Contents

Ⅰ 증강현실이란 무엇인가
Ⅱ 증강현실 기술 구성
Ⅲ 증강현실의 교육적 활용
Ⅳ 사례분석
Ⅴ 증강현실 기술과 교육
연구 진

집필진
- 류 지 현 (전남대학교)
- 조 일 현 (춘천교육대학교)
- 허 최 옥 (순천대학교)
- 김 정 현 (고려대학교)

연구 기획
- 정 성 무 (한국교육학술정보원)
- 고 범 석 (한국교육학술정보원)
- 계 보 경 (한국교육학술정보원)

본 고는 한국교육학술정보원의 공식 의견이 아니라 본 연구진의 견해임을 밝혀둡니다
목 차

I. 증강현실이란 무엇인가 ... 1
 1. 증강현실의 이해 ... 1
 2. 가상현실과의 구분 .. 2

II. 증강현실 기술 구성 .. 4
 1. 디스플레이 ... 4
 2. 객체/마커 트래킹 및 Registration 기술 6
 3. 영상 합성 기술 ... 8
 4. 상호작용 디자인 기술 및 사용성 ... 9
 5. 저작도구 및 기타 기술 .. 11

III. 증강현실의 교육적 활용 .. 12
 1. 교육적 활용의 가능성 .. 12
 2. 증강현실의 교육적 활용에 대한 예측 13
 3. 교육적 활용을 위한 시나리오 ... 16

IV. 사례 분석 .. 22
 1. Invisible Train ... 22
 2. Archaeology and Cultural Heritage .. 25
 3. 뉴질랜드 HIT Lab의 Magic Book ... 26
 4. Education AR: Futurelab 프로젝트 ... 31
 5. MIT의 핸드헬드 증강현실 시뮬레이션 프로젝트 34
 6. 도쿄대학 증강현실 프로젝트 ... 38
 7. Kanji Teaching ... 41
 8. 지리학 프로젝트 .. 42

V. 증강현실 기술과 교육 ... 45
 1. 교육적 활용을 위한 시사점 ... 45
 2. 경험적 학습환경을 구성하기 위한 요소 46
 3. 제언 .. 48
[그림 1] Mixed reality continuum ... 3
[그림 2] See through HMD를 이용한 증강현실 .. 5
[그림 3] 모니터와 카메라를 이용한 증강현실 시스템 5
[그림 4] 마커 인식을 통한 Registration과 영상 합성 .. 8
[그림 5] 마커의 상호작용 객체와의 비유적인 디자인 10
[그림 6] 증강현실 렌즈 ... 10
[그림 7] PDA에 적용한 증강현실 기법 ... 11
[그림 8] Invisible train을 실행하고 있는 장면 ... 23
[그림 9] Invisible train의 조작화면 ... 23
[그림 10] Invisible train의 작동원리 ... 24
[그림 11] 3D 영상을 획득하기 위한 절차 ... 26
[그림 12] 최종 일러스트레이션 작업 ... 28
[그림 13] 주요 장면 .. 28
[그림 14] handheld display장치를 활용 .. 29
[그림 15] 불러 들여진 natural features .. 29
[그림 16] HIT Lab에서의 애니메이션 작업 .. 29
[그림 17] 캐릭터들의 애니메이션 ... 29
[그림 18] 테스트 하는 모습 .. 30
[그림 19] 삽입된 음악의 작곡가 .. 30
[그림 20] Education AR의 시연장면 1 ... 33
[그림 21] Education AR의 시연장면 2 ... 33
[그림 22] GPS에 의한 위치 정보 .. 35
[그림 23] GPS가 장착된 PDA ... 35
[그림 24] 디스플레이를 통한 체험형 학습 장면 .. 40
[그림 25] Kanji 학습의 실행화면 ... 42
[그림 26] 증강현실을 활용하고 있는 학습자 .. 43
[그림 27] 1인칭 시점에서 학습자에게 제시되는 화면 44
[그림 28] 모바일 증강현실을 이용한 환경사 제현 49
증강현실 기반 체험형 학습 모델 해외 연구 동향

