글로벌기술협력기반육성사업(GT) 심층분석보고서

유럽 빅데이터 산업 및 디지털 플랫폼 현황
목  차

 주요 내용 요약 .......................................................... 1

 I. 개요 .................................................................. 2

 II. 디지털 혁명을 통한 기회 창출 ................................ 6

 III. 유럽 자동차 산업 분야의 기회 모색 ......................... 10

 IV. 빅데이터 및 디지털 플랫폼에 의한 의료산업 전망 ........ 17

 V. 유럽 제조 산업 분야의 디지털화 ................................ 22

 VI. 결론 ................................................................ 25
주요 내용 요약

유럽 산업 및 기업의 차세대 주자로서 빅데이터 기반 플랫폼 및 알고리즘에 대한 중요성 대두

- 이메일, 데이터 센서, CT 스캔 등의 비디오 자료, 스마트폰에서부터 위성통신에 이르는 다양한 기기를 통해 생성된 자료 등 매일 2.5X10^18 바이트에 달하는 데이터가 생산 및 축적되고 있음
- 이러한 디지털 데이터의 증가율은 연간 40%에 달함
- 디지털 플랫폼에 기반한 빅데이터 활용은 미래 산업 및 기업에 커다란 이익을 제공할 것으로 기대

유럽은 각 산업분야별 기업을 중심으로 빅데이터 활용을 통해 자원 활용 효율성 증대, 의사결정 지원, 맞춤 서비스에 대한 적절한 대응, 경쟁력 있는 가치 사슬 구축, 앞선 경쟁력 확보라는 새로운 기회 창출을 모색 중

산업분야별 빅데이터의 활용을 위한 우선과제를 분석하고 이에 대한 대응방안 마련에 노력을 기울이고 있음

전 분야에 걸친 공통적 도전 과제로는 유럽국가별 복잡한 규제 체계 정비, 인프라 투자 격차 해소 및 안전한 인프라 구축, 상호 운용성 및 표준화 구축, 신속한 적응 등이 있음

해당 보고서는 빅데이터 활용 및 디지털 플랫폼 구축이 유럽 산업에 미칠 영향에 대해 자동차 산업, 의료 산업 및 제조 산업을 중심으로 구체적으로 분석

빅데이터 활용 및 디지털 플랫폼 구축을 통한 유럽 자동차 산업, 의료 산업 및 제조 산업 분야별 각각의 기대효과 및 목표는 다음과 같이 확인

- 전 세계 자율 주행 차량 시장 선점 및 선두위치 확보
- 의료관련 가치 사슬 모든 단계에 이익 제공 - 신약 개발 과정에 용이성 제공, 진단 기능 향상, 약물 효용성 증진, 환자의 안전 보장, 연구개발 비용 감소, 의료 비용 감소 등
- 새로운 자동화 기술 및 빅데이터에 대한 이해를 통해 유럽 산업의 디지털화 가속
유럽 박데타산업 및 디지털 플랫폼 현황

개요

- 디지털 데이터 및 데이터 기반 알고리즘의 증가
  - 이메일, 데이터 센서, CT 스캔 등의 비디오 자료 및 스마트폰에서부터 위치통신에 이르는 다양한 기기를 통해 매일 2.5X10^18 바이트에 달하는 데이터가 생산·축적되어지고 있음
  - 또한, 산업장비, 자동차 및 생산 시스템에서 사용되는 수많은 디지털 센서를 통해 새로운 데이터가 품없이 발생하고 있음
  - 이러한 디지털 데이터의 증가 추이는 연간 40% 정도임

- 차세대 유럽 산업 및 기업을 위한 박데타 기반 플랫폼 및 알고리즘의 중요성
  - 알고리즘 : 계산 수행, 데이터 처리 및 자동 예측 등에 관한 다양한 알고리즘은 기업의 시장 예측 및 의사결정에 있어서 중요한 역할을 수행함
  - 디지털 플랫폼 : 디지털 플랫폼 기반 데이터 집계 및 공유 등을 통해 데이터 통합을 이룹으로써 유용한 정보에 대한 가용성 및 접근성을 제공하며 동시에 데이터의 안전성, 신속성 및 효율성을 향상시킴
  - 디지털 플랫폼에 기반한 박데타 활용은 미래 산업 및 기업에 커다란 이익을 제공할 것으로 기대됨
    - 유럽기업의 71%가 향후 5년 내에 첨단 디지털화를 이룰 것으로 기대; 현재는 기업의 28% 정도만이 디지털화를 통한 경영 수행

- 박데타 활용을 통한 기업의 새로운 기회
  - 자원 활용의 효율성 증가 : 박데타 기반 자원 활용을 통한 기업의 성장 및 고용 창출 효과를 기대함
    - 최근 유럽 산업은 박데타 기반 에코 디자인, 폐기물 규제 및 재활용, 공급망 분석 등을 통해 6천억 유로의 이익을 창출, 반면 연간 온실가스배출량은 감소함
  - 의사 결정 지원 : 정확한 예측 및 의사결정을 위해 우선적으로 가치 있는 데이터의 적절한 활용을 가능케 하는 디지털 플랫폼 구축이 중요시됨
  - 맞춤 서비스에 따른 다양한 수요 변화에 대한 적절한 대응 : 주문제작 및 맞춤 서비스 증가에 따라 박데타 활용을 통한 다양한 옵션의 생산 및 서비스 제공이 가능함

경쟁력 있는 가치 사슬 구축 : 가치사슬 전반에 걸친 데이터 수집 및 분석을 통해 이해 관계 자간 협력 및 서비스, 배달, 품질 향상 등의 최적화된 가치사슬 형성 수립

앞선 경쟁력 제공 : 빅데이터 및 디지털 플랫폼의 활용에 따라 기존 기업 및 신생기업 간 새로운 가치 분배가 이루어질 수 있음. 또한 기업은 소비자 및 제품을 통해 창출되는 데이터를 어떻게 활용할 것인가를 두고 경쟁해야 할 것임

- 빅데이터 활용을 위한 도전 과제

복잡하고 분산된 규제 환경 정비 : 대규모 데이터 생성 및 공유에 있어서 극복해야할 기술적 장벽이 존재하고 있으며, 보다 명확하고 자율적인 규제환경이 요구되어짐
- 특정 시장과 연계된 규제에 관해 유럽연합과 각 유럽국가간 검토 요구

인프라 투자 격차 극복 : 유럽은 이동통신 표준, 무선 데이터 속도 향상 및 확장, 네트워크 확장 범위에 관한 물리적 인프라 구축 및 인프라의 디지털화 및 안전성 향상을 위한 투자가 시급함
- 가령, 차량 연계를 통한 전자 건강 기록에 관한 지원을 위한 대규모 투자 등
- 유럽은 5년 이내에 의료, 자동차, 제조 분야 등에 5세대 이동통신 등 보다 빠른 무선 네트워크를 구축할 예정

안전한 인프라 구축 : 광범위한 디지털 기술의 적용 및 디지털 기기 사용 환경에서의 유럽 산업 보호를 위해서는 무엇보다도 안전한 인프라 구축이 중요함

