 유형 변화 (문항5)

학습 전·후에 식험반과 통제반에서 일어난 '적절한 하나의 선 그리기'에 대한 개념 유형의 변화는 <표 27>, <표 28>와 같다. 학습 후에 있어서 개념 변화를 일으킨 학생들의 비율을 보면 식험반에서는 69.6%(16명), 통제반에서 83.3%(20명)으로 통제반에서의 개념 변화율이 더 높으며, 개념 변화를 일으킨 학생들 중 과학자적 개념 유형으로의 변화를 일으킨 학생의 비율도 식험반이
30.4%(3명→10명), 통제반이 37.5%(0명→9명)로 통제반이 더 높은 증가를 보이고 있다. 따라서 적절한 하나의 선 그리기는 전통적 교수방법이 그래프 능력을 향상시키고 과학자적 개념 형성에 더 효과적이라 할 수 있다. 그러나 수업차원 후에 통제반에서는 B형의 개념이 오히려 강화되고, 실험반에서는 H형의 개념이 강화되는 현상을 보이고 있다.

<table>
<thead>
<tr>
<th>정</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>계</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>1</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>계</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

A : 과학자적 개념

<table>
<thead>
<tr>
<th>정</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>계</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>H</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>계</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

A : 과학자적 개념

- 57 -
(f) 자료 변환기 문항의 개념 유형 변화(문항6)

학습 전·후에 실험반과 통제반에서 일어난 '자료 변환하기'에 대한 개념 유형의 변화는 <표 29>, <표 30>과 같다. 학습 후에 있어서 개념 변화를 일으킨 학생들의 비율을 보면 실험반에서는 69.6%(16명), 통제반에서 75.0%(18명)으로 통제반에서의 개념 변화율이 더 높으며, 개념 변화를 일으킨 학생들 중 과학자적 개념 유형으로의 변화를 일으킨 학생의 비율은 실험반이

<표 29> 학습 전·후의 '자료 변환하기'의 개념 유형 변화(실험반)

<table>
<thead>
<tr>
<th>전후</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>계</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>계</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

A : 과학자적 개념

<표 30> 학습 전·후의 '자료 변환하기'의 개념 유형 변화(통제반)

<table>
<thead>
<tr>
<th>전후</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>계</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>계</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

A : 과학자적 개념
26.1%(2명→8명), 통제반의 0%(0명→0명)로 실험반이 더 높은 증가를 보이고 있다. 따라서 전통적 교수법이 개념을 변화시키는다는 발견학습 수업보다 더 효과적일 수 있으나, 과학자적 개념 형성에는 발견학습 수업전략이 더 효과적이라 할 수 있다. 그리고 수업처치 후에 실험반에서는 B형의 개념이 강화되고, 통제반에서는 C형의 개념이 지속되는 현상을 보이고 있다.

(g) 변수의 대응값 찾기 문제의 개념 유형 변화(문항7)

학습 전·후에 실험반과 통제반에서 일어난 ‘변수의 대응값 찾기’에 대한 개념 유형의 변화는 <표 31>, <표 32>과 같다. 학습 후에 있어서 개념 변화를 일으킨 학생들의 비율을 보면 실험반에서는 39.1%(9명), 통제반에서 50.0%(12명)으로 통제반에서의 개념 변화율이 더 높으나, 개념 변화를 일으킨 학생들 중 과학자적 개념 유형으로의 변화를 일으킨 학생의 비율은 실험반이 17.4%(14명→18명), 통제반이 4.2%(15명→16명)로 실험반이 더 높은 증가를 보이고 있다. 따라서 전통적 교수법이 개념을 변화시키는다는 발견학습 수업보다 더 효과적일 수 있으나, 과학자적 개념 형성에는 발견학습 수업전략이 더 효과적이라 할 수 있다.

<표 31> 학습 전·후의 ‘변수의 대응값 찾기’의 개념 유형 변화(실험반)

<table>
<thead>
<tr>
<th>전후</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>계</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13</td>
<td>1</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>계</td>
<td>18</td>
<td>1</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

A : 과학자적 개념
(h) 내실 문항의 개념 유형 변화(문항8)

학습 전·후에 실험반과 통제반에서 일어난 '내실' 문항에 대한 개념 유형의 변화는 <표 33>, <표 34>와 같다. 학습 후에 있어서 개념 변화를 일으킨 학생들의 비율을 보면 실험반에서는 56.5%(13명), 통제반에서는 79.2%(19명)으로 통제반에서의 개념 변화율이 더 높으며, 개념 변화를 일으킨 학생들 중 과

<table>
<thead>
<tr>
<th>전후</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>계</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7</td>
<td>1</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>J</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>계</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

