유전자 알고리즘 (Genetic Algorithm)

[목 차]

- Concept of Genetic Algorithm
- Terminology
- Genetic Operator
- Examples of Simple Genetic Algorithms
- Application for GA
Principal Heuristic Algorithms

- **Genetic Algorithms (Holland – 1975)**: Today’s issue
 - Inspired by genetics and natural selection

- **Simulated Annealing (Kirkpatrick – 1983)**
 - Inspired by molecular dynamics – energy minimization

- **Particle Swarm Optimization (Eberhart and Kennedy - 1995)**
 - Inspired by the social behavior of swarms of insects or flocks of birds

These techniques all use a combination of randomness and heuristic “rules” to guide the search for global maxima or minima
What is a Heuristic?

- A Heuristic is simply a rule of thumb that hopefully will find a good answer.

- Why use a Heuristic?
 - Heuristics are typically used to solve complex (large, nonlinear, nonconvex (ie. contain many local minima)) multivariate combinatorial optimization problems that are difficult to solve to optimality.
 - Unlike gradient-based methods in a convex design space, heuristics are NOT guaranteed to find the true global optimal solution in a single objective problem, but should find many good solutions (the mathematician's answer vs. the engineer's answer)
 - Heuristics are good at dealing with local optima without getting stuck in them while searching for the global optimum.
1) Concept of Genetic Algorithm
Concept of Genetic Algorithm (1)

- Genetic Algorithm
 - ✓ Biological evolution and genetics base
 - ✓ Suboptimal genotype individual is fit well in nature, so it can produce good offspring
 - ✓ Unlike traditional optimization algorithms, it does not use gradient
 - ✓ By using binary combination of individuals (indviduals) or chromosomes (population), selection process is used

- Genetic Algorithm's objective
 - Large scale combinational optimization problem
 - Limited conditions in complex problems

Holland (1975) "Adaptation in Natural and Artificial Systems"
Goldberg & Santani (1989) : GA's structural design application
Concept of Genetic Algorithm (2)

- Genetic Algorithm의 특징 및 장점
 - 일반적인 공학적인 최적화 문제의 경우 그 현상이 비선형적인 거동을 보이는 경우가 많기 때문에 전통적인 함수의 구배를 이용하는 탐색기법에서는 Local Optimum에 도달하는 경우가 많이 존재함
 - Genetic Algorithm의 경우, 구배정보를 이용하지 않으며 주어진 설계 공간 전역에 대한 탐색을 수행하기 때문에 Global Optimum을 도출할 수 있는 확률이 구배법에 비해 많으며 초기치에 의존하는 경우가 없음
 - 특히 최적해는 알지 못하지만 평가하는 할 수 있는 Black Box 형태의 공학적 문제에서는 대단히 유용하게 적용될 수 있다.
 - Ex. Maximize \(F(x) = -\cos(x) \cdot \cos(x/20) \)

\[
\begin{align*}
\text{GA Results} \\
\text{Evaluation Count:} & \quad 560 \\
\text{Best Ref. Val} & \quad 0.987719237804 \\
X & \quad 3.133696794510
\end{align*}
\]

\[
\begin{align*}
\text{GBM Results} \\
\text{Initial Point(12.)} & \quad \text{Function Call} \quad 22 \\
F(x) = 0.891295 & \quad \text{Initial Point(-4.)} \\
X = 9.39938 & \quad F(x) = 0.987719 \\
& \quad X = -3.13369
\end{align*}
\]
Concept of Genetic Algorithm (3)

- 분류

Evolutionary Algorithm (진화 알고리즘)
 - Genetic Algorithm (GA)
 - 가장 대중적으로 알려짐
 - Evolutionary Programming (EP)
 (GA+Data Structure)
 - Evolution Strategies
유전자좌(Locus) : 염색체 상에서 유전자의 위치
염색체(Chromosome) : 2진수로 표현된 String

유전자(Genes, Bit) : 2진수로 표현된 값
Decoding
Encoding

표현형(Phenotype)

Terminology

Solutions
Genetic Optimizer Terminology

1. 개체군 (Population)
 - 0101:1101:1101:0001
 - 1001:1001:1101:0001

2. 재생산 (Reproduction)
 - 0101:1101:1111:1011
 - 1001:1001:0001:0001

3. 교차 (Crossover)
 - 0101:1101:1111:1011
 - 1001:1001:0001:0001

3. 변이 (Mutation)
 - 0101:1101:1100:0000
 - 1000:0001

4. 적합도 판단 (Fitness Value)
 - 0101:1101:1100:0000

5. 세대 (Generation)
Procedure GA
Begin
 t→0
 initialize P(t)
 evaluate P(t)
 while (not termination condition) do
 recombine P(t) to yield C(t) // selection, crossover, mutation
 evaluate C(t)
 select P(t+1) from P(t) and C(t)
 t←t+1
 end
End
Encoding – Decoding

