ATSC 3.0 UHDTV 실험방송 배경

2015년 8월 부터는 700MHz 주파수 대역에서 698MHz~710MHz 사이의 12MHz, 753MHz~771MHz 사이의 18MHz, 총 30MHz를 지상파 UHD 방송서비스용으로 할당하였다. 6MHz 색도 차이가 지상파 UHD 방송서비스의 한 채널이 가능하며, 30MHz는 이에 더해 다섯 채널의 지상파 UHD 방송서비스가 가능하다. 하지만 30MHz는 KBS를 포함한 지상파 4사의 수도권 UHD 방송서비스를 위한 최소의 주파수 대역폭일 뿐, 향후 지상파 UHD 방송서비스의 전국 확대를 위해서는 추가의 대역폭 할당이 필요한 실정이나 이에 관한 명확한 계획은 아직 존재하지 않는다.

그림 1. 지상파 UHD 방송서비스를 위한 주파수 분배

지상파 UHD 방송용 주파수 할당 완료 후, 정부와 지상파 방송사는 2017년 2월 지상파 UHDTV 본방송 개시 계획을 함께 수립했다. 이 계획에 맞춰 본방송을 시작하기 위해서는 2012년부터 국내 지상파 UHD 실험방송에 활용되었던 DVB-T2 전송방식과 최근 부각되고 있는 ATSC 3.0 전송방식의 비교실험이 필요하다. KBS는 2015년 1월 ATSC 3.0과 DVB-T2 비교검증 실험을 위한 기반을 마련하여 국가 기관방송사로서 UHD 방송선도에 앞장섰으며, 2016년 6월로 예정된 지상파 UHDTV 방송방식 결정전까지 ATSC 3.0 UHDTV 실험방송 시스템 구축 및 DVB-T2와의 비교검증 실험방법을 차질 없이 진행할 예정이다.

KBS 지상파 UHD 실험방송 추진경과

KBS의 ATSC 3.0 실험방송은 KBS가 2012년 10월부터 시작한 지상파 UHDTV 실험방송의 연장선상에 있다. KBS의 ATSC 3.0 실험방송 및 시스템의 이익을 위해 간격하여 KBS의 지상파 UHDTV 실험방송의 흐름을 요약한다.
1. 2차 지상파 UHD 실험방송 (2012, 2013)

![표 1.1, 2차 저상파 UHDTV 실험방송 주요특성](image1)

<table>
<thead>
<tr>
<th>기간</th>
<th>2012 (1차)</th>
<th>2013 (2차)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2012.3.1.</td>
<td>2013.5.10.</td>
</tr>
<tr>
<td></td>
<td>2012.3.3.</td>
<td>2013.6.3.</td>
</tr>
<tr>
<td>주요특성</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>·서식화측 저상파 4K UHDTV 실험방송</td>
<td>·저상파 4K 60p UHD 실험방송</td>
</tr>
<tr>
<td></td>
<td>·비디오</td>
<td>·비디오</td>
</tr>
<tr>
<td></td>
<td>·4K(3840x2160) 30p</td>
<td></td>
</tr>
<tr>
<td></td>
<td>·HEVC 완상결출</td>
<td></td>
</tr>
<tr>
<td></td>
<td>·MPEG2-TS 사용</td>
<td></td>
</tr>
<tr>
<td></td>
<td>·송신</td>
<td>·송신</td>
</tr>
<tr>
<td></td>
<td>·UHF-U, 64MHz 전송대역</td>
<td></td>
</tr>
<tr>
<td></td>
<td>·주파수: 785Mhz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>· 출력: 100W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>· 디자인 송신 테러미터 실험</td>
<td></td>
</tr>
</tbody>
</table>

![그림 2. 1, 2차 저상파 UHDTV 브로드캐스트 시스템](image2)

3차 저상파 UHD 실험방송 (2014)
2014년의 3차 UHD 실험방송은 가장 큰 특징은 저상파 4K UHD SFN 실험방송과 스포츠 라이브 중계방송이다. 총 3회에 걸친 라이브 중계방송이 있었으며 주요 내용은 아래와 같다.

▶2014 실험방송 주요 사항
· 저상파 4K UHDTV 라이브 중계방송 용송출시스템 구축
· 저상파 4K UHDTV SFN 송출시스템 구축(전력출산소: 5K, 남산출산소: 600W) 및 적용
· 세계 최초 KBL 농구 저상파 4K 60p UHDTV 라이브 중계방송 및 서울, 여의도 시연
· 브이블 윔드컵 UHDTV 라이브 중계방송 및 대전/제주 저상파 음악 시연
· 아시장에월 빠구 UHDTV 중계재기 및 라이브 중계방송 실시

![그림 3. 세계최초 KBL 농구 저상파 4K 60p 라이브 중계 공고시](image3)
4차 지상파 UHD 실험방송 (2015)
2015년에 KBS는 실험간 UHDTV 송출 주조를 구축하고 운용을 시작하였으며 주요 내용은 아래와 같다.

