
CS193P - Lecture 4
iPhone Application Development

Building an Application
Model, View, Controller
Nib Files
Controls and Target-Action



Announcements
• Assignment 2

■ Due tomorrow

• Class list:
■ cs193p-auditors@lists.stanford.edu

• WWDC09 Student Scholarship
■ Apply today
■ Due tomorrow!
■ http://developer.apple.com/wwdc/students/

mailto:cs193p-auditors@lists.stanford.edu
mailto:cs193p-auditors@lists.stanford.edu
http://developer.apple.com/wwdc/students/
http://developer.apple.com/wwdc/students/


Today’s Topics
• Application Lifecycle
• Model, View, Controller design
• Interface Builder and Nib Files
• Controls and Target-Action
• HelloPoly demo



Review



Memory Management
• Alloc/Init

■ -alloc assigns memory; -init sets up the object
■ Override -init, not -alloc

• Retain/Release
■ Increment and decrement retainCount
■ When retainCount is 0, object is deallocated
■ Don’t call -dealloc!

• Autorelease
■ *MAGIC*
■ Object is released next time through RunLoop



Setters, Getters, and Properties
• Setters and Getters have a standard format:

- (int)age;
- (void)setAge:(int)age;

• Properties allow access to setters and getters through dot 
syntax:

@property age;

int theAge = person.age;
person.age = 21;



Building an Application



Anatomy of an Application
• Compiled code

■ Your code
■ Frameworks

• Nib files
■ UI elements and other objects
■ Details about object relationships

• Resources (images, sounds, strings, etc)

• Info.plist file (application configuration)



App Lifecycle
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UIKit Framework
• Provides standard interface elements
• UIKit and you

■ Don’t fight the frameworks
■ Understand the designs and how you fit into them



UIKit Framework
• Starts your application
• Every application has a single instance of UIApplication

■ Singleton design pattern

@interface UIApplication
+ (UIApplication *)sharedApplication
@end

■ Orchestrates the lifecycle of an application
■ Dispatches events
■ Manages status bar, application icon badge
■ Rarely subclassed

■ Uses delegation instead



Delegation
• Control passed to delegate objects to perform application-

specific behavior
• Avoids need to subclass complex objects
• Many UIKit classes use delegates

■ UIApplication
■ UITableView
■ UITextField



• Xcode project templates have one set up by default
• Object you provide that participates in application lifecycle
• Can implement various methods which UIApplication will call 
• Examples:

- (void)applicationDidReceiveMemoryWarning:(UIApplication *)application;

- (void)applicationWillResignActive:(UIApplication *)application;
- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url;

- (void)applicationDidFinishLaunching:(UIApplication *)application;
- (void)applicationWillTerminate:(UIApplication *)application;

UIApplicationDelegate



Info.plist file
• Property List (often XML), describing your application

■ Icon appearance
■ Status bar style (default, black, hidden)
■ Orientation
■ Uses Wifi networking
■ System Requirements

• Can edit most properties in Xcode
■ Project > Edit Active Target “Foo” menu item
■ On the properties tab



Model, View, Controller

If you take nothing else away from this class...



Model, View, Controller

Model View

Controller



Model
• Manages the app data and state

• Not concerned with UI or presentation

• Often persists somewhere

• Same model should be reusable, unchanged in different 
interfaces



View
• Present the Model to the user in an appropriate interface

• Allows user to manipulate data

• Does not store any data
■ (except to cache state)

• Easily reusable & configurable to display different data



Controller
• Intermediary between Model & View

• Updates the view when the model changes

• Updates the model when the user manipulates the view

• Typically where the app logic lives.



Model, View, Controller

Model View

Controller
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Model, View, Controller
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Interface Builder and Nibs



Nib files



Nib Files - Design time
• Helps you design the ‘V’ in MVC:

■ layout user interface elements

■ add controller objects

■ Connect the controller and UI



Nib Loading
• At runtime, objects are unarchived

■ Values/settings in Interface Builder are restored
■ Ensures all outlets and actions are connected
■ Order of unarchiving is not defined

• If loading the nib automatically creates objects and order is 
undefined, how do I customize?
■ For example, to displaying initial state



-awakeFromNib
• Control point to implement any additional logic after nib 

loading
• Default empty implementation on NSObject
• You often implement it in your controller class

■ e.g. to restore previously saved application state

• Guaranteed everything has been unarchived from nib, and all 
connections are made before -awakeFromNib is called

- (void)awakeFromNib {
    // do customization here

}



Controls and Target-Action



Controls - Events
• View objects that allows users to initiate some type of action
• Respond to variety of events

■ Touch events
■ touchDown
■ touchDragged  (entered, exited, drag inside, drag outside)
■ touchUp (inside, outside)

■ Value changed
■ Editing events

■ editing began
■ editing changed
■ editing ended



Controls - Target/Action
• When event occurs, action is invoked on target object

UIControlEventTouchUpInside

-(void)decrease

target:      myObject
action:      @selector(decrease)
event:       UIControlEventTouchUpInside

Controller



Action Methods
• 3 different flavors of action method selector types

- (void)actionMethod;
- (void)actionMethod:(id)sender;
- (void)actionMethod:(id)sender withEvent:(UIEvent *)event;

• UIEvent contains details about the event that took place



Action Method Variations

- (void)increase {
    // bump the number of sides of the polygon up
    polygon.numberOfSides += 1;
}

// for example, if control is a slider...
- (void)adjustNumberOfSides:(id)sender {
    polygon.numberOfSides = [sender value];
}

• Simple no-argument selector

• Single argument selector - control is ‘sender’



Action Method Variations

- (void)adjustNumberOfSides:(id)sender 
        withEvent:(UIEvent *)event 
{
    // could inspect event object if you needed to
}

• Two-arguments in selector (sender & event)



Multiple target-actions
• Controls can trigger multiple actions on different targets in 

response to the same event

• Different than Cocoa on the desktop where only one target-
action is supported

• Different events can be setup in IB



Manual Target-Action

@interface UIControl
- (void)addTarget:(id)target action:(SEL)action 
        forControlEvents:(UIControlEvents)controlEvents;

- (void)removeTarget:(id)target action:(SEL)action 
        forControlEvents:(UIControlEvents)controlEvents;
@end

• Same information IB would use
• API and UIControlEvents found in UIControl.h
• UIControlEvents is a bitmask



HelloPoly Demo



HelloPoly
• This week’s assignment is a full MVC application
• Next week’s assignment will flesh it out further
• It is not designed to be a complex application

■ rather, provide a series of small studies of the fundamentals of a 
Cocoa Touch application



Model, View, Controller

Model View

Controller

PolygonShape

Controller

UIKit controls
PolygonView (next week)

HelloPoly
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Nib Files - HelloPoly example
• HelloPoly has all objects (model, view and controller) contained 

in the same MainWindow.xib file
■ More common to have UI broken up into several nib files

• UIKit provides a variety of controllers
■ Evan will be introducing them with the Presence projects



Questions?