Genotype (유전자형) Phenotype (표현형)

Coded Domain

Biology

UGCAACCGU
(“DNA” blocks)

Expression

Sequencing

“Blue Eyes”

Design

10010011110
(chromosome)

Decoding

Encoding

Radius R = 2.57[m]
Decoding

- E.g. binary encoding of integers:

\[10100011 \rightarrow \text{Genotype (유전자형)} \]

\[(1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0) \]

\[128 + 0 + 32 + 0 + 0 + 0 + 2 + 1 = 163 \rightarrow \text{Phenotype (표현형)} \]
Binary Encoding Issues

- Number of bits dedicated to a particular design variable is very important.

- Resolution depends on:
 - upper and lower bounds x_{LB}, x_{UB}
 - number of bits

Example

$$\text{[G]}=\text{encode}(137.56,50,150,8)\quad G = 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$$

$$\text{[X]}=\text{decode}(G,50,150,8)\quad X = 137.4510$$

So $\Delta x = (150-50)/2^8 = 0.39$

Loss in precision !!!
Genetic Operator

- **GA에 적용되는 중요한 연산자**

연산자

<table>
<thead>
<tr>
<th>연산자</th>
<th>선택(Selection)</th>
<th>교차(Crossover)</th>
<th>변이(Mutation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>기능</td>
<td>-다음세대로 전달하기 위한 유전자의 선택</td>
<td>-선택된 염색체들을 조합, 다음세대의 염색체를 생성</td>
<td>-유전자를 일정한 확률로 변화시키는 조작</td>
</tr>
<tr>
<td>효과</td>
<td>-다음세대로 높은 적합도를 가지는 유전자의 특징을 전달</td>
<td>-수렴속도 가속화</td>
<td>-전역적 탐색효과의 극대화</td>
</tr>
<tr>
<td>전략</td>
<td>-적합도 비례전략</td>
<td>-단순 교차</td>
<td>-정적변이</td>
</tr>
<tr>
<td></td>
<td>-순위전략</td>
<td>-복수점 교차</td>
<td>-동적변이</td>
</tr>
<tr>
<td></td>
<td>-토너먼트 선택전략</td>
<td>-일점 교차</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-엘리트 보존 전략</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAESIT Center for Advanced e-System Integration Technology, Konkuk Univ.
Genetic Operator : Selection (1)

- 선택 (Selection)
 - Goal is to select parents for crossover
 - Should create a bias towards more fitness
 - Must preserve diversity in the population

1. 순위전략 (Selection according to RANKING)

- 적합도 (fitness) 의해 각 개체에 순위를 부여하여 그 순위에 의해 사전에 결정된 확률로 자손을 남김
 (Better ranking has a higher probability of being chosen)

- 적합도 와 순위에 의해 부여되는 확률이 차이

This scheme tends to favor the fittest individuals in a population more than the ranking-scheme, faster convergence, but can also be a disadvantage.
Genetic Operator : Selection (2)

2. 적합도비례전략 (Proportional to FITNESS Value Scheme)

- 기본 모델 (Classical Selection Model)
- 적합도에 비례하여 자손을 남김

(Better fitness value has a higher probability of being Chosen)

- 롤렛 (Roulette Model), 몬테카를로 모델 (Monte Carlo Model)

3. 엘리트 보존 전략

- 각 집단 중에서 가장 적합도가 높은 개체를 다음세대로 그대로 넘김
4. 토너먼트 선택전략(Tournament Selection)

- 임의의 수의 개체를 무작위 선택
(2 members of current population
Chosen randomly)
- 그 가운데 적합도가 높은 개체를
다음 세대로 넘김
(Dominant performer placed
intermediate population of
survivors)

```
Old Population  Fitness  Survivors  Fitness
101010110111  8        101010110111  8
100100001100  4        001000111110  6
001000111110  6
```

CAESIT Center for Advanced e-System Integration Technology, Konkuk Univ.
Genetic Operator : Crossover

- 교차(Crossover)-일반적인 임의탐색 기법과 구별되는 큰 특징

1. 단순교차(Simple Crossover)
 - 하나의 교차위치 설정, 그 전후로 부모의 유전자형 교환

 ![Simple Crossover Diagram]

