한국 학교과학 교육 내용의 合理 化를 위한 知的 準據模型 研究

I. 背景

1. 研究의 必要性과 目的

우리나라 중등학교 과학교육 내용은 너무 추상적으로 조직되어 있어 학생들에게 어려운 교과로 보인다. 특히, 물리·화학 등의 내용은 너무나 추상적이어서 학생들이 학습하는데 어려움을 겪고 있다는 평가를 받고 있다.

최근 한 조사연구에 따르면, 중학교 학생 중 61.5%가 과학내용이 어려다고 보고 있으며, 고등학교의 경우 77.2%의 학생이 물리, 화학 등 교과가 너무 어렵다는 반응을 보였다. (표 1 참고)

이러한 학생들의 반응은 단순한 인성적인 평가가 아니라 그들의 학력에서도 여실히 나타난다고 한다. 예컨대, 국제과학학력평가(IEA)의 결과에 따르면, 고등학교 화학학력은 평균 29.3 점이며, 물리학 과목 39.5 점이다(중앙교육평가원, 1986년 보고)

<table>
<thead>
<tr>
<th>응답 항목</th>
<th>반응 수 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>중학교 (N=6,000)</td>
<td>고등학교 (N=5,200)</td>
</tr>
<tr>
<td>1. 대단히 어렵다.</td>
<td>1,109 (10.5)</td>
</tr>
<tr>
<td>2. 좀 어렵다.</td>
<td>5,383 (51.0)</td>
</tr>
<tr>
<td>3. 보통이다.</td>
<td>3,103 (29.4)</td>
</tr>
<tr>
<td>4. 좀 쉽다.</td>
<td>766 (7.3)</td>
</tr>
<tr>
<td>5. 대단히 쉽다.</td>
<td>171 (1.6)</td>
</tr>
<tr>
<td>6. 무응답</td>
<td>28 (0.3)</td>
</tr>
<tr>
<td>계</td>
<td>10,560(100.0)</td>
</tr>
</tbody>
</table>

* 자료 : 유정조 외 (1986) 중등학교 과학교육 실태조사

이 IEA평가 내용은 각국의 평균 학생이 학습한
내용을 대상으로 하였다. 따라서 평가 문제의 난
이도 역시 평균 학생 인구를 가정하였기 때문에
극히 어려운 것은 아니라는 것이 IAE 참여국들
의 의견이다 (Noonan, 1986, Pidgen, 1986,
Connelley, 1985 & Tamir, 1986).

이런 점을 고려한다면, 우리나라 과학교육 내
용이 평균학생 (중학내용)을 대상으로 선정되었
다고는 하나 역시 학생들에게는 어렵다는 것이
학생들의 반응이나 학력에서 잘 나타나고 있다.
이처럼 과학 교육내용이 어렵게 된 데에는 어
려 원인이 있을 수 있겠으나, 무엇보다 불리하거나
화학 등의 지식은 본질적으로 인간의 상식적인
감지(感知)를 넘어선 추상적인 논리성을 내포하
고 있기 때문에 어려운 것은 사실이다. 그러나
그러한 추상적인 지식도 인간의 감지를 통하여
형성된 것이기 때문에 그 교육내용으로서 조직
하는 방법과 전달하는 기술에 따라서는 어려운
추상성을 극복할 수도 있다.

그러나 지금까지 과학 교육내용을 선정하고 조
직하는 데 있어서 그 추상성을 극복할 수 있는 기
술과 방법을 전문적으로 생각하지 않은 채 교사나
교사와 집필자의 상식적인 경험과 직관으로 교육내
용을 다루어 왔기 때문에 학생들의 어려움을 극
복하는 데는 한계가 있었다.

따라서 학생들이 “어렵다”고 느끼는 추상성
을 극복하기 위하여, 학생의 어려움을 느끼게
하고, 학습의 곤란을 가져오는 원인을 심층적으
로 분석할 필요가 있다. 그 뿐만 아니라 그 원인
을 근거로 과학교육의 내용을 분석 및 평가할
수 있는 길을 아울러 탐색하여 볼 필요가 있다.

그리므로 본 연구는 이러한 필요성에 따
라 과학교육의 내용을 선정하고 조직하는 데 있
어서 평가의 준거가 될 지적 준비성을 가능할
수 있는 모형을 연구하는 데 그 목적이 있다.

2. 연구문제의 성적과 일반

학생들이 과학교육의 내용을 어렵게 생각한다
는 말을 좀더 줄여서 보면, 어떤 과학지식 또
는 어떤 과학문제에 대하여 이해하지 못하거나,
이해하는 데 곤란을 느끼고 있음을 듣한다. 왜
어떤 특정한 지식 또는 문제에 대하여 어려움을
느끼는가? 그 지식에 대하여 이해하는 데 어
려움을 느끼는 학생은 어떤 심리적 특징을 가
지고 있는가?

이러한 일련의 질문을 학생들이 어렵게 생각
한다는 문제는 좀 더 구체적으로 접근할 수 있는
근거를 제시하여 준다.

과학 교사는 학생들에게 과학(또는 물리학)
을 가르칠 때에 학생들의 사고능력 (reasoning)
에 대하여 관심을 갖지 않을 수가 없다. 예컨대,
어떤 과학문제를 다룰 때, 어떤 학생은 쉽게 이
해하는 데 어떤 학생은 복잡 곤란을 느끼거나
전혀 이해하지 못하는 것을 발견할 수 있다. 가
령, 성인들은 어떤 문제를 해결할 때에 여러 형
태로 생각하는 사고유형 (patterns of reason-
ing)를 발견할 수 있다. 예컨대, 부분과 전체
의 관계를 통하여 문제를 보려고 한다던가, 변인을
체계적으로 분리하여 다룬다면, 비교적 논리
혹은 확률적 논리로 문제를 분석하다던가 하는
사고유형을 동원하여 문제에 접근한다.

실은 이러한 사고유형들이 문제를 해결하거나
이해하는 데 있어서 필수불가결한 요소 라는
평을 카일 포/static의 “과학적 발달의 논리”(1959)
나 이필다와 칠레아제의 논리적 사고력 발달론
(1958)에서 잘 설명하고 있었다.

그러나 성인들은 달리 중·고등 학생은 대
부분이 같은 문제 (성인에게 준)를 해결할 때, 성
인들이 보이는 그러한 사고유형을 보이지 않
거나, 보인다 하더라도 아주 불완전한 형태라는
것을 여러 상황에서 발견할 수 있다. 마무어 말하면, 같은 문제를 전혀 다른 차원에서 풀려고 한다.

한 예를 들면, 5 가지 각각 다른 음액 (물은 H₂SO₄ 용액, 물, H₂O₂ 용액, Na₂S₂O₃ 용액, NaI 용액; 모두가 무색임)을 주고, 이 다섯가지 음액 중 어떤 것을 섞으면 갈색이 되는 데 그 용액을 찾아내라는 과제를 주었다고 하자. (NaI 용액과 물은 황산용액 또는 H₂O₂ 용액을 섞으면 갈색이 됨).

