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The aim of this study was to develop cognitive workload estimation algorithm using driving 

performance and eye movement data. The algorithm adopts radial basis probabilistic neural 

networks (RBPNN) to construct cognitive load estimation models. In order to train and test the 

models, recordings of driver’s gaze and driving performance were captured in a driving simulator 

during three levels of cognitive demand. As a result, it was found that the proposed RBPNN 

models were able to differentiate driver’s high cognitive workload from the normal driving with 

high accuracy. The best performance was achieved with a combination of standard deviation of 

lane position (SDLP) and gaze dispersion of X and Y coordinates over 30 seconds time window. 

The highest cognitive workload detection accuracy rate in overall model performance was 85.0%. 
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1. INTRODUCTION 

 

The growing introduction of new technologies 

inside vehicles generates additional information that 

drivers have to manage at the same time. Their use can 

interfere with the driving activity and induce 

performance decrements. According to car accident 

statistics, between 13% and 50% of crashes are caused 

by driver distraction [1]. Thus, identification of a 

driver’s workload and spare capacity is crucial in the 

design of adaptive automotive user interface [2]. By 

monitoring driver’s workload, the adaptive interface 

system can provide timely and affordable information 

when the driver has the spare capacity.  

Workload can be measured in a variety of ways 

including: subjective measures, driving performance 

based measures, physiological measures, eye movement 

measures and so on [3-6]. Among those measures, 

driving performance measures can detect the cognitive 

workload using easy and less expensive methods 

through readily available in-vehicle information [7-8]. 

However, driving performance measures are known to 

have limitations compared to others due to small 

changes according to the cognitive workload. That is, 

the performance measures are able to detect a high 

cognitive workload condition, but their classification 

accuracy is not enough to distinguish graded levels of 

cognitive difficulty. On the other hand, physiological 

measures have been proposed as useful metrics for 

assessing workload. Mehler et al. found that a near 

linear increase in heart rate and skin conductance 

appeared across the three levels of task difficulty. In the 

context of vision, the level of cognitive workload has 

been related to measures such as pupil diameter; blink 

rates, decreased amplitude of saccadic movements, 

longer dwell times, and the size of the visual field. 

Measuring changes in workload by using indices such 

as blink rates and pupil diameter is difficult in the 

rapidly changing conditions of an automotive 

environment. Therefore, measuring changes in the size 

of the visual field is one of the more easily interpreted 

alternatives [6]. 

Thus, this paper suggested a neural network 

algorithm for estimating driver’s cognitive workload 

using driving performance and eye movement data. The 

results show that the combination of driving 

performance and eye movement, or eye movement data 

can effectively distinguish high cognitive workload 

condition from the normal driving with the high 

accuracy rate. 

 

2. MODEL CONSTRUCTION 

 

2.1. Data Source 

In order to construct neural network models for 

estimating the difficulty of cognitive workload, driving 

experimental data was collected as follows: 

 

2.1.1. Experimental setup  

The experiment was conducted in a fixed-based 

driving simulator, which incorporated STISIM Drive™ 

software and a fixed car cab (see Figure 1). The virtual 

roadway was displayed on a 2.5m by 2.5m 

wall-mounted screen at a resolution of 1024 x 768. 



Sensory feedback to the driver was also provided 

through auditory and kinetic channels. Distance, speed, 

steering, throttle, and braking inputs were captured at a 

nominal sampling rate of 30 Hz. Eye behavior data were 

collected using the FaceLAB®  4.6 eye tracking system 

(Seeing Machines Ltd., Canberra, Australia), 

respectively. A display was installed on the screen 

beside the rear-view mirror to provide information 

about the elapsed time and the distance remaining in the 

drive.  

 

Fig. 1 Fixed-based Driving Simulator 

 

2.1.2. Subject 

Subjects were required to meet the following 

criteria: age between 25-35, drive on average more than 

twice a week, be in self-reported good health and free 

from major medical conditions, not take medications for 

psychiatric disorders, score 25 or greater on the mini 

mental status exam to establish reasonable cognitive 

capacity and situational awareness, and have not 

previously participated in a simulated driving study. The 

sample consisted of 15 males, who are in the 25-35 age 

range (M=27.9, SD=3.13). 

 

2.1.3. Cognitive workload 

An auditory delayed digit recall task was used to 

create periods of cognitive demand at three distinct 

levels. This form of n-back task requires participants to 

say out loud the nth stimulus back in a sequence that is 

presented via audio recording [9]. The lowest level 

n-back task is the 0-back where the participant is to 

immediately repeat out loud the last item presented. At 

the moderate level (1-back), the next-to-last stimuli is to 

be repeated. At the most difficult level (2-back), the 

second-to-the-last stimulus is to be repeated. The n-back 

was administered as a series of 30 second trials 

consisting of 10 single digit numbers (0-9) presented in 

a randomized order at an inter-stimulus interval of 2.1 

seconds. Each task period consisted of a set of four 

trials at a defined level of difficulty resulting in demand 

periods that were each two minutes long. 