2. 복수점교차(Multi-point Crossover)
 - 교차위치가 복수인 경우

 ![Multi-point Crossover Diagram]

3. 일정교차(Uniform Crossover)
 - 마스크를 사용하여 어느쪽의 유전자를 받아 들일지 결정

 가령 마스크의 비트가 ‘0’일 경우에는 그대로, ‘1’일 경우에는 두 부모의 유전자를 교환

 ![Uniform Crossover Diagram]
Genetic Operator : Mutation (1)

- 변이 (혹은 돌연변이, Mutation)
 - 유전자를 일정한 확률로 변화시키는 조작
 - 전역적 탐색효과의 극대화 (Maximize Global Search), 수렴 속도 가속 (Increase Convergence Rate)
 - 집단의 다양성 증대 (Increase Diversification of Population)

- Strategy
 1. 정적변이 -돌연변이의 확률을 일정하게 고정
 2. 동적변이 (Adaptive Mutation)
 - 돌연변이의 확률이 경우에 따라 변화
GAs versus Traditional Methods

Differ from traditional search/optimization methods:

- GAs search a population of points in parallel, not only a single point
- GAs use probabilistic transition rules, not deterministic ones
- GAs work on an encoding of the parameter set rather than the parameter set itself
- GAs do not require derivative information or other auxiliary knowledge - only the objective function and corresponding fitness levels influence search
References

* For Korean Students :
- 조성배 역, “GA의 기초이론, 공학응용 및 인공생명 – 유전자알고리즘”, 대청 컴퓨터월드, 1996년
2) Examples with Simple Genetic Algorithms
Examples with Simple Genetic Algorithms

- **Optimization Problem**

 \[
 \text{Maximize } f(x_1, x_2) = 21.5 + x_1 \sin(4\pi x_1) + x_2 \sin(20\pi x_2) \\
 \quad -3.0 \leq x_1 \leq 12.1 \\
 \quad 4.1 \leq x_2 \leq 5.8
 \]
Examples with Simple Genetic Algorithms

- **Representations**
 - Encode decision variables into **binary strings**.
 - The precision requirement implies that the range of domain of each variable should be divided into at least $[a_j, b_j]$ (domain of x_j is $(b_j - a_j) \times 10^4$ and the required precision is 4 after the decimal point.) size ranges.
 - Required bits (m_j)
 \[
 2^{m_j-1} < (b_j - a_j) \times 10^4 \leq 2^{m_j} - 1
 \]
 - The mapping from a binary string to a real number
 \[
 x_j = a_j + \text{decimal(substring}_j) \times \frac{b_j - a_j}{2^{m_j} - 1}
 \]

 $x_1 = (12.1 - (-3.0)) \times 10^4 = 151000$
 \[
 2^{17} < 151000 \leq 2^{18} \quad m_1 = 18
 \]

 $x_2 = (5.8 - 4.1) \times 10^4 = 17000$
 \[
 2^{14} < 17000 \leq 2^{15} \quad m_2 = 15
 \]

 \[m = m_1 + m_2 = 18 + 15 = 33\]
Examples with Simple Genetic Algorithms

✓ The total length of a chromosome is 33 bits

\[v_j \quad 0000010101 \quad 00101001 \quad 1011110111 \quad 11110 \]

<table>
<thead>
<tr>
<th>Binary Number</th>
<th>Decimal Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>0000010101 00101001 5417</td>
</tr>
<tr>
<td>(x_2)</td>
<td>1011110111 11110 24318</td>
</tr>
</tbody>
</table>

\[
x_1 = -3.0 + 5417 \times \frac{12.1 - (-3.0)}{2^{18} - 1} = -2.687969
\]
\[
x_2 = 4.1 + 24318 \times \frac{5.8 - 4.1}{2^{15} - 1} = 5.361653
\]
Examples with Simple Genetic Algorithms