가령 성인이 이 문제를 받았다고 하면 체계적으로 5 가지 용액을 희합하여 결국 그 관련 음액을 찾아낸다. 즉, 체계적인 조합논리 (Combinatorial reasoning)를 통하여 찾아 낸다. 그러나 중등학생의 경우 대부분 (70% 이상)은 무질서하고, 시행착오로 접근한다. 이렇게 하여 우연히 발견하는 수도 있다. 이때, 학생들은 같은 문제를 가지고 체계적인 조합으로 찾아내는 것이 아니라 적절적인 판단 또는 무작위적인 시행착오를 끔찍없이 시도하다가 찾아내는 경우가 많다. 그러나 대부분은 실패한다 (Inhelda & Piaget, 1958).

이러한 학생들에게 체계적인 조합논리로 하여 문제를 해결하여야 하는 과제를 준다면 어려움을 느끼는 것은 당연하다.

그러므로 어떤 지식에 대하여 학생들이 어렵다고 반응하는 것은 그들이 그 지식을 이해하는 데 필요한 지적 준비성을 사고력 (reasoning)을 갖고 있지 못함을 반영한 것이라고 보아야 한다. 그런데, 불행하게도 오늘날 과학교육과정이 포함하고 있는 과학지식은 너무나 추상적인 형태로 조직되어 있어 대부분 학생들이 지적으로 감당하기에는 어려운 곤란을 주고 있다. 요컨대, 재민스카가 지적하였듯이 현 과학교육 내용과 방법을 학생들의 지적 수준과 상당한 격차가 있다. 따라서, 과학교육과정은 학생의 지적발달 수준에서 심각하게 재평가되어야 할 것이다 (Szeminka, 1965).

그러므로 본 연구에서는 과학지식의 추상성을 학생들의 지적수준 즉, 사고유형 (Patterns of Reasoning)의 측면에서 재조명하여 보려고 한다.

3. 연구문제의 접근 방법

이 연구에서는 세 측면에서 연구문제를 접근하려고 한다. 즉, 첫째 과학지식의 본질과 인간의 사고와의 관계를 먼저 규명하려고 한다. 특히 과학지식의 형성과정에서 인간 사고유형과의 관계를 밝히는 것이 과학지식의 추상성을 이해하는 데 도움이 되리라고 본다.

둘째, 학생들의 지적발달과정, 특히 과학적 사고의 특성을 나타내는 사고유형의 발달과정을 하려고 하였다. 이 연구에서는 사고유형 가 운데에서 과학지식의 형성과 밀접한 관계가 있는 몇 가지 유형에 주안점을 두었다. 예컨대, 보존적사고 (conservation reasoning), 비례적사고 (proportional reasoning), 확률적사고 (probabilistic reasoning), 조합적사고 (combinational reasoning), 변인 통제 (control of variabls), 상관적사고 (correlational reasoning), 함수적 논리 (functional reasoning),
과학적 또는 모형적 논리 (theoretical reasoning) 등이다.

세계, 지식문석의 지식준거모형으로써 앞에서 언급한 사고유형을 채계화하고, 이것에 의한 과학적식의 분석 및 평가방법을 제시하려고 한다.

II. 科學知識의 形成過程과 思考類型과의 關係

과학적식의 형성과정과 인간의 사고와의 관계를 두 차원에서 규명하여 볼 수 있다.

1. 科學知識의 形成論

과학적식은 과학적 사실, 개념, 법칙(또는 원리), 이론 및 이론체계 등을 포함한다.

이 지식은 정체적(靜態的)인 측면에서만 보면 추상적인 언어체계 또는 기호체계에 불과하다. 예컨대, 뉴턴의 운동법칙은, \(F = ma \)라고 상징적인 기호로 표현한다. 이때, \(F \)는 힘, \(m \)은 질량, \(a \)는 가속도를 상정한다. 이같은 추상적 언어체계는 세련된 학문일수록 발달되어 있지만 특히 자연과학이 구사하는 그 언어체계는 가장 잘 발달되어 있다.

그러나 자연과학 (natural sciences)은 그러한 정체적인 언어체계가 전부는 아니다. 바꾸어 말하여 과학적 그 자체가 아니라는 점이다. 오히려 그 정체적인 언어체계의 이면에 내재하여 있는 동태적(動態的)인 의미를 더하지 않고는 자연과학의 성격을 충분히 설명할 수가 없다. 토마스 쿤의 현대과학 (normal secenence)의 성격을 설명하면서 패러다임 (paradigm)라는 개념을 도입한 것도 바로 과학의 동태적 의미를 부각시키기 위한 것이었다 (Kuhn, 1961).

과학 성격을 그렇게 보려고 한것은 한 두 학자의 생각은 아니다. 오늘날 자연과학이 갖게 많은 과학자와 과학철학자들의 공통된 견해라고도 볼 수 있다. 대표적인 몇몇 과학자들의 견해와 입장을 살펴보면 이러한 주장은 잘 듯 받아들여 주고 있다. 그뿐 아니라, 그들의 견해에 따르면 과학의 동태적 성격 통해 과학적식 형성과정에 대하여 논راه 정도로 공통된 논리 (論理)를 발견할 수 있다.

우선, 화학자인 벤델레프는 “과학이란 자료 (materials)를 필요로 하지만, 이에 못지않게 계획 (plan)을 요구하고 있다. 자료없는 계획은 구름 위에 그림 그리고, 계획없는 자료는 불모의 문제에 불과하다.” (Mendelev, 1968)라고 하였다. 여기서 벤델레프가 주장하는 계획은 인간의 사고에 의한 설계, 구성, 창안 등을 의미한다.

더 나아가서, 과학은 인간이 만든 창안물이며, 인간 사고의 소산이라는 점을 많은 과학자와 과학철학자들은 분명히 하고 있다.

예컨대, 고어같은 이는 과학은 자연을 해석하는 방법이며, 인간은 해석자라고 주장하였다 (Gore, 1878). 아인슈타인은 이를 좀 더 구체적으로 설명하고 있다. 즉, “과학은 우리 인간의 감각체계의 무질서한 다양성을 인간의 논리적인 사고체계로 설명하려는 시도이다.”라고 자연과학의 성격을 설명하였다 (Einstein, 1940).

이를 둘면, 우리가 감각적으로 체험하고
있는 자연은 문자 그대로 다양하고, 변화 무쌍하다. 그러한 변화와 무질서한 세계를 우리의 논리적인 사고를 통하여 의미있게 설명하고 해석하는 것이 자연과학이라는 점이다. 이처럼, 과학에 대하여도 그러한 성격을 부여하려는 하자는 적지 않다. 예컨대, 칼피어스, 캔프벨, 프랑크 등 많은 과학자들이 과학의 성격을 그렇게 설명하고 있다 (Pearson, 1982; Campbell, 1921; Plank, 1932; Hebson, 1926; Roe, 1961, Mach, 1921).