상호운용성 및 표준화 구축 : 빅데이터의 성공적 활용을 위해서는 정보시스템의 상호운용성 및 데이터 포맷 표준화가 필요함

신속하고 광범위한 적용 : 유럽 경제의 경쟁력 향상을 위해서는 무엇보다도 빅데이터 및 디지털 플랫폼의 신속하고 광범위한 적용이 요구되어짐
- 이를 위해, 기업에 빅 데이터 활용 가치에 대한 확신 제공, 관련 표준 제정, 사이버 보안에 대한 투자, 규제 준수를 위한 가이드라인 제공이 필요
- 또한, 기업 역량 강화 및 협력 플랫폼 구축 필요

- 빅데이터 활용을 위한 권장 사항

데이터 책임자(CDOs) 임명 : 빅데이터의 효율적 활용, 데이터 품질 및 표준화 향상, 효율적인 데이터 관리, 공공 부문의 열린 데이터 가치 향상에 초점을 두

관련 유럽 지침 개발을 위해 데이터 책임자와 공동 협력 : 공공·민간 부문 및 유럽의 사회 가치관 부문에 있어서 빅데이터에 대한 기업의 효과적 활용 방안을 위한 유럽 가이드라인 구축이 필요함

5세대 이동통신 개발을 위한 EU 행동 강령 개발 : 산업, 공공기관, 혁신 자금 조달 기관 등 모든 이해 관계자를 포함하는 폭넓은 계획의 수립을 의미함
차세대 디지털 솔루션을 위한 멀티 벤더 테스트 베드 (multi-vendor test beds) 개발 : 다양한 이해 관계자의 투자를 통해 테스트 베드를 구축하여, 개발 기술에 대한 사이버 보안 상호성, 빅 테이터 테스트, 제3자에 대한 안전성 등에 관한 보증을 제공함으로써 해당 기술 관련 시장 진입이 용이하도록 해야 함.
- 새로운 디지털 솔루션의 경우, 테스트, 검증 및 잠재 고객 인증에 필요한 비용 및 복잡성이 매우 높음.
- 다양한 사물 인터넷 장비 및 네트워크 아키텍처에 대한 새로운 보안 문제가 발생하고 있으며, 이에 대한 솔루션 개발 및 고도화된 테스트 환경이 필요.

- 연계 산업 가치의 30~40%가 디지털 플랫폼을 통해 이루어질 것으로 기대
- 유럽은 ICT 분야의 선두주자임에도 불구하고, 아직 많은 산업 분야에서 디지털 플랫폼 구축이 미흡한 실정이며, 유럽 산업의 미래 경쟁력 향상을 위해서는 EU 디지털 플랫폼 구축 지원이 시급한 상황.

벽데이터 활용을 위한 행동 강령 - 범유럽 차원의 3가지 범용 이니셔티브

자율 주행 차량의 선두 시장으로서의 유럽
- 목표 : 민간 기업의 자율 주행 차량 솔루션 구현 및 테스트를 위한 운영, 규제, 인프라, 데이터 차원의 범유럽적 필드를 구축하여 자율 주행 차량 시장 선도 및 유럽의 선두 기업 개발·강화
- 유럽 자율 주행 차량을 위한 공공/민간 파트너십 (PPP: Public-Private Partnerships)을 결성하여 규제, 표준, 데이터 교환, 보안 및 안전 서비스를 포함하는 프레임워크 구축
- 3년간 신속한 프로토타입 구축 및 테스트 수행을 위한 프로젝트 및 위원회 활동을 지원하여 2020년까지 자율 주행 자동차 산업의 유럽 국가 간 협력 증대

벽데이터를 활용한 건강 증진 및 의료 비용 절감 프로젝트 수행
- 목표 : 범데이터를 활용함으로써 의료관련 가치 사슬 모든 단계에 걸쳐 혜택 제공; 신약 개발 과정의 용이성 제공, 진단 기능 향상, 약물 효용성 증진, 환자의 안전 보장, 연구개발 비용 감소, 의료비용 감소 etc.
- 환자, 정부, 제약회사, 의료 기술 회사 간 공공-민간 파트너십(PPP)을 결성하여 빅데이터 및 최신기술 기반 양질의 범유럽 환자 데이터 저장소 구축
- 구축된 빅데이터 및 의학 전문가 그룹을 활용하여 의료 분야별 참조가 용이한 데이터베이스 구축을 위한 프로젝트 수행

○ 범유럽 차원의 스마트 산업 프로그램 개발
- 목표: 새로운 자동화 기술 및 빅데이터에 대한 이해를 통해 유럽 산업의 디지털화 가속
- 디지털 플랫폼 설비, 디지털 플랫폼, 에너지 및 자원 저장 기술, 근무 환경 개선, 플랜트 설비 효율성 향상 등을 위한 투자 증진을 위한 업계 주도의 인센티브 프로그램 개발
- 국가별 ‘인더스트리 4.0’, ‘미래 산업’ 이니셔티브 및 산업 협회 등의 리더가 함께 모여 인센티브 프로그램 범위 규정
디지털 혁명을 통한 기회 창출

1. 배경

빅데이터 정의: 사람, 기계, 센서 등 여러 매개체를 통해 생성된 방대한 양의 다양한 형태의 데이터(가령, 기후 정보, 위성 이미지, 디지털 사진, 비디오, GPS 신호 등)를 의미

- 다음과 같은 3개 ‘V’에 기반하여 정의할 수 있음
  - 볼륨 (Volume) : 데이터 저장 공간이 페타바이트(petabyte) 이상
  - 속도 (Velocity) : 실시간 데이터 수집 및 분석
  - 다양성 (Variety) : 다양한 수집 메커니즘을 통해 다양한 형태의 데이터 생성

빅데이터 분석: 알고리즘에 기반한 데이터 집합 관찰을 통해 빅데이터 자료 활용

- 데이터 분석에 있어 보다 나은 결정을 내리기위해 수학 및 데이터 의미를 다루는 통계를 활용한 알고리즘 사용
- 다음과 같은 세 가지 유형의 분석 수행
  - 기술적 분석 (descriptive analytics) : 과거에 무엇이 발생했는지를 알 수 있으나, 왜 발생했는지 또는 어떻게 변화될 것인지를 알 수는 없음
  - 예측 분석 (predictive analytics) : 과거 데이터를 활용하여 미래의 결과를 모델링
  - 규범적 분석 (prescriptive analytics) : 몇 가지 시나리오를 고려하여 최상의 미래 예측 결과 유도

디지털 플랫폼

- 서비스/콘텐츠 수집 전송 및 서비스/콘텐츠 제공자와 사용자간 조율을 위한 기술적 기반을 제공
- 또한, 상호 운용 가능한 비즈니스 프로세스 (예: 설계, 생산, 판매, 물류, 유지보수 등) 간 원활한 통신이 이루어질 수 있도록 함으로써 산업 구성 요소 간 통합 제공

2) 데이터의 양을 나타내는 단위의 하나. 1페타바이트는 1테라바이트의 약 1000배를 나타내며, 2^50인 1125조 8999억 684만 2624바이트를 말함
2. 디지털 플랫폼 시대

□ 디지털 플랫폼은 단순히 디지털 도구 개발 및 배포를 넘어서 그 이상의 가치를 지니고 있음
  o 메사추세츠 기술 연구소에 따르면 상위 30개 글로벌 기업 중 14개가 디지털 플랫폼 지향 기업으로 나타남 (2013년 자료 기반)

□ 디지털 플랫폼 등장에 따른 기업의 디지털 전략 재정비

  o 디지털 플랫폼의 등장으로 산업간 경계가 불분명해지고 각 산업 간 상호 연동을 통해 산업의 형태가 크게 변형될 것으로 예측
  o 신속하고 효율적인 제품·솔루션 개발 및 혁신에 관한 기업 지식과 경험이 바탕으로 디지털 전략을 수립하여야 함

