산출량조절을 통한 독점기업의 품질개선

순천향대학교 사회과학대학 경제학부
이 준 세

Quality Improvement through Quantity restriction in the monopoly firm.

Choon-Sei Lee

Department of Economics, College of Social Sciences
Soochunhyang University, Asan 336-745, Korea

= Abstract =

This study investigates the impact of quantity restriction on the level of quality. We find that the level of quality depends on the characteristics of consumer and the type of cost function when the quantity is a control variable. Specially, the shape of cost function for quality improvement is critically important for the level of quality to be desirable in the social welfare sense.

Ⅰ. 서 론

품질이 문제가 되는 상품을 생산하는 독점기업은 두 가지 측면에서 사회적으로 바람직하지 못한 결과를 초래한다. 첫째로 시장 지배력을 갖고 있는 독점기업은 이용객들에 대하여 산출량을 너무 적게 제한함으로써 자원의 효율적 배분을 악화시킨다. 둘째, 독점기업이 생산하는 상품의 품질은 사회적생산대의 경지에서 불 때 너무 높거나 혹은 너무 낮게 나타난다. 이 두가지 문제점이 상호작용하여 독점의 폐단을 가속화시키는데 품질변화에 대한 기본적인 원인이 직접적으로 상호관련되어 있지 않기 때문에 두가지 문제점의 통합적으로 해결할 수 없다는게 있다. 산출량제도는 시장지배력을 분산시키려 한다는 구조적 문제만 해결하면 되지만 품질제도는 기본적으로 소비자의 품질에 대한 취향, 폐질개선비용 함수의 형태 그리고 산출량 수준이 상호작용하여 발생하기 때문에 구조적 문제만 고려해서는 안된 다.(Spence, 75, Swan, 70, Saving, 81)

결과적으로 품질제도는 시장구조만을 개선함으로써 해결되는 것이 아니기 때문에 오히려 시장구조에 관계없이 품질수준이나 생산량을 직접통제하는 것이 경우에 따라서는 바람직하고 할 수 있다. 그러나 품질제도에 있어서 가장 큰 문제는 품질수준에 대한 정확한 파악과 소비자의 취향 그리고 폐질개선비용의 측정이다. 이러한 문제의 해결방안으로 폐질개선유인책 또는 수량통제 또는 투입자본의 가득올통제등
다양한 방법이 제시되었으나 이러한 접근 역시 각각 장단점이 있으며 특히 본학에 있어서 품질비용활용을 너무 단순한 형태로 극한화하였기 때문에 일반성이 결여되었다(Spence, 75). 그러나 그동안의 분석이 주는 교훈은 품질수준을 직접 파악하고 통제하는 것은 대부분의 경우 매우 어려우며 오히려 통제와 파악이 쉬운 수량을 통제함으로써 독점의 폐단을 제거하고 동시에 간접적이긴 하지만 품질을 개선시킬 수 있으며, 이러한 분석을 위해서는 품질개선비용을 좀더 다양하게 구분할 필요가 있다는 것이다.

본 연구에서는 품질의 수준을 전적으로 기업에 맡기고 수량만을 통제한다고 가정했을 때 사회후생개선은 어떠한 경우에 가능하며 수량통제는 어떤 방향으로 이루어져야 하는 것을 소비자의 품질취향과 품질개선비용측면에서 분석한다.

II. 품질수준과 시장실패

품질수준의 시장실패는 상대적으로 쉽게 발생할 수 있다. 예를 들어 소비자 한 사람이 상품 한 단위 섹만을 구입하는 상황에서 기업이 품질을 개선한다고 단순히 가정할 때 보자. 이러한 경우 품질의 개선은 추가비용, 즉 \(\Delta C \)을 유발하고 또한 기업의 수입을 증가시키는다. 품질수준의 증가는 상품의 한계소비자(한계소비자란 현행가격을 겪지 못할 수 있는 사람을 의미)에게 화폐적익을 \(\Delta P(q) \)만큼 가져다 주며, 기업의 수입은 결과적으로 \(q\Delta P(q) \)만큼 증가된다(여기서 \(q \)는 구매가수를 나타냄). 따라서 기업의 입장에서 볼 때 만약 \(q\Delta P(q) > \Delta C \)이면 품질개선은 바람직하다. 그러나 기업수입의 증가분 \(q\Delta P(q) \)는 품질개선에 따른 사회후생증가분과 반드시 일치한다고 볼 수 없다.