이런 견해를 미국 교육정책위원회에서는 공식적으로 받아들이면서, 교육적 의미를 부여하여 좀더 구체화하고 있다. 즉, 과학은 인간의 사고 과정에 의하여 발생하는 또 사고과정 (process of thought)은 기억, 상상력, 본류, 일반화, 비교 평가, 분석, 종합력과 추리 및 연역 과정 등을 포함한다고 설명하였다 (Educational Policies Commission of N.E.A & AASA, 1961).

이상 과학자 및 과학철학자가 설명하고 있는 과학은 정태적인 과학 지식보다는 동태적인 과학지식의 형성과정 및 창안과정의 성격이 더 강하다.

이러한 견해를 근거로 한다면 과학지식의 형성과정은 다음과 같이 도식화하여 볼 수가 있다. (그림 1 참조).

다음 그림에서 과학지식은 세 차원으로 분석할 수 있다. 먼저 과학지식은 앞에서 언급한 것처럼 추상적 언어체계이다. 예컨대, 전류와 전암의 관계를 나타내는 오용의 법칙을 \(V = R I \)로 표현된다. 이때 \(V \)는 전압, \(I \)는 전류, \(R \)은

[그림 1] 과학의 성격과 과학지식의 구조

도선의 지향을 나타낸다. 이것은 정태적 언어에 불과하다. 이 언어를 \(Y \)축으로 나타낸다. 특히 \(Y \)축은 외부표로 표현한 이유는 이 정태적 지식 (언어)은 기반적임을 시사하고 아울러 발견 - 가능성이 (progressive)를 나타낸 것이다.

다음 X축은 \(V = R I \)의 지식이 형성되는 과정에서 기초가 된 인간의 사고 (reasoning 또는 process of thinking)를 의미한다. 실은 \(V = R I \)은 전류의 세기 (I)와 전압 (V)에 비례한다는 논리를 기초로 하고 있다. 두 변인의 관계를 정량하는 변인 즉, 계수는 저장 (R)의 것이다. 이 지식은 비례논리 (proportional logic)를 근간으로 하고 있다.

마지막 Z축은 과학 지식이 공인되기 위하여 없어서는 안될 과정적 검증 또는 실험 (testing 또는 experimenting)이다. 자연과학의 언어체계가 타학문에 비하여 발달된 원인중 하나는 바로 수학적인 재확인 과정을 거쳤기 때문이다. 다시 말하여, 정확 및 정밀한 증거를 기초로 하여 언어가 구성되었기 때문이다.

위 그림에서 보듯이 하나의 과학지식은 \(X \)축
과 Z축이 바탕이 되어 형성된다. 만일 Y축과 X축만에 의한 과학지식이라면, 그 지식은 이론 인에 그치거나 상상으로 끝나는 불완전한 과학 지식에 불과하다. 반면에, Y축과 Z축만으로 구성된 지식이라면 벤델레프가 정의했듯이 사실과 자료만을 모아 놓은 자료적(accumulation of materials)에 불과할 것이다. 이 그림은 실험과학자들이 만일 이론(plan)없이 무의미한 데이터만으로 쌓게한다면, 그것은 과학이 아니라 도로(徒勞)를 일삼는 불완전한 물리학을 시사하고 있다.

그러나 X축과 Z은 과학지식의 기초이며, 출 발점일 뿐만 아니라, 과학의 동태적 성격은 나타 내고 있다. 이는 과학의 필요조건이면서, 중분 성을 내포하고 있는 성격을 지니고 있다.

특히 아인슈타인이 지적하였듯이 X축의 사고 가 과학의 요체(要題)이며, 토마스 큐이 도입한 레마디임의 근간이라고 볼 수 있다. 따라서, 이 사고의 정체와 말로 과학의 역동성을 파악하는데 주요한 변인이다. 또한 과학교육에 있어서 흥미를 수 없는 핵심적인 요인이라고 볼 수 있다.

2. 科學的 思考의 類型

[그림 1]에서 X축의 과학적 사고(scientific reasoning)는 심리학에서 정의하는 사고(thinking)에 일관이지만 이 연구에서는 과학 지식 형성에 중추적 역할을 하는 몇가지 사고 유형에 국한하여 보고로 한다.

이들의 의미를 좀 더 부연하면 아래와 같다.

1) 계열화논리: 어떤 시사를 이해하고 설명할 때, 크기의 순서에 의해서 나열할 수 있는가, 어떤 현상이 변화하는 순서를 구별할 수 있는 논리를 계열화논리라고 한다. 이 논리는 모든 사고의 기초가 된다.

2) 조합논리: 서로 다른 n개에서 r 개를 취하여, 이를 일렬로 놓여놓을 때, 그 날짜의 배 열을 서로 다른 n개에서 r개를 위한 순열이라고 하고, 그 배열하는 순서를 생각하지 않고 r개의 구성만을 문제상으로, 이러한 r개의 한 모임을 서로 다른 n개에서 r개를 취하는 조합이라고 한다.

과학적인 문제를 해결하는 데 있을 수 있는 여러가지 경우를 벌어진다. 또 중복되지 않도록 센 수 있는 논리를 조합논리라 한다. 조합논리는 과학교육과 학습능력의 기초가 되며, 확률논리와 가설연역논리의 바탕이 된다.

3) 확률논리: 확률이란 한 사건이 일어진 전 집(全集)에서 그 사건이 생기는 상태적인 빈도를 의미한다. 즉, 모든 가능한 경우의 수에 대되는 경우의 수의 비율을 확률이라 한다.

자연현상을 설명하는 과정에서 우연히 일어나는 사건중에서 어떤 사건이 일어날 확률을 계산할 수 있는 논리가 필요하다. 이러한 논리를 확률논리라 한다. 즉, 양자 역학의 기본 개념, 유전학의 기본 개념, 확률논리의 바탕으로 이해할 수 있는 부분들이다. 또한 과학자
들어 어떤 현상에 대한 문제 해결의 단을 제시한 것 가운데 확률논리를 기반으로 한 것이 많기 때문에 확률론리가 형성되자 고려하는 이상한 것을 이해할 수 없다.

4) 가설 연역적 논리 : 참(true), 거짓(false)이 명백한 문장이나, 그 자체는 참(true), 거짓(false)을 판별할 수 없더라도 구체적인 사상의 경우에 대하여 참(true), 거짓(false)이 판별되는 문장의 명제라 하면서, 명제에 의한 사고로서 어떤 추리가 옳은지 그뿐이 판별할 수 있는 논리와 주어진 명제로부터 연역적으로 추리해 낼 수 있거나 명제절의 원리에 없어 있는 관계가 무엇이며, 혹은 당연히 나올 수 있는 결과가 무엇인가를 결정할 수 있는 논리를 가설 연역적 논리라 한다. 자연현상을 설명하는 과정에서 주어진 관찰 결과의 정보를 바탕으로 가설 연역적 사고를 하거나, 또는 과학적의 체계가 추상적인 언어체계로 이루어져 있기 때문에 구체적 판찰 결과의 정보가 없어도 자명한 명제로부터 가설 연역적 논리에 의해서 사상을 명명하는 능력이 요구되고 있다. 이 과학적 탐구과정에서는 가설 연역적 사고가 요체가 된다.

