제 2 교시

성명
수험번호

1. 두 집합 \(-1, 0, 1, 2\) \(B = \{2, 3, 4\}\)에 대하여 다음 중 옳은 것은? (단, \(\emptyset\)는 공집합) [2점]
   ① \(\emptyset \subset A\)  ② \(\{1, 2\} \subset A\)  ③ \(\{2, 3\} \subset A\)
   ④ \(A \cap B = \{2\}\)  ⑤ \(A - B = A\)

2. \(\frac{1}{\log 36} + \frac{1}{\log 36}\)를 간단히 하면? [2점]
   ① \(\frac{1}{6}\)  ② \(\frac{1}{5}\)  ③ \(\frac{1}{4}\)  ④ \(\frac{1}{3}\)  ⑤ \(\frac{1}{2}\)

3. \(2^4 \times 2^2 = \frac{1}{2}\)를 간단히 하면? [2점]
   ① 2  ② \(\sqrt{2}\)  ③ 4  ④ \(4\sqrt{2}\)  ⑤ 8

4. 두 실수 \(x, y\)에 대하여 \((x+i)(y+i) = (1+i)^4\)이 성립할 때, 
   \(x^2 + y^2\)의 값은? (단, \(i = \sqrt{-1}\)) [3점]
   ① 5  ② 6  ③ 7  ④ 8  ⑤ 9

[18]
수리 영역 (나형)

5. 양수 $n$에 대하여 $\log_{10} \frac{n+\alpha}{2n}$ ($n$은 정수, $\frac{1}{2} < \alpha < 1$)일 때, 

\[
\left[ \log_{10} \frac{1}{x} \right]
\]

의 값은? (단, $[x]$는 $x$를 남지 않는 최대정수) [3점]

① $-2n-2$  ② $-2n-1$  ③ $-2n$  ④ $-2n+1$  ⑤ $-2n+2$

6. 계수가 모두 실수인 이차방정식 $f(x)=0$의 한 해근을 $\omega = -\frac{1}{2} + \frac{3}{2}i$라 할 때, $f(\omega^4 + \omega^5)$의 값은?

(단, $f(x)$의 최고차 항의 계수는 1, $i=\sqrt{-1}$) [3점]

① $-2$  ② $-1$  ③ 0  ④ 1  ⑤ 2

7. 세 양수 $A, B, C$에 대하여 $A:B:C = 4:5$일 때, 

\[
\frac{3^{2\alpha}}{\log_{10}B-3\log_{10}C}
\]

의 값은? [3점]

① 9  ② 10  ③ 11  ④ 12  ⑤ 13

8. 세 수 $A=2^{\frac{1}{3}}$, $B=3^{\frac{1}{2}}$, $C=9^{\frac{1}{6}}$의 대소 관계는? [3점]

① $A < B < C$  ② $B < A < C$  ③ $B < C < A$  ④ $C < B < A$  ⑤ $C < A < B$
9. 실수 \( a, b \)에 대하여 \( a^2 = 44.67, \ a^3 = 10 \)을 만족할 때, \( b^4 \) 값은 무엇인가? (단, \( \log(4.67) = 0.650 \) ) [3점]

\[
1 \quad 9 \quad 2 \quad 10 \quad 3 \quad 11 \quad 4 \quad 12 \quad 5 \quad 13
\]

10. <보기>에서 옳은 것을 모두 고르면? (단, \( i = -1 \) ) [3점]

\[
\begin{align*}
\text{가.} & \quad \sqrt{-a} = \sqrt{ai} (a \neq 0) \\
\text{나.} & \quad a < 0, \ b < 0 \text{일 때,} \quad \sqrt{a} \sqrt{b} = -\sqrt{ab} \\
\text{다.} & \quad i^{n+2} = 1 (n \text{은 양이 아닌 정수})
\end{align*}
\]

\[
1 \quad 2 \quad 3 \quad 4 \quad 5
\]