-기간: 2015.1.1 ~ 2015.12.31
-실험간 UHDTV 송출 주조 구축 및 운용
 - 실험간 인코더 입력을 기반으로 다양한 파라미터 UHD 송수신 실험 활용
 - KBS UHD 콘텐츠 편성 및 송출 운용
 - 시각장애인용 UHD 확연화실방송 적용 실험이
 - 재난·재해 방송 UHDTV Wake-Up 신호 송수신 정합

그림 5. UHDTV 실험방송 주조

그림 6. UHDTV 실험시스템 구성도
ATSC 3.0 시스템 프로토콜 (MMT/ROUTE)

2012년에 시작된 지상파 UHD 실질방송은 지상파 UHDTV 방송 송수신 정합 (TTALKO-07.0123) 임정표준을 따랐다. 이 임정표준에 정의된 전송방식은 DVB-T2 방식이며, 2016년 1월의 ATSC 3.0 실험방송은 전송기술로 DVB-T2 대신 ATSC 3.0을 사용한 것이다. ATSC 3.0의 DVB-T2 기술은 OFDM(Orthogonal Frequency Division Multiplexing) 기반하지만 서로 다른 무선전송 기술이다. 두 기술의 차이는 무선전송 기술의 차이에 국한된 것뿐만이 아니다. 두 기술은 무선전송을 위해 다양한 응용 및 이동의 조합에 관련된 정보를 논리적으로 처리하는 콘텐츠 전송계층(Delivery Layer)에서부터 차이가 난다. DVB-T2 전송기술은 사용한 기준 지상파 UHD 실질방송에서는 콘텐츠 전송계층에 MPEG-2 TS(Transport Stream)를 사용하였다. 하지만 방송과 인터넷 유형 서비스를 지원하는 차세대 방송서비스의 IP(Internet Protocol)와 호환이 안 되는 MPEG-2 TS는 부적합하다. 이를 극복하기 위해 ATSC 3.0은 IP 기반의 기술을 바탕으로 하여 방송과 인터넷의 자연스러운 융합 서비스를 가능하게 하고 있다. ATSC 3.0에서는 콘텐츠 전송계층에 MPEG-2 TS 대신 IP 형태의 MMT(MPEG Media Transport) 프로토콜 또는 ROUTE(Real-time Object delivery over Unidirectional Transport) 프로토콜을 사용한다. IP 기술이 적용된 MMT와 ROUTE는 MPEG-2 TS와는 기본적인 성격이 다른 전송계층 기술이며 다음과 같은 기술적 배경과 특성이 있다.

• ATSC 3.0 주요 서비스는 방송, 스트리밍 및 비실시간 파일전송 서비스
• MMT는 MPEG-2 TS의 첨단을 살리면서 IP 방송환경에 맞는 프로토콜로서 설계된 것이며 MPEG-2 TS처럼 패킷 단위의 처리를 함
• ROUTE는 IP 상에서의 파일전송을 위해 개발된 기술인 FLUTE(File Delivery over Unidirectional Transport protocol)를 실시간 처리에 맞도록 개량한 기술이며 파일의 전송이 완료되어 후속처리가 가능했던 FLUTE와 달리 ROUTE는 실시간 처리에 특화되어 사용자 입장에서는 패킷단위로 동작하는 것처럼 보임
• MMT와 ROUTE 모두 방송과 인터넷 서비스가 융합된 IP 프로토콜 기반 차세대 UHDTV 방송에 적합한 기술임

ATSC 3.0에서 MMT와 ROUTE가 모두 해당이 되는 이유는 다음과 같으며, 각 방송사는 각자의 목적에 따라 MMT나 ROUTE 중 하나의 기술을 선택하여 사용하면 된다.