 

2.1.4. Procedure 

As shown in Fig. 2, Following informed consent 

and completion of a pre-experimental questionnaire, 

participants received 10 minutes of driving experience 

and adaptation time in the simulator. The simulation 

was then stopped and participants were trained in the 

n-back task while remaining seated in the vehicle. 

N-back training continued until participants met 

minimum performance criteria. Performance on the 

n-back was subsequently assessed at each of the three 

demand levels with 2 minute breaks between each level. 

When the simulation was resumed, participants drove in 

good weather through 37km of straight highway. 

Minutes 5 through 7 were used as a single task driving 

reference (baseline). Thirty seconds later, 18 seconds of 

 
Fig. 2 Experimental Procedure 

 

instructions introduced the task (0, 1 or 2-back). Each 

n-back period was 2 minutes in duration (four 30 second 

trials). Two-minute rest/recovery periods were provided 

before presenting instructions for the next task. 

Presentation order of the three levels of task difficulty 

was randomized across participants. 

 

2.2. Model Characteristics and Training 

 

2.2.1. Definition of cognitive workload 

Although the cognitive workload was applied with 

three levels of complexity, the present study classified 

cognitive workload into two categories, i.e. normal 

driving and high cognitive workload condition. The 

normal driving means the situation of driving without 

cognitive workload and the high cognitive workload 

was defined as the durations of performing the highest 

difficult level of the cognitive task, so called 2-back task  

 

2.2.2. Input features 

Two driving performance measures, the standard 

deviation of lane position (SDLP) and steering wheel 

reversal rate (SRR), and two eye movement data, the 

standard deviation of horizontal gaze (Gaze X) and the 

standard deviation of vertical gaze (Gaze Y), were 

considered as input features to detect high cognitive 

workload demand in the RBPNN models. 

SDLP was calculated from 0.1 Hz high pass filtered 



lateral position data with removing lane changes using 

the AIDE project guidelines. SRR was calculated by 

counting the number of steering wheel reversal from the 

2Hz low pass filtered steering wheel angle data per 

minute. For cognitive workload, the reversal angles, 

which have more than 0.1 degree of the gap size, were 

counted. 

Before calculating eye-movement measures, raw 

gaze data were filtered with the following criteria that 

was suggested by earlier study [10]: 1) the FaceLAB’s 

automated gaze quality index for the left and right eyes 

was categorized as optimal, 2) the x-axis position was 

between -1.5m and +1.5m, the y-axis position was 

between -1.0m and +1.0m, and 3) the data point was 

contained within a set of six valid measurements 

(approximately 100ms). With the filtered data, the S.D. 

of vertical and horizontal gaze were calculated. 

 

2.2.3. Summarizing parameters 

In this paper, window size was considered as the 

summarizing parameter for the inputs. Window size 

denotes the period over which performance and eye 

movement data were averaged. The comparisons of 

window size could identify the appropriate length of 

data that can be summarized to reduce the noise of the 

input data without losing useful information. This paper 

considered three window sizes: 10, 20 and 30 seconds. 

 

2.2.4. Model construction 

Radial basis probabilistic neural networks (RBPNN) 

were used to construct the driver’s cognitive workload 

estimation models. For training and testing RBPNN 

models, data of four task periods, which consist of a 

single task (driving only condition) and three dual tasks 

(n-back task condition), were used. A task was divided 

into multiple segments based on window size. In each 

task, half of the segments were used for training and the 

other segments were used for testing. Model 

performance was evaluated with testing accuracy, which 

is the ratio of the number of instances correctly 

identified by the model to the total number of instances 

in the testing set. 

 

2.2.5. Model training and testing 

Radial basis probabilistic neural networks (RBPNN) 

were used to construct the driver’s cognitive workload 

estimation models. In this paper, the models were 

trained using the NEWPNN function in MATLAB. For 

training and testing RBPNN models, data of two task 

periods among four task levels, which consist of a single 

task (driving only condition) and the most difficult tasks 

(2-back task condition), were used. A task was divided 

into multiple segments based on window size. For 

example, if the model uses 30s window, one task period 

divided into four segments as shown in Figure 3. In the 

same manner, 20s window set has six segments and 10s 

window set has twelve. In each task, half of the 

segments, i.e. two segments per subject in 30s window, 

were used for training and the other segments were used 

for testing. Thus, each neural net was trained and tested 

using different sets of measurements, i.e. 15 (subjects) x 

2 (levels) x 2 (segments), 15x3x2 and 15x6 examples 

for 30s, 20s and 10s window, respectively. Since the 

estimator is always evaluated on the data disjoint from 

the training data, the performance evaluated through the 

cross validation scheme correctly reflects the actual 

generalization capability of the derived estimator [7]. 