11. 그림은 세 도시 A, B, C 를 서로 잇는 직선도로 나타낸 것이다. \( \angle A = 120^\circ \), AB = 15km, AC = 20km이고 두 도시 B, C 사이에 선분 BC 를 3 : 4로 나누는 지점 D에 도서관을 세울 때, 직선도로 AD의 길이는 몇 km인가? [4점]

\[
1 \quad 60/7 \quad 2 \quad 64/7 \quad 3 \quad 68/7 \quad 4 \quad 72/7 \quad 5 \quad 76/7
\]

12. \( 0 < \angle \alpha < \pi \) 인 서로 다른 두 각 \( \alpha, \beta \)에 대하여 \( \sin \alpha = \sin \beta \)를 만족할 때, <보기>에서 옳은 것을 모두 고르면? [3점]

\[
\begin{align*}
\text{가.} & \quad \sin \frac{\alpha + \beta}{2} = 1 \\
\text{나.} & \quad \sin \frac{\alpha - \cos \beta}{2} = 0 \\
\text{다.} & \quad \tan \alpha + \tan \beta = 0
\end{align*}
\]

\[
1 \quad 2 \quad 3 \quad 4 \quad 5
\]
수리 영역 (나형)

13. 그림은 무리함수 \( y = \frac{b}{x+a} + c \)의 그래프의 개형이다. 이 때, 유리함수 \( y = \frac{b}{x+a} + c \)의 그래프의 개형은? [4점]

14. 반지름의 값이가 \( r \)인 원 내부의 한 점을 \( P \), 선분 \( OP \)의 \( O \)는 원의 중심으로의 \( OP \)방향으로의 연장선 위에 \( OP \cdot OQ = r \)이 성립하는 점을 \( Q \)라 하자. 선분 \( PQ \)의 종점을 \( R \)이라 할 때, \( R \)의 위치가 원의 외부에 있음을 증명한 것이다.

\[ OF = OR - RP, \quad OQ = (\text{(가)}) \]
따라서
\[ r^2 = OP \cdot OQ = (OR - RP)(\text{(가)}) \]
\[ = OR^2 - RP^2 \]
\[ = OR^2 - (PS^2 - RS^2) \]
\[ = r^2 - PS^2 \]

이것으로 선분 \( PS \)의 길이는 0이다.
이것은 점 \( P \)와 \( S \)는 같은 점이라는 뜻이고, 점 \( P \)가 원 내부의 점이라는 사실에 모순이다.
따라서 점 \( R \)는 원 밖의 점이다.

\[ OR = \frac{OP + OQ}{2} \quad (\text{(나)}) \]
따라서 \( OR > r \)이므로 점 \( R \)은 원 밖의 점이다.

\( \therefore \) 증명에서 (가), (나), (다)에 알맞은 것은? [4점]

<table>
<thead>
<tr>
<th>(가)</th>
<th>(나)</th>
<th>(다)</th>
</tr>
</thead>
<tbody>
<tr>
<td>① ( OR + RP )</td>
<td>( r^2 + RS^2 )</td>
<td>( OP \cdot OQ )</td>
</tr>
<tr>
<td>② ( OR + RP )</td>
<td>( r^2 - RS^2 )</td>
<td>( \sqrt{OP \cdot OR} )</td>
</tr>
<tr>
<td>③ ( OR + RQ )</td>
<td>( r^2 + RS^2 )</td>
<td>( \sqrt{OP \cdot OR} )</td>
</tr>
<tr>
<td>④ ( OR + RQ )</td>
<td>( r^2 + RS^2 )</td>
<td>( \sqrt{OP \cdot OR} )</td>
</tr>
<tr>
<td>⑤ ( OR + RQ )</td>
<td>( r^2 - RS^2 )</td>
<td>( \sqrt{OP \cdot OR} )</td>
</tr>
</tbody>
</table>
16. 반지름의 길이가 둘로, 각자의 중심이 각각 (0, 0), (4, 1)이다. 그림과 같이 원 \( C_1 \)가 \( x \)축을 접하여 \( C_1' \)에 외접하며 돌아 처음으로 \( x \)축의 양의 방향에 접하며 중심이 \( (4, -1) \)이 되었을 때, 중심이 이동한 거리는?