품질개선이 사회적으로 바람직하기 위해서는 전 소비자의 화폐적익이, \(\int_0^q \Delta P(\nu) d\nu \)가 비용증가분 \(\Delta C \)보다 커야한다. 혹은 \(\frac{1}{q} \int_0^q \Delta P(\nu) d\nu \)가 \(\Delta C/q \)보다 커야한다. 즉 소비자평균이득(average benefit)이 평균비용을 초과해야한다. 사회적이득이 기업수입의 증가분과 일치하기 위해서는 한계소비자 가 바로 소비자의 평균적 대표(representative)가 되어야 한다. 다시 말해서 \(\frac{1}{q} \int_0^q \Delta P(\nu) d\nu = \Delta P(q) \)

이어야 한다. 이러한 경우는 일반적인 현상으로 볼 수 없기 때문에 사전적 이득과 사회적이득의 관리는 항상 존재하게 되며 품질수준의 시장실패는 상존할 수밖에 없다.

III. 독점기업과 품질추세

가격, 수량 그리고 품질수준을 결정할 수 있는 독점기업의 품질수준은 사회후생측면에서 볼 때 바람직한가를 먼저 살펴보고 이를 개선할 수 있는 방안과 그 부대조건을 살펴보기로 한다. 먼저 일반성있는
분석을 위하여 기호 및 정의를 다음과 같이 한다. 상품가격은 P, 수량은 q , 상품의 품질수준은 S로 표시하며 상품의 수요는 $D(P, S)$이다. 그리고 수요의 역함수는 $P(q, S)$로 나타내며, 품질수준이 S인 상품을 q단위 생산하는데 들어가는 비용은 $C(q, S)$로 표시하며, 기업은 오직 한 상품만을 생산하는 것으로 가정한다. 그리고 $P_q > 0$이고 $P_s > 0$이라 가정한다.

소비자이익 CS는 두가지 방법으로 표시할 수 있다.

\[CS = \int_0^q P(v, S)dv - qP(q, S) \] \hspace{1cm} (1)

또한

\[CS = \int_p^\infty D(v, S)dv \] \hspace{1cm} (2)

마찬가지 방법으로 기업의 수익 역시 두가지 방법으로 표시될 수 있다.

\[R = qP(q, S) \] \hspace{1cm} (3)

또한

\[R = PD(P, S) \] \hspace{1cm} (4)

이용 II는

\[\Pi = R - C \] \hspace{1cm} (5)

그리고 마지막으로 총잉여 W는 다음과 같이 표시된다:

\[W = CS + \Pi \] \hspace{1cm} (6)

독점기업이 가격, 수량, 품질수준에 대해서 독립적으로 의사결정을 내릴 수 있다고 하지만 가격과 수량은 수요함수에 의해서 상호의존되어 있기 때문에 독점기업의 실질적인 독립변수는 두 개이다. 여기에서 품질과 품질수준은 독점기업의 결정변수로 가정한다.

먼저 독점기업의 품질수준이 후생극대수준과 비교할 때 어떠한 문제점이 있는가를 알아보자. 주어진 산출량 q에서 후생극대 품질수준은

\[\frac{\partial W}{\partial S} = \int_0^q P_s dv - C_s \] \hspace{1cm} (7)

에서 결정된다. 한편 이용극대품질수준은

\[\frac{\partial \Pi}{\partial S} = qP_s - C_s = 0 \] \hspace{1cm} (8)

일 때 결정된다. 식(7)과 (8)이 서로 다르기 때문에 독점기업의 품질수준은 후생극대수준과 반드시 일치한다고 볼 수 없다. 그렇다면 주어진 산출량 q에서 독점기업의 품질수준은 후생극대수준에 비해서 너무 낮은가 아니면 너무 높은가? 이를 규명하기 위해서 $\partial \Pi/\partial S = 0$일 때 $\partial W/\partial S$의 값이 어떠한가를 알아보면 된다. 식 (7)과 (8)에서 $\partial \Pi/\partial S = 0$이면 $\partial W/\partial S$는 다음과 같이 된다:
\[\frac{\partial W}{\partial S} = \int_0^q P_s d\nu - q P_s \]