• 북미 방송사들은 기존 방송 서비스 외에 다양한 형태의 다른 서비스를 고려 중임(예를 들어 가정 내 ATSC 3.0 루터를 통해 각 디바이스 IP 체계전송하는 서비스 등)
• 북미의 방송들은 MMT와 ROUTE 각각의 장점에 주안점을 두고 두 개의 프로토콜을 접목하여 모두 표준으로 채택
위에서 설명된 MMT와 ROUTE의 표준화를 바탕 및 특성을 더욱 잘 이해하기 위해 [표 2]에 MMT와 ROUTE를 간단히 비교하였다. [표 2]에서 보이듯이 MMT와 ROUTE는 브로드캐스트 서비스를 위해 사용하는 기술은 동일하고, 방송 서비스를 위한 기술에서 차이가 난다. 방송서비스를 위해 MMT는 MMTP(MPEG Media Transport Protocol)을 사용하고 ROUTE는 ROUTE 프로토콜을 사용하며, 방송 및 콘텐츠 등 미디어 전송을 위한 결과로 MMT는 전송 및 재생/저장을 위해 정의된 최소 단위인 MPU(Media Processing Unit)를 사용하고 ROUTE는 기반 비트레이트 스트리밍을 위한 DASH(Dynamic Adaptive Streaming over HTTP) 세그먼트를 사용한다.

<table>
<thead>
<tr>
<th>전송 프로토콜</th>
<th>MMT 서비스</th>
<th>ROUTE 서비스</th>
</tr>
</thead>
<tbody>
<tr>
<td>방송</td>
<td>MMTP</td>
<td>ROUTE</td>
</tr>
<tr>
<td>브로드캐스트 스트리밍</td>
<td>HTTP</td>
<td>HTTP</td>
</tr>
<tr>
<td>NAT 서비스</td>
<td>ROUTE</td>
<td>ROUTE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>미디어 전송화</th>
<th>MMT 서비스</th>
<th>ROUTE 서비스</th>
</tr>
</thead>
<tbody>
<tr>
<td>방송 포맷</td>
<td>MPU</td>
<td>DASH 세그먼트</td>
</tr>
<tr>
<td>브로드캐스트 포맷</td>
<td>DASH 세그먼트</td>
<td>DASH 세그먼트</td>
</tr>
<tr>
<td>NAT 포맷</td>
<td>패들</td>
<td>패들</td>
</tr>
</tbody>
</table>

표 2. MMT vs ROUTE 비교

ATSC 3.0 UHDTV 실험방송

![ATSC 3.0 실험방송 시스템](image)

MMT 스트림 생성기[그림 6, 7]는 KBS 기술연구소가 (주)카이미디어와 공동개발 중인 장비로서 HEVC 인코더의 MPEG2-TS 출력을 MMT 스트림으로 변환하는 역할을 수행하며, 현재 MPEG2-TS를 ROUTE 스트림으로 변환하는 기능도 구현 중이다. MMT 스트림 생성기의 출력은 40Mbps의 QoS가 보장된 IP/UDP 네트워크를 통해 전달되는 송신소의 ATSC 3.0 액세이터[그림 8]로 전달되어 SKW급 송신기를 통해 55번 채널(761MHz)로 송신되었다. 이번 ATSC 3.0 UHDTV 실험방송에서는 DVB-T2와의 비교시험도 함께 진행되었으며, 같은 주파수 대역에서 ATSC 3.0 신호와 DVB-T2 신호를 함께 음성에 송수신할 수 없으므로 DVB-T2 방식의 음성은 송수신을 마친 후 ATSC 3.0 시스템으로 전환하여 음악을 송수신하는 순서로 비교검증을 위한 송수신 실험을 진행하였다. 또한 [그림 9]과 같이 ATSC 3.0 방식과 DVB-T2 방식의 동시 시험을 위해 ATSC 3.0 신호는 관악산송신소를 통해 음악을 송수신하고 DVB-T2 신호는 ATSC 3.0 수신 TV가 설치된 실험방송주소로 로컬 송수신하였다.
향후계획

2016년 2월 현재 지상파 방송 4사와 방송산업 관련 각종 기관이 참여하는 ‘지상파 UHDTV 방송표준방식 실무협의회’를 통해 DVB-T2와 ATSC 3.0 방식의 서면비교검토를 진행 중이며, 2016년 3월부터는 DVB-T2와 ATSC 3.0 방식의 비교검증실험을 시작할 예정이다. 비교검증실험을 위해서는 MMT 툴뿐만 아니라 ROUTE 기술이 접목된 ATSC 3.0 시험방송이 가능해야 하며, ATSC 3.0의 오디오 표준인 MPEG-N 기술도 시험방송 시스템에 적용되어야 한다. KBS는 매우 촉박한 일정에도 불구하고 DVB-T2와 ATSC 3.0 방식의 비교검증실험을 슬저렇게 진행하기 위한 준비를 진행 중이며, 2016년 6월 지상파 UHDTV 방식 결정 후 2017년 2월 지상파 UHDTV 본방송을 위한 실제 대비를 해나갈 것이다.