- **Initial Population**
 - Randomly generated as follows:

 \[
 v_1 = [0000101010010100110111011101111000]
 v_2 = [0011010110011000000001010101001000]
 v_3 = [110100100010011011000101000101101]
 v_4 = [00001010100101001101111011101100100]
 v_5 = [0011101011100110011001010100100000]
 v_6 = [11010001000100110110001010001011101]
 v_7 = [00001010100101001101111011101111111]
 v_8 = [0011101001100110100000101010010000]
 v_9 = [1011001000100110100001010001011001]
 v_{10} = [0111011001100100101001101010100000]

 \[
 v_1 = [x_1, x_2] = [-2.687969, 5.361653]
 v_2 = [x_1, x_2] = [0.474101, 4.170144]
 v_3 = [x_1, x_2] = [10.419457, 4.661461]
 v_4 = [x_1, x_2] = [6.159951, 4.109598]
 v_5 = [x_1, x_2] = [-2.301286, 4.477282]
 v_6 = [x_1, x_2] = [11.788084, 4.174346]
 v_7 = [x_1, x_2] = [9.342067, 5.121702]
 v_8 = [x_1, x_2] = [-0.1330256, 4.694977]
 v_9 = [x_1, x_2] = [11.671267, 4.873501]
 v_{10} = [x_1, x_2] = [-2.687969, 5.361653]
Examples with Simple Genetic Algorithms

- **Evaluation**
 - **Step 1.** Convert the chromosome’s genotype to its phenotype.
 \[x^k = (x_1^k, x_2^k), k = 1, 2, \ldots, \text{pop}_\text{size}. \]
 - **Step 2.** Evaluate the objective function \(f(x^k) \).
 - **Step 3.** Convert the value of objective function into fitness. For the maximization problem, the fitness is simply equal to the value of objective function

\[
\text{eval}(v_k) = f(x^k), k = 1, 2, \ldots, \text{pop}_\text{size}.
\]

\[
\begin{align*}
\text{eval}(v_1) &= f(-2.687969, 5.361653) = 19.805119 \\
\text{eval}(v_2) &= f(0.474101, 4.170144) = 17.370896 \\
\text{eval}(v_3) &= f(10.419457, 4.661461) = 9.590546 \\
\text{eval}(v_4) &= f(6.159951, 4.109598) = 29.406122 \\
\text{eval}(v_5) &= f(-2.301286, 4.477282) = 15.686091 \\
\text{eval}(v_6) &= f(11.788084, 4.174346) = 11.900541 \\
\text{eval}(v_7) &= f(9.342067, 5.121702) = 17.958717 \\
\text{eval}(v_8) &= f(-01330256, 4.694977) = 19.763190 \\
\text{eval}(v_9) &= f(11.671267, 4.873501) = 15.159724 \\
\text{eval}(v_{10}) &= f(-2.687969, 5.361653) = 20.264971
\end{align*}
\]
Examples with Simple Genetic Algorithms

- **Selection**

 In most practices, a roulette wheel approach is adopted as the selection procedure.

 1. Calculate the fitness value eval(v_k) for each chromosome v_k:

 $$ eval(v_k) = f(x), \quad k = 1, 2, \ldots, \text{pop}_\text{size} $$

 2. Calculate the total fitness for the population:

 $$ F = \sum_{k=1}^{\text{pop}_\text{size}} \text{eval}(v_k) $$

 3. Calculate selection probability p_k for each chromosome v_k:

 $$ p_k = \frac{\text{eval}(v_k)}{F}, \quad k = 1, 2, \ldots, \text{pop}_\text{size} $$

 4. Calculate cumulative probability q_k for each chromosome v_k:

 $$ q_k = \sum_{j=1}^{k} p_j, \quad k = 1, 2, \ldots, \text{pop}_\text{size} $$
Examples with Simple Genetic Algorithms

√ Each time, a single chromosome is selected for a new population in the following way:
 - Step 1. Generate a random number r from the range $[0,1]$.
 - Step 2. If $r \leq q_1$, then select the first chromosome v_1; otherwise, select the k^{th} chromosome $v_k (2 \leq k \leq \text{pop}_\text{size})$ such that $q_{k-1} < r \leq q_k$.

√ The probability of a selection p_k for each chromosome $v_k (k=1,\ldots,10)$ is as follows:

 $p_1=0.111180$, $p_2=0.097515$, $p_3=0.053839$

 ...

√ The cumulative probabilities q_k for each chromosome v_k is as follows:

 $q_1=0.111180$, $q_2=0.208695$, $q_3=0.262534$

 ...

√ Now we are ready to spin the roulette wheel 10 times. Let us assume that a random sequence of 10 numbers from the range $[0,1]$ is as follows:

 0.301431 0.322062 0.766503

 ...