□ 데이터 관리를 위한 상호 경쟁

  o 자동차, 의료, 제약 산업 분야는 데이터 활용을 위한 디지털 플랫폼을 필요로 하면서 동시에 상호 경쟁관계에 있음
    - 산업의 가치 사슬 유지 및 제품·서비스 사용자에 의해 생성되는 데이터 활용에 있어서 상호 경쟁 관계
  o 디지털 사용자의 산업간 교차가 증가하고 있는 추세
    - 자동차 산업 분야의 경우, 차량에 연결된 디지털 기기를 통해 운전자에 의해 생성되는 데이터의 수집 및 관리가 이루어짐; 엔터테이먼트 및 소셜 미디어 관련 데이터, 건강 데이터, 보험 및 주택 통합 데이터 등
    - 자동차 제조업체와 디지털 기기 관련 업체는 데이터 활용을 통한 새로운 서비스 제공을 위한 협력과 동시에 해당 데이터 관리 및 활용에 관한 경쟁 관계에 있음

□ 디지털 플랫폼을 통한 가치 창출

  o 가치사슬 및 가치 창출에 있어서 디지털 플랫폼 제공 업체의 중요성 증대
  o EU 산업은 디지털 플랫폼을 통한 가치 창출에 집중하고 있음
  o 의료산업 분야의 경우, 산업 데이터 및 센서에 기반하여 건강관리 시스템을 재설계하는 새로운 비즈니스 혁신 모델이 창출될 것으로 기대
  o 제약 분야의 경우, 자가 모니터링, 기존 약물 대비 향상된 제품 개발 등을 위한 새로운 가치 사슬이 형성될 것으로 기대
디지털 도구의 성능향상을 위한 투자

- 디지털 도구의 중요성에 대한 기업 CEO의 인식이 매우 중요
  - 새로운 가치 창출을 위한 데이터 및 데이터 분석의 중요성에 대해 의료, 자동차, 제조업계 분야 CEO의 인식이 높은 편
  - 데이터 및 데이터 분석에 대해 '매우 높은 인식'을 지니고 있는 CEO의 비율은 의료분야가 60%로 가장 높음; 전체 45%의 CEO가 높은 인식을 지니고 있는 것과 비교하면 매우 높은 수치
  - 데이터 및 데이터 분석에 대해 '대체로 높은 인식'을 지니고 있는 CEO의 비율을 살펴보면, 자동차 분야가 90%이고 의료분야는 89%

<그림 1> 디지털 기술 가치 창출에 대한 CEO 인식
{자료원: PwC’s 18th Annual Global CEO Survey}

- 의료분야 CEO의 경우, 기술 활용을 통한 다양하고 역동적인 파트너십 개발 및 비용 절감을 통한 새로운 가치 창출에 초점을 두고 있으며, 이와 관련 성장 및 매출 증대에 대해 긍정적인 편
- 의료분야 CEO가 관심을 가지는 주요 분야로는 데이터 분석 도구, 사이버 보안, 데이터 마이닝 등임
- 또한, 다른 분야의 CEO 보다 로봇 및 웨어러블 장치에 대한 잠재성에도 많은 관심을 가지고 있음
- 다만, CEO의 60%가 급속한 기술 진화 속도에 대해 우려하고 있으며, 71%는 사이버 보안 관련 우려 표명함.
- 데이터 마이닝 및 분석을 통한 빅데이터 활용과 사이버 보안은 의료분야에 있어서 가장 영향력 있는 기술이 될 것임
- 자동차 분야 CEO의 경우, 데이터 마이닝 및 분석, 고객과 연계된 모바일 기술, 사이버 보안 항상 도구에 비중을 두고 있음.
- 이들 중 약 55%가 빠른 기술 진화 속도와 이에 따른 변화에 직면하는 것에 대해 우려하고 있음.
- 디지털 기술 활용은 데이터 수집, 운영 개선, 고객 경험 향상 등의 가치를 창출할 것으로 기대,
- 이를 위해서는 경쟁 우위 달성을 위한 디지털 기술에 대한 명확한 비전 수립이 중요
- 명확한 비전 수립은 투자 수익에 대한 극대화 달성을 위해 필수적.
- 제조분야 CEO의 경우, 기술 분야에 관해 관심이 적은 분야에도 불구하고 디지털 혁명을 적극적으로 활용하고 있음.
- 특히, 모바일 기술 관련 고객과의 연계 (73%), 사이버 보안 (72%), 데이터 마이닝 및 분석 (70%)에 비중을 두고 있음.
- 또한, 로봇 공학 및 3D 프린팅의 중요성도 강조.
- 이들 역시 기술 진화 속도 (54%) 및 사이버 위협에 대한 우려 표명.
유럽 자동차 산업 분야의 기회 모색

1. 디지털 기회 창출 가능성

□ 자동차, 전자상거래, 자율 주행, 인터넷 산업의 연계는 자동차 디지털화의 주요 요소로서, 이와 관련 글로벌 경제의 잠재력은 1천 2백억 유로 정도로 추정

□ 자동차의 디지털화를 통한 기회 창출

- 유럽 자동차 시장은 업주차 창출 및 점단 기술 개발 촉진에 크게 기여하고 있음
- 2020년까지 텔레메틱스 패키지를 장착한 차량 판매는 90% 이상 성장할 것으로 예측
- 유럽의 자동차생산업체(OEM)와 부품공급업체(Tier-1)는 모바일 서비스에 대한 막대한 투자를 통해 장기적 시장 선점을 위한 노력을 하고 있음
- 시장 선두 업체는 텔레메틱스, 컨텐츠, 디지털 기술 및 빅데이터, 통신 관련 회사 및 보험회사와의 협력을 통해 디지털 기회 공유를 위한 기회 창출에 집중

□ 혁신, 경제 및 성장 분야의 빅데이터 및 디지털 플랫폼 활용

- 커넥티드 차량3) 및 자율 주행 차량을 통해 많은 양의 데이터가 수집됨
- 이러한 데이터 관리의 필요성이 대두됨에 따라 빅데이터 및 데이터 플랫폼에 관한 투자에 집중
- 서로 다른 유형의 데이터간 패턴 분석이 가능한 빅데이터를 통해 OEM사는 소비자 및 차량 관련 데이터 예측이 가능
  - 또한, 전송 인프라, 소셜 네트워크, 블로그, 온라인 등을 외부 데이터 소스로 활용
- 빅데이터를 통해 운전자와 차량 통신 간 맞춤 설정이 가능
  - 이는 운전자와 공급자간 상호 작용을 가능하게하며, 더 나아가 혁신의 초점이 제품에서 소비자 및 데이터 분석으로 옮겨가는 계기를 제공
- 빅데이터 활용을 통해 자동차 제조업체는 모빌리티 서비스 제공 업체로의 전환이 가능하게 되었음
  - 전자제품 소비자와 유사하게 자동차 소비자 집단은 차량 모빌리티 서비스 제공에 있어서 매력적인 소비 집단으로 진화하고 있음

3) 자동차와 IT기술을 융합해서 상시 네트워크에 연결된 차량을 의미
<그림 2> 빅데이터를 통한 가치 창출 (자료원: McKinsey)