5) 이원추리 : 두 명제 P와 Q사이의 관계를 다룰 때 이정계(binary system)로 나타낼 수 있다. 명제 P, Q의 부정을 각각 P, Q라 하면 이정계 PQ, P Q, P Q, P Q에서 각각은 참(true) 또는 거짓(false)의 경우를 갖고 다. 따라서 PQ, P Q, P Q, P Q는 모두 참(true)인 경우, 섹한 참(true)인 경우, 둘만 참(true)인 경우, 하나만 참(true)인 경우를 따로 16 가지의 경우가 된다. 이원적인 문제를 이해하고 해결하는데 있어서 16 가지의 경우를 각 각 판별하고 이해하는 논리를 이원추리라 한다. 이원추리는 실험을 설계하거나 문제를 해결하는 과학적 사고의 요체가 된다.

6) 비례논리 : 두 비에 있어서 그 비의 값이 같다고 논리를 바탕으로 하여 어떤 문제의 정량적인 관계를 이해하고 해결하는 것을 비례논리라 한다.

수학 교과와 과학 교과의 학습에서 타우어지고 있는 지식의 많은 부분은 이러한 비례논리를 토대로 하고 있다. 뉴턴의 운동법칙, 전기에서 오음의 법칙, 화학 반응에서의 배수 비례의 법칙, 화합물에서의 일정 성분비의 법칙 등은 비례논리를 바탕으로 학습될 수 있는 것들이다. 따라서 비례논리가 형성되어 있지 않으면 이러한 법칙이나 현상을 이해할 수가 없다.

7) 변인통계논리 : 어떤 사상에 영향을 미치리라고 생각되는 여러 변인(variables) 중에서 한 변인의 효과를 알아보기 위해서, 그 변인 이외의 다른 변인들을 통제함으로써 사상과 그 변 인과의 관계를 규명할 수 있는 논리를 변인통계논리라 한다. 한 변인의 효과를 분리시키기 위해서 다른 모든 변인들을 일정하게 유지시키는 통제 실험은 과학에서 매우 중요하다.

8) 수학적함수 논리 : 한 변량 Y가 다른 변량 X에 함수라고 하면 Y = f(x)로 나타내는데, 이때 한 변량이 변하므로 다른 변량도 따라 변한다. 예컨대, Y = 3x^2 + 5x (또는 f(x) = 3x^2 + 5x)는 명제가 있다면, Y는 X의 함수이며, X의 값이 변하면, 따라서 Y의 값도 변한다. 이러한 수학적 함수논리는 자연과학에서 자연현상에 관련된 변인들의 인과관계, 상관관계 등을 함수논리로 설명하려고 노력한다. 실은 자연과학의 언어가 세련되고 발달하였다는 것은 바로 이러한 논리를 언어체계에서 근간으로 삼고 있기 때문이다.

이상 8 가지는 과학적논리의 형성하는데 있어서
중추적 역할을 하는 대표적인 논리적 사고(logical reasoning)의 유형이다.

본 연구의 관심은 이러한 사고유형이 과학지식, 특히 과학 교육과정을 분석 및 평가하는데 어떻게 활용될 수 있으며, 또한 이들이 어떻게 발달하는지에 밝히는 일이다.

Ⅲ. 중등학생의 논리적 사고의 발달 수준

1. 논리의 사고발달 경이의 특성

장 빈 아제는 어린이와 청소년들이 어떤 문제에 대하여 어떻게 생각하고 있는지를 관심하고 또 연령에 따라 이들의 사고유형이 어떻게 다른가를 관찰한 후에 어린이와 청소년의 사고유형과 발달과정을 이론화하였다. 이론이 바로 인지발달단계론(지식발달단계론)이다.

그의 발달단계 개념은 문제를 풀어가는 어린이와 청소년의 사고력(reasoning)은 나이를 듣어가면서 허접한 차이를 보인다는 것이다. 이러한 차이를 근거로 빈 아제는 넷개의 단계로 구분하였다. 이것은 크게 네 단계로 요약하여 볼 수 있다.

1) 감각운동 지능기: 이 단계는 대체로 어린이가 언어를 획득하기 이전(2세 미만)에 보이는 지능기(知能期)이다. 이 단계에서는 어린이들이 환경에 대하여 감각운동적인 기능으로 적응한다는 것이다. 따라서 이 시기에 논리적 사고의 중추를 찾아볼 수 없다.

2) 전조직적 사고기 (前操作의思考期): 빈 아제는 어린이의 사고유형(prototype of reasoning)을 찾기 위하여 사고작업(mental operation)이란 개념을 도입하였다. 여기서 조작이란 가역적 사고(可逆的思考)를 의미한다. 가역적 사고란 두 사상(事象)의 변화를 서로 관련지어 생각할 수 있는 능력이다. 예컨대, A사상이 변하여 B사상으로 바뀌었을 때, B사상을 설명하기 위하여 A사상을 유추하거나 인용할 수 있는 능력을 말한다.

이제는 이러한 가역적 사고를 논리적 사고의 원류(源流)로 보고 있다. 마무리 말하면, 논리적 사고유형은 이 가역적 사고의 변형 및 발달로 보고 있다.

그런데 대체로 6세미만 어린이는 이와같은 사고의 조작성이 보이지 않기 때문에 이 단계의 어린이 사고 특성을 전조작기(前操作期)로 보았다.

3) 구상적 조작적 사고기(具象的 操作的思考期): 이 단계는 대체로 7세를 지나 12세에 이르는 어린이가 보이는 사고의 특징이다. 즉, 이 시기의 어린이는 문제를 풀어나갈 때 조작적 사고를 한다는 것이다. 즉, 가역적 사고를 하면서 문제에 접근한다. 다만, 이 단계의 특징은 구체적인 상황, 구체적인 경험을 기반한 상황에서도 만 그러한 조작적 사고가 가능하기 때문에 구상적 조작기(concrete operation)라고 하였다.

구체적인 상황만 주어진다면 이 단계의 어린이는 보존성 논리, 부분적인 조합논리를 문제해결과정에서 구사할 수 있으며, 특히 계열화 논리는 거의 완벽하게 구사할 수 있다. 그뿐 아니라 제한된 범위에서 비례논리도 구사할 수 있다. 여기서 제한된 범위란 수학적인 취급이 불

4) 형식적 조직적 사고의 (形式의 操作的 思考期): 빠르게의 실험에 따르면, 16세 청소년 이라면 앞에서 언급한 논리적 사고가 가능하다는 것이다. 즉, 비례논리를 포함하여 가설연역적인 명제논리, 확률논리, 변인통계논리 등 논리적 사고형을 보이는 시기이다. 특히 구상적 사고기의 어린이와는 달리 추상적인 상황 즉, 형식적인 상황에서도 문제를 풀어나가는 데 있어서 조직적 사고를 자유롭게 구사할 수 있다.