A: 과학자적 개념
<표 34> 학습 전·후의 '내삼'의 개념 유형 변화(통제반)

<table>
<thead>
<tr>
<th>철후</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>계</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>J</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>계</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

A: 과학자적 개념

학자적 개념 유형으로의 변화를 일으킨 학생의 비율도 실험반이 4.3%(8명→9 명), 통제반이 8.3%(5명→7명)로 통제반의 더 높은 증가를 보이고 있다. 따라서 전통적 교수법이 개념을 변화시키거나 과학자적 개념 형성에는 발견학습 수업보다 더 효과적이라 할 수 있다. 그러나 실험반이나 통제반 모두 수업처치 후에 I형의 개념이 더 강화되거나 지속되는 현상을 나타내었다.

(1) 외삼 문항의 개념 유형 변화(문항9)

학습 전·후에 실험반과 통제반에서 일어난 '외삼' 문항에 대한 개념 유형의 변화는 <표 35>, <표 36>과 같다. 학습 후에 있어서 개념 변화를 일으킨 학생들의 비율을 보면 실험반에서는 82.6%(19명), 통제반에서 70.8%(17명)로 실험반에서의 개념 변화율이 더 높으며, 개념 변화를 일으킨 학생들 중 과학자적 개념 유형으로의 변화를 일으킨 학생의 비율도 실험반이 26.1%(2명→8 명)로 증가하였으나, 통제반이 12.5%(8명→5명)로 감소하는 현상을 보였다. 따라서 발견학습 수업전략이 개념을 변화시키거나 과학자적 개념 형성에는 전통적 교수법 보다 더 효과적이라고 할 수 있다. 그러나 실험반이나 통제반 모두 수업처치 후에 G형의 개념이 더 강화되는 현상을 나타내었다.
表 35 학습 전 · 후의 '외상'의 개념 유형 변화(실험반)

<table>
<thead>
<tr>
<th>단위: 명</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

A: 과학자적 개념

表 36 학습 전 · 후의 '외상'의 개념 유형 변화(통제반)

<table>
<thead>
<tr>
<th>단위: 명</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

A: 과학자적 개념

(j) 변수간 관계 전술하기 문향의 개념 유형 변화(문항10)

학습 전 · 후에 실험반과 통제반에서 일어나는 '변수간 관계 전술하기' 문항에 대한 개념 유형의 변화는 <표 37>, <표 38>와 같다. 학습 후에 있어 개념 변화를 일으킨 학생들의 비율을 보면 실험반에서는 43.4%(10명), 통제반에서 70.8%(17명)로 통제반에서의 개념 변화율이 더 높으나, 개념 변화를 일으킨

- 62 -
표 37. 학습 전·후의 '변수간 관계점술하기'의 개념 유형 변화(실험반)

| 진도 | A | B | C | D | E | F | G | H | I | J | K | 계
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>계</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

A: 과학자적 개념

표 38. 학습 전·후의 '변수간 관계점술하기'의 개념 유형 변화(통제반)

| 진도 | A | B | C | D | E | F | G | H | I | J | K | 계
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>계</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

A: 과학자적 개념

학생들 중 과학자적 개념 유형으로의 변화를 일으킨 학생의 비율은 실험반이 4.3%(3명→4명)로 증가하였으나, 통제반 4.2%(4명→3명)로 감소하는 현상을 보였다. 따라서 개념을 변화시키는데는 전통적 교수법이 더 효과적이고 발전 학습 수업전략은 과학자적 개념 형성에 더 효과적이라 할 수 있다. 그러나 실험반이나 통제반 모두 수업처리 후에 I형의 개념이 더 강화되거나 지속되는 현상을 나타내었다.
2. 탐구능력 검사 결과 분석

발견학습 모형에 의한 수업 전략을 적용한 교수·학습이 전통적인 교수·학습과 비교하였을 때, 학생들의 탐구능력 향상에 어떠한 영향을 주는지 알아보기 위하여 J. C. Bruns 등이 7~12학년의 과학 탐구 능력을 측정하기 위해 개발한 신디엠 평가지인 TIPSII(Test of Integrated Process Skills) 문항을 사용하였다. 검사 문항은 총 36문항으로 이루어져 있으며 수업처리 전·후에 실험반과 통제반에 대하여 검사한 것을 문항당 1점식으로 하여 채점하고, 그 결과를 spss 통계 프로그램으로 분석하여 <표 39>과 <표 40>에 나타내었다.