<table>
<thead>
<tr>
<th>Lever examples</th>
<th>Cost</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&amp;D and design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concurrent engineering / PLM</td>
<td>+20-50% PD costs</td>
<td>-20-50% time to market</td>
</tr>
<tr>
<td>Design-to-value</td>
<td>+30% gross margin</td>
<td></td>
</tr>
<tr>
<td>Crowd sourcing</td>
<td>-25% PD costs</td>
<td></td>
</tr>
<tr>
<td>Supply chain management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand forecasting / shaping and supply planning</td>
<td>+2-3% profit margin</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor data-driven operations analytics</td>
<td>-10-25% operating costs</td>
<td>Up to +7% revenue</td>
</tr>
<tr>
<td>“Digital Factory” for lean manufacturing</td>
<td>-10-50% assembly costs</td>
<td>+2% revenue</td>
</tr>
<tr>
<td>After-sales services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product sensor data analysis for after-sales services</td>
<td>-10-40% maintenance costs</td>
<td>+10% annual production</td>
</tr>
</tbody>
</table>

☐ 차세대 주자로서의 자율 주행 차량

- 인간의 개입 없이 주행이 가능한 자율 주행 차량은 인공지능, 센서, 위성 네비게이션 시스템을 활용하며 외부 플랫폼 및 블록체인 시스템과 조달 수백 메가 바이트의 데이터 통신을 수행
  - 이러한 기술의 발전은 새로운 기술적 요구사항—새로운 IT 시스템, 향상된 데이터 관리 서비스, 향상된 보안, 규제 준수 메커니즘 등—을 필요로 함
- 커넥티드 차량 및 완전 자율 주행 차량은 2025년에 신차 판매량의 20%까지 차지할 것으로 전망
- 자율 주행 차량은 기존의 자동차 개념을 뛰어 넘는 새로운 모빌리티 서비스 및 고객 모델을 향한 첫 분야임
- 또한, 자동차가 가정 및 사무실의 확장 공간으로 전환되는 새로운 서비스를 통하여 가구당 연간 약 3,300 유로의 이익을 제공할 것으로 기대
2. 유럽 규제 체제 정비의 필요성

☐ 자율 차량을 위한 명확한 유럽 규제 체제 구축 시급

○ 빠른 기술 발전과 규제는 상호 배타적인 관계가 되지 않아야 함
○ 자율 주행 차량의 성장을 저해하는 이질적인 법적 프레임워크에 대한 재고 필요
○ 자율 주행 차량에 대한 규제 프레임워크의 복잡성은 규제의 이질성에서 초래됨
○ 규제 제정을 위해서는 모든 이해 당사자의 적극성과 노력이 요구되며, 규제 변경은 산업과 사용자 모두의 이익을 위해 적합한 시기에 이루어져야 함
○ 자율 주행 차량에 관한 포괄적인 유럽 규제 프레임워크 구축의 필요성 및 이를 위한 노력이 진행 중
  - 미국, 스웨덴, 네덜란드, 영국, 독일, 스페인과 같이 미래 지향 국가들은 유럽의 규제 체제 구축에 앞서 관련 차량의 도로 테스트를 승인하였음
  - 다른 유럽 국가들도 커넥티드 자동차의 도로 주행에 관한 새로운 법률 및 안전 규정을 준비 중
  - 유럽 차량 규제인 비엔나 협약의 개정 추진을 위해, 벨기에와 스웨덴이 자율 차량 시스템에 관한 협약을 새롭게 포함시킬 것을 제안
○ 미국과 아시아가 치열하게 경쟁하고 있는 상황에서, 자율 주행 차량 관련 유럽의 규제 개발은
더 이상 미룰 수 없음
- 자율 주행 차량 관련 두 가지 시나리오를 최대한 고려하여 적절한 규제 체계를 구축하여야 함:
  최소한의 혼란을 동반하는 시나리오와 극심한 혼란을 야기하는 시나리오
- 전자의 경우, 현 매출 현황 및 규제의 최소한의 변형을 유지
- 후자의 경우, 안전성 규제 및 소비자 욕구를 함께 고려
o 유럽의 위험요소가 규제개정 작업 과정이라면, 미국의 위험요소는 노화된 인프라이며, 반면, 아시아 기업의 경우 전고한 내수시장 및 규제 적용의 신속성에 따른 이익을 얻을 수 있음

☐ 자율 주행 차량 규제 체계 구축을 위한 유럽의 노력

o 위원회를 통해 유럽위원, 장관, CEO급 이해 관계자로 구성된 자율 주행 차량에 관한 최상위 그룹(high-level group)을 결성
- 2016년 1월 26일 첫 미팅을 개최하였고, 향후 2년간 활동 예정
- EU 자동차 산업의 경쟁력 제고, EU 입법 및 정책 체계 검토, EU 자금 조달 등을 포함하는 로드맵 구축 추진
- 자율 주행 차량 유럽 규제 체계 구축 가속화

3. 정보통신(ICT) 및 인프라에 대한 투자 격차 해소

☐ 유럽내 ICT 분야 투자 부족 현상 극복이 시급한 과제

o 유럽 ICT 분야에 대한 투자는 미국에 비해 한참 뒤떨어져 있는 상황 (미국 투자의 1/6 수준)
o 자동차 산업 가치 창출의 30~40%가 디지털 제품업체에 의해 이루어질 것으로 예상
  - 많은 유럽 기업이 ICT 및 디지털 플랫폼 관련 프로젝트에 투자하고 있으나, 이러한 프로젝트는 대부분 마이크로소프트, 구글과 같은 기업과의 협력을 통해 이루어지고 있음
o 빅데이터 제공 업체는 자신들이 선점하고 있는 유리한 위치를 이용하여 자동차 산업을 통한 새로운 기회 창출을 모색할 것임

☐ 멀티 벤더 테스트 베드에 대한 투자 강화 필요

o 차세대 디지털 차량 어플리케이션에 대한 테스트, 검증 및 인증을 위한 비용의 공유 및 신뢰 가능한 프레임워크 구축 도모를 위한 멀티 벤더 테스트 베드의 개발이 요구되어짐
o 혁신 솔루션에 대한 신뢰 가능한 인증을 통해 기존 시장 공략, 비즈니스 프로세스 및 조직 변화, 사용자에게 새로운 차원의 경험 제공 등이 이루어질 수 있음
o 또한, 중소기업이 개발한 솔루션을 실제적인 테스트 환경에서 검증할 수 있도록 함으로써
차세대 솔루션 적용의 가속화 가능
  o 이러한 멀티 벤더 테스트 베드의 영향력을 극대화를 위한 첫 번째 단계는 공공-민간 파트너십 (PPP) 기반 재정 모델 구축

4. 안전한 고속 인터넷 망과 연결된 도로 구축

□ 보안 강화 및 사물 인터넷을 위한 디지털 관리 솔루션 구축

  o 신뢰할 수 있는 저장 솔루션 및 사이버 보안을 통해 운전자에게 차량과의 연계에 있어 보안 및 안전성을 확산할 수 있도록 하는 것이 필요
    - 자동차 산업 분야에서 사물 인터넷의 활용은 증가하고 있는 반면, 보안 솔루션은 새로운 위협 요소에 대응하기에 역부족
    - 사물 인터넷의 안전성 제공은 새롭게 적mnop한 해결 과제이며 이를 위한 막대한 투자가 요구 되어짐