이상의 발달단계를 학교교육과 관련시키면, 구상적 조직단계와 형식적 조직단계가 중등학교 교육과 관련된다고 볼 수 있다. 즉, 중학생의 논리적 사고의 특성이 이 두 단계와 관련된다고 보기 때문이다.

따라서 이 두 단계의 사고특성을 좀더 구체화 하여 볼 필요가 있다.

2. 중등학생의 論理的 思考發達 水準

구상적 사고단계의 사고유형과 형식적 사고단계의 사고유형을 구체화하여 보면 다음과 같다.

1) 構想的 思考段階의 사고유형

구상적 사고는 네가지 대표적인 사고유형으로 특정지을 수가 있다(여기서 구상단계의 성장은 "C"을 자료를 사용함).

- C1. 유포심관계(Class inclusion) - 논리적 사고의 가장 기본적인 사고관계가 이 단계에서 특정적으로 나타난다. 이것은 사물의 특성에 따라 분류 또는 일반화 하는 능력은 의미한다. 예컨대, 리트머스 시험지의 색에 따라 산과 암 kali를 분류한다면거나 또는 “모든 개는 동물이다. 그러나 모든 동물은 개가 아니다”라는 유포심적 사고가 그 예이다.

- C2. 보존성 논리(conservation) - 사물의 외형이 어떻게 변하더라도 물질의 첨수는 없으면 사물의 양은 일정하다는 인식력 (예: 모양이 다른 비커의 물을 시린더에 옮겨 부으면 물의 모양은 다르게 보인다. 그러나 물의 양은 같다).

- C3. 순서열 보(順序性: serial ordering) - 사물의 특성(observable properties)에 따라 사물의 집합 배열 또는 두 사물의 집합 사이에 일대일 대응성이 있다는 인식(예: 작은 동물은 백색이 빠르나, 큰 동물은 백색이 느리다)

- C4. 가역성(可逆性: reversibility) 어떤 변화 과정에서 최종 변화단계 (상태)를 최초의 단계로 환원하여 생각할 수 있는 지적 능력 (예: 집에서 학교에 간 다음 아무도 도움 없이 학교에서 집으로 돌아올 수 있는 능력)

이상 구상적 사고단계의 특징은 구체적인 상황 또는 사물의 집측을 통하여서만 가능하다. 다시 말하여 구체적인 사물의 관찰, 조작 등을 통하여 C1-C4의 사고유형을 구사할 수 있다. 따라서 이 단계의 학생들에게 구체적인 상황의 집측과 관련없이 언어만으로 문제를 풀게 한다면, 정확히 문제에 접근하지 못한다.

2) 形式的 操作段階의 思考類型

형식적 조직단계의 사고유형은 5가지로 대표적인 특성을 드볼 수 있다(연의성 "F"자자를 사용함). 그 예를 열거하면 다음과 같다.

- F1. 이론적 또는 모형적 사고(theory-
tical reasoning) -

사물의 직접적인 관찰이나 접촉 없이도, 복합 유 개념, 보존성 논리, 순서성 및 등의 사고유형을 문제해결에 적용할 수 있는 능력 (예: 산학화와 품의 반응, 구별, 에너지 보존법칙의 활용, 전화 과정에서 하등 식물 및 고등 식물의 분류, 지구의 지층 형성 이론의 추리, 가설 연역적 실험 등).

- F2. 조합 논리적 사고 (combinational reasoning) -

추상적인 사례 또는 조항 (items)를 가지고 모든 조합적 관계를 인식 (두 세가지 유전 인자에 의해 형성되는 특성에 따라 유전차원, 표현형을 표출하는 일).

- F3. 함수적 사고 (functionality) 및 비례적 사고 (proportional reasoning) -

수식적인 방식 (mathematical form)으로 할 수 관계를 표현 또는 해석하는 능력 (예: 분자 확산율을 분자량의 함수순에 반비례).

- F4. 변인조작 (control of variables) -

실험 설계를 할 때, 여러 변인중 관찰할 변인만을 고정시키고, 다른 변인을 통제하는 능력 또는 통제의 필요성 인식 (제 1절 실험설립에서 빛을 통제한 실험장치를 학생 B1과 학생 B2가 연급한다.)

- F5. 확률 및 상관관계 사고 (probabilistic 또는 correlation reasoning) -

사상(事象)의 불규칙적인 변화의 관찰하고 이를 해석하는 능력, 그리고 이들 변화가 불규칙적이지만 변인들 간에는 관계가 있음을 인식하는 능력.

이 밖에도 형식적 조작과 사고의 사고유형으로는 자신의 사고 자체를 계검하는 경향이 있는 점이다. 이런 재검 (再検)을 통하여 자기가 내린 결론 가운데서 모순이나 불합리한 요소를 찾아내고, 문제 해결방법을 비교하고 특정한 이론의 적절성 또는 모델의 적절성을 검토한다. 요컨대, 가설 - 연역적 사고 (hypothesis - deductive thinking)을 반복하는 성향이 있다.

그러면, 구상적 사고유형과 형식적 사고유형의 차이는 비교적 분명하겠거나. 이를 좀더 명확히 하기 위하여 다음과 같이 비교하여 볼 수 있다.

<table>
<thead>
<tr>
<th>구상적 사고</th>
<th>형식적 사고</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 전후가 동일한 사물의 특성 등의 보조가 필요</td>
<td>개념적 사고, 간접적 관계 및 특성에 의한 추리 (사고) 공리 및 이론에 의한 추리, 결론에 대한 필요, 종분조건의 인식</td>
</tr>
<tr>
<td>(2) 문제 해결에서 C1 - C4 유형의 사고는 가능하지만 F1 - F5 유형의 사고는 불가능</td>
<td>문제 해결에서 C1 - C4의 사고는 물론 F1 - F5 사고유형으로 대처함</td>
</tr>
<tr>
<td>(3) 구체적이고 단계적 인 지시가 없으면 절차의 계획 불가능</td>
<td>주어진 전반적인 목표와 자료만 제공하면 단계적 지시 없이도 절차의 계획수립가능</td>
</tr>
<tr>
<td>(4) 자기의 사고의 모순, 불합리성, 불일치성을 깨닫지 못함</td>
<td>자기의 판단, 사고의 모순을 인지할 줄 알았다고 자기가 내린 결론 및 판단 의 타당성을 검토하기 위하여 다른 기존 이론, 정보, 사실을 적극적으로 적용함</td>
</tr>
</tbody>
</table>

-212-
과학 교사는 과학지식이나 이론을 가르치기 이전에 과학 지식이나 이론은 완전한 것이 아니며, 계속 발전하고 있음을 인식하여야 한다. 특히 실험적으로 아직 검증되지 않은 이론, 검증되었다고는 하나 아직 논란의 소지가 있는 지식이 대부분이라는 점을 알아두어야 한다.