CAESIT Center for Advanced e-System Integration Technology, Konkuk Univ.
The first number $r_1 = 0.301431$ is greater than q_3 and smaller than q_4, meaning that the chromosome v_4 is selected for the new population; and so on. The new population consists of the following chromosomes:

\[v_1' = [10011011010010110100000010111001] \quad (v_4) \]
\[v_2' = [10011011010010110100000010111001] \quad (v_4) \]
\[v_3' = [001011010100001100001011001100100] \quad (v_8) \]

\[\vdots \]

\[\vdots \]

\[\vdots \]
Examples with Simple Genetic Algorithms

- Crossover
 - **One-cut-point method**: randomly selects one cut-point and exchanges the right parts of two parents to generate offspring.
 - Consider two chromosomes as follows, and the cut-point is randomly selected after the 17th gene:

 \[
 v_1 = [1001101101 001011 0100000010111001] \\
 v_2 = [0010110101 000011 0010110011010001] \\
 \]

 - The resulting offspring by exchanging the right parts of their parents would be as follows:

 \[
 v'_1 = [1001101101001011 00010110011001100] \\
 v'_2 = [0010110101000011 01000000010111001] \\
 \]

 - The probability of crossover is set as \(p_c = 0.25 \) (25% of chromosomes undergo crossover.).
Examples with Simple Genetic Algorithms

Procedure : Crossover

begin
 k ← 0;
 while (k ≤ 10) do
 r_k ← random number from [0,1];
 if (r_k < 0.25) then
 select v_k as one parent for crossover;
 end
 k ← k + 1;
 end
end

Assume that the sequence of random number is
0.625721 0.266823 0.288644
0.295114 0.163274 0.567461
0.085940 0.392865 0.770714
0.548656

This means that the chromosomes v_5 and v_7 were selected for crossover.

Generate a random integer number pos from the range [1, 32]

\[v'_5 = [1001101101001011010000000010111001] \]
\[v'_7 = [0001101101001011010000000010111001] \]

\[v'_5 = [1001101101001011010000000010111001] \]
\[v'_7 = [0001101101001011010000000010111001] \]
Examples with Simple Genetic Algorithms

- **Mutation**
 - Alters one or more genes with a probability equal to the mutation rate.
 - Assume that the 18th gene of the chromosome v_1 is selected for a mutation. Since the gene is 1, it would be flipped into 0.

 $$v_1 = [10011011010010110101000000010111001]$$

 $$v'_1 = [10011011010010110101000000010111001]$$

 The probability of mutation is set as $p_m = 0.01$, so 1\% of total bit of population would undergo mutation.

 - Need to generate a sequence of random numbers r_k (k=1,...,330) from the range[0,1].

<table>
<thead>
<tr>
<th>Bit_pos</th>
<th>chrom_num</th>
<th>bit_no</th>
<th>random_num</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>4</td>
<td>6</td>
<td>0.009857</td>
</tr>
<tr>
<td>164</td>
<td>5</td>
<td>32</td>
<td>0.003113</td>
</tr>
<tr>
<td>199</td>
<td>7</td>
<td>1</td>
<td>0.000946</td>
</tr>
<tr>
<td>329</td>
<td>10</td>
<td>32</td>
<td>0.001282</td>
</tr>
</tbody>
</table>
Examples with Simple Genetic Algorithms

- Final population

\[v'_1 = [100110110100101101000000010111001] \]
\[v'_2 = [100110110100101101000000010111001] \]
\[v'_3 = [00101101010001100010110011001100100] \]

Corresponding decimal values of variables \([x_1, x_2]\)

\[f(6.159951, 4.109598) = 29.406122 \]
\[f(6.159951, 4.109598) = 29.406122 \]
\[f(-0.330256, 4.694977) = 19.763190 \]

✓ Just completed one iteration of genetic algorithm.

The best chromosome in the 419th generation as follows:

\[v^* = (11111000000111100011101001010110) \]
\[\text{eval}(v^*) = f(11.631407, 5.724824) = 38.818208 \]
\[x^*_1 = 11.631407 \]
\[x^*_2 = 5.724824 \]
\[f(x^*_1, x^*_2) = 38.818208 \]
3) Application of GA

- High Bypass Ratio Jet Engine Design
Application of GA (1)

- 이 문제의 경우, 가능한 해집합의 수는 10의 387승 개에 이른다.
- 통상의 방법으로는 두 명의 설계자가 한 달 이상의 작업을 요하는 문제

High Bypass Ratio Jet Engine Design

Genetic Algorithm + Expert System → EnGENEous
Application of GA (2)

EnGENEous System

Next Generation

GBM: 초기해집합에 대한 극소탐색

Genetic Algorithm

Expert System

Expert System

Expert System

Expert System

Expert System

초기 해집합
Application of GA (3)