□ 차세대 모바일 네트워크의 보급률 및 도로 인프라 투자가 향상

  o 유럽에 보급된 모바일 네트워크의 78.2%가 3G 네트워크임
    - 이와 같은 차세대 이동 통신의 속도 제한은 실시간 데이터에 의존하는 자율 주행 구현에 있어서 커다란 장벽이 되고 있음
    - 2014년 제정된 자동차 통신에 관한 유럽 표준의 전송 속도는 3G 네트워크상에서 구현이 불가능
  o 2020년까지 유럽내 4G 네트워크의 보급률이 53% 정도 될 것으로 예상되며, 4G 네트워크상에서는 어느 정도의 속도 구현이 가능
    - 현재, 북미의 4G 네트워크의 보급률이 97%, 한국의 경우 100%에 이르는 것을 감안할 때 유럽은 매우 뒤처진 수준임

□ 고속도로로 이어지는 5G 네트워크 개발 가속화

  o 미래형 자동차는 연결된 세상의 일부가 될 것이며, 이러한 세상 속에서 초고속 디지털 네트워크를 통한 통신, 보다 높은 안전성, 향상된 환경, 엔터테인먼트, 정보, 인적교류 등을 언제, 어디서나, 누구든지 자유롭게 이용 가능
  o 향후, 자동차는 4G 또는 5G 네트워크가 제공하는 대역폭보다 더 폭넓은 대역폭을 필요로 하게 될 것으로 예상되며, 자율 주행 자동차를 위한 더 빠르고 더 폭넓은 대역폭을 제공하는 기술 개발이 요구되어질 것으로 보임
차량의 클라우드 기반 서비스의 기본이 되는 초고속 무선 네트워크 구축을 위한 5G 모바일 인프라 조기 도입을 통해 경쟁 우위를 확보해야 함

통신 범위의 연속성 확보를 위해 고속도로간 4G 및 5G연계를 위한 노력 강화 필요

자율 주행 차량의 안전성 테스트를 위한 효율적인 디지털 시스템 개발 지원

5. 표준 및 상호 운용성 육성

표준제정은 EU 경쟁력을 위한 필수조건

자동차 산업 분야에 대한 디지털 플랫폼 구축을 위해서는 서로 다른 이해 당사자 간 협력 및 자동차 산업 관련 전 분야에 공동으로 적용될 수 있는 표준 필요

자동차 산업 가치 사슬 전반을 아우르는 개방적인 표준 제정을 통해 단일 시장(Single Market) 형성 가능

표준 제정을 위한 유럽위원회의 지속적인 지원

2014년 11월, 유럽위원회는 협력 지능형 교통 시스템 플랫폼(C-ITS Platform)을 결성하고 관련 이해 당사자 간 공동 목표를 설정할 수 있도록 지원

- 투자 대상 선정, 비즈니스 사례 개발 방안, 상호 운용성 육성 방안, 공공-민간 기간 간 협력 방안을 위한 분석 및 의사 결정 수행

- C-ITS 플랫폼은 공공 기관, 차량 제조업체, 공급 업체, 서비스 제공 업체, 통신 회사 등 가치 사슬의 혼합 이해 관계자 모두를 대표함

2016년 1월, 유럽위원회는 자동차 분야의 경쟁력 강화 및 성장 촉진을 목표로 차량 제조업체의 최상위 그룹(High Level Group)인 “GEAR 2030”을 결성

- 다음과 같은 혁신 우선순위에 따른 활동 수행 : 새로운 글로벌 도전에 대한 가치 사슬의 적응 / 자율 주행 차량 개발 / 무역, 국제 협력 및 글로벌 경쟁력

- 현재, 표준화 관점에서 자율 주행 차량과 관련하여 유럽이 세계를 주도해 가기 위한 아시아 적이고 미래 지향적인 규제 체계 구축에 초점을 두고 활동 수행 중

6. 성공적인 유럽 플랫폼 구축

유럽의 디지털 플랫폼 구축 현황

자동차 산업 분야에서 디지털 플랫폼을 통한 가치 창출은 30~40%에 이를 것으로 예측

현재 유럽은 다음과 같이 다양한 종류의 플랫폼이 빠르게 성장하고 있음
유럽의 디지털 플랫폼 현황

- 연계 차량 플랫폼 (Connected vehicle platforms)
- 커뮤니티-전자상거래 플랫폼 (Community - e-commerce platform)
- 자율 주행 플랫폼 (Autonomous driving platforms)
- 산업 인터넷 / 인더스트리 4.0 플랫폼 (Industrial Internet / Industry 4.0 platforms)

이러한 현황에도 불구하고 유럽의 플랫폼은 시장 분열 및 주요 미국 디지털 플랫폼의 발전을 고려할 때 아직은 뒤처져 있는 상황

<그림 4> 커넥티드 차량을 통해 생성되는 데이터와 디지털 플랫폼과의 연관성
(자료원: PwC Analysis)

□ 강력하고 독자적인 유럽 경제 체제 유지 및 유럽 디지털 플랫폼 구축을 위한 지원

- 비유럽 국가의 디지털 플랫폼에 견주어 볼 때, 유럽은 자동차 산업 가치 창출에 있어 상당 부분을 잃게 될 위험이 현저히 높은 상황
- 지도 및 네비게이션 운영 체제에 대한 독일 자동차 제조분야 전자산업의 전략을 살펴 볼 때, 독자성을 유지하는 전략이 매우 중요함을 확인할 수 있음
- 유럽 플랫폼에 대한 성장 및 투자 전략 수립이 유럽 산업 경쟁력 향상을 위한 유럽의 최우선 과제임
  - 유럽 디지털 플랫폼 규모가 미국 및 중국 디지털 플랫폼과 비슷한 수준으로 확장될 수 있도록 하며, 궁극적으로는 세계를 주도하는 디지털 플랫폼을 구축함으로써 이를 통한 기회 선점이 목표
1. 보다 우수하고 효과적인 의료 솔루션을 위한 빅데이터의 잠재성

지난 몇 년간 의료 서비스 제공 업체, 제약회사 및 의료 기기 제조업체는 수많은 건강 관련 데이터 및 일반적인 기업 데이터 수집을 통하여 새로운 기술을 채택하기 시작하였음

- 의료 업계가 새로운 디지털 시대로 들어서기 시작하면서, 빅데이터 및 디지털 플랫폼을 통해 환자가 경험할 수 있는 상황이 다양하게 변화되기 시작
- 빅데이터를 통한 의료 산업 분야의 가치 창출 기회는 무수히 많음

디지털 통신을 위한 디지털 기술 개발 및 디지털 장비의 증가

- 디지털 통신은 의료 환경에 있어서 표준 기능으로 자리매김하고 있음
- 광대역 유·무선 네트워크의 출현으로 환자와 의료진간 소통이 보다 원활해지고, 의료 전문가 간 지식 공유가 보다 활발히 이루어져짐
- 전 세계적으로 3,750억 달러의 시장 규모를 자랑하는 의료 기술 산업은 의료 산업의 중요한 부분으로 현재 의료 기술 산업분야에서도 디지털화가 시작되었음
- 실박수, 혈압과 같은 필수 기능 데이터에 대해서 모바일 및 상호 연결된 의료 장비를 통한 모니터링 및 전송이 보편화됨
  - 2019년까지 미국 병원의 2/3 이상이 디지털 셀프 스케줄링을 제공할 것으로 예측되며, 이를 통한 가치 창출은 32억 달러에 이를 것으로 전망