Ⅰ. 증강현실이란 무엇인가

이 보고서의 목적은 증강현실에 대한 개념을 소개하고 증강현실 기법을 교육적으로 활용할 수 있는가를 알아보기 위하여 다양한 적용 사례를 분석하는 것임

1. 증강현실의 이해

○ 증강현실(Augmented Reality: AR)의 목적은 실제 관찰하고 있는 사물이나 장소에 대한 부가적인 정보나 의미를 함께 제공하는 것이다. 가상현실(virtual reality)과 달리, 증강현실은 완벽한 가상공간을 제공하지 않음.

○ 예를 들어서, 의학 분야 등에서는 환자를 진찰할 때, 환자에 대한 정보가 함께 제공되도록 하여 의사의 진단 및 수술과정을 돕는 응용사례가 많음. 군대조직에서는 항공 분야나 수색활동에 도움을 주기 위하여 증강현실 기법이 적용됨. 박물관 등에서는 관람자의 이해 및 흥미를 촉진시키기 위하여 활용함

○ 특히, 학교 학습과 관련해서 현장실습이나 인쇄된 교재에 증강현실 기법을 적용한 사례들도 나타나고 있음. 예를 들면, 현장 실습을 갈 때, PDA를 지참하여 방문한 지역에 대한 상세한 정보를 제공받을 수 있도록 함
◦ 증강현실이 주목받고 있는 이유는 학습장면에 대한 맥락인식(context-awareness)을 높일 수 있다는 점임. 학습자가 관찰하고 있는 대상이나 장소에 대하여 부가적인 정보를 제공함으로써, 관찰의 실제성을 높이고 학습활동을 촉진시킨다는 장점을 갖고 있음.

◦ 이제까지 개발된 적용사례가 대체로 특수한 장비에 기반하고 있다는 점이 단점으로 지적되고 있음. 학교 학습에서 증강현실 기법을 적절하게 도입하기 위해서는 일반적인 컴퓨터 장비에서도 쉽게 설치가 가능하고 운용될 수 있어야 함.

2. 가상현실과의 구분

◦ 증강현실 기술은 일반 가상현실 기술의 한 부류라고 할 수 있으 며 여러 가지 센서, 디스플레이 장치(시각, 청각, 촉각/역감 등), 그리고 어떤 현상을(사실 혹은 허구) 상호작용과 함께 시뮬레이션 할 수 있는 컴퓨터를 이용하여, 이를 재현하여 가상 경험을 창출 하는 기술임.

◦ 증강은 또 다른 각도에서 혼합현실이라고도 하는데, 즉 가상(혹은 혼합) 현실 콘텐츠에서 어느 정도의 부분이 가상이고 어느 정도가 실제로 이루어진 배합에 따라 여러 가지의 증강현실 형태가 있음.

◦ [그림 1]은 Milgram(1994)이 제안한 혼합현실의 스펙트럼으로, 여기서 가장 오른쪽은 모든 것이 가상으로 이루어진 완전 가상현실을 상정하고, 가장 왼쪽은 모든 것이 실제로 이루어진 실제 공간을 상정함.
증강현실은 실제 공간에 약간의 가상 객체를 삽입한 형태의 가상 현실 기술이라고 할 수 있음

[그림 1] Mixed reality continuum
Ⅱ. 증강현실 기술 구성

1. 디스플레이

- 현실 세계와 가상 세계를 섞어서 보여 주기 위해서는 특수한 디스플레이 장치가 필요하며, 이를 See Through Head Mounted Display(HMD)라고 함. HMD는 머리에 쓰는 안경과 비슷한 디스플레이 장치로서, 사용자의 눈 바로 앞에 작은 LCD 모니터와 이를 영상을 광학적으로 확대하여 보여 줄 수 있는 광학 렌즈 및 케이싱으로 이루어짐.

