금융시장과 투자분석
제3강. 가치평가와 신용분석

조승모

영남대학교 경제금융학부

2014학년도 2학기

© Copyright 2014 Cho, Seung Mo

1. 표준정규분포

Definition. 다음과 같이 정의되는 함수를

\[ \Phi(z) := \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \, dx. \]

Remark. Appendix A의 표준정규분포표I로부터 \( \Phi(z) \)값을 구하려면, 

\[ \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \, dx. \]

학습목표

1. 표준정규분포: 표준정규분포의 누적분포함수값을 구하는 방법에 대해 알아본다.
2. 자기자본의 가치평가: 머튼 모형(Merton model)을 이용하여 기업의 자기자본가치를 평가하는 방법에 대해 알아본다.
3. 타인자본의 가치평가: 머튼 모형을 이용하여 기업의 타인자본가치를 평가하는 방법에 대해 논의한다.
4. 신용분석: 머튼 모형을 이용하여 기업의 신용도를 분석하는 방법에 대해 알아본다.
5. 모수의 평가: 머튼 모형의 모수를 구하는 방법에 대해 알아본다.

1. 표준정규분포

\[ \phi(z) := \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}. \]

Figure: \( \phi(z) := \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}. \)
1. 표준정규분포

**Example. Appendix A**에 있는 표준정규분포표I를 이용하여, 다음 값을 구하시오.

(a) \( \Phi(2.4276) \),
(b) \( \Phi(-1.5382) \).

단, 소수점 다섯째 자리에서 반올림하여 소수점 셋째 자리까지 표기하시오.

**Solution.** (a) \( 2.42 < 2.4276 < 2.43 \)이므로 선형보간법을 이용하면,

\[
\Phi(2.4276) = \Phi(2.42) + \frac{\Phi(2.43) - \Phi(2.42)}{2.43 - 2.42} \times (2.4276 - 2.42)
\]

\[
= (0.4922 + 0.5) + \frac{(0.4925 + 0.5) - (0.4922 + 0.5)}{2.43 - 2.42} \times (2.4276 - 2.42)
\]

\[
= 0.9924.
\]

(b) \( \Phi(-1.5382) = 1 - \Phi(1.5382) \)이므로, \( \Phi(1.5382) \)로부터 선형보간법으로 구하면, \( 1.53 < 1.5382 < 1.54 \)이므로

\[
\Phi(1.5382) = \Phi(1.53) + \frac{\Phi(1.54) - \Phi(1.53)}{1.54 - 1.53} \times (1.5382 - 1.53)
\]

\[
= (0.4370 + 0.5) + \frac{(0.4382 + 0.5) - (0.4370 + 0.5)}{1.54 - 1.53} \times (1.5382 - 1.53)
\]

\[
= 0.9380.
\]

\[
\therefore \Phi(-1.5382) = 1 - \Phi(1.5382) = 1 - 0.9380 = 0.0620.
\]
2. 자기자본의 가치평가

**Theorem (Merton Model for Equity)**. 연이자율 \( r \), \( t \)시점에서 자산가격이 \( V_t \), \( t \)시점에서 자기자본의 적정가치가 \( E_t \), 부채의 액면가치가 \( D_T \), 부채의 만기가 \( T \)인 기업에 대하여, \( t \)시점에서 \( T \) 시점까지 연평균 자산성장률이 \( \mu V \)이고 자산성장률의 연간표준편차가 \( \sigma V \)라면, 시장균형에서 다음이 성립한다.

\[
E_t = V_t \Phi(d_1) - D_T e^{-rt} \Phi(d_2)
\]

단,

\[
\tau = T - t, \quad d_1 = \frac{\ln \frac{V_t}{D_T} + (r + \frac{1}{2} \sigma^2_V) \tau}{\sigma_V \sqrt{\tau}} \quad d_2 = d_1 - \sigma_V \sqrt{\tau}
\]

\[
\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.
\]

