HIGHT Algorithm Specification

2009.07

한국인터넷진흥원
Korea Internet & Security Agency
1. HIGHT

The HIGHT algorithm is a symmetric block cipher that can process data blocks of 64 bits, using a cipher key with length of 128 bits.

2. HIGHT encryption

The encryption operation is as shown in Figure 1. The transformation of a 64-bit block P into a 64-bit block C is defined as follows:

(1) $P = P_7 \parallel P_6 \parallel P_5 \parallel P_4 \parallel P_3 \parallel P_2 \parallel P_1 \parallel P_0$ \hspace{1cm} (P_i are plaintext bytes)

(2) $X_{0,0} = P_0 \oplus WK_0$, \hspace{1cm} $X_{0,1} = P_1$, \hspace{1cm} $X_{0,2} = P_2 \oplus WK_1$, \hspace{1cm} $X_{0,3} = P_3$, \hspace{1cm} $X_{0,4} = P_4 \oplus WK_2$, \hspace{1cm} $X_{0,5} = P_5$, \hspace{1cm} $X_{0,6} = P_6 \oplus WK_3$, \hspace{1cm} $X_{0,7} = P_7$.

(3) for $i = 0$ to 30:

$X_{i+1,0} = X_{i,7} \oplus (F_0(X_{i,6}) \oplus SK_{4i+3})$, \hspace{1cm} $X_{i+1,1} = X_{i,0}$, \hspace{1cm} $X_{i+1,2} = X_{i,1} \oplus (F_1(X_{i,0}) \oplus SK_{4i})$, \hspace{1cm} $X_{i+1,3} = X_{i,2}$, \hspace{1cm} $X_{i+1,4} = X_{i,3} \oplus (F_0(X_{i,2}) \oplus SK_{4i+1})$, \hspace{1cm} $X_{i+1,5} = X_{i,4}$, \hspace{1cm} $X_{i+1,6} = X_{i,5} \oplus (F_1(X_{i,4}) \oplus SK_{4i+2})$, \hspace{1cm} $X_{i+1,7} = X_{i,6}$.

for $i = 31$:

$X_{i+1,0} = X_{i,0}$, \hspace{1cm} $X_{i+1,1} = X_{i,1} \oplus (F_1(X_{i,0}) \oplus SK_{124})$, \hspace{1cm} $X_{i+1,2} = X_{i,2}$, \hspace{1cm} $X_{i+1,3} = X_{i,3} \oplus (F_0(X_{i,2}) \oplus SK_{125})$, \hspace{1cm} $X_{i+1,4} = X_{i,4}$, \hspace{1cm} $X_{i+1,5} = X_{i,5} \oplus (F_1(X_{i,4}) \oplus SK_{126})$, \hspace{1cm} $X_{i+1,6} = X_{i,6}$, \hspace{1cm} $X_{i+1,7} = X_{i,7} \oplus (F_0(X_{i,6}) \oplus SK_{127})$.

(4) $C_0 = X_{32,0} \oplus WK_4$, \hspace{1cm} $C_1 = X_{32,1}$,

$C_2 = X_{32,2} \oplus WK_5$, \hspace{1cm} $C_3 = X_{32,3}$,

$C_4 = X_{32,4} \oplus WK_6$, \hspace{1cm} $C_5 = X_{32,5}$,

$C_6 = X_{32,6} \oplus WK_7$, \hspace{1cm} $C_7 = X_{32,7}$.

(5) $C = C_7 \parallel C_6 \parallel C_5 \parallel C_4 \parallel C_3 \parallel C_2 \parallel C_1 \parallel C_0$ \hspace{1cm} (C_i are ciphertext bytes)
Figure 1. Encryption procedure of HIGHT

3. HIGHT decryption

The decryption operation is identical in operation to encryption apart from the following two modifications.

(1) All \oplus operations are replaced by \oplus operations except for the \oplus operations connecting SK_i and outputs of F_0.

(2) The order in which the keys WK_i and SK_i are applied is reversed.
4. **HIGHT functions**

4.1 **The functions F_0 and F_1**

The HIGHT algorithm uses two functions, namely, F_0 and F_1 which are now defined.

4.2 **Function F_0**

The F_0 function is used for encryption and decryption. The function F_0 is defined as follows:

$$F_0(x) = (x<<<1) \oplus (x<<<2) \oplus (x<<<7)$$

4.3 **Function F_1**

The F_1 function is used for encryption and decryption. The function F_1 is defined as follows:

$$F_1(x) = (x<<<3) \oplus (x<<<4) \oplus (x<<<6)$$

5. **HIGHT key schedule**

The key scheduling part accepts a 128-bit master key $K = K_{15} \parallel K_{14} \parallel \cdots \parallel K_0$ and yields 8 whitening key bytes WK_i and 128 subkey bytes SK_i as shown below.

The generation of whitening keys is defined as follows.

for $i = 0, 1, 2, 3$:

$$WK_i = K_{i+12}$$

for $i = 4, 5, 6, 7$:

$$WK_i = K_{i-4}$$

The 128 subkeys are used for encryption and decryption, 4 subkeys per round. The generation of subkeys is defined as follows.

(1) $s_0 = 0, s_1 = 1, s_2 = 0, s_3 = 1, s_4 = 0, s_5 = 1$

$$\delta_0 = s_0 \parallel s_5 \parallel s_4 \parallel s_3 \parallel s_2 \parallel s_1 \parallel s_0$$

(2) for $i = 1$ to 127:

$$s_{i+6} = s_{i+2} \oplus s_i$$

$$\delta_i = s_{i+6} \parallel s_{i+5} \parallel s_{i+4} \parallel s_{i+3} \parallel s_{i+2} \parallel s_{i+1} \parallel s_i$$

(3) for $i = 0$ to 7:

for $j = 0$ to 7:

$$SK_{16 \cdot i + j} = K_{j-i \mod 8} \oplus \delta_{16 \cdot i + j}$$

for $j = 0$ to 7:

$$SK_{16 \cdot i + j+8} = K_{(j-i \mod 8)+8} \oplus \delta_{16 \cdot i + j+8}$$