- 예를 들어 STHMD의 광학 시스템은 반거울을 사용하게 되는데, 이는 사용자가 바깥의 현실 세계를 볼 수 있게 하기 위함임. 그리고 컴퓨터에서 생성된 가상 객체의 영상을 거울에 반사하여 눈에 현실 영상과 겹쳐서 보이도록 하는 것임([그림 2] 참조).

- 다른 방법으로는 Non See Through(바깥 세계를 직접적으로 볼 수 없는) HMD를 사용하고, 바깥 세계로부터의 영상은 카메라를 눈 주위에 붙여서(사용자의 시점의 영상을 얻어내기 위하여) 얻게 됨.

- 이러한 방법은 더 나아가, 바깥 세계의 영상을 비디오로 얻어 내기 때문에, 컴퓨터 비전 기술을 이용하여 좀 더 정확히 가상 객체를 원하는 위치에 정확히 registration시켜 보여 줄 수 있음.
또한, 카메라를 사용하게 되면 디스플레이 장치의 이용도 불편하고 비용도 만만치 않은 HMD를 사용하지 않아도 됨. [그림 3]의 오른쪽에 보여지는 것처럼, 보통의 모니터에서 카메라 영상과 컴퓨터 그래픽 가상 객체를 합성한 것을 사용자에게 보여 줄 수도 있음.

그러나 이때 보는 방향이나 지점과 상호작용하는 지점이 달라서 사용성이 떨어질 우려가 있음. 이러한 형태의 증강현실 시스템을 소위 Desktop 증강현실이라고 부르며, 이의 변형으로 작고 손에 들 수 있는 PDA AR, 큰 projection 화면을 이용하는 projection based AR 등도 있음.
2. 객체/마커 트래킹 및 Registration 기술

- 위에 언급한 바와 같이 증강현실은 현실 영상과 가상의 그래픽을 겹쳐서 보여주게 되는데 이때 정확한 영상을 얻어 내기 위해서는 가상 객체들이 2D 화면에서 원하는 자리에 그려져야 함

- 이 문제를 registration 문제라고 하는데, 이를 궁극적으로 풀어내기 위해서는 현실 세계의 어떤 지점(예를 들어 가상 객체가 그려 넣어지게 되는 위치)의 3차원 좌표가 필요하며, 이 좌표는 카메라를 기준으로 하는 좌표 값이 되어야 함

- 3차원 좌표를 카메라의 파라미터(2D 영상으로의 프로젝션을 위해 카메라가 사용하는 수학적인 모델을 의미하며 이들은 카메라 수치 해석적 방법으로 알아내거나 카메라 제조사에서 제공한다)를 이용하여 그들의 영상에서의 위치를 알게 됨. 영상에서의 위치를 알게 되면 바로 그 곳에 가상 객체를 덮어서 그려 넣으면 됨

- 따라서 문제는 카메라의 영상에서 현실 세계의 어떤 지점이나 물체에 대한 카메라 상대 3차원 좌표를 얻어내야 하는데, 3차원 좌표를 얻어내기 위해서는 이론적으로 2개의 카메라가 필요하게 됨. 이는 인간이 두 눈을 통하여 깊이를 인지하는 원리와 같음

- 컴퓨터 비전 연구자들은 지난 40년 동안 이 문제를 풀어내기 위하여 고심하여 왔으나, 현재 보통 영상에서 어떤 객체를 인식하고 이의 좌표와 자세를 알아내는 데에는 한계가 있음

- 특히 보통의 증강현실 시스템에서는 사용성을 위하여 한 개의 카
메라만을 사용하는 경우가 많음. 그러므로 한 개의 카메라에서 현실 세계의 3차원 위치를 파악하는 것은 매우 어려움.