<표 39>에서 알 수 있듯이 수업 전 사전검사 결과 통제반은 평균 21.75점, 실험반은 20.23점으로 점수 차이가 1점에 불과해 동일한 집단이라고 할 수 있다. 그리고 유의도 p(=0.403)>.05로 나타나 수업처리 전에 실험반과 통제반의 탐구능력에 차이가 없음을 보여주고 있다. 또한, 수업처리 후 사후검사 결과에서도 통제반은 평균 21.41점, 실험반은 23.57점으로 점수 차이가 거의 없다. 그리고 유의도 p(=0.483)>.05으로 수업처리 후 실험반과 통제반의 탐구능력이 통계적으로 유의미한 차이가 없는 것으로 나타났다.

<table>
<thead>
<tr>
<th></th>
<th>사전 검사</th>
<th></th>
<th></th>
<th>사후검사</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
<td>p</td>
<td>N</td>
</tr>
<tr>
<td>통제반</td>
<td>24</td>
<td>21.75</td>
<td>6.01</td>
<td>0.403</td>
<td>24</td>
</tr>
<tr>
<td>실험반</td>
<td>23</td>
<td>20.23</td>
<td>5.55</td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

그러나 <표 40>에서 수업처리 전·후로 비교해 볼 때, 통제반은 평균값의 유의도가 p(=0.571)>.05로 수업처리 후 탐구능력이 수업처리 전과 비교하여 통계적으로 차이가 없음을 보인다. 그렇지만, 실험반의 경우는 평균값의 유의도가
<table>
<thead>
<tr>
<th></th>
<th>실험반</th>
<th>통제반</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>사전검사</td>
<td>23</td>
<td>20.23</td>
</tr>
<tr>
<td>사후검사</td>
<td>23</td>
<td>23.57</td>
</tr>
</tbody>
</table>

p(=0.036)<0.05로 수업처치 후의 탐구능력은 수업처치 전보다 통계적으로 유의 미한 차이가 있는 것으로 나타나 교수·학습 방법의 차이에 따라 탐구능력에 미치는 영향이 다르다는 것을 알 수 있다. 이는 수업 전략이 가지는 특성에 기인한 것으로, 전통적인 수업방식보다 발전학습 모형을 적용한 교수·학습이 탐구단계에서 학생들에게 인지활동을 유발시키고 학생들로 하여금 그 활동을 해소해야가는 과정을 거치게 함으로써 탐구능력을 향상시키는 효과를 가져오는 것이라고 할 수 있다.

3. 과학 관련 태도 검사 결과 분석

발전학습 수업 전략을 적용한 교수·학습을 전통적인 교수·학습과 비교하였을 때, 학생들의 과학 관련 태도 변화에 어떠한 영향을 주는지 알아보기 위하여 사용한 과학 관련 태도 검사 문항(부록 4, 참조)은 ‘과학에 대한 태도’, ‘과학의 사회적 의미’, ‘과학 교과에 대한 태도’, ‘과학적 태도’ 4가지 범주로 나누어 각 변주마다 10문항씩 총 40문항으로 구성되었다.

과학 관련 태도 검사의 각 문항을 채점한 후 SPSS 통계 프로그램에 의해 4개 범주별로 과학적 태도에 차이가 있는지 비교 분석한 결과는 <표 41>과 <표 42>과 같다. <표 41>에서 보는 바와 같이 수업 전 사전검사에서 통제반의 평균점수는 119.58점, 실험반의 평균점수는 122.13점으로 비슷하고, 유의도
는 p(=.56)>.05로 나타났으며, 범주별로 분석한 결과에서도 모든 범주에서 유의도가 p>.05로 나타나 수업처리 전 실험반과 통제반이 과학 관련 태도에 거의 차이가 없음을 알 수 있다.

그리고 수업처리 후 통제반의 평균점수는 120.20점, 실험반의 평균점수는 123.95점으로 차이가 없고, 유의도는 p(=.669)>.05로 나타났으며, 범주별로 분석한 결과에서도 모든 범주에서 유의도가 p>.05로 나타나 수업처리 후에도 실험반과 통제반이 과학 관련 태도에서 거의 차이가 없는 것으로 나타났다.