Results

<table>
<thead>
<tr>
<th>Method</th>
<th>적응도 향상 정도</th>
<th>Man-Month Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>인 간</td>
<td>1</td>
<td>2개월</td>
</tr>
<tr>
<td>Expert System Only</td>
<td>2</td>
<td>8일</td>
</tr>
<tr>
<td>GA(임의의 초기치)</td>
<td>3</td>
<td>17일</td>
</tr>
<tr>
<td>GA+Expert System</td>
<td>3</td>
<td>9일</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>수계산 최적값</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>93%</td>
</tr>
<tr>
<td>Manual Design</td>
<td>94%</td>
</tr>
<tr>
<td>Expert System Only</td>
<td>95%</td>
</tr>
<tr>
<td>GA+Expert System</td>
<td>96% (엔진 효율)</td>
</tr>
</tbody>
</table>

Center for Advanced e-System Integration Technology, Konkuk Univ.
플라이휠 설계

원판형의 플라이휠이 회전하게 되면 마찰손실이 존재하더라도 어느 수준 정도의 운동에너지를 생성하게 되고 모멘텀을 발생시킨다. 또한, 저장된 에너지는 기계적, 전기적 작용에 의해 방출된다. 플라이휠형 배터리는 화학적 배터리보다 에너지 저장능력이 뛰어나다. 특히, 크기가 작아질수록 이러한 플라이휠의 요구가 더욱 절실해지는데 전기자동차(self-contained electric powered vehicle)인 경우에서도 그 우수성을 발견할 수 있다.
병렬 유전자알고리즘을 이용한 헬리콥터 블레이드의 공력/공력소음 최적화

헬리콥터와 같이 회전날개 항공기에서는 로터시스템과 와류의 충돌에 의해 비행성능에 지장을 주게되고 또한 회전유동에 의한 소음이 발생한다. 저진동, 저소음(BVI : blade-vortex interactions)의 로터 및 블레이드 설계하기 위해 유전자알고리즘의 적용되고 있다. 전산유체역학적 해석방법에 의해 유전자알고리즘 설계해를 탐색하는 경우에는 계산시간 및 비용이 엄청나게 증가하므로 이러한 단점을 최적화기법에서 해결하기 위해 병렬형 유전자알고리즘을 개발하여 전역설계의 생성뿐 아니라 병렬연산기술을 활용하여 설계기간을 단축시킬 수 있다.

병렬유전자알고리즘을 이용한 각 Processor간의 Data 교환
Simulated Annealing

2006. 4. 1
Principal Heuristic Algorithms

- Genetic Algorithms (Holland – 1975)
 - Inspired by genetics and natural selection

- Simulated Annealing (Kirkpatrick – 1983): Today’s issue
 - Inspired by molecular dynamics – energy minimization

- Particle Swarm Optimization (Eberhart and Kennedy - 1995)
 - Inspired by the social behavior of swarms of insects or flocks of birds

These techniques all use a combination of randomness and heuristic “rules” to guide the search for global maxima or minima.
Origin of Simulated Annealing (SA)

- **Definition**: A heuristic technique that mathematically mirrors the cooling of a set of atoms to a state of minimum energy.

- **Origin**: Applying the field of Statistical Mechanics to the field of Combinatorial Optimization (1983)

- Draws an analogy between the cooling of a material (search for minimum energy state) and the solving of an optimization problem.

- **Original Paper** Introducing the Concept

Simulated Annealing (SA)

- Like GA, SA is a stochastic process.
SA mimics the physical process of heating then slowly cooling a metal during processing to receive thermal/structure stresses.

- Randomly generates design points
- Downhill point movement always o.k
- Uphill movement depends on the statistics (90% No, 10% Yes)

- More limit changes?
- High/low temperature criterion & steps?
Simulated Annealing (SA)

1) Start with initial selection of point, \mathbf{x}
2) Pick an initial high temperature T
3) For each design
 \[\mathbf{x}_{\text{new}} = \mathbf{x}_{\text{old}} \pm \rho \]
 Move limit
4) If $F(\mathbf{x}_{\text{new}}) \pi F(\mathbf{x}_{\text{old}})$ \mathbf{x}_{new} is accepted, next \mathbf{x}
 Else, accept an “uphill move” with the following probability
 \[P_{\text{accept}} = \exp \left[-\frac{1}{K} \frac{F(\mathbf{x}_{\text{new}}) - F(\mathbf{x}_{\text{old}})}{T} \right] \]
 Constant used for scaling “Big deal”
Get next \mathbf{x}
5) $T_{\text{new}} = 80\%$ of T_{old}
Repeat the process
Accepting a New Current Solution

- Why move to a worse current solution?
 - To avoid getting trapped in a local optimum.