○ 따라서 증강현실 연구자들이 마커를 이용하여 이를 해결하고 있음. 마커는 컴퓨터 비전 기술로 인식하기 쉬운 어떤 물체를 의미하는 것으로, 예를 들어 검은 바탕의 똑바로 쓰여진 평면 문양이나 특이한 색상을 갖는 기하학적인 물체를 생각 할 수 있음.

○ 마커가 없는 경우 객체(예: 콜라캔)를 여러 방향과 거리에서 인식하는 것은 매우 어려운 문제로 아직까지 남아 있으며, 특히 인식해야 할 객체 수의 증가, 손으로 가려지는 현상, 주변의 밝기 등에 의해 영향을 많이 받음.

○ 현재의 대부분의 증강현실 시스템은 마커를 이용하여 상대적 좌표를 추출하고 이를 활용하여 registration을 하게 됨. 좀 더 쉬운 방법으로 카메라에서 영상 속 물체의 2차원 좌표를 인식할 수 있는데 이 경우 깊이를 모르기 때문에 그 물체 뒤로는 영상을 만들어 야 할 수 없음(예: 물체에 가려지는 영상 등).
3. 영상 합성 기술

○ 마커 인식을 통하여 가상 객체가 표현되어야 하는 위치를 추출하게 되면 이를 실제 영상에 합성하는 기술이 필요함. 이 기술은 상대적으로 많이 발달되어 있는데, 비디오 영상 데이터를 그래픽 시스템의 Frame Buffer에 받아들여서 그래픽 영상과 같은 데이터를 공유하게 함으로써 간단히 해결될 수 있음

![그림 4] 마커 인식을 통한 Registration과 영상 합성

○ 이때 가상 객체는 카메라의 시점과 주어진 3차원 위치에서 어떻게 보이고 그리져야 할 지를 프로젝션 계산에 의하여 결정하게 됨. 현재 그려지는 가상 객체들은 [그림 4]와 같이 “만화”와 같은 사실성이 떨어지는 객체들의 경우가 많으나, 이를 좀 더 사실적으로 표현하여 자연스러운(예를 들어 실제로는 없는 가상 객체인지 모를 정도로) 영상을 만들어 내고, 그림자나 다른 객체에 가려지는
효과, 또는 각종 빛의 효과를 삽입하는 연구도 많이 진행되고 있음

4. 상호작용 디자인 기술 및 사용성

◦ 수동적으로 증강현실 영상을 보는 방식으로 활용을 할 수도 있으나, 대부분의 경우와 마찬가지로 증강현실 콘텐츠도 사용자와 콘텐츠 사이에 상호작용이 꼭 필요함.

◦ 증강현실의 경우, Tangible 인터페이스라는 특별한 양식의 인터페이스가 가능하며, 이는 마커를 인터랙션 객체로 활용하여 손에 직접 객체를 들고 인터랙션 하는 것과 같은 효과를 줄 수 있음. 특히 마커를 상호작용 객체에 비유 되도록 디자인하여 응용의 효과를 배가할 수 있음.

◦ 예를 들어 자동차를 상징하는 마커는 자동차와 비슷한 추상적인 모양을 지니게 할 수 있음. 이때 이 마커는 주로 자동차와 같은 객체만을 나타내게 되고 사용자는 좀 더 쉽게 콘텐츠와 상호작용을 할 수 있음.

◦ 증강현실 시스템은 HMD/카메라를 활용해야 하고 시점과 상호작용 지점이 일치하지 않으며 한 사용자만을 지원(하나의 카메라를 쓰는 경우), 깊이 있는 정보를 제공하지 않아 사용성에 아직 많은 문제를 안고 있음.