<표 41> 과학 관련 태도 검사 결과의 집단간 비교

<table>
<thead>
<tr>
<th>범주</th>
<th>집단구분</th>
<th>사전검사</th>
<th>사후검사</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>과학에 대한 태도</td>
<td>통제반</td>
<td>N=24</td>
<td>Mean=26.30, SD=6.84</td>
<td>N=24, Mean=27.91, SD=7.46</td>
</tr>
<tr>
<td></td>
<td>실험반</td>
<td>N=23</td>
<td>Mean=26.58, SD=5.45</td>
<td>N=23, Mean=28.54, SD=5.84</td>
</tr>
<tr>
<td>과학이 사회에 미치는 영향</td>
<td>통제반</td>
<td>N=24</td>
<td>Mean=35.00, SD=7.52</td>
<td>N=24, Mean=38.04, SD=6.72</td>
</tr>
<tr>
<td></td>
<td>실험반</td>
<td>N=23</td>
<td>Mean=33.67, SD=7.33</td>
<td>N=23, Mean=32.08, SD=6.68</td>
</tr>
<tr>
<td>과학교육과 대한 태도</td>
<td>통제반</td>
<td>N=24</td>
<td>Mean=29.57, SD=5.12</td>
<td>N=24, Mean=29.40, SD=3.61</td>
</tr>
<tr>
<td></td>
<td>실험반</td>
<td>N=23</td>
<td>Mean=28.42, SD=4.94</td>
<td>N=23, Mean=29.54, SD=4.51</td>
</tr>
<tr>
<td>과학적 태도</td>
<td>통제반</td>
<td>N=24</td>
<td>Mean=31.09, SD=7.84</td>
<td>N=24, Mean=30.70, SD=7.37</td>
</tr>
<tr>
<td></td>
<td>실험반</td>
<td>N=23</td>
<td>Mean=29.38, SD=6.12</td>
<td>N=23, Mean=30.25, SD=5.06</td>
</tr>
</tbody>
</table>

그러나 <표 42>에서 통제반과 실험반을 수업처리 전과 후로 비교해 보면 통제반은 사전검사에 평균 119.58점, 사후검사에 평균 120.20점으로 거의 비슷하고 유의도 p(=.344)>.05로서 통계적으로 차이가 없다. 그렇지만, 실험반은 사전검사에 평균 122.13점, 사후검사에 평균 123.95점으로 1점 증가하고 유의도 p(=.043)<.05로 나타나 전통적인 학습방법보다 발견학습 도형을 적용한 수업 전략이 학생들의 과학 관련 태도에 더 큰 영향을 미치는 것으로 나타났다.
<표 42> 과학 관련 태도 검사 결과의 수업처치 전·후 비교

<table>
<thead>
<tr>
<th>범주</th>
<th>시기</th>
<th>실험반</th>
<th>통제반</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>과학에 대한 태도</td>
<td>사전검사</td>
<td>23</td>
<td>26.58</td>
</tr>
<tr>
<td></td>
<td>사후검사</td>
<td>23</td>
<td>28.54</td>
</tr>
<tr>
<td>과학이 사회에 미치는 영향</td>
<td>사전검사</td>
<td>23</td>
<td>33.67</td>
</tr>
<tr>
<td></td>
<td>사후검사</td>
<td>23</td>
<td>32.08</td>
</tr>
<tr>
<td>과학교과에 대한 태도</td>
<td>사전검사</td>
<td>23</td>
<td>28.42</td>
</tr>
<tr>
<td></td>
<td>사후검사</td>
<td>23</td>
<td>29.54</td>
</tr>
<tr>
<td>과학적 태도</td>
<td>사전검사</td>
<td>23</td>
<td>29.38</td>
</tr>
<tr>
<td></td>
<td>사후검사</td>
<td>23</td>
<td>30.25</td>
</tr>
</tbody>
</table>
V. 결 론

중학교 과학과 학과 운동 단원 내용을 중심으로 학생들의 그래프에 관한 능력을 조사·분석하여 발전학습 모형을 적용한 과학과 교수·학생 방법을 개발한 다음, 실제 수업에 적용함으로써 발전학습 수업 전략이 중학교 1학년 학생들의 그래프 능력의 습득과 탐구능력 향상 및 과학 관련 대도 변화에 어떠한 영향을 주는지에 대하여 고찰한 연구 결과를 요약하면 다음과 같다.

첫째, 사전검사 결과 중학교 1학년의 그래프 능력은 ① 축에 눈금 매기기, 축에 변수 지정하기, 직점한 하나의 선 그리기, 변인간 관계 진술하기는 학생 들이 어려워하는 것으로 보아 관련 개념이 형성되지 않았고, ② 좌표값 찾기, 점찍기, 자료 변화하기에는 정답률이 높게 나타나 비교적 쉬운 개념으로 볼 수 있다.

둘째, 그래프 능력을 향상시킬 수 있는 과학 학습지도 방법으로 발전학습 수업전략을 수업처리한 후 사후검사에 의하면, 정답률 변화에 있어서 실험반은 통계적으로 유의미한 변화를 보였으나 통제반은 통계적으로 의미가 없었다. 이로부터 발전학습 모형을 이용한 과학 교수·학생 방법이 전반적인 그래프 능력의 향상에 효과적이라고 할 수 있다.