이런 맥락에서 보면, 장 빈아제의 이론도 마찬가지이다. 에컨데, 빈아제는 대부분 학생 (12 -16세 아이)은 형식적 사고유형을 문제해결 과정에서 이용하고 있다고 시사하였지만, 그러나, 최근 여러 조사 연구에서는 12-16세 학생들 가운데서 대부분이 그런 수준의 사고를 하지 못하고 있음을 밝혀지고 있다.

그럼면 구상적 조직적 사고의 학생들이 문제 해결과정에서 어떤 지적 능력의 한계를 보이든지 그 예를 들어보기도 한다. 이런 예는 대체로 학생들이 과제를 푸는 과정에서 잘 나타나는 대표적인 것이다. 이를 열거하면 다음과 같다 (Good, 1977).

(1) 구상적 사고의 학생은 사물이나 현상에 영향을 미치는 변인을 분리하기는 하나 조직적이고 체계적이지 못하다.

(2) 이 학생들은 관찰을 하고 그 관찰 결과에 서 결론을 도출하는데, 실험 조건에서 일어날 수 있는 모든 조건과의 관계 (all combinations)를 생각해 내지 못하고 타당한 결론을 뒷받침 할 수 있는 증거나 데이터 수집의 필요성을 인식하지 못한다.

(3) 이 수준의 학생들은 어려운 문제 상태에서, 공식의 단순 적용 혹은 기계적인 키어 맞추기로 그 문제를 풀려고 하고, 필요하고 정확한 알 고리즘이나, 왜 그렇게 생각하게 되었는지의 이유를 논리적 증거로 제시하지 못한다.

(4) 이 수준의 학생들은 자유적으로 자기들의 사고를 인식하지 못하고, 자기 결론과 다른 데이터 비교하여 그 결론을 검토하지 못한다. 그뿐 아니라, 이론적 결론을 증명할 수 있는 조건을 찾아내지 못한다.

이상과 같은 사고의 특성은 구상적 사고의 학생들에게 흔히 볼 수 있는 것들이다. 그러나 우리가 가르치려는 물리학, 화학 등 과학 교육의 내용은 그렇게 단순하지가 않다. 다시 말해서 추상적이이고 엄밀한 관계와 증명을 요구한다. 그런 경우에 이런 수준에 있는 학생은 과학 학습에 어려움이 있는 것으로 볼 수 있다. 그런데 사고 유형을 분류할 때, 이런 학생은 특정한 문제나 과제에 대하여 구상적인 사고 유형을 보이기도 하고, 때로는 형식적 사고기의 유형을 보이기도 한다. 이런 학생은 사고 능력이 "과도기적 상태"에 있다고 볼 수 있다. 다시 말해서, 어떤 특정한 문제에 대하여 어떻게 생각한다면 대체적으로 생각하는 유동적인 상태에 놓여 있다고 볼 수 있다. 이런 경우에 그 학생은 과도기적 발달과정 즉, 구상적 사고기에 형식적 사고기를 발달하는 과정에 있다고 볼 수 있다.

우리는 학생들이 공식을 외우고, 용어나 구절은 외워서 이것을 문제 해결에 적용하려는 것을 볼 수 있는데, 이것만을 보고 이들이 형식적 사고기의 학생이라고 판단하면 큰 오산이다. 공식을 문제에 직접 적용시켜 적용하는 정도는 구상적 조작기의 학생도 할 수 있다. 따라서 공식
의 적용 정도 혹은 일대 일로 대응시키는 정도 만으로 학생들의 사고유형을 판정하는 것은 큰 도움이 안된다. 학생들의 형식적 사고유형의 유 무를 판단하려면 좀 더 깊이 질문하여 보면서 여 러 사례를 바꾸어 가면서 그들이 어떻게 생각하 는가를 파고 들어야 한다. 문제 해결과정에서 심도있는 질문에 대하여 어떻게 대답하는가를 보이기면서 학생들의 사고유형을 이해하는 것이 중요하다.

IV. 논리의 思考類型에 의한 科學知識의 分類

앞에서 서술한 논리적 사고유형과 과학 지 식의 형성과정과의 관계를 밝힐 수 있다면, 사 고유형은 학습자 입장에서 학습 가능성을 평가 하는 데 좋은 준거가 될 수 있을 것이다.

실은 과학지식을 제적적인 상태에서만 보더라도 그 지식의 어떤 논리성(logic 또는 reasoning)을 내포하고 있다는 것을 쉽게 판단할 수 가 있다. 예컨대, 오음의 법칙(V=R1)은 전 압과 전류의 비례적 관계를 설명하고 있다는 것은 쉽게 판단할 수 있다. 뉴턴의 운동법칙 즉, F=ma (F : 힘, m : 물체의 질량, a : 가 속도)도 “운동하는 물체의 가속도는 힘의 크 기에 비례한다”라는 비례논리를 근간으로 하고 있다.

이러한 개념을 학생들이 이해하려면, 최소한 비례적 사고(proportional reasoning)을 하고 있어야만 한다는 것을 쉽게 접하게 할 수가 있다. 이러한 유추는 실제 여러 실험에서 입증되었다.

예를 들어, 학생들을 가운데시 비례적 사고를 하는 학생과 그렇지 않은 학생간에는 비례논리 를 내포하고 있는 과학 문제를 어떻게 해결하는

따라서 학생들의 사고발달 수준을 준거로 과 학지식을 평가하는 것은 과학교육에 좋은 시사 를 줄 수가 있다.

학생들의 사고수준을 지식분석의 준거로 활용 하기 위하여 그 사고유형을 체계화하여 볼 수가 있다.

1. 構想的 思考類型과 形式的思考類型

먼저 앞에서 제시한 사고유형은 지식 분석 의 준거로 사용하기 위하여 다음과 같이 사고 유형의 특징을, 예컨대, 물리학 개념을 이해하 는 데 요구되는 사고유형으로, 재정리하여 볼 수 있다.

구상적 사고유형의 수준

C1 : 단순 분류능력 계열적으로 한 시스템과 하위 시스템간에 관계, 상위류와 하위류와의 관계 등을 지을 수 있는 능력

C2 : 보존 논리를 구체적 사물에 적용하는 능력

C3 : 일대일 대응, 증가순 또는 감소순으로 데이터 변환하는 능력

C4 : 진술한 행동, 경험, 혹은 구체적 사례로 개념 정의 능력

형식적 사고유형의 수준

F1 : 다른 개념, 이론, 모델 또는 비율이나 수학적 관계 및 헌계에 관계적으로 정의한 개념의 이해력
F2: 자연현상에서는 모든 경우가 실제로 일어날지 않더라도 모든 조건을 조합 논리로 전개하는 능력
F3: 정 또는 반례와 같은 함수식 관계식의 인식과 적용하는 능력
F4: 변인 분리 및 통계능력
F5: 확률성의 이해, 실험설계의 함축적 의미, 데이터 분석의 인식 및 이해력

이상의 의미 즉, 구상적인 것과 형식적인 것과의 의미의 차이를 요약하면 다음과 같다. 즉, 구상적 사고유형은 간단한 조작적 사고(mental operations)를 구체적 사물과 체계에 적용하나 관계식, 가설적 사물(명제적인 것), 혹은 가설적 특성(명제적 특수성)등에는 적용 못하는 사고를 말한다.