\[
\begin{align*}
\text{(a) } & \frac{5}{3} \pi + 4 - 3 \\
\text{(b) } & \frac{5}{3} \pi + 8 - 2 \sqrt{3} \\
\text{(c) } & \frac{7}{3} \pi + 4 - \sqrt{3} \\
\text{(d) } & \frac{7}{3} \pi + 8 - 2 \sqrt{3} \\
\text{(e) } & \frac{10}{3} \pi + 8 - 2 \sqrt{3}
\end{align*}
\]

17. 이차함수 \( f(x) = 2f(x) + f(1-x) = 3x^2 \)을 만족할 때, \( f(0) = -1 \)이다. \( f(x) \)의 최소값은 3이다. \( f(x) \)는 모든 \( x \)에 대하여 \( f(x) = f(-2-x) \)이다.

\[
\text{보기}
\begin{align*}
\text{(a) } & 1 \\
\text{(b) } & -1 \\
\text{(c) } & 3 \\
\text{(d) } & 2 \\
\text{(e) } & 0
\end{align*}
\]

18. 농도가 \( a \) 인 소금물 100그램이 있다. 매 시간 소금물의 10%가 증발한다면 소금물의 농도가 처음의 2배 이상이 될 때까지는

\[
\text{ 최소 몇 시간이 걸렸는가? (단, } \log 2 = 0.301, \log 3 = 0.477)\]

\[
\begin{align*}
\text{(a) } 6 & \\
\text{(b) } 7 & \\
\text{(c) } 8 & \\
\text{(d) } 9 & \\
\text{(e) } 10 &
\end{align*}
\]
19. 도시의 어떤 달의 쓰레기양을 \( W \), 그 쓰레기양을 조사한 다음부터 경과된 달의 수를 \( n \) 할 때, 쓰레기의 양 \( W' \)는 \( W' = W \cdot \left( \frac{3}{4} \right)^n \)인 관계가 있다고 한다. \( A \) 도시의 2월 쓰레기양은 800톤이고 그 해 6월의 쓰레기양은 600톤일 때, 상수 \( k \)의 값을 떠할 때, 쓰레기의 양 \( W' \)는 \( \sim \sim \sim \)\( k \)인 관계가 있다고 한다. 

\[
\begin{align*}
1 & \quad \frac{1}{16} \\
2 & \quad \frac{1}{8} \\
3 & \quad \frac{1}{4} \\
4 & \quad \frac{1}{2} \\
5 & \quad 1
\end{align*}
\]

20. 가로, 세로의 길이가 각각 4, 3인 직사각형 모양의 포켓당구대가 있다. 공이 내부에서는 직선운동을 하고 벽에서는 반사각이 임의로 잉각일 때, 그림과 같은 방향으로 P정점에 있는 공을 했다가 벽에 3번 부딪치고 후 Q정점에 들어갔다. P점에서 Q정점까지의 공이 움직인 거리는? (단, 한 눈금의 길이가 모두 가로, 세로 각각 1이고 공의 크기는 무시함) [4점]

\[
\begin{align*}
1 & \quad 2 \\
2 & \quad 13 \\
3 & \quad \sqrt{65} \\
4 & \quad 4\sqrt{5} \\
5 & \quad \sqrt{55} \\
6 & \quad 7\sqrt{2}
\end{align*}
\]