그러므로 \(\partial W/\partial S = 0 \)일 때 \(\partial W/\partial S \)의 값(sign)은 \(\int_0^q P_s d\nu \)와 \(q P_s \)의 상대적 크기(혹은 \((1/q)\int_0^q P_s d\nu \)와 \(P_s \)의 상대적 크기)에 의존한다. 그런데 \((1/q)\int_0^q P_s d\nu \)는 품질증가로 발생하는 모든 소비자의 전체가치를 평균(the average valuation of quality over all the people in the market)한 것이며 \(P_s \)는 한계소비자의 품질에 대한 한계가치(the marginal valuation of quality by the marginal consumer)이다. 식 (9)는 만약 품질증가의 평균가치가 한계가치보다 크면 \(\partial W/\partial S \)가 플러스(+)임을 의미하므로 이러한 경우 이용극대기업의 품질증가는 너무 일찍 중단되는 것을 의미한다. 즉 이용극대기업의 품질수준은 후생극대수준보다 너무 낮다. 반대의 경우는 마이너스(-)가 됨으로 기업의 품질수준은 너무 높게 된다.

\(P_s \)는 품질증가에 대한 한계소비자의 가치(the marginal consumer's valuation of quality increments)이므로 \(P_{sq} \)는 상품에 대해서 소비자가 기꺼이 지불할 수 있는 정도를 크기순서대로 배열했을 때 \(P_s \)값의 변화를 의미한다. 만약 \(P_{sq} < 0 \)이면, 품질의 한계값은 소비자의 상품에 대한 지불능력이 감소함에 따라 감소한다. 이러한 경우 품질에 대한 평균가치는 한계소비자가 느끼는 가치를 높가한다(그림1). 즉 \((1/q)\int_0^q P_s d\nu \)가 \(P_s \)보다

\[<\text{그림1}> \quad P_{sq} < 0 \]

\[P_s \]

품질의 한계가치

\[P_s \]

0 ~ q

q(수량)

크게 되고 결국 기업은 주어진 산출량수준 \(q \)에서 품질수준을 후생극대수준보다 낮게 책정하게 된다.

정리1: 산출량이 주어진 상태에서 만약 \((1/q)\int_0^q P_s d\nu > P_s \)이며 기업은 품질수준을 사회적으로 바람
직한 수준보다 낮게 책정한다. 그리고 그 역도 성립한다.

보조정리1: \(P_w \langle 0 \rangle = \langle 1/Q \rangle \int_0^Q P_s d\nu \) \(P_s \)을 위한 충분조건이며 그 역도 성립한다.

지금까지의 분석결과는 산출량이 고정된 형태에서 이루어졌기 때문에 사실 독점기업예산 극한되는 것이 아니고 단지 소비자의 품질에 대한 성향과 기업이 소비자에 대한 정보(소비자의 품질에 대한 평균 가치)를 정확하게 파악할 수 없기 때문에 발생한 것이다. 이러한 한계는 산출량에 관계없이 발생하는 것이기 때문에 이론적대를 목표로 하는 한 시장구조에 관계없이 발생하며 이것이 품질에 대한 시장실패를 야기한다. 그런데 독점기업은 산출량에 있어서도 항상 바람직하지 못한 결과를 초래하며 이것 역시 품질 수준에 어떠한 영향을 직접적으로 가질 것이다. 이를 산출량의 경도가 품질수준에 미치는 영향을 알아보기 위해서 주어진 품질수준에서의 후생극대산출량을 \(q^* \)이윤극대산출량을 \(q' \)라고 하자.

그럼에 후생극대품질수준은

\[
\frac{\partial W}{\partial S} = \int_0^Q P_s(\nu, s) d\nu - C_s(\ q^*, s) = 0
\]

(10)

이고, 이윤극대품질수준은

\[
\frac{\partial \Pi}{\partial S} = q' P_s - C_s(\ q', s) = 0
\]

(11)

이다. 식(10)과 (11)에서 보는바와 같이 이윤극대품질수준에서의 \(\frac{\partial W}{\partial s} \)의 부호를 결정하는데는 앞에서 이미 언급한 \(P_s \)에 대한 소비자의 특성(즉 \(P_w \)의 부호), \(q^* \)와 \(q' \)의 차이, 그리고 비용함수 \(C(q, s) \)의 형태가 규명되어야 한다.