---

**Corollary.** 연이자율 \( r \), \( t \)시점에서 자산가격이 \( V_t \), \( t \)시점에서 자기자본의 적정가치가 \( E_t \), 부채의 액면가치가 \( D_T \), 부채의 만기가 \( T \)인 기업에 대하여, \( t \)시점에서 \( T \) 시점까지 연평균 자산성장률이 \( \mu V \)이고 자산성장률의 연간표준편차가 \( \sigma V \)이며, \( t \)시점에서 주가가 \( S_t \)이고 \( n \) 주의 주식이 발행되어 있다면,

\[
S_t = \frac{1}{n} E_t = \frac{1}{n} \left[ V_t \Phi(d_1) - D_T e^{-rt} \Phi(d_2) \right]
\]

단,

\[
\tau = T - t, \quad d_1 = \frac{\ln \frac{V_t}{D_T} + (r + \frac{1}{2} \sigma^2_V) \tau}{\sigma_V \sqrt{\tau}} \quad d_2 = d_1 - \sigma_V \sqrt{\tau}
\]

\[
\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.
\]

---

**Example.** (주)영남정밀의 현재 자산가치는 \( \text{W}2,000,000,000,000 \), 부채의 액면가치는 \( \text{W}1,500,000,000,000 \), 부채의 만기가 10년이고, 향후 연평균 자산성장률이 10%, 자산성장률의 표준편차가 15%로 기대된다. 이 기업은 현재 5,000,000주의 주식을 발행하였고, 현재의 시장주가는 주당 \( \text{W}215,000 \)이다. 연이자율은 5%이다.

(a) 부도위험을 고려할 때, 이 기업의 적정 시가총액은 얼마로 평가할 수 있는가?

(b) 부도위험을 고려할 때, 이 기업의 주가는 적정가가? 현재의 시장주가로 이 주식을 매수하는 것이 좋은가, 아니면 공매도 (별러서 판후 나중에 사서 되찾는 것)하는 것이 유리한가?

단, 모든 수치는 소수점 넷째자리까지 표기하되 소수점 다섯째자리에서 반올림한다.
2. 자기자본의 가치평가

다음과 같다.

\[ \Phi(d_1) = \Phi(1.8978) \]
\[ = \Phi(1.89) + \Phi(1.90) - \Phi(1.89) \times (1.8978 - 1.89) \]
\[ = 0.9706 + 0.9713 - 0.9706 	imes (1.8978 - 1.89) \]
\[ = 0.9711 \]

\[ \Phi(d_2) = \Phi(1.4235) \]
\[ = \Phi(1.42) + \Phi(1.43) - \Phi(1.42) \times (1.4235 - 1.42) \]
\[ = 0.9222 + 0.9236 - 0.9222 	imes (1.4235 - 1.42) \]
\[ = 0.9227 \]

3. 타인자본의 가치평가

Theorem (Merton Model for Liabilities\(^3\)). 연이자율 \(r\), \(t\)
시점에서 자산가치가 \(V_t\), \(t\)시점에서 부채의 적정가치가 \(L_t\), 부채의
액면가가 \(D_T\), 부채의 만기가 \(T\)인 기업에 대하여, \(t\)시점에서 \(T\)
시점까지 연평균 자산성장률이 \(\mu_V\)이고 자산성장률의
연간표준편차가 \(\sigma_V\)라면, 시장균형하에서 다음이 성립한다.

\[ L_t = V_t \Phi(-d_1) + D_T e^{-rT} \Phi(d_2) \]

단,

\[ \tau = T - t, \quad d_1 = \frac{\ln \frac{V_t}{D_T} + \left(r + \frac{1}{2} \sigma_V^2\right) \tau}{\sigma_V \sqrt{\tau}}, \quad d_2 = d_1 - \sigma_V \sqrt{\tau} \]

\[ \Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx. \]


2. 자기자본의 가치평가

Solution. (a) 따라서, 다음과 같다.

\[ E_t = V_t \Phi(d_1) - D_T e^{-rT} \Phi(d_2) \]
\[ = W2,000,000,000,000 \times 0.9711 \]
\[ - W1,500,000,000,000 \times e^{-0.05 \times 10} \times 0.9227 \]
\[ = W1,102,731,240,000. \]

\(\therefore\) 적정 시가총액은 \(W1,102,731,240,000\)으로 평가할 수 있다.