- Local Optimum
 - A solution is locally optimal if there is no neighbor who has a better objective function value.

- Global Optimum
 - A solution is globally optimal if there is no other solution in the entire feasible trade space that has a better objective function value.
 - Note: We are only talking about single objective problems.
Accepting a New Current Solution (Continue)

- Local Optima vs. the Global Optimum
- Example

\[f(x) = \cos(14.5x - 0.3) + (x + 0.2)x \]

Minimize \(f(x) \)
Accepting a New Current Solution (Continue)

- Local Optima vs. the Global Optimum
- Example

Minimize \(f(x) = \cos(14.5x - 0.3) + (x + 0.2)x \)

Subject to \(-2.2 \geq x \geq -3\)
The Simulated Annealing Algorithm

1) Choose a random \(X\), select the initial system temperature, and outline the cooling (i.e., annealing) schedule.

2) Evaluate \(E(X_i)\) using a simulation model.

3) Perturb \(X_i\) to obtain a neighboring Design Vector \((X_{i+1})\).

4) Evaluate \(E(X_{i+1})\) using a simulation model.

5) If \(E(X_{i+1}) < E(X_i)\), \(X_{i+1}\) is the new current solution.

6) If \(E(X_{i+1}) > E(X_i)\), then accept \(X_{i+1}\) as the new current solution with a probability \(e^{-\Delta/T}\) where \(\Delta = E(X_{i+1}) - E(X_i)\).

7) Reduce the system temperature according to the cooling schedule.

8) Terminate the algorithm.
Example: Traveling Salesman Problem

- Initial (Random) Route
 Length: 17.43

- Final (Optimized) Route
 Length: 8.24

Result with SA
Research in SA

- Alternative Cooling Schedules and Termination criteria
- Adaptive Simulated Annealing (ASA)
 - √ determines its own cooling schedule
- Hybridization with other Heuristic Search Methods
 - √ GA, Tabu Search …
- Multiobjective Optimization with SA
Summary of stochastic Methods (GA,SA)

- suitable for problems with many local minima
- design space can be non-smooth and discontinuous
- can handle discrete variables (x’s)
- Function calls can be large compared to path–building methods
 (be careful not to exceed grid search number of functions)
SA code : simman.f

- simman.f
 - Simple SA code
 - Format : FORTRAN 77
 - Optimization problem type : Unconstrained Optimization Problem Only
 - 단, penalty function을 이용, pseudo-objective형태로 전환하여 Constrained Problem을 해결하는 방식이 가능
SA code: simman.f

Input Parameter

<table>
<thead>
<tr>
<th>parameter</th>
<th>type</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Integer</td>
<td>Number of Design Variables</td>
</tr>
<tr>
<td>X(I)</td>
<td>real</td>
<td>Initial Value Vector</td>
</tr>
<tr>
<td>LB(I)</td>
<td>real</td>
<td>Lower Boundary Vector</td>
</tr>
<tr>
<td>UB(I)</td>
<td>real</td>
<td>Upper Boundary Vector</td>
</tr>
</tbody>
</table>

Internal Parameter for SA

<table>
<thead>
<tr>
<th>parameter</th>
<th>type</th>
<th>definition(default)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT</td>
<td>real</td>
<td>Temperature Reduction Factor (0.1~0.95)</td>
</tr>
<tr>
<td>MAX</td>
<td>logic</td>
<td>True = max. / False = min.</td>
</tr>
<tr>
<td>EPS</td>
<td>real</td>
<td>Error tolerance for termination(1.0E-06)</td>
</tr>
<tr>
<td>NT</td>
<td>integer</td>
<td>Number of iterations before temperature reduction(20)</td>
</tr>
<tr>
<td>NEPS</td>
<td>integer</td>
<td>Number of final function values used to decide upon termination(4)</td>
</tr>
<tr>
<td>MAXEVL</td>
<td>real</td>
<td>The maximum number of function evaluations(100000)</td>
</tr>
</tbody>
</table>

- The temperature reduction factor. The value suggested by Corana et al. is .85
SA code : simman.f