셋째, 수업처리 후 응답유형을 분석해 본 결과 내담을 묻는 문항에서 두 집단 공차 통계적으로 유의미한 변화를 보였으며, 실험반에서 학생들이 어려워 하는 기능인 축에 눈금 매기기, 축에 변수 지정하기, 직점한 하나의 선 그리기에서는 유의미한 변화를 보이지 않았다. 이들 개념에 대해서는 발전학습 수업 전략을 적용한 학습지도 방법이 효과적이지 않다고 할 수 있다. 그렇지 않다면 실험반에서 좌표값 찾기에서 통계적으로 유의미한 변화를 보인 것으로 보아 발전학습 수업전략이 더 효과적이라고 할 수 있다.

넷째, 학생들의 그래프 관련 개념 유형은 다양한 형태의 오개념을 가지고 있으며, 수업처리 후에 실험반은 좌표값 찾기, 자료 변화하기, 변수의 대응값
찾기, 변수간 관계진술하기에서 과학자적 개념으로의 변화가 있어 발전학습
수업 전략이 그래프 관련 오 개념 치유에 효과적이라 할 수 있다.

다섯째, 문항별 개념 유형의 변화를 살펴보면 개념 변화율은 거의 모든 부
분에서 통통적 교수법이 나았으나, 과학자적 개념으로의 변화는 최초값 찾기,
자료 변환하기, 변수의 대응값 찾기, 의상, 변인간 관계진술하기에서 실험반이
더 높아 발전학습 수업 전략이 과학자적 개념으로의 변화에 더 효과적이라고
할 수 있다.

여섯째, 통계반은 수업처치 후 탐구능력이 수업처치 전과 비교하여 통계적
으로 유의미한 차이가 없었지만, 실험반의 경우는 수업처치 후의 탐구능력이
수업처치 전보다 통계적으로 유의미한 차이가 있었다. 이것은 수업 전략의 특
성에 기인된 것으로 전통적인 수업방식보다 발전학습 수업 전략이 탐구단계
에서 학생들에게 스스로 생각을 하는 힘을 길러 주고 인지감동을 유발시켜
학생들로 하여금 그 감동을 혜소해나가는 과정을 거치게 함으로써 탐구능력
을 향상시키는 효과를 가져왔다고 할 수 있다.

일곱째, 통계반의 경우 과학 관련 태도의 4개 범주 모두 수업처치 전·후
에 변화는 없었다. 그런데만, 발전학습 수업 전략을 적용한 실험반의 경우 ‘과
학에 대한 태도’와 ‘과학과목에 대한 태도’의 범주에서는 통계적으로 유의미한
차이가 있었다. 이는 수업 방식의 차이에서 오는 것으로 발전학습 수업 전략
이 학생들의 선개념을 파악하고 이를 토대로 인지감동을 일으킴으로써 과학
교과에 대한 학생들의 흥미를 유발시키고 과학에 대한 태도 변화에 긍정적으
로 영향을 미쳤다고 하겠다.
참고 문헌

1. W. S. Cleveland; Graphs in scientific publications. ERIC ED 241 558 (1983)
5. J. T. Head & D. M. Moore; The effect of graphic format and cognitive Style on the recall of quantitative data. Paper Presented at the Annual Meeting of the Association for Educational Communications and Technology, Dallas, TX(ERIC Document Reproduction Service NO. ED 308 819)(1989)
9. 김용호; 인지발달 수준에 따라 국민학교 교과서에 제시된 그래프의 이해도

12. 배덕진; 중학생의 그래프 능력과 논리적 사고력 및 과학 탐구 능력의 관계, 교원대학교 교육대학원 석사학위논문 (1999)

18. J. Clement; *The concept of variation and misconceptions in Cartesian graphing* (Paper No. 175). University of Massachusetts, Scientific
Reasoning Research Institute (1988)

26. 김경린 역; 인지 심리학, 중앙적성출판사 (1995)

31. 이정한; 함수 개념의 표현에 관한 연구, 강원대학교 석사학위 논문 (1997)

33. 김효남; 초등 과학교수법 및 평가, 한국교원대학교 (1990)

34. 최돈형 역; 과학과 학습 모형의 이론과 실제. 교육과학사 (1989)

37. 김태선, 고등학생들의 과학관련 그래프 해석 능력, 한국교원대학교 교육대학원 석사학위논문 (1998)

43. W. M. Roth & L. C. MscGinn; Graphing: cognitive ability or practice?. *Science Education*, 81, pp.91–106 (1997)

45. 방재음을, 초등학교 자연과 학습에서 STS적 접근 방법의 적용 효과, 교원대학교 석사학위 논문 (1994)
The Effects of Instructional Strategy Based on the Learning Discovery Method on Science Teaching of the Korean Middle School Students' of Graph

Oh, In-Sil

Major in Physics Education

Educational Graduate School of Cheju National University

Cheju, Korea

Supervised by Professor Kang, Jeong-Woo

To investigate the effects of the developed instruction strategy based on learning discovery method the achievement of graphic ability, the enhancement of process skills and the foster of attitude related to science, the pre-/post-test is done in the scope of the first year students of middle school after class intervention.