의료 산업 전 분야에 걸친 디지털화

- 헬스 IT (health IT) : 병원 및 의료진 등 의료 시설 내 의료 전문가에 의해 자주 사용되는 어플리케이션
- e-헬스케어 (E-healthcare) : 의사와 환자 간 원격 상호 작용을 위한 텔레 환자 또는 원격 의료 기술
- e-셀프케어 (E-selfcare) : 의료진의 감독 없이 환자의 건강 상태를 스스로 확인할 수 있도록 해주는 자가진단 어플리케이션
- 전자 헬스 (EHR: Electronic health) 또는 전자의료기록 (EMR: Electronic medical record) : 진단 및 약품을 포함한 환자의 병력 및 검사 결과 등을 관리

- 17 -
<그림 5> 의료 및 제약분야에서 생성되는 데이터 풀
(자료원: McKinsey Global Institute)

데비와, 혁신 및 디지털 플랫폼 현황

### 데이터 풀

#### 제약 연구 개발 데이터
- 소유자: 제약회사 및 연구소
- 데이터 예시: 탐색시험, HTS 라이브러리

#### 클리닉 데이터
- 소유자: 제약업체
- 데이터 예시: 전자 의료 카드, 영상 자료

#### 환자 행동 및 정서 데이터
- 소유자: 환자를 포함한 다양한 이해관계자
- 데이터 예시: 소비 구매 내역, 환자 행동 및 선호도, 환자 운동량

integration of data pools required for major opportunities

#### 청구 및 비용 데이터
- 소유자: 환자, 제약업체
- 데이터 예시: 지출 항목, 비용 견적

- 신약 개발 속도 증진: 대용량 데이터 검색 및 분석에 관한 기술 향상에 따라 임상시험, 환자 데이터 및 과학 자료를 통한 신속한 정보 습득 가능

- 환자 중심의 약물 개발 가능: 웨어러블 기술 및 의료용 센서 활용을 통하여 환자의 데이터를 수집하고 수집된 대용량 데이터를 분석함으로써 환자에게 적합한 치료 및 약물 개발 용이

- 보다 효율적이고 효과적인 의료 시스템 구축: 유럽의 건강관리비용이 기하급수적으로 증가하는 현 상황에서, 빅데이터 및 디지털 플랫폼의 등장으로 건강관리비용 절감 및 치료 결과 향상 효과 기대

- 효율성 증대를 위해 필요한 우선순위 선정: 빅데이터 및 기타 ICT 솔루션을 활용하여 의료 시스템의 효율성 향상을 분석함으로써 서비스 제공자의 비용 절감 감소 효과 가능

- 보다 효율적이고 저렴한 치료 및 의료 개입 방안 개발: 여러 환자의 데이터 분석을 통해 질병 조기 발견 및 적절한 의학적 진단이 가능하도록 함으로써 치료 및 치료 기간 측면의 효율성 증대에 따른 치료비용 감소 효과 발생
2. 복합적으로 진화하는 규제 프레임워크에 관한 조언

☐ 보다 효율적이고 효과적인 의료시스템 구축을 위한 유럽 규제 프레임워크의 필요성 대두

○ 현재, 의료 시스템 관련 유럽 규제 체계는 여러 형태로 분산되어 있음
  - 의료 데이터는 매우 민감하여 효율적인 보안을 필요로 함
  - 유럽 회원국은 데이터 보호를 위해 각각 서로 다른 규정을 적용하고 있으며, 이로 인해 기업 및 연구자에게 혼란스러운 환경이 제공되는 역효과 발생
  - 또한, 다른 유럽 회원국에서 기업 활동 또는 연구 활동을 이어가려면 해당 국가의 규정에 따른 새로운 비즈니스 모델에 대한 이해 및 적용을 위한 시간적, 물질적 비용 발생
○ 이러한 규제 체계의 복잡성은 유럽 제약 회사의 유럽 시장 진입에도 장벽이 되고 있음
  - 유럽 회원국별 관계 허가 규제가 각국에 있고, 이에 따라 기업은 각각 다른 규정을 준수해야함
  - 규제의 분산으로 인해 기업, 특히 중소기업에 있어 시장 진입 및 관련 비용 지출이라는 부담 발생
○ 전통적으로 법과 윤리 관행은 수세기에 걸쳐 지속적으로 진화되어 왔으나, 오늘날 기술 개발 속도의 급속화로 인해 즉각적인 규제 대응이 필요
  - 최근, 모든 산업분야에서 규제 프레임워크와 혁신제품/서비스 간 격차가 발생하고 있는 실정

☐ 데이터 공유 활성화 방안

○ 의료 서비스 제공업체 및 제약회사는 유럽 전역에 걸친 환자 데이터 및 연구 자료의 효율적 관리를 통한 비데이터를 바탕으로 확장적인 기회 창출 가능
○ EU의 효율적 협력을 위해 EU 데이터 보호 관련 개혁 방안 수립 진행
  - 2015년 12월, 유럽의회는 ‘EU 데이터 보호 개혁(EU Data Protection Reform)’에 동의하고, 이를 위한 새로운 규정 제택
  - 제택된 규정 중 하나는 ‘일반 데이터 보호 규정(GDPR: General Data Protection Regulation)’으로 데이터 보호를 위한 범유럽적 단일 법률 제정을 목표로 함
  - 데이터 보호법의 단일화를 통해 기업은 디지털 싱글 마켓의 기회를 최대한 활용할 수 있을 것으로 기대
○ 책임감 있는 데이터 공유 및 활용을 위한 프레임워크 제공
  - 기부자(또는 법적 대리인)가 동의한 데이터에 대해 사용이 승인된 기관의 데이터 접근만이 허용될 수 있도록 하여야 함
  - 데이터의 사용은 다음과 같은 핵심 요소에 기반 : 투명성 / 책임성 / 참여 / 데이터 품질 및 보안 / 개인 정보 보호, 데이터 보호 및 기밀 유지 / 위험 및 이익 분석
○ 기업의 규제 프레임워크에 관한 명확한 이해를 돕기 위한 지침 제공
3. 성능향상 및 비용 절감을 위한 빅데이터 배포

○ R&D 비용의 급격한 증가와 함께 기업은 제조적 도전 과제에 직면하고 있는 상황이며, 빅데이터 활용을 통해 임상 실험 성공 가능성 증가 및 연구 비용 감소 효과를 창출하여 어려움을 극복하고자 노력

○ 빅데이터로 인해 효율적인 데이터 큐레이션 가능
○ 유럽은 범유럽 차원에서 의료 데이터에 대한 접근 향상 및 데이터 품질 향상을 위해 노력
- 2011년 유럽 의약청(European Medicine Agency)은 EU 임상 시험 등록 기구(EU Clinical Trials Register)를 구성하고, 이를 통해 EU에서 허가된 의약품에 대한 임상 시험 정보 공개
- 루كس부르크 연구소의 통합 바이오뱅크(IBBL)는 혈액, 조직, 타액, 소변, 대변 및 뇌척수액 등에서 추출한 245,000 가지 이상의 휴먼 샘플을 보유
- 상기 연구소는 통일되고 엄격한 프로세스에 의해 품질이 보증된 휴먼 샘플을 수집하여 유럽의 연구자에게 보다 나은 품질의 데이터를 제공하는 것을 목표로 하고 있음
○ 전자 데이터 및 데이터 저장소 구축 장려
- 신약 개발 프로세스의 비용 효율성이 최대로 증가하기 위해서는 의료 산업 전반에 걸쳐 발생한 데이터에 대한 효율적 접근이 매우 중요
- 의학 데이터 수집을 위한 이니셔티브가 급증하고 있음에도 불구하고, 유럽 회원국간 데이터 접근이 용이하지 않음
- 데이터 수집, 저장 및 접근에 대한 범유럽 차원의 새로운 이니셔티브의 필요성 대두

