CS193P - Lecture 4

iIPhone Application Development

Building an Application
Model, View, Controller
Nib Files

Controls and Target-Action

Announcements

* Assignment 2
* Due tomorrow

* Class list:
- ¢5193p-auditors@lists.stanford.edu

« WWDCQ09 Student Scholarship
- Apply today
* Due tomorrow!
- http://developer.apple.com/wwdc/students/

mailto:cs193p-auditors@lists.stanford.edu
mailto:cs193p-auditors@lists.stanford.edu
http://developer.apple.com/wwdc/students/
http://developer.apple.com/wwdc/students/

Today’s Topics

» Application Lifecycle

* Model, View, Controller design
* Interface Builder and Nib Files
* Controls and Target-Action

* HelloPoly demo

Memory Management

* Alloc/Init
- -alloc assigns memory; -init sets up the object

= Qverride -init, not -alloc

* Retain/Release
» Increment and decrement retainCount

- When retainCount is 0, object is deallocated
- Don't call -dealloc!

e Autorelease
« *MAGIC*

- Object is released next time through RunLoop

Setters, Getters, and Properties

* Setters and Getters have a standard format:
- (1nt)age;
- (void)setAge:(int)age;

* Properties allow access to setters and getters through dot
syntax:

@property age;

1nt theAge = person.age;

person.age = 21;

Building an Application

Anatomy of an Application

* Compiled code
= Your code

« Frameworks

* Nib files
- Ul elements and other objects
- Details about object relationships

* Resources (images, sounds, strings, etc)

* Info.plist file (application configuration)

App Lifecycle

UIKit Framework

* Provides standard interface elements

» UIKit and you
- Don't fight the frameworks

- Understand the designs and how you fit into them

UIKit Framework

» Starts your application

* Every application has a single instance of UlApplication
- Singleton design pattern

@interface UIApplication
+ (UIApplication *)sharedApplication
@end

- Orchestrates the lifecycle of an application
- Dispatches events
- Manages status bar, application icon badge
- Rarely subclassed

- Uses delegation instead

Delegation

 Control passed to delegate objects to perform application-
specific behavior

* Avoids need to subclass complex objects

» Many UIKit classes use delegates
- UlApplication

- UlTableView
" U TeXtF|e|d

UlApplicationDelegate

» Xcode project templates have one set up
* Object you provide that participates in ap

oy default

olication lifecycle

» Can implement various methods which UlApplication will call

* Examples:

- (void)applicationDidFinishLaunching:(UIApplication *)application;
- (void)applicationWillTerminate: (UIApplication *)application;

- (void)applicationWillResignActive:(UIApplication *)application;
- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url;

- (void)applicationDidReceiveMemoryWarning:(UIApplication *)application;

Info.plist file

* Property List (often XML), describing your application
= [con appearance

- Status bar style (default, black, hidden)
= Orientation

- Uses Wifi networking

= System Requirements

* Can edit most properties in Xcode
 Project > Edit Active Target “Foo” menu item

- On the properties tab

Model, View, Controller

If you take nothing else away from this class...

Model, View, Controller

Model

* Manages the app data and state
* Not concerned with Ul or presentation
 Often persists somewhere

» Same model should be reusable, unchanged in different
interfaces

View

* Present the Model to the user in an appropriate interface
* Allows user to manipulate data

* Does not store any data
- (except to cache state)

» Easily reusable & configurable to display different data

Controller

* Intermediary between Model & View
» Updates the view when the model changes
» Updates the model when the user manipulates the view

* Typically where the app logic lives.

Model, View, Controller

Model, View, Controller

. Controller

actions

00l Larri

L 4
L 4
L 4
L 4
L 4
4
4
4
L 4
L 4
L 4
4
4
4
4
.0
L 4

Model Object

Interface Builder and Nibs

Nib files

Nib Files - Design time

* Helps you design the 'V'in MVC:
- layout user interface elements

- add controller objects

« Connect the controller and Ul

Nib Loading

* At runtime, objects are unarchived
- Values/settings in Interface Builder are restored

« Ensures all outlets and actions are connected
- Order of unarchiving is not defined

* If loading the nib automatically creates objects and order is
undefined, how do | customize?

- For example, to displaying initial state

-awakeFromNib

» Control point to implement any additional logic after nib
oading

* Default empty implementation on NSObject

* You often implement it in your controller class
= e.g. to restore previously saved application state

* Guaranteed everything has been unarchived from nib, and all
connections are made before -awakeFromNib is called

- (void)awakeFromNib {
// do customization here

Controls and Target-Action

Controls - Events

* View objects that allows users to initiate some type of action
* Respond to variety of events
- Touch events
= touchDown
- touchDragged (entered, exited, drag inside, drag outside)
 touchUp (inside, outside)

- Value changed
- Editing events
- editing began
- editing changed

- editing ended

Controls - Target/Action

* When event occurs, action is invoked on target object

target: myObject
action: @selector(decrease)
event: UIControlEventTouchUpInside

UIControlEventTouchUpInside

Controller

-(void)decrease

Action Methods

» 3 different flavors of action method selector types

- (void)actionMet
- (void)actionMet
- (void)actionMet

N0d,

glo]e

glo]e

:(1d)sender;
:(1id)sender withEvent:(UIEvent *)event;

» UIEvent contains details about the event that took place

Action Method Variations

* Simple no-argument selector
- (void)increase {
// bump the number of sides of the polygon up
polygon.numberOfSides += 1;

¥

* Single argument selector - control is ‘sender’

// for example, 1f control 1s a slider...
- (void)adjustNumberOfSides:(id)sender {

polygon.numberOfSides = [sender value];

Action Method Variations

» Two-arguments in selector (sender & event)

- (void)adjustNumberOfSides: (id)sender
withEvent: (UIEvent *)event

// could inspect event object 1f you needed to

Multiple target-actions

» Controls can trigger multiple actions on different targets in
response to the same event

» Different than Cocoa on the desktop where only one target-
action is supported

* Different events can be setup in IB

Manual Target-Action

 Same information IB would use
* APl and UlControlEvents found in UlControl.h
 UlControlEvents is a bitmask

@interface UIControl

- (void)addTarget:(1d)target action:(SEL)action
forControlEvents:(UIControlEvents)controlEvents;

- (void)removeTarget:(1d)target action:(SEL)action
forControlEvents:(UIControlEvents)controlEvents;

@end

HelloPoly Demo

HelloPoly

* This week’s assignment is a full MVC application
* Next week’s assignment will flesh it out further

* [t is not designed to be a complex application

= rather, provide a series of small studies of the fundamentals of a
Cocoa Touch application

Model, View, Controller
HelloPoly

Controller

PolygonShape UIKit controls
PolygonView (next week)

Model, View, Controller

HelloPoly
‘ Controller

numberOfSidesLabel

increaseButton
decreaseButton

polygonShape

increase
decrease

PolygonShape

Nib Files - HelloPoly example

* HelloPoly has all objects (model, view and controller) contained
in the same MainWindow.xib file

- More common to have Ul broken up into several nib files

» UIKit provides a variety of controllers
- Evan will be introducing them with the Presence projects

Questions?