※ A thesis submitted to the Committee of the Graduate School of Education, Cheju National University in partial fulfillment of the requirements for the degree of Master of Education in August, 2000.
From the examination of graphing ability through the objective test, we could know that the experimental group, who participates in the test of seeking of coordinate value (Given a graph and a value for X(or Y) the corresponding value for Y(or X)), interpolation(Given a graph and a situation requiring interpolation the students will identify trends displayed in a set of data) is statistically meaningful and the instructional strategy based on the learning discovery method is more effective in teaching of graph.

Also through the analysis of the subjective test-items of those reasons we could find that students have various misconceptions, and in teaching of seeking coordinate value, seeking a corresponding variable, extrapolation, describing relationship, translating between a graph and an appropriate description, interrelating graphs based on the discovery method is more efficient. And after class intervention, students' process skills are improved much more, and their attitudes related to science are more positive than the control group.

In conclusion, the use of instructional strategy based on the discovery method makes middle school students have concern for and interests in science. Therefore the instructional strategy based on discovery method can be regarded as more effective teaching method in fostering attitudes related to science and in enhancing process skills than traditional ones.
부록 1.

본 검사는 학교 성적과 아무 관계도 없습니다. 조사 자료는 공개되지 않으며, 연구 목적 이외에는 사용하지 않을 것입니다. 각 문항을 읽고 물음에 맞는 답을 하나만 선택하시기 바랍니다.

()중학교 제 1학년 ()반 ()번 이름()

1. 시간이 지남에 따른 식물의 키를 조사한 다음의 자료를 그래프로 나타내라고 한다. 다음 중 그래프의 측에 눈금을 가장 잘 표시한 것은 ?()

<table>
<thead>
<tr>
<th>식물의 키(cm)</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>시간(일)</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>14</td>
<td>17</td>
</tr>
</tbody>
</table>

위의 문제의 답을 고른 이유를 간단히 쓰시오.
2. 질량이 다른 물을 끓여 100℃가 되는데 걸리는 시간을 측정하였다. 물의 양이 많아짐에 따라 100℃가 되는데 걸리는 시간이 길어지는데, 이 결과를 나타내기에 가장 적합한 좌표축은?

위의 문제의 답을 고통 이유를 간단히 쓰시오.

※ 원쪽 그래프를 이용하여 다음 문제를 풀으라. [3-4]

3. 점 b의 오버본 좌표값은 (?)
 ① (20, 21) ② (18, 21) ③ (19, 25)
 ④ (25, 22) ⑤ (21, 20)

위의 문제의 답을 고통 이유를 간단히 쓰시오.

4. 좌표값 (12, 15)는 a ~ e 중 어느 것인가 ?()
 ① a ② b ③ c ④ d ⑤ e

위의 문제의 답을 고통 이유를 간단히 쓰시오.
5. 실험을 해서 나온 값을 그래프 위에 점들로 나타내고 나서, 그래프의 가로축과 세로축의 관계를 선으로 나타내라고 하는데 그것을 가장 잘 나타내는 것은?

위의 문제의 답을 고통 이유를 간단히 쓰시오.

6. 이리한 고무공이 튀어 올라온 높이를 측정하여 그 결과를 아래의 표와 같이 정리하였다. 이 결과를 가장 잘 나타낸 그래프는?

<table>
<thead>
<tr>
<th>떨어트린 높이(cm)</th>
<th>20</th>
<th>40</th>
<th>50</th>
<th>65</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>튀어 올라온 높이(cm)</td>
<td>8</td>
<td>17</td>
<td>22</td>
<td>27</td>
<td>36</td>
<td>40</td>
</tr>
</tbody>
</table>
위의 문제의 답을 고른 이유를 간단히 쓰시오.

※ 1km의 거리를 차로 운전하는데 소모되는 휘발유의 양을 측정하여 그 결과를 원쪽의 그래프로 나타내었다. [7~8]

7. 60km/h의 속력으로 1km를 운전하는데 사용된 연료의 양은 ? ()
 ① 0.05 L ② 0.06 L ③ 0.07 L ④ 0.08 L ⑤ 0.09L

위의 문제의 답을 고른 이유를 간단히 쓰시오.