◦ 이를 극복하기 위해서 많은 연구가 이루어지고 있고, 또한 콘텐츠의 시나리오나 효과적인 인터랙션 디자인을 통하여 많은 방법
들어 제안되고 있음. 또한 시각적인 증강이 아니라, 청각적 촉각/영감적 증강도 인터랙션과 디스플레이의 방법으로서 시도되고 있음

[그림 5] 마커의 상호작용 객체와의 비유적인 디자인

[그림 6] 증강현실 렌즈
5. 저작도구 및 기타 기술

◦ 마지막으로 증강현실 기술 구성에서 중요한 위치를 차지하는 것은 증강현실 기반의 콘텐츠를 만들 수 있는 저작도구 및 API임

◦ 현재는 대부분의 증강현실 콘텐츠는 오픈소스인 AR Toolkit을 이용하고 있는데, AR Toolkit은 간단하여 사용하기 쉬우나, 너무 단순한 마커 인식 방법과 오픈소스의 한계를 벗어나기 어렵다는 단점을 갖고 있음. 또한 전문적인 기능구현과 다양한 상호작용을 지원하는 저작도구와 API가 필요함

◦ 최근 카메라가 장착된 모바일 기기의 등장으로 모바일 증강현실이 많은 각광을 받고 있으나 모바일 기기의 부족한 시스템 자원으로 인하여 아직 실시간으로 증강현실 콘텐츠가 실행되기 부족한 상황임.

◦ 앞으로 시스템이 보다 충실해지고 모바일 시스템 소프트웨어가 개선되면 모바일 증강현실 시스템을 응용한 예가 많아 질 것으로 보이며 또한 이와 관련한 사용성 개선이나 새로운 형태의 상호작용 기법이 개발될 것으로 기대됨

[그림 7] PDA에 적용한 증강현실 기법
Ⅲ. 증강 현실의 교육적 활용

1. 교육적 활용의 가능성

○ 가상 현실을 기반으로 하여 콘텐츠를 개발하게 되면, 이를 만들어 내기 위해서 모델링 작업을 하게 됨. 즉 CAD(Computer Aided Design) 시스템을 이용하여 가상 객체를 만들어 내야하고, 가상 객체가 많은 경우(예: 도시환경, 정글 속) 콘텐츠 창출에 많은 번거로움이 따르게 됨.

○ 또한 실제와 비슷한 모델을 만들기 위해서는 많은 시간과 비용이 들거나, 역으로 사실성이 부족하여 콘텐츠의 효과가 많이 떨어질 수 있음. 이에 반해 증강 현실은 상호작용을 하거나 실제에서는 존재하지 않는 필요 객체만을 모델링 하고, 그 이외의 환경 객체는 실제 객체를 그대로 사용하게 되어 모델링의 간편함이라는 큰 장점이 있음.

○ 또한 증강 현실 환경은 실제 환경 그대로이기 때문에 전제적인 사실성이 높아지게 되고, 상호작용하기에 익숙한 느낌을 갖게 됨.

○ 따라서 이러한 장점들은 디지털 콘텐츠 기술을 교육 분야에 접목하는데 있어서 유익하게 활용될 수 있음. 예를 들어, 교육 현장에서 직접 실제 교구들과 함께 가상 객체를 이용하여 교육을 하거나, 새로운 교육 콘텐츠를 생성하고, 손쉬운 인터페이스를 제공함으로써, 특히 어린이들에게 흥미를 줄 수 있음.
2. 증강현실의 교육적 활용에 대한 예측

○ 증강현실의 교육적 활용에 대한 시도를 연구실 단위에서 지속적으로 진행하고 있으나 대부분의 증강현실 응용프로그램들은 실험적으로 적용되고 있는 상황임. 반면 증강현실의 교육적 활용에 대한 관심이 높아지고 있음.

○ 엄밀히 말해서 2004년에 출간된 Horizon Report에서는 증강현실이라는 용어를 직접적으로 사용하기 보다는 맥락인식 컴퓨터 기술(context-aware computing)이라는 용어를 사용하고 있음. 여기서 의미하는 맥락인식 컴퓨터 기술은 학습자의 상호작용을 촉진시키는 기술을 지칭하고 있음. 즉, 인간이 대화를 할 때에는 자연적으로 대화 상황에 적합한 맥락을 고려하여 대화를 하게 됨. 이와 같이 학습자가 처해 있는 맥락은 상호작용을 촉진시키는데 중요한 역할을 하게 됨.