4. 유럽의 의료 데이터 통합을 위한 노력

○ 의료 산업 분야에서는 많은 양의 데이터가 생성될 뿐만 아니라, 생성되는 데이터의 형식도 매우 다양함

○ 웨어러블 및 DNA 시퀀싱 기기, 센서 및 소셜 네트워크 등 다양한 소스를 통해 수집되는 데이터는 서로 다른 형식을 가짐
○ 가치 있는 데이터 제공을 위해서는 이런 다른 형태의 데이터에 대한 결합 및 분석 필요
○ 데이터 마이닝 및 데이터 모델링 기법을 통해 품질 표준을 만족하는 가치 있는 데이터 생성
○ 대부분의 이해 관계자는 각자 별도의 거대한 데이터 폴을 생성·관리하고 있으며, 이를 다른 이해 관계자와 거의 공유하지 않는 실정

4) 데이터 큐레이션은 데이터를 선택, 보존, 유지, 수집 그리고 아카이빙(archiving) 하는 것을 의미
□ 상호 데이터 통합 및 공유를 위한 도전 과제

- 신뢰의 문제: 상호 교환되는 데이터의 품질에 대한 신뢰성이 보장되고 오남용이 방지되어야 함
- 표준의 결절: 데이터 생성 주체 또는 국가에 따라 서로 다른 명명법 및 형식을 기준으로 데이터가 생성·저장되고 있음
  - 유럽의 데이터 형식 표준을 개발하여 데이터 스토리지 시스템 간 격차를 최소화하여 상호 운용성을 보장함으로써 조직 및 국가 간 데이터 교환이 용이토록 해야 함
- 미국 디지털 제공 업체의 높은 매력도: 유럽 스마트 의료 공급업체는 의료 디지털 플랫폼 구축을 위해 미국의 디지털 기업과 파트너십을 맺는 경우가 대부분

□ 상호 데이터 통합을 위한 방안

- 상호 인증 절차 도입: 신뢰성 문제에 대한 해결책이 될 수 있음
  - 북유럽 국가의 경우, 통제 데이터의 정확도 및 데이터 소스 통합을 위한 대규모 데이터 세트의 필요성에 따라 상호 승인 절차를 도입
  - 상호 승인 절차를 결친 의사 및 연구원은 다른 북유럽 국가의 정보에 접근 가능
- 데이터 형식에 관한 유럽 표준 개발
  - 핵심적인 정책 선도 이니셔티브는 유럽 위원회의 e-헬스 행동 강령 2012-2020 (eHealth Action Plan 2012-2020)으로, 유럽의 의료 서비스 개선을 위한 ICT 활용이 목표
  - 상기 이니셔티브의 실천 계획은 유럽 회원국 간 상호 운용이 가능한 의료 시스템 및 유럽-미국 간 전자건강정보 상호 운용을 위한 공통 표준 개발
  - e-헬스 네트워크 (eHealth Network)는 유럽 위원회의 또 다른 이니셔티브로서, 유럽의 e-헬스 시스템·서비스 및 상호운용 어플리케이션에 대한 지속 가능한 경제적·사회적 이익 제공을 위한 지침에 따라 설정
  - 상기 이니셔티브의 목표는 높은 수준의 보안 및 신뢰 구축, 치료의 지속성 강화, 안전하고 우수한 의료 서비스에 대한 접근 보장에 있으며, 다음에 대한 가이드라인을 제공하여야 함: 환자의 안전 및 치료의 연속성을 보장하기 위한 의사 간 데이터 공유 / 공공 의료 및 연구를 위한 효과적인 의료 정보 활용 방법

□ 디지털 플랫폼 개발 촉진, 전자 기록 시스템의 상호 운용성 보장 및 데이터 품질 보장

- 데이터 시스템의 상호 운용성 보장을 위한 표준 개발 지원
- 데이터의 추적성 보장 및 데이터 유출 방지를 위해, 관리가 용이한 디지털 신원 관리 시스템 개발을 권장
  - 데이터 생성에 있어 추적 가능성을 보장함으로서 데이터 신뢰성 향상이 가능
- 잠재력이 높은 유럽 디지털 기업의 역량을 강화하고 유럽 기반 디지털 플랫폼 개발 촉진
5 유럽 제조 산업 분야의 디지털화

1. 제조 산업 분야의 새로운 기회

제조 산업 분야는 기업 수, 고용, 생산 및 부가가치 창출 측면에서 유럽 경제의 핵심 분야

- 세계 시장의 약 36%의 점유율을 차지하는 유럽 연합은 세계 최대 생산국이며 수출국임
- 추산에 따르면, 해당 분야에서 활동하는 유럽 내 고용인 수는 약 300 만 명에 이르며, 향후 10년간 유럽 제조 산업의 성장률은 연평균 3.8%로 긍정적 예측

스마트 산업 도래에 따른 유럽 산업의 변화

- 스마트 산업은 유럽 제조 산업의 경쟁력 강화를 위해 놓칠 수 없는 기회이며, 이를 활용하여 GDP 점유율을 15%에서 20%까지 끌어올리는 것을 목표로 하고 있음
- 제조 산업의 디지털화와 함께 혁신 데이터 기반 서비스 및 디지털 기능 도입을 통하여 제품 포트폴리오의 개선을 도모
- 스마트 산업은 제조 산업의 원동력이 될 것

- 제조 산업 디지털화를 뒷받침하는 핵심 기술 : 3D 모델링, 스캐닝 및 시뮬레이션, 컴퓨터 기반 설계 및 엔지니어링, 클라우드 기반 고성능 컴퓨팅, 레이저, 사이버-물리적 생산 시스템, 로보틱스, 연결 장비, 첨단 계측 시스템 등

<그림 5> 스마트산업 프레임워크 및 관련 디지털 기술 (자료원: PwC)
스마트 산업을 통한 기대 효과

- 생산성 증가, 자원 효율성 향상, 에너지 사용 감소, 장비 중단 시간(downtime) 및 유지 보수 비용 감소, 결합 감소 및 제품 출시 기간 단축 등의 효과가 발생할 것
- 비용 절감 및 효율성 향상: 디지털 변환을 통해 기업은 연간 3.6%의 운영비용 절감 효과 기대
- 비메디어 분석을 통한 품질 관리: 비메디어 분석에 기반한 새로운 실시간 품질 관리를 설립하여 품질을 최적화할 수 있으며, 더 나아가 프로세스 단계 간 패턴 및 관계 식별을 통해 제품 산출량 조정이 가능
- 장비 중단 시간 및 유지보수 비용 감소: 유지보수 예측 시스템을 도입하여 생산 능력의 최적화 도달이 가능하며, 핵심 자산 가동률 평가 알고리즘을 적용하여 수리 및 유지보수 일정 조율 가능
- 실시간 공급 체인 확보: 사이버-물리적 시스템 기반 생산 체인과 같은 디지털 기술을 활용하여 생산의 유연성을 확보함으로써, 기존의 기계를 크게 변형하지 않고도 확장 및 재구성이 가능하도록 하는 사용자 정의 기능 제공