21. 서로 다른 두 자연수 \( x, y \) 가 다음 세 조건을 모두 만족할 때, \( xy \)의 값은? [4점]

\[
\begin{align*}
&\text{(가) 자연수 } x, y \text{ 의 차이수는 같다.} \\
&\text{(나) } x \text{ 와 } \frac{1}{y} \text{의 상용로그의 차수는 같다.} \\
&\text{(다) } x^2y^2 \text{의 상용로그의 지표는 } 10 \text{이다.}
\end{align*}
\]

\[
\begin{align*}
1 & \quad 10 \\
2 & \quad 10^2 \\
3 & \quad 10^3 \\
4 & \quad 10^4 \\
5 & \quad 10^5
\end{align*}
\]

단답형 (22-30) 

22. 유리수 \( \alpha, \beta \) 가 \( \alpha - \beta + \sqrt{\alpha + 3\beta} = 16 + 2\sqrt{63} \)을 만족하고 이차방정식 \( x^2 + ax + b = 0 \)의 두 근일 때, \( a^2 + b^2 \)의 값을 구하시오. [3점]
고 2
수리 영역 (나형)

23. 두 함수 \((x) = 2x - 1, \ g(x) = x + 1\)에 대하여
\(g(f^{-1}(-3))\)의 값을 구하시오. (단, \(f^{-1}\)는 \(f\)의 역함수) [3점]

24. 집합 \(\{ - 1, 0, 1 \}\)에 대하여 함수 \(f : X \rightarrow X\) 라 할 때, \(f(-1)+1\)\(f(1)-1\)≠ 0을 만족하는 함수 \(f\)의 개수를 구하시오. [3점]

25. \(4^x = 5\)일 때, \(8^x + 8^{-x} = \frac{b}{a}\) (\(a, b\)는 서로소인 양수)이다. 이
때, \(a+b\)의 값을 구하시오. [3점]

26. 중심이 \(O, O'\)인 두 원이 서로 다른 두 점 \(A, B\)에서 만나고
\(OO' = 4\)이고, 선분 \(OO'\)를 3 : 1로 내분하는 점을 \(P\), 외분하는
점은 \(Q\)라 한다. \(\triangle OPA\)와 \(\triangle OQB\)의 넓이의 비가 \(m : n\)일 때,
\(m+n\)의 값을 구하시오. (단, \(m, n\)은 서로소인 양수) [4점]
27. 이 아닌 양수 \(a, b, c\) 가 \(a + b^2 + c^2 - ab - bc - ca = 0\)을 만족할 때, \(\log bc + \log ca + \log ab\)의 값을 구하시오. [4점]

28. 두 함수 \(f(x) = x^2 - 6x, g(x) = mx + n\)의 그래프가 만나는 서로 다른 두 교점과 정 P(2, 5)를 세 직사각으로 하는 삼각형의 무게중심의 좌표가 \((4, 1)\)일 때, \(m\)의 값을 구하시오. [4점]

29. 이 아닌 세 자연수 \(a, b, c\)에 대하여 동일 \(a^2 = b^3 = c^4 = k\)을 만족하는 \(k\)값들 중 최소인 수를 \(p\)라 할 때, \(\log p\)의 값을 구하시오. [4점]

30. 그림은 5명의 학생 \(A, B, C, D, E\)에게 피자 2판을 독감이 나누어 주는 방법 중 하나이다.

\[
\begin{array}{c}
\text{A} \\
\text{B} \\
\text{C} \\
\text{D} \\
\text{E}
\end{array}
\]

5명의 학생에게 피자 2판을 독감이 나누어 주는 방법은 \(\frac{2}{5} = \frac{1}{3} + \frac{1}{15}\)으로 표현할 수 있다.

위와 같은 방법으로 7명의 학생에게 피자 2판을 독감이 나누어 주는 방법이 \(\frac{2}{7} = \frac{1}{a} + \frac{1}{b}\)일 때, \(|a-b|\)의 값을 구하시오.
(\(a, b\)는 서로 다른 자연수) [4점]

● 학습 사항
문제지와 답안지의 해당란을 정확히 기입(표기)했는지 확인하시오.