8. 자동차가 50km/h의 속력으로 달었다면, 차가 사용한 연료의 양은 어느 정도 될 것이라고 생각되는가 ? ()
 ① 0.08 L ② 0.07 L ③ 0.06 L ④ 0.05 L ⑤ 0.04 L

위의 문제의 답을 고른 이유를 간단히 쓰시오.
9. 자동차가 110km/h의 속력으로 달렸다면, 차가 사용한 연료의 양은 어느 정도 될 것인가 생각되는가?
()
① 0.08 L ② 0.09 L ③ 0.10 L ④ 0.11 L ⑤ 0.12 L

위의 문제의 답을 고른 이유를 간단히 쓰시오.

10. 왼쪽의 그래프는 화분의 크기에 따른 해바라기의 키에 대한 그래프이다. 이 그래프로 알 수 있는 사실은?

식물의 키

화분의 크기
부록 2. 힘과 운동 단원의 지도계획(총 27시간)

<table>
<thead>
<tr>
<th>중단원명</th>
<th>주 제</th>
<th>시간배당</th>
<th>학습 내용</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>시간</td>
<td>차시</td>
<td></td>
</tr>
<tr>
<td>(1) 힘</td>
<td></td>
<td>1</td>
<td>1</td>
<td>• 힘의 작용하는 예</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 힘과 물체의 변형</td>
</tr>
<tr>
<td>(2) 여러 가지 힘</td>
<td></td>
<td>2</td>
<td>2</td>
<td>• 반성력</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 마찰력</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>• 자기력</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 전기력</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 중력</td>
</tr>
<tr>
<td>(3) 힘의 작용</td>
<td></td>
<td>1</td>
<td>4</td>
<td>• 힘의 작용</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 두 물체 사이의 힘</td>
</tr>
<tr>
<td>(4) 힘의 크기와 방향</td>
<td></td>
<td>5-6</td>
<td></td>
<td>• 힘의 크기</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td>• 힘의 표시</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-9</td>
<td></td>
<td>• 무게와 질량</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>실험 IV-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>실험 IV-2</td>
</tr>
<tr>
<td>(5) 두 힘의 합성</td>
<td></td>
<td>10</td>
<td></td>
<td>• 같은 방향으로 작용하는 두 힘</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td>• 반대 방향으로 작용하는 두 힘</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12-13</td>
<td></td>
<td>• 나란히 작게 작용하는 두 힘</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>실험 IV-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td>실험 IV-4</td>
</tr>
<tr>
<td>(6) 두 힘의 평형</td>
<td></td>
<td>14-15</td>
<td></td>
<td>• 두 힘의 평형</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 연습 문제풀이</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>실험 IV-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>형성 평가</td>
</tr>
<tr>
<td>(1) 물체의 운동</td>
<td></td>
<td>16</td>
<td></td>
<td>• 물체의 위치와 이동거리</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td>• 물체의 속력</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td>• 평균 속력과 순간 속력</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td>실험 IV-6</td>
</tr>
<tr>
<td>(2) 힘을 받지 않는 물체의 운동</td>
<td></td>
<td>19</td>
<td></td>
<td>• 운동</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td>• 속력이 변하지 않는 직선운동</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>실험 IV-6</td>
</tr>
<tr>
<td>(3) 힘을 받는 물체의 운동</td>
<td></td>
<td>21</td>
<td></td>
<td>• 힘을 받은 물체의 운동</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22-23</td>
<td></td>
<td>• 실점한 힘을 받는 물체의 운동</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td></td>
<td>• 힘을 받은 물체의 운동</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>실험 IV-7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>실험 IV-8</td>
</tr>
<tr>
<td>(4) 여러 가지 운동</td>
<td></td>
<td>25</td>
<td></td>
<td>• 낙하운동</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td>• 진자의 운동</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td></td>
<td>• 원운동</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>실험 IV-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>실험 IV-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>형성 평가</td>
</tr>
</tbody>
</table>

※는 연구자가 수업처치를 한 시간, 밑줄은 그래프와 관련있는 내용
부록 3. 본 연구에서 통제반에 무입한 전통적 학습지도안

<table>
<thead>
<tr>
<th>단원</th>
<th>IV. 힘과 운동</th>
<th>차시</th>
<th>졸수</th>
</tr>
</thead>
<tbody>
<tr>
<td>주제</td>
<td>힘의 크기</td>
<td>일시</td>
<td>233-236</td>
</tr>
</tbody>
</table>

학습 목표
- 물체에 작용하는 힘의 크기는 용수철의 길이 변화로 알 수 있다.
- 실험 결과를 그래프로 그리고 해석하는 방법을 한다.