(b) 따라서, 적정 시장주가는

\[ \frac{E_t}{n} = \frac{W1,102,731,240,000}{5,000,000} = W220,546.2480 \]

이다. 이는 현재의 주가인 \(W215,000\)보다 높은 가격이므로, 현재의
시장주가는 저평가되어 있다고 볼 수 있다. 따라서, 현재의
시장가격에 이 기업의 주식을 매수하는 것이 유리하다. \(\square\)

3. 타인자본의 가치평가

Corollary (Merton Model Accounting Identity\(^4\)). 연이자율 \(r\), \(t\)시점에서 자산가치가 \(V_t\), \(t\)시점에서 자기자본의 적정가치가 \(E_t\), \(t\)시점에서 부채의 적정가치가 \(L_t\), 부채의 액면가가 \(D_T\), 부채의
만기가 \(T\)인 기업에 대하여, \(t\)시점에서 \(T\)시점까지 연평균 자산성장률이 \(\mu_V\)이고 자산성장률의
연간표준편차가 \(\sigma_V\)라면, 시장균형하에서 다음이 성립한다.

\[ V_t = E_t + L_t. \]

3. 타인자본의 가치평가

Corollary (Merton Model Yield to Maturity\(^5\)). 연이자율 \(r, t\) 시점에서 자산가치가 \(V_t\), \(t\) 시점에서 부채의 적정가치가 \(L_t\), 부채의 액면가치가 \(D_T\), 부채의 만기가 \(T\) 인 기업에 대하여, \(t\) 시점에서 \(T\) 시점을 연평균 자산성장률이 \(\mu_V\)이고 자산성장률의 연간표준편차가 \(\sigma_V\)라면, 시장균형하에서 부채의 만기수익률, 부채의 시장이자율, 혹은 부채의 자본비용 \(y\)는 다음과 같다.

\[
y = \frac{1}{\tau} \ln \frac{D_T}{L_t} = \frac{1}{\tau} \ln \left[ \frac{V_t}{D_T} \Phi(-d_1) + e^{-\tau r} \Phi(d_2) \right]
\]

단,

\[
\tau = T - t, \quad d_1 = \frac{\ln \frac{V_t}{D_T} + (r + \frac{1}{2} \sigma_V^2) \tau}{\sigma_V \sqrt{T}}, \quad d_2 = d_1 - \sigma_V \sqrt{T},
\]

\[
\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{x^2}{2}} dx.
\]


3. 타인자본의 가치평가

Example. (주)영남정보의 현재 자산가치는 \(W2,000,000,000,000\), 부채의 액면가치는 \(W1,500,000,000,000\), 부채의 만기가 10년이고, 향후 연평균 자산성장률이 10%, 자산성장률의 표준편차가 15%로 기대된다. 이 기업은 현재 \(5,000,000,000\)주의 주식을 발행하였고, 현재의 시장가격은 \(500\)원이다. 연간이자율은 5\%이다.

(c) 부도위험을 고려할 때, 이 기업 부채의 적정가치는 얼마로 평가할 수 있는가?

(d) 부도위험을 고려할 때, 이 기업 부채의 적정시장가격은 얼마로 평가할 수 있는가? 즉, 이 기업의 부채의 자본비용은 얼마인가?

(e) 회계항등식은 성립하는가?

\(\therefore\) 모든 수치는 소수점 둘째자리까지 표기되며 소수점 다섯째자리에서 반올림한다.