○ 이와 같은 맥락에서 컴퓨터가 학습자의 처해 있는 맥락을 탐지하도록 하기 위한 기술 등이 거론되고 있음. 언급되고 있는 주요 기술을 정리해 보면, 사회적 맥락의 인식(awareness of social setting), 협력(collaboration), 지능적 점검(smart monitoring), 장소 감지(location sensing), 적시적 정보(just-in-time information),
고도로 개별화된 교수(highly personalized instruction), 적응적 활용(adaptive use) 등이 거론되고 있음

○ 2005년에 발간된 Horizon Report에서는 증강현실 기술을 구체적으로 지적하면서 향후 4~5년 뒤에 학교교육에 적용될 수 있는 기술이라고 보고 있음.

○ 구현되는 방식에서 보면, 맥락인식 컴퓨터 기술과 증강현실은 다소 다르다고 할 수 있음. 즉, 맥락인식 컴퓨터 기술은 사용자가 처해 있는 맥락을 탐지하는 것이 중요함.

○ 그러나 증강현실은 사용자가 실제로 보고 있는 시각정보를 보완하기 위한 또 하나의 정보를 추가적으로 제공한다는 점에서 시각처리 문제가 중요한 기술적인 요소로 부각되고 있음.

○ 2005년도 Horizon Report는 보다 구체적으로 증강현실 기법의 활용방안에 대하여 제안하고 있음. 즉, 훈련 등을 목적으로 구성된 학습환경에서 학습자는 실제 도구가 없더라도 훈련 시나리오에 의해서 학습을 진행할 수 있음.

○ 이러한 예는 주로 의학, 건축, 과학, 박물관 등에서 다양한 응용 프로그램으로 적용되고 있음. 수술 힘도 연습을 하는 의사는 증강현실 기법을 활용하여 환자의 환부를 관찰할 수 있을 뿐만 아니라 직접적으로 조작경험을 가질 수 있음.

○ 또한 건축 분야에서는 눈에 보이지 않는 기둥이나 철���구조에 대한 정보를 얻을 수 있음. 이러한 정보들은 학습자와 컴퓨터와의
상호작용을 촉진시킬 수 있는 중요한 역할을 수행하게 됨

○ 2006년에 발간된 Horizon Report에서는 증강현실과 맥락인식 컴퓨터 기술을 각기 따로 구분하여 상술하고 있음. 이러한 변화는 증강현실에 대한 관심이 증가됨과 동시에 활용영역을 구체화하기 위한 것으로 사료됨

○ 2006년도 Horizon Report에서 강조하고 있는 것은 “향상된 시각화”(enhanced visualization)에 대한 이슈임. 2005년도의 연차보고서에서는 구체적으로 나타나지 않았던 정보의 시각화 문제가 2006년 연차보고서에서 구체적으로 언급된 이유는 증강현실과 관련된 실제 사례가 많이 발표되면서 기술적으로 그 중요성이 부각되었기 때문으로 사료됨

○ 이 보고서에서 언급되고 있는 사례를 보면, 고고학, 역사, 인류학 등에서 화석을 주제로 증강현실을 활용한 예를 보여주고 있음

○ 또한 생물학 등에서도 활용될 수 있는 응용사례를 소개하고 있는데, 마치 정글을 탐험하듯이 다른 생명체의 모습 등을 쉽게 볼 수 있다고 지적하고 있음

• 증강현실에 대한 활용은 학습자가 관찰하고 있는 장면에 대한 추가적인 정보를 제공함으로써 학습자의 이해를 촉진시킬 뿐만 아니라 학습과정에서 발생하는 상호작용을 높이기 위한 방향으로 진행되고 있음
3. 교육적 활용을 위한 시나리오

개 요

- 이 장에서는 증강현실을 교육적으로 활용하기 위한 학습 시나리오를 제시할 것이다. 이 학습 시나리오는 증강현실을 적용한 응용 사례를 활용하여 구성한 것으로 증강현실이 활용될 수 있는 학습 환경을 표현하기 위한 것이다.