학습 자료
- 용수철, 질량이 같은 수 5개, 모눈종이, 스VED, 50cm 자

교사 활동
- 물체에 작용하는 힘의 크기가 다르다는 것을 어떻게 알 수 있나?
- 용수철이 많이 놓여나게 하거나 무거운 물체를 들어올리려면 다른 힘이 필요하다.
- 이 때 필요한 힘의 크기가 정확히 얼마인가를 어떻게 알 수 있나?

학생 활동
- 물체의 모양이 변하거나 운동 상태가 변하거나 운동상태가 변하는 정도가 다른 것으로 한다.
- 경청
- 힘의 작용하고 있는 물체의 변형 정도로 알 수 있다.

시간
- 생활 속의 경험을 이끌어낸다.

지도상의 유의점
- 1N=0.1kg
- 용수철 질량의 탄성

전개
- 힘의 크기를 측정하는 방법?
- 힘의 단위?
- 1N은 약 0.1kg의 물체를 천천히 들어올리는데 드는 힘의 크기이며, 또한 약 0.1kg의 물체에 작용하는 중력의 크기임을 설명한다.
- 힘의 크기를 측정하는데 용수철이 쓰는 이유를 설명한다.
<table>
<thead>
<tr>
<th>부분 2. 계속</th>
</tr>
</thead>
<tbody>
<tr>
<td>전개</td>
</tr>
<tr>
<td>• 이번 원리를 이용하여 추에 작용하는 힘의 크기를 측정하는 [실험 IV-1]을 설명하고 실험을 하도록 한다.</td>
</tr>
<tr>
<td>• 용수철저울의 용도는?</td>
</tr>
<tr>
<td>• 실험내용에 대해 주의깊게 듣고 실험안내서대로 실험에 임한다.</td>
</tr>
<tr>
<td>• 용수철 저울은 물체에 작용한 힘의 크기와 무게 측정에 사용한다.</td>
</tr>
<tr>
<td>정리 및 평가</td>
</tr>
<tr>
<td>• 물체에 작용한 힘의 크기는 어떻게 측정할 수 있는가?</td>
</tr>
<tr>
<td>• 용수철에 추의 개수를 증가시키면 용수철이 늘어나는 길이를 정의하자.</td>
</tr>
<tr>
<td>• 길이가 10cm이면 용수철에 추를 하나 매달면 용수철 전체 길이가 12cm가 된다. 추 3개를 매달면 용수철 전체 길이와 늘어난 길이는?</td>
</tr>
<tr>
<td>• 용수철이 늘어난 정도로 측정할 수 있다.</td>
</tr>
<tr>
<td>• 용수철에 작용한 힘의 크기가 2배, 3배로 늘어나 길이도 처음보다 2배, 3배로 늘어난다.</td>
</tr>
<tr>
<td>• 6cm</td>
</tr>
<tr>
<td>• 물체에 작용한 힘을 표시하는 방법에 대하여 공부할 것임을 예고한다.</td>
</tr>
</tbody>
</table>

| • 용수철 저울의 탄성 한계 내에서 작용한 힘과 늘어난 길이가 비례한다 |

30분

8분

2분
감사의 글

본 연구를 수행하는 동안 꾸밈없는 지도와 격려를 해주신 강정우 지도교수님에 전심으로 감사를 드립니다. 그리고 바쁘신 중에도 논문심사를 맡아 심사하시면서 조언을 해주신 김규용 교수님, 김두철 교수님께 감사를 드립니다. 또한 학위 과정 동안 조언과 격려를 아끼지 않으신 강영봉 교수님, 강동식 교수님께도 감사의 말씀을 드립니다.

본 연구의 계획에서부터 완성될 때까지 자기 일처럼 걱정하고 도와준 제주대학교 교육대학원 물리교육전공 동기 선생님들께도 감사의 말씀을 드립니다.

교단 생활과 연구를 병행해야만 하는 처지를 해아래, 대학원 과정 동안 내내 성원을 보내주신 교장 선생님 및 동료 선생님들께도 감사의 말씀을 드립니다.

끝으로 학위 과정 동안 회망과 용기를 부드러 주신 양가 부모님께 감사를 드리고, 가정에 소홀히 할 수밖에 없음을 이해하고 끝가지 끝바라지 해준 남편과 딸 수현이에게도 고마움을 전합니다.

2000년 8월

오인실

- 85 -