3. 타인자본의 가치평가

Proof. 부채의 만기수익률, 부채의 시장이자율, 혹은 부채의 자본비용 \(y\)라 하고 \(\tau = T - t\)라 하면,

\[
D_T = L_t e^{\tau r}
\]

이므로

\[
y = \frac{1}{\tau} \ln \frac{D_T}{L_t} = \frac{1}{\tau} \ln \frac{L_t}{D_T}
\]

가 되고,

\[
L_t = V_t \Phi(-d_1) + D_T e^{-\tau r} \Phi(d_2)
\]

이므로,

\[
y = \frac{1}{\tau} \ln \frac{D_T}{L_t} = \frac{1}{\tau} \ln \left[ \frac{V_t}{D_T} \Phi(-d_1) + e^{-\tau r} \Phi(d_2) \right]
\]

가 된다.

\[\square\]

3. 타인자본의 가치평가

Solution. (c) \(V_t = W2,000,000,000,000\), \(D_T = W1,500,000,000,000\), \(\tau = 10\), \(\mu_V = 0.1\), \(\sigma_V = 0.15\), \(r = 0.05\), \(n = 5,000,000\), \(\Phi(d_1) = 0.9711\), \(\Phi(d_2) = 0.9227\)이므로,

\[
L_t = V_t \Phi(-d_1) + D_T e^{-\tau r} \Phi(d_2)
\]

\[= V_t [1 - \Phi(d_1)] + D_T e^{-\tau r} \Phi(d_2)\]

\[= W2,000,000,000,000 \times (1 - 0.9711)\]

\[+ W1,500,000,000,000 \times e^{-0.05 \times 10} \times 0.9227\]

\[= W897,268,759,600\].

\(\therefore\) 적정 부채가치는 \(W897,268,759,600\)으로 평가할 수 있다.

(d) 이 기업 부채의 적정시장가격은

\[
y = \frac{1}{\tau} \ln \frac{D_T}{L_t} = \frac{1}{10} \times \ln \frac{W1,500,000,000,000}{W897,268,759,600} = 0.0514
\]

이다. 즉, 연간 5.14\%의 자본비용으로 이만큼의 부채를 조달하고 있는 셋이다.
3. 타인자본의 가치평가

\( E_t + L_t = \text{₩1, 102, 731, 240, 000 + ₩897, 268, 759, 600} \)
\( = ₩2, 000, 000, 000, 000 \)
\( = V_t \)

이므로, 회계항등식이 성립한다. □

4. 신용분석

**Definition (Merton Model Default)\(^6\).** 부채 만기에 기업의 자산을 모두 매각하여도 채무를 이행하지 못하여 자산 소유권이 채권단으로 이전되는 상황을 부도 (default)로 정의한다.

**Theorem (Merton Model for Corporate Default)\(^7\).** 연이자율 \( r \), \( t \)시점에서 자산가치가 \( V_t \), \( t \)시점에서 채무의 적정가치가 \( L_t \), 부채의 액면가치가 \( D_T \), 부채의 만기가 \( T \)인 기업에 대하여, \( t \)시점에서 \( T \)시점까지 연평균 자산성장률이 \( \mu V \)이고 자산성장률의 연간표준편차가 \( \sigma V \)라면, 시장균형에서 이 기업의 위험중립부도확률은 다음과 같다.

\[
Q(V_T < D_T | \bar{F}_t) = 1 - \Phi(d_2)
\]

\( \tau = T - t \), \( d_2 = \frac{\ln \frac{V_t}{D_T} + r - \frac{1}{2} \sigma^2 T}{\sigma V \sqrt{T}} \),

\[
\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.
\]

---


Example. (주)영남정금의 현재 자산가치는 ￦2,000,000,000,000, 부채의 액면가치는 ￦1,500,000,000,000, 부채의 만기가 10년이고, 항후 연평균 자산성장률이 10%, 자산성장률의 표준편차가 15%로 기대된다. 이 기업은 현재 5,000,000주의 주식을 발행하였고, 현재의 시장주가는 주당 ￦215,000이다. 연간이자율은 5%이다.