제조 분야 스마트 산업화를 위한 비메디어의 중요성

- 스마트 산업의 핵심 기술은 데이터에 기반하고 있음
  - 산업 전반 및 제품 수명 주기 전반에 걸친 데이터 활용 및 공유의 최적화가 스마트 산업의 주요 요소
- 인더스트리 4.0의 원동력을 이용하려면 기업, 지역 및 시스템 도메인 등 산업 전반에 걸쳐 비메디어 생성, 수집, 처리, 공유 및 스마트 데이터로의 전환이 필수적
  - 제조 산업 분야에서는 직원, 고객, 프로세스, 비즈니스, 제품 및 기계를 통해 엄청난 양의 데이터가 생성됨
- 시장 기회 및 새로운 잠재적 가치 선점을 위해서는 데이터의 스마트화를 통한 비즈니스 통찰력 및 최적화된 의사결정 지원이 중요
  - 가령, 기계설비 설계 단계에서 소비자 선호도에 관한 데이터를 활용하여 설계를 결정할 수 있음
2. 원활한 데이터 흐름을 위한 지원 방안

직면 과제를 해결하고 유럽 회원국 간 원활한 데이터 흐름을 구축하는 것이 유럽 스마트 산업의 기본 전제 조건

- 디지털 단일 시장 전략, 클라우드 컴퓨팅 전략 및 유럽 데이터 보호 프레임워크 개혁의 장벽이 되고 있는 회원국 간 데이터 전송에 대한 제한 및 규제 장벽 제거가 요구되어짐
- 서로 다른 아키텍처, 시스템, 플랫폼, 데이터 소스, 형식, 표준, 프로세스 및 도구 등의 사용으로 인해 산업 데이터의 통합이 어려움
- 디지털 단일 시장, 클라우드 컴퓨팅 전략 및 유럽 데이터 보호 프레임워크개혁의 장벽이 되고 있는 회원국 간 데이터 전송에 대한 제한 및 규제 장벽 제거가 요구되어짐
- 디지털 단일 시장, 클라우드 컴퓨팅 전략 및 유럽 데이터 보호 프레임워크개혁의 장벽이 되고 있는 회원국 간 데이터 전송에 대한 제한 및 규제 장벽 제거가 요구되어짐

'일반 데이터 보호 규정(GDPR: General Data Protection Regulation)'은 범유럽 클라우드 컴퓨팅 및 국경 간 자유로운 데이터 흐름 개발 촉진을 목표로 국가별로 분할된 데이터 보호법을 다루고 있음
- 그러나 동 규정은 개인정보에만 해당되며, 기계에서 생성된 비개인적인(non-personal) 데이터의 규제는 개인 확인 정보 없이는 어려운 상황
- 데이터 사 용에 관한 GDPR의 명확한 지침 배포는 중소기업의 빅데이터 기술 도입 지원의 필수 조건
- 관련 규제 법률 및 행정 체계에 대한 인식 부족으로 인해, 중소기업의 경우 제한적인 데이터 활용이 이루어지는 경우가 많음

3. 사물 인터넷을 위한 보안 및 신뢰 구축

제조 산업 분야의 디지털 생태계는 광범위한 데이터 사용의 증가와 함께 잠재적 공격의 증가로 인한 위험에 직면하고 있음

- 기업은 데이터 보안 문제로 인해 빅데이터 활용에 다소 소극적
  - 데이터 보안상의 문제가 발생할 경우, 그에 따른 책임 부담, 기업 데이터의 무단 유출, 기업 평판 손상, 지적 재산 손실 등의 부담 발생
- 또한, 기업은 다른 기관 및 국가와의 데이터 공유에 대해서도 소극적인 경향을 나타냄
  - 파트너 기관 시스템 혹은 데이터 전송 시스템에서 발생 가능한 IT 위협을 우려

합법성 및 투명성에 기반을 둔 데이터 신뢰 구축이 중요

- 차세대 보안 솔루션의 안전성 및 효율성 보장에 기반을 둔 사이버 보안 구축이 필요
- 제조 산업 관련 모든 시스템 및 프로세스 핵심 부분에 대한 보안 솔루션 도입
- 합법적인 제 3자의 접근에 대한 보증을 통해 보안 솔루션의 건고성 구축
- 보다 엄격한 조건 하의 보안 테스트 검증을 통해 시스템 전반의 무결성 및 신뢰성 강화
결론

세계는 지금 전 산업 분야의 디지털화와 그에 따른 빅데이터 생산과 함께 빠르게 그 패러다임이 변화되어 가고 있음.

- 급격한 기술 개발 속도에 따라 산업간 교차 협력이 점차 급증하고 있으며, 분야별로 새로운 제품과 서비스 구현이 가능해지고 있음.
- 반면, 이러한 급격한 기술 변화에 따른 기술 플랫폼 및 산업 플랫폼 변화 속도에 비해, 정책, 인프라, 사회 구조 및 시민의식의 개혁 속도는 상대적으로 느림.
- 이처럼 기술과 정책, 법률간 격차의 문제가 점차 심화되어 가고 있으며, 특히, 유럽의 경우 많은 회원국들로 이루어져 있기에 범유럽적 규제 및 정책 구축에 시간적, 물리적 어려움을 겪고 있음.

- 빅데이터 및 디지털 플랫폼을 통해 산업별 이익을 극대화하기 위해서는 무엇보다도 유용한 데이터의 수집, 저장, 분석 및 활용이 가장 중요.
- 모든 디지털 기술 및 장비가 빅데이터에 기반하고 있기 때문에 자유롭고 빠른 속도로 유용한 자료에 접근할 수 있는가의 문제가 시장 주도권 선점의 주요 관건.
- 이에 따라, 유럽은 유럽 위원회를 중심으로 범유럽적 규제 및 이니셔티브 개발에 주력.
- 또한 공공-민간 파트너십 기반 제정 프레임워크 구축을 통해 주도적인 기술 및 산업 확보를 위한 노력 수행.

- 빅데이터 활용의 성과를 좌우하는 것은 개방적이면서도 보안을 보증하는 신속한 디지털 플랫폼 구축 - 유럽은 자동차 산업, 의료 산업, 제조 산업 등 산업 분야별로 적절하고 통합된 디지털 플랫폼 구축에 집중.

- 국내의 경우, 유럽만큼 복잡한 규제 프레임워크가 발생하지 않는다는 이점이 있으나, 기술 발전 속도가 빠르 급격하기에 그에 따른 규제 정책의 빠른 대응을 염두에 두고 이를 준비하여야 할 것임.
- 미래 기술 예측을 바탕으로 보다 빠른 정책 기반을 마련하는 것이 향후 세계 기술 및 제품 시장을 선도해 나가기 위한 발판이 될 것.
- 또한, 디지털 서비스 공급업체에 따라 제공되는 데이터의 형식이 다양할 수 있기 때문에, 이에 대한 산업별 데이터 규정을 국가차원에서 마련함으로써 국내 기업 및 연구기관 간 빅데이터 공유 및 활용이 활발히 이루어질 수 있도록 지원하는 것이 중요.

- 25 -
GT 심층분석보고서는 국제기술협력정보시스템(http://gtonline.or.kr)을 통해 보실 수 있습니다.

본 브리프의 내용은 저자 개인의 의견으로 각 기관의 공식 입장과는 무관합니다.