먼저 산출량의 차이 즉 \(q^* \)와 \(q' \)의 차이가 독점기업의 품질수준에 미치는 영향을 파악하기 위해서 비용함수는 다음과 같은 특성을 갖고 있다고 가정하자: \(C_s(q) \)가 \(q \)에 대해서 일정하다. 즉 품질개선의 한계비용은 산출량으로 나눈 값이 산출량에 대해서 일정하다.\(^1\) 이러한 경우 \(C_s(q, s)/q' = C_s(q, s)/q^* \)가 성립하므로 이윤극대수준 \((\Pi_s = 0) \)에서는 \(P_s(q', s) = C_s(q, s)/q' = C_s(q, s)/q^* \)의 관계가 성립한다. 이때 \(q \) 품질수준이 이윤극 대수준에서 결정되었을 때 \(W_s \) 다음과 같이 된다:

\[
W_s = q^* \left\{ (1/q^*) \int_0^Q P_s(\nu, s) d\nu - P_s(q', s) \right\}
\]

(12)

\(^1\) 만약 비용함수가 \(C = C(s)q \)의 형태를 취하면 \(C_s(q) \)는 \(C'(s) \)이므로 산출량에 관계없이 일정하다. 지금까지 품질모델문석은 이러한 형태의 비용함수를 가정하였다.
여기에서 \(W_s \)의 부호를 결정하는데 가장 중요한 요소는 \(q^* \)와 \(q \)'의 차이 그리고 \(P_s \)의 \(q \)에 대한 반응 즉 \(P_{sq} \)의 부호이다. 앞에서와 같이 먼저 \(P_{sq} < 0 \)이라고 가정하면 <그림2>에서 보는 바와 같이 \(P_s \)는 산출량이 증가함에 따라 감소하고 이러한 상황에서 만약 \(q \)'가 \(q^* \)에 아주 가까우면

\[
\frac{1}{q^*} \int_0^{q^*} P_s(\nu, s) \, d\nu + P_s(q', s) \quad \text{보다 크게 되어} \quad W_s > 0
\]

이 된다. 즉 독점기업은 품질수준을 너무 낮게 책정한다. 만약 \(q \)'가 아주 작아서 \(q^* \)급격

\[
\begin{align*}
\text{에 위치하면 거꾸로} & \quad W_s < 0 \text{이 되어 독점기업은 품질수준을 너무 높게 책정하게 된다. 만약에} \quad P_{sq} > 0 \text{이면 지금까지 모든 결과가 <그림3>에서보는 바와 같이 반대가 된다.}

\text{지금까지 결과는 비용함수를} \quad C_s / q \text{가} \quad q \text{에 대해서 일정한 것으로 가정했을 때 독점기업의 품질수준은} \quad P_{sq} \text{의 부호와 독점기업의 산출량정도에 따라서 너무 낮거나 너무 높게 나타난다. 독점기업의 산출량은 수요곡선의 형태 즉 수요곡선의 탄력성에 의해서 결정되므로 이에 대한 분석이 요구된다. 일반적으로 수요곡선의 탄력성이 높을수록 독점기업산출량과 후생극대산출량의 차이가 작아진다. 그러므로 품질 수준이 증가할 때 수요곡선의 가격탄력성이 증가한다면 품질을 증가시킴에 따라 두 산출량의 차이는 점점 감소하게 되고 이때 만약 \(P_{sq} < 0 \)이면 <그림2>에서 보는 바와같이 독점기업의 품질수준은 너무 낮게 결정될 수 있다. 반면에 \(P_{sq} > 0 \)이면 <그림3>에서 보는 바와같이 독점기업의 품질수준은 너무 높게 책정될 수 있다. 그런데 \(P_{sq} > 0 \)이라는 조건은 품질증가에 따른 가격탄력성증가의 충분조건이 되지만 \(P_{sq} < 0 \)은 탄력성증가를 보장하지 못한다. 2) 그러므로 일반적으로 볼 때 품질수준이 증가함에 따라 가

\[
2)\text{탄력성} \quad e \text{는 다음과 같이} \quad -(dp / dq) \cdot (q / p) = 1 / e \text{를 만족한다. 절대류품질} \quad s \text{에 대하여 미분하면} \quad -(p_{qs} \cdot q \cdot p - p_q \cdot q \cdot p_\delta) / p^2 \text{이다.} \quad p_q < 0 \text{이므로 만약} \quad p_{qs} > 0 \text{이면 절대류품질의} \quad s \text{에 대한 미분}
적탄력성이 증가하는 경우는 기업의 품질수준은 너무 높게 결정된다.