(f) 이 기업의 위험중립부도확률은 얼마인가?

단, 모든 수치는 소수점 넷째자리까지 표기하되 소수점 다섯째자리에서 반올림하라.

4. 신용분석

따라서, 위험중립부도확률은

\[
Q \left( V_T < D_T \mid F_t \right) = 1 - \Phi(d_2) = 1 - 0.9227 = 0.0773
\]

즉, 이 기업이 부도가 난 위험중립부도확률은 7.73%이다. □

4. 신용분석

Solution. (f) \( V_t = ￦2,000,000,000,000, D_T = ￦1,500,000,000,000, \) \( \tau = 10, \mu_V = 0.1, \sigma_V = 0.15, r = 0.05, n = 5,000,000 \)이므로,

\[
d_2 = \frac{\ln \left( \frac{V_t}{D_T} \right) + \left( r - \frac{1}{2} \sigma_V^2 \right) \tau}{\sigma_V \sqrt{\tau}} = \frac{\ln \left( \frac{2,000,000,000,000}{1,500,000,000,000} \right) + \left( 0.05 - 0.5 \times 0.15^2 \right) \times 10}{0.15 \times \sqrt{10}}
\]

\[
d_2 = 1.4234
\]

가 되어,

\[
\Phi(d_2) = \Phi(1.4234) = \Phi(1.42) + \Phi(1.43) - \Phi(1.42) \times (1.4234 - 1.42)
\]

\[
= 0.9222 + \frac{0.9236 - 0.9222}{1.43 - 1.42} \times (1.4234 - 1.42)
\]

\[
= 0.9227.
\]

이다.

4. 신용분석

Definition (Credit Spread). 어떤 채권의 만기수익률 혹은 시장이자율을 \( y \), 무위험이자율을 \( r \)이라 할 때, 그 들의 차이

\[
s := y - r
\]

을 그 채권의 _______________ 라 한다.
4. 신용분석

Theorem (Merton Model for Credit Spread). 연이자율 $r$, $t$
시점에서 자산가치가 $V_t$, $t$시점에서 부채의 적정가치가 $L_t$, 부채의
액면가치가 $D_r$, 부채의 만기가 $T$인 기업에 대하여, $t$시점에서 $T$
시점까지 연평균 자산성장률이 $\mu$이고 자산성장률의
연간표준편차가 $\sigma_V$라면, 시장평균에서 신용스프레드 $s$는 다음과
같다.

$$s = \frac{1}{T-t} \ln \frac{D_t e^{-rt}}{L_t} = -\frac{1}{T-t} \ln \left[ \frac{V_t}{D_t e^{-rt}} \Phi(-d_1) + \Phi(d_2) \right]$$

단,

$$\tau = T-t, \quad d_1 = \frac{\ln \frac{V_t}{D_t} + \left( r + \frac{1}{2} \sigma_V^2 \right) \tau}{\sigma_V \sqrt{\tau}}, \quad d_2 = d_1 - \sigma_V \sqrt{\tau},$$

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

---

Example. (주)병남정금의 현재 자산가치는 W2,000,000,000,000,
부채의 액면가치는 W1,500,000,000,000, 부채의 만기가 10년이고,
향후 연평균 자산성장률이 10%, 자산성장률의 표준편차가 15%로
기대된다. 이 기업은 현재 5,000,000주의 주식을 발행하였고, 현재의
시장주가는 주당 W215,000이다. 연이자율은 5%이다.

(g) 이 기업의 신용스프레드는 얼마인가?

단, 모든 수치는 소수점 넷째자리까지 표기하되 소수점
다섯째자리에서 반올림할라.