이상 점지는 물리학에 관련된 개념들을 이해하는데 요구되는 사고유형의 범주가 대표적인 것 을 중심으로 정리한 것이다. 이러한 방법으로 화학, 생물학 등에 관련된 지식을 학습하는 데 요구되는 사고유형을 분류할 수 있다.

2. 科學知識的 分類

구상적 사고유형과 형식적 사고유형을 분기로 하여 과학지식을 구상수준의 개념(또는 지식)과 형식 수준의 개념(또는 지식)으로 분류할 수가 있다.

예를 들어, 광과 개념은 빛의 성질을 과학모형으로 설명한 것이다. 따라서 광과 개념을 정확하게 이해하기 위해서 과학모형의 설정과 이론적 적합성을 생각할 수 있는 사고가 필요하다.
즉, 앞에서 언급한 F1 수준의 이론 및 모형적 사고유형을 가지고 있지 않으면 광과 개념을 충분히 이해하기가 어렵다. 이런 논리에서 광과 개념은 “형식적 수준의 개념, 즉 형식개념”이라고 분류할 수 있다.

그런데 여기서 유의하여야 할 사항은 과학지식을 정체적 수준 즉, 표현된 언어(공식, 서술 내용 등)만을 중심으로 분석하여서는 안된다는 점이다. 과학지식은 교육내용으로 선택될 때에는 교육목표 혹은 학습목표로 재정의되어야 한다. 예컨대, 화학개념은 교육 내용으로 설정하였다고 할 때, 그 화학개념은 학습대상자에 따라 그 수준과 폭을 달리 할 수가 있다.

같은 화학개념을, (1) 단순히 화학개념을 가지고 화학을 측정하는 활동과, (2) 화학의 변화원인, 즉 열에너지와 관련하여 취급할 때 활동, 그리고, (3) 화학의 변화는 분자의 운동 에너지에 기인한다는 분자운동론을 다루는 활동 등은 그 학습목표의 수준뿐만 아니라 깊이도 다르다. 따라서 그 학습목표에 접근하기 위하여 학습자에게 요구되는 사고발달의 수준 즉, 사고유형도 다르다.

그러므로 과학지식을 사고발달의 준거를 이용하여 분석할 때, 그 지식과 학습목표와 관련지어 고려하여야 할 것이다.

다음 구체적인 사례를 통하여 그 구체적인 방법을 제시해 보겠다.

예1: 압력(pressure)
압력 개념은 몇가지 학습활동으로 우선 구분하여 볼 수 있다. 즉, 목표의 수준을 달리하여 제시할 수 있다.
(1) 압력계(manometer)를 사용하여 압력을 직접 측정하는 활동, 여러 상황에서의 압력의 비교 활동을 생각해 볼 수 있다. 실제로 이 학습활동을 관리 교과 학습에서 매우 중요하다.
(2) 다음은 압력의 정의이다. 압력은 단위 면적당 작용한 힘의 크기로 정의한다. 즉, 힘의
크기에 비례하는 개념으로 정의하고 있다. 또는 용기에 작용하는 기체의 힘으로 계산한다. 이러한 학습활동도 물리교과에서 배울 수 없는 중요한 학습목표로 간주할 수 있다.

(3) 한편, 압력은 용기표면에 분자의 충돌 효과 (time-average effect)로 나타낸다는 분자 운동론 (kinetic molecular theory)으로 설명한다. 이를 이해하는 학습활동을 생각해 볼 수 있다.

위의 세 활동 (학습내용)은 앞에서 언급한 사고유형의 수준과 관련시켜 구성 개념 또는 형식 개념 (이것은 일명 "추상 개념"이라고 하여도 무방함)으로 분류할 수가 있다.

예컨대, 활동 (1)은 압력계를 잡음 수만 있으니 되기 때문에 (C 4) 수준의 사고발달 수준에 있는 학생이 충분히 학습할 수가 있다. 또 압력 계의 비교하는 활동수준 (C 3), 즉 일례일대로응응력만 있으면 할 수 있는 학습내용이다.

반면에, 활동 (2)의 경우는 매우 복잡하다. 즉 단위면적당 힘으로 정의하는 학습목표는 F 1 즉 이론화, 일반화 수준의 사고를 요구한다고 볼 수 있다. 또 힘의 크기에 비례하는 개념으로 이해하려면 비례적 사고유형 (F 3)을 갖고 있지 않으면 안된다. 특히 분자운동론을 이해하려면 F 1, F 3의 사고유형 수준을 가지고 있지 않으면 안된다.

이렇게 분석한다면, 활동 (1)은 구상 개념이며 활동 (2)와 (3)은 형식 개념 또는 추상 개념으로 분류할 수가 있다.

이러한 분류방법은 모두 과학지식의 분석에 적용할 수가 있다.

V. 思考類型 準據에 의한

과학知識 分類方法

과학지식을 분석할 때, 무엇보다 먼저 과학지식은 학습목표 형태로 상세화 (specification)하여야 한다. 앞에서의 예제와 같이 구체적인 학습활동으로 구체화하는 것이 매우 중요하다.

다음 그 학습목표 또는 학습활동은 학생들의 어떤 수준의 사고유형으로 접근할 수 있는가를 판별하여야 한다. 이 판별단계는 상당한 전문지식과 기술 (skill)을 요구한다. 전문지식으로서는 우선 학생들의 지적 발달 수준 또는 사고유형을 정확히 이해하여야 한다.

앞서 사고유형을 몇 가지로 예시하였지만 그 예시 내용은 좀 더 구체화 할 수가 있다. 예컨대, F1의 사고유형은 개념 (이것은 Facts 또는 Objects를 넘어서 수준으로 표현), F2, F3의 사고유형은 사고유형의 특징은 다각적으로 예시할 수 있는 데, 이것은 빠리어의 지적 발달 이론에 근거한 것이다. 그러므로 빠리어의 지적 발달론에 대한 이해가 필요하다.

그리고 분석 기술은 여러 가지 상황에서 분석하여 보는 경험이 필요하다. 특히 자릿 분석 그 자체가 개인적인 주관과 판단에 그러기가 쉽다. 주관적인 경우에 분석결과가 논란의 대상이 될 뿐만 아니라 객관성 문제가 제기된다. 이러한 논쟁을 피하려면, 분석자가 2인 이상일수록 좋
다. 즉, 2 ~ 3인의 같은 분석기준을 가지고 서로 그 기준의 성격과 의미에 대하여 합의를 본 다음, 과학적지식을 분석한다. 그 다음 분석결과를 서로 비교하여 본다. 일치하였을 경우에는 문제가 안된다. 그렇지 않은 경우는 이건(異見)이 있을 때에는 공동 협의 및 토론으로 그 이견을 줄여거나 해소하는 것이다.