지금까지 규명한 탄력성과 품질수준의 결과는 비용함수가 특수한 형태로 가정했을 때 나온 결과이다. 그러나 품질수준증가에 따른 가격탄력성증가가 너무 높은 품질수준을 가져온다는 것을 좀 더 일반적으로 규명할 수 있다. 이를 위하여

$$ W(S) = \max W(q, s) $$

이라는 정의하고 그리고

$$ \Pi(S) = \max \Pi(q, S) $$

라고 정의하자. 극대이용과 극대상의 비율을

$$ \beta(S) = \frac{\Pi(S)}{W(S)} $$

라고 정의하자. 기업의 부호는 품질수준이 파다한가 아니면 파소한가를 결정한다. 식(15)에 대해서 로그를 취하고 미분하면 다음과 같이 된다:

$$ \frac{\beta'}{\beta} = \frac{\Pi'}{\Pi} - \frac{W'}{W} $$

그러므로

$$ \frac{\beta'}{\beta} = -\frac{W}{W} $$

가 된다. 식(17)에서 보는 바와 같이 $\beta' > 0$이면 W는 이용극대품질수준에서 0보다 작게 된다. 즉 기업의 품질수준은 너무 높게 책정된다. $\beta' > 0$이라는 것은 품질수준 S를 증가시킴에 따라 $\Pi(S)$와 $W(S)$의 차이가 적어진다는 것을 의미하며 이는 수요곡선이 더욱더 탄력적으로 된다는 것을 의미하므로 이러한 결과는 앞의 결과와 일관성을 유지한다.

IV. 비용함수와 품질통제

독점기업의 품질수준은 앞에서 말한 바와 같이 후생극대수준과정은 일치하지 않고 품질에 대한 소비자의 성향(여기에서는 P_q의 부호로 나타낸) 수요곡선의 탄력성 그리고 비용함수의 형태에 따라 너무 높게 혹은 너무 낮게 나타난다. 앞에서 얻은 결과중 하나는 비용제한인 비용곡선형태이지만 독점기업의 산출량이 후생극대산출에 근접한다고해서 독점기업의 품질수준이 후생극대의 전차에서 볼 때 바람직하지 못하다는 것이다. 기업의 목표는 후생극대가 아니고 이용극대이기 때문에 품질수준만 높고 볼 때 강제적인 수량조절은 오히려 품질문제를 악화시킬수 있는 것이다. 그러나 품질문제를 해결하는데 있어서 품질 그 자체를 통제하는 것보다 오히려 수량을 통제하여 간접적으로 품질문제를 개선하는 것이 더욱이 바람직할 수 있다. 왜냐하면 품질 그 자체를 정확히 규명하기 어렵고 이로 인해 통제방안을 명백하게 설정할 수 없기 때문이다.

값은 '일을 의미한다. 이는 S가 증가함에 따라 '우연 $1/e$값이 감소함을 의미하며 결국 e값이 증가함을 의미한다. 따라서 $P_{qs} > 0$은 증가를 위한 충분조건이다. 반면에 $P_{qs} < 0$은 e의 증가를 보장하지 못한다.
그렇다면 기업으로 하여금 품질을 자유롭게 결정하게 하였을 때 어느 방향으로 수량을 동제해야 제한적이긴 하지만 품질문제를 사회적 전자에서 볼 때 바람직한 방향으로 유도할 수 있는가? 식(7)과 식 (8)에서 보는 바와 같이 주어진 산출량q에서 후생극대품질수준은

\[\frac{\partial W}{\partial S} = \int_0^q P_s dv - C_s = 0 \]

에서 결정되고, 이용극대품질수준은

\[\frac{\partial \Pi}{\partial S} = q P_s - C_s = 0 \]

일 때 결정되므로 \(\frac{\partial \Pi}{\partial S} = 0 \)에서는 \(q P_s = C_s \) 즉 \(P_s = \frac{C_s}{q} \)라는 조건을 만족한다. 그런데 품질수준은 이용극대수준에 만족시킨 상태(즉 \(\frac{\partial \Pi}{\partial S} = 0 \))에서 \(\frac{\partial W}{\partial S} \)의 값은 주어졌다고 가정한 산출량q가 변화할 때

\[\frac{\partial W_s}{\partial q} = P_s - C_s = \frac{C_s}{q} - C_s \quad \text{[18]} \]