Model performance was evaluated with testing accuracy, 

which is the ratio of the number of instances correctly 

identified by the model to the total number of instances 

in the testing set. 

 

3. RESULTS AND DISCUSSION 

 

The performance of the RBPNN models varies 

from the combined input features and window sizes. 

Among different combinations of inputs, i.e. SDLP, 

SRR, Gaze X and Gaze Y, the performance using a 

multiple domain combination of driving performance, 

i.e., SDLP and eye behavior, i.e., Gaze X & Y, and eye 

movement domain only, i.e. Gaze X & Y outperformed 

as shown in Table 1.  

Due to the fact that eye movement had higher 

concentration of gaze dispersion with the levels of 

cognitive load complexity and lower SDLP was 

observed under cognitive workload condition, the best 

performance appeared when the models have SDPL, 

Gaze X and Gaze Y as an input feature. The best 

performing model, which uses SDLP, Gaze X and Gaze 

Y data over a 30s-window, could detect the highest 

level of cognitive workload with an average accuracy of 

85.0%. With this model, the estimation accuracy rate of 

driving only criteria, i.e. no cognitive workload 

condition, was 73.3%, and the accuracy of the most 

difficult cognitive load estimation was 96.7%. It should 

be noted that the proposed model outperforms detecting 

the highest cognitive workload that must be detected 

correctly with very high accuracy. 

The results demonstrated that the model using 

SDLP and Gaze X & Y was outperforming than the 

other combinations among performance and eye 

behavior measures. The main contributor of the high 

accuracy rate in this model was Gaze X, which provides 

clear changes associated with difficult level of cognitive 

workload, but relatively lower threshold to distinguish 

higher mental workload. According to Reimer et al., an 

Tasks
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(Window Size)

Training

& Test

Segments

 = Train  = Test
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Fig. 3 Allocation of Segments to Training and Testing Sets 



effect of task performance on Gaze X concentration 

such that better task performance was associated with 

less gaze constriction [10]. Thus, SDLP and Gaze X&Y 

based model provides better performance to detect 

higher levels of mental demand. 

 

4. CONCLUSION 

 

In this paper, we proposed an algorithm for 

estimating driver’s cognitive workload using driving  

performance and physiological data. Especially, SDLP 

and SRR, and SD of Gaze X and SD of Gaze Y were 

considered as cognitive load indices for the driving 

performance and eye behavior, respectively. In order to 

collect driving data, participants drove through highway 

in a driving simulator and were asked to complete three 

different levels of auditory recall tasks. The driver’s 

cognitive workload estimation algorithm was developed 

using RBPNN models that were implemented by 

MATLAB NEWPNN function. 

The results show that the proposed Gaze X&Y and 

SDLP-based RBPNN models were able to detect the 

most difficult cognitive workload with high accuracy. 

The model performance was assessed with the 

cross-validation scheme, which is widely adopted by the 

machine learning community. As a result, the highest 

workload estimation accuracy rate in overall model 

performance was 85.0%. And it is also expected that the 

accuracy can be improved by applying more 

sophisticated algorithms.  
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Table 1 Model performance with different window size 

 

 

Gaze 
Driving & Gaze (Combination) 

SDLP & Gaze SRR & Gaze SDLP & SRR & Gaze 

X Y X & Y 
SDLP 

Gaze X 

SDLP 

Gaze Y 

SDLP 

X & Y 

SRR 

Gaze X 

SRR 

Gaze Y 

SRR 

X & Y 

SDLP 

SRR 

Gaze X 

SDLP 

SRR 

Gaze Y 

All 

10s 

Normal 43.3 78.9 66.7 43.3 78.9 61.1 66.7 81.1 71.1 66.7 82.2 72.2 

High Load 94.4 56.7 73.3 95.6 57.8 78.9 87.8 72.2 84.4 87.8 71.1 86.7 

Average 68.9 67.8 70.0 69.4 68.3 70.0 77.2 76.7 77.8 77.2 76.7 79.4 

20s 

Normal 68.9 80.0 80.0 66.7 80.0 80.0 68.9 68.9 68.9 68.9 66.7 68.9 

High Load 86.7 57.8 77.8 86.7 57.8 84.4 73.3 66.7 71.1 73.3 73.3 75.6 

Average 77.8 68.9 78.9 76.7 68.9 82.2 71.1 67.8 70.0 71.7 70.0 72.2 

30s 

Normal 56.7 83.3 73.3 56.7 83.3 73.3 76.7 73.3 73.3 76.7 76.7 73.3 

High Load 93.3 70.0 93.3 93.3 70.0 96.7 70.0 53.3 60.0 70.0 53.3 60.0 

Average 75.0 76.7 83.3 75.0 76.7 85.0 73.3 63.3 66.7 73.3 65.0 66.7 