분석기술 및 실제에 대한 일반의 경험이나 외국 사례를 보면 이견을 줄이는 일이 그렇게 어렵지는 않다. 그러나 견해 차이가 심한 경우에는 그 해소 방법으로서 실험과정을 거치는 일이다. 예컨대, 이견이 있는 학습목표 또는 과학지식을 학급에서 자연스럽게 상향하여 가르친다. 그 후 학습결과 즉 학업성취도 검사를 하고 그 결과와 학습자의 사고발달 수준을 비교하여 보면 명확해 진다. 즉, 학습목표가 구상적 단계의 학습자의 형식적 단계의 학습자 사이에 어떤 차이를 보이는가를 확인하면, 지식의 분류가 명확해진다.

이상 언급한 절차를 형식화하면 다음과 같다.

<table>
<thead>
<tr>
<th>게</th>
<th>학습 목 표</th>
<th>관련 사 - 고 유 형</th>
<th>분 류</th>
</tr>
</thead>
</table>
| 그림 자 (Shadow) | (1) 그림자 늘어, 물체 모양과 그림자 모양의 관계, 모양변화활 동 및 비교
(2) 물체의 크기, 그림자의 크기 및 평면과의 관계, 물체의 위치와 그림자의 위치, 그리고 평면위치와의 관계
(3) 파동설에 의한 빛의 회절, 다시말해 이 개념은 빛의 전자기 이론체계로 설명, 예컨대 양자론적 설명 포함. | C4 : 전속한 행동
C3 : 감소 및 증가, 일대일 대응
F3 및 F4 : 변수통제, 데이터분석, 실험 설계상의 함축적 의미
F1 : 이론화 | 구상개념
여러개념
형식개념 (지식) | 형식개념
특히 이 수준은 가장 추상적 수준의 사고를 요구함. |

이상의 절차에 따라 과학적지식을 분석한다면, 교과서의 내용을 학습자가 학습하기 이전에 학습자의 입장에서 어떤 어려움이 있는지를 예견할 수 있다. 바꾸어 말하면, 교육과정에서 제시하고 있는 학습내용을 학습자의 측면에서 미리 평가하여 볼 수 있다.

VI. 结 語

지금까지 과학 교육내용이 학생들에게 어렵다는 비판을 많이 받아왔다. 특히 학생들의 과학 학력이 매우 높고, 국제 비교연구에서도 우리나라 학생의 학력이 낮다는 사실이 지적되었다.

과학이 학생들에 어렵다는 것은 이미 지적하였지만 과학지식 자체가 매우 추상적이기 때문이라는 점은 주치하는 사실이다.

그렇다면, 과학교육 과정을 설계할 때부터 이 점이 충분히 감안되어야 할턴데 지금까지 매우 어렵다는 비판을 받아오면서도 여러번 교육과정을 개정하였지만 변화가 없었다. 이렇게

Galilei, II Saggiatore 1610, 번역판.

Karplus. R. et al, Proportional Reasoning and control of variables in seven Countries,

Tamir, P. Some Factors which Affect Science Achievement of High School Senior in Israel, 1986.

Abstract

A Study on Student's Reasoning Patterns as an Intellectual Model for Determining the Learnability of Science curriculum content at the Secondary School Level

Han Jong-ha*

The study intends to propose an intellectual model using student's reasoning patterns characterized by Inhelder and Piaget (1958), which can be used to determine whether science content of secondary school level be learnable or not.

A result of reviewing the present science curriculum materials being used in secondary school reveals that most science knowledge including concepts, laws, and theories are very formal and abstract (Szeminska, 1968, Hartford, 1974, Lee 1979). In fact, these knowledges are obviously expressed in form of abstract language and symbols without giving any concrete materials and events.

As a matter of fact, however, when science teachers interact with students learning science they have become aware of big differences in student's ability to understand science concepts, conduct investigations, and solve science problems. Some students are capable, while many others use peculiar and inappropriate reasoning strategies. Sometimes, even after science teacher's best efforts, students are unable grasp ideas that are eminently clear to teachers.

Often students are able to follow problem solutions but at a loss when required to transfer the same solution strategies to slightly different situations.

Many research findings recently undertaken say that the majority of secondary school students do not have reasonings as such (Lawson & Renner, 1974, Karplus, et al, 1977, Han, 1977, Lee, 1982). The findings strongly suggest that there is a large difference between science contents being taught in school and student's reasoning abilities.

Therefore, school science curriculum should be examined in terms of student's reasoning ability such as reasoning patterns as mentioned in the above.

The study proposes two levels of student's reasoning patterns; concrete reasoning and formal reasoning which play a vital role in understanding abstract science content.

Examples of reasoning patterns are given as follows;

Concrete Reasoning Patterns

CI Class Inclusion - classifying and generaliz-
ing based on observable properties.

C2 Conservation - realizing that a quantity remains the same if nothing is added or taken away, though it may appear different.

C3 Serial Ordering - arranging a set of objects according to an observable property and possibly establishing a one-to-one correspondence between two observable sets.

C4 Reversibility - mentally inverting a sequence of steps to return from the final condition of a certain procedure to its initial condition.

Items C1 through C4 are concrete reasoning patterns. They are applied to concrete objects, directly observable properties, and simple relationship.

Formal Reasoning Patterns

F1 Theoretical Reasoning - applying multiple classification, conservation logic, serial ordering, and other reasoning patterns to relationships and properties that are not directly observable.

F2 Combinatorial Reasoning - considering all conceivable combinations of tangible or abstract items.

F3 Functionality and Proportional Reasoning - stating and interpreting functional relationships in mathematical form.

F4 Control of Variables - recognizing the necessity of an experimental design that controls all variables but the one being investigated.

F5 Probabilistic and Correlational Reasoning - interpreting observations that show unpredictable variability and recognizing relationships among variables in spite of random fluctuations that mask them.

An additional advance in reasoning that is associated with formal thought is the tendency to reflect upon one’s own reasoning.

These reasoning patterns can be applied to classify science contents being taught in schools into concrete level or formal level if we can determine whether science concepts require concrete reasoning of formal reasoning for understanding them. Newton’s law, for instance, expressed in F=ma represents that the acceleration of a moving object is proportional to the magnitude (and/or direction) of forces exerted on it. So, indeed, Newton’s idea was constructed in terms of proportional reasoning. Therefore, without employing the proportional logic or reasoning one cannot understand the idea of Newton’s law. If so, we can categorize the law into formal concept or knowledge.

Using the same manner as mentioned above, science curriculum materials being used in secondary schools can be analyzed in terms of concrete of formal level.

In a summary, the reasoning patterns of students can be used as a intellectual model for the purpose of evaluating and examining whether or not science curriculum materials would be appropriate to a certain group of students.