- Program Layout
procedure

Step 1: parameter definition

No. of Design Variable

Problem Type, tolerance, RT

NT, NS,
Upper & Lower Bound

Initial Value
SA code : simman.f

Step 2 : objective definition

```fortran
SUBROUTINE FCN(N,THETA,H)
C This subroutine is from the example in Judge et al., The Theory and
C Practice of Econometrics, 2nd ed., pp. 956-7. There are two optima:
C F(0.804,1.23) = 16.0817 (the global minimum) and F(2.35,-.319) = 20.9805.

DOUBLE PRECISION THETA(2), H
DOUBLE PRECISION Y(20), X2(20), X3(20)

H = 0.0
DO 100, I = 1, 20
  H = (THETA(1) + THETA(2)*X2(I) + (THETA(2)**2)*X3(I) - Y(I))**2 + H
100 CONTINUE
RETURN
END
```
SA code : simman.f

Step 3

Compiling and running the system:

Data from Optimization Processing

Optimal Solution
: Optimum X vectors

Optimal Function Value, Optimum Results

Center for Advanced e-System Integration Technology, Konkuk Univ.
2-Bar Truss Design : Structural Optimization

Description
- The symmetric 2-bar truss design shown in below has been studied by several researchers

![2-Bar Truss Design Diagram](image)

- The objective of this optimum problem is to **minimize the weight of truss system** subject to behavioral constraints

- Related parameters:
 - $B = 30 \text{ in}$
 - $t = 0.1 \text{ in}$
 - $\rho = 0.3 \text{ lbs/ in}^3$
 - $\sigma_y = 60,000 \text{ psi}$
 - $E = 30E6 \text{ psi}$
2-Bar Truss Design: Structural Optimization

- Formulation for Optimization
 - Minimize $W(X)=2\rho\piDt(B^2+H^2)^{1/2}$
 - Minimize the weight of truss system
 - Subject to
 $g_1(X) = \sigma_e - \sigma \geq 0$
 - the first constraint prevents failure due to Euler buckling
 $g_2(X) = \sigma_y - \sigma \geq 0$
 - the second constraint prevents failure due to yield stress

Where,

- $0.5 \leq D \leq 5.0$ (in) $\Rightarrow X(1)$: mean tube diameter
- $5.0 \leq H \leq 50.0$ (in) $\Rightarrow X(2)$: height of the truss

- The resulting optimum value from (Schmit, 1981) for $W(x)$ is 19.8 lbs.
- $W^* = 19.8$ lbs (at $D^* = 2.47$ in, $H^* = 30.15$ in)
SA Application : 2-Bar Truss Design

- **Algorithm과 initial Value에 따른 결과 비교**

\(r_p = 1.0\text{E}2 \), initial values \(X(1) = 0., X(2) = 0. \)

<table>
<thead>
<tr>
<th>Program</th>
<th>DOT</th>
<th>simman</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Constrained</td>
<td>Unconstrained</td>
<td></td>
</tr>
<tr>
<td>Algorithm</td>
<td>MMFD</td>
<td>SLP</td>
<td>SQP</td>
</tr>
<tr>
<td>X1 (D)</td>
<td>2.481</td>
<td>2.476</td>
<td>2.476</td>
</tr>
<tr>
<td>X2 (H)</td>
<td>29.870</td>
<td>29.992</td>
<td>30.00</td>
</tr>
<tr>
<td>Num. of Iter.</td>
<td>9</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>Num. of fun. eval.</td>
<td>77</td>
<td>69</td>
<td>45</td>
</tr>
</tbody>
</table>

\(r_p = 1.0\text{E}2 \), initial values \(X(1) = 1., X(2) = 5. \)

<table>
<thead>
<tr>
<th>Program</th>
<th>DOT</th>
<th>simman</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Constrained</td>
<td>Unconstrained</td>
<td></td>
</tr>
<tr>
<td>Algorithm</td>
<td>MMFD</td>
<td>SLP</td>
<td>SQP</td>
</tr>
<tr>
<td>X1 (D)</td>
<td>3.462</td>
<td>2.480</td>
<td>2.474</td>
</tr>
<tr>
<td>X2 (H)</td>
<td>17.588</td>
<td>29.990</td>
<td>30.041</td>
</tr>
<tr>
<td>Opt. val. (W)</td>
<td>22.690</td>
<td>19.800</td>
<td>19.800</td>
</tr>
<tr>
<td>Num. of Iter.</td>
<td>5</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Num. of fun. eval.</td>
<td>26</td>
<td>66</td>
<td>40</td>
</tr>
</tbody>
</table>

Center for Advanced e-System Integration Technology, Konkuk Univ.