Solution. (g) $r = 0.05$ 및 $y = 0.0514$이므로,

$$s = y - r = 0.0514 - 0.05 = 0.0014$$

이다. 즉, 신용스프레드는 0.14%이다.

4. 신용분석

Proof. 부채의 만기수익률 혹은 시장이자율을 $y$, 신용스프레드를 $s$
라 하고 $\tau = T-t$라 하면,

$$s = y - r \text{ 및 } D_T = L_t e^{\mu T}$$

이므로

$$D_T e^{-rt} = L_t e^{\mu T}$$

가 되고, 따라서

$$s = \frac{1}{T-t} \ln \frac{D_T e^{-rt}}{L_t} = -\frac{1}{T-t} \ln \frac{L_t}{D_T e^{-rt}}$$

가 되고,

$$L_t = V_t \Phi(-d_1) + D_T e^{-rt} \Phi(d_2)$$

이므로,

$$s = \frac{1}{T-t} \ln \frac{D_T e^{-rt}}{L_t} = -\frac{1}{T-t} \ln \left[ \frac{V_t}{D_T e^{-rt}} \Phi(-d_1) + \Phi(d_2) \right]$$

가 된다.

5. 모수의 평가

Theorem (Merton Model Parameter Evaluation). 연이자율 $r$, $t$
시점에서 자산가치가 $V_t$, $t$시점에서 자기자본의 적정가치가 $E_t$
시가총액이 $C_t$, 부채의 액면가치가 $D_r$, 부채의 만기가 $T$인 기업에
대하여, $t$시점에서 $T$시점까지 연평균 자산성장률이 $\mu_V$, 자산성장률의
연간표준편차가 $\sigma_V$, 주식의 연평균수익률이 $\mu$, 주식수익률의
연간표준편차가 $\sigma_V$라면, 다음과 같이 $V_t, \mu_V$ 및 $\sigma_V$를
구할 수 있다.

$$V_t = C_t + D_t e^{-(T-t)}$$

$$\mu_V = \frac{1}{T-t} \ln \left[ \frac{C_t}{V_t} e^{\mu(T-t)} + \frac{D_t}{V_t} \right]$$

및

$$\sigma_V = \sqrt{\frac{1}{T-t} \ln \left[ \frac{C_t^2}{V_t^2} e^{(2\mu+\sigma^2)(T-t)} + 2C_t D_t e^{(\mu(T-t))} + \frac{D_t^2}{V_t^2} \right] - 2\mu_V}.$$
5. 모수의 평가

Remark. 1년간 거래일수가 \( N \)일일 때, \( \ell \)일말 시가총액이 \( C_\ell \)이고 \( n \)주 발행된 주식의 연평균수익률 \( \mu \)와 주식수익률의 연간표준편차 \( \sigma \)는 일간수익률 평균과 분산을 연간값으로 환산하여 다음과 같이 계산한다.

\[
\mu = \frac{N}{N} \sum_{t=1}^{N} \frac{C_t/n - C_{t-1}/n}{C_{t-1}/n} \]

및

\[
\sigma = \sqrt{\frac{N}{N-1} \sum_{t=1}^{N} \left( \frac{C_t/n - C_{t-1}/n}{C_{t-1}/n} - \mu \right)^2}.
\]

요약정리

1. 표준정규분포: 표준정규분포의 누적분포함수값을 구하는 방법에 대해 알아보았다.
2. 자기자본의 가치평가: 머튼 모형(Merton model)을 이용하여 기업의 자기자본가치를 평가하는 방법에 대해 알아보았다.
3. 타인자본의 가치평가: 머튼 모형을 이용하여 기업의 타인자본가치를 평가하는 방법에 대해 논의하였다.
4. 신용분석: 머튼 모형을 이용하여 기업의 신용도를 분석하는 방법에 대해 알아보았다.
5. 모수의 평가: 머튼 모형의 모수를 구하는 방법에 대해 알아보았다.