가 된다. 예를 들어 \(\frac{\partial \Pi}{\partial S} = 0 \) 일 때 \(P_s = \frac{C_s}{q} \) 이기 때문이다. 식(18)은 q변화에 대한 \(W_s \)의 변화를 비용함수의 형태로 보여주고 있다. 한편 \(\frac{\partial \Pi}{\partial S} = 0 \) 일 때 \(\frac{\partial W}{\partial S} \)는 식(9)에서와 같이

\[\frac{\partial W_s}{\partial S} = \int_0^q P_s dv - q P_s \]

이다. 식(9)와 보조정리1에 의하면 \(P_s < 0 \)은 \(W_s > 0 \)을 위한 충분조건이며 그 역도 성립한다. 따라서 산출량이 주어진 상태에서 \(P_s < 0 \)이고 동시에 \(\frac{\partial W_s}{\partial q} > 0 \)이면 이는 이용극대품질수준에서 \(W_s < 0 \)이고 q가 증가됨에 따라 \(W_s \) 값은 더욱 향상된다는 것을 의미한다. 이는 다시 말해 q가 증가됨에 따라 기업의 품질수준이 사회적으로 바람직한 수준보다 더욱 낮아진다는 것을 의미한다.

정리2: 만약 이용극대수준에서 \(P_s < 0 \)이고 동시에 \(\frac{\partial W_s}{\partial q} > 0 \)인 경우 산출량증가

품질수준을 사회적으로 바람직한 수준보다 더욱 낮은 수준으로 유도한다.

한편 \(P_s < 0 \)이고 \(\frac{\partial W_s}{\partial q} < 0 \)인 경우에는 q가 증가됨에 따라 플러스인 \(W_s \) 값이 점점 작아진다는 것을 의미하므로 품질수준은 q 증가에 따라 바람직한 방향으로 유도될 수 있다. 그리고 \(P_s > 0 \)이고

\[\frac{\partial W_s}{\partial q} < 0 \]인 경우에는 마이너스인 \(W_s \) 값이 q증가에 따라 커진다는 것을 의미하므로 품질수준이

\[W_s = 0 \]인 수준까지 유도될 수 있다. 만약 \(P_s > 0 \)이고 \(\frac{\partial W_s}{\partial q} < 0 \)인 경우는 마이너스인 \(W_s \) 값이 q증가에 따라 더 작아진다는 것을 의미하므로 품질수준은 너무 높게 결정된다는 것이다. 이와같이 q의
조절방향은 품질수준을 바탕한 방향으로 유도할 수도 있고 반대로 더욱 악화시킬 수도 있다. 이러한 모든 현상은 \(P_{st} \)의 부호와 \(C_s/q \)와 \(C_{st} \)의 상대적 크기에 의해서 결정됨으로 \(q \) 조절을 통한 품질개선은 이 두가지 요소를 반드시 고려해서 결정해야 한다. 마지막으로 \(C_s/q = C_{st} \)인 경우에는 \(W_s \)의 값을 변화시킬 수 없으므로 산출량조절은 의미가 없다.

V. 결론

품질을 기업으로 하여금 결정하게 하고 수량조절을 통해서 품질을 개선하기 위해서는 소비자의 품질에 대한 취향과 품질개선비용의 형태가 결정적이라는 것을 보여주었다. 이는 기존의 분석이 수요곡선의 탄력성에 초점을 맞추었던 것과는 전혀 다른 시도이며 품질통제방안을 새롭게 모색할 수 있는 이론적 근거를 마련하였다. 본 연구는 독점기업의 산출량을 명시적으로 구하지 않고 단지 산출량조절을 어떠한 방법으로 유도해야 하는 것만을 제시한 단점을 갖고 있으나 상대적으로 정교한 가능한 품질개선비용을 구분함으로써 방향제시를 좀 더 세분화하였고, 또한 기존의 분석이 품질개선비용을 너무 단순한 형태로 극한하였지만 여기에서는 가능한 모든 형태의 비용함수를 고려하였다.

참고문헌

2. Spence, M. "Monopoly, Quality, and Regulation."