- 이 장에서 제시하는 세 개의 시나리오 중에서 첫 번째 것은 EDUCASE가 제안하고 있는 증강현실에 대한 책자에서 발췌한 것이다. 두 번째 시나리오는 FutureLab과 HIT 연구소의 프로젝트를 기반으로 협력학습 활동에 적합하도록 구성한 것이다. 세 번째 시나리오는 원격학습과 증강현실을 통합하여 구성한 시나리오이다.

- 이 장에서 소개하고 있는 가상적인 활용 예는 증강현실 기법이 교육적으로 어떠한 장점이 있는지를 생각해 보기 위한 것이다. 따라서 현재 그와 같은 기능이 완벽하게 구성된다고 말할 수는 없으나 이 장에서 소개할 3개의 시나리오는 구현 가능하거나 쉬운 것부터 나열하고 있음. 따라서 마지막 시나리오는 가장 발달된 형태의 구현기술을 필요로 하는 시나리오라고 할 수 있음.
시나리오 1 - 현장학습

1) 현장학습을 위한 증강현실 적용 시나리오

- 지난주에 Josie는 식물학 시간에 진행된 Botanical Garden에 대한 현장실습을 빠졌다. 그래서 오늘 그녀는 증강현실 기법이 적용된 자료를 활용하여 빠진 실습을 대체하기로 하였다.

- Josie는 Botanical Garden을 돌아다니면서, 자신이 관찰한 내용을 다른 학생들의 학습기록에 추가할 수 있었다. 그녀는 이 수업에서 수행한 과제의 내용을 남동생과 공유해야겠다고 생각했다. 이번 주 수감사절에 남동생이 돌아오면 함께 이곳을 방문할 계획을 세웠다.
이진사실을 마치고 나니, 중간시험에 대비하여 무엇을 준비해야 하는지 알 수 있는 것 같았다. 그녀는 현장실습이 매우 유쾌한 경험이 될 수 있다는 것을 느꼈으며, 무선 인터넷 기술과 결합된 GPS가 학습에 유효하다는 확신을 하게 되었다. 또한 함께 강의를 듣고 있는 친구나 이전에 강의를 들었던 학생의 과제를 통하여 학습내용을 잘 이해할 수 있었다.

2) 시나리오의 분석

- 이 시나리오를 구성하는 증강현실의 특징은 1) GPS를 이용한 위치정보의 파악, 2) 시각자료의 부가적인 활용, 3) 학습내용에 대한 누적적 데이터베이스의 활용임

- 이 시나리오의 주인공인 Josie는 Botanical Garden에 들어가서 여겨저기 이동을 하게 되고, 이동 중인 그녀의 위치정보에 따라 적절한 정보가 제공되고 있음. 또한 다른 학습자의 학습내용에 대한 정보가 함께 제공됨으로써 Josie의 학습이 촉진됨

□ 시나리오 2 - 협력학습

1) 상호작용성 증진을 위한 증강현실 적용 시나리오

- 중학교에 다니고 있는 민우와 철수는 빛의 굴절에 대하여 학습하고 있다. 이들은 HMD를 사용하여 같은 모니터를 응시하고 있다. 모니터 화면에는 3D 객체로 구현된 2개의 프리즘의 굴절이 나타나 있고, 컴퓨터에 의해서 생성된 빛줄기가 구현되어 있다. 민우와 철수의 과제는
각자의 프리즘을 이용하여 빛줄기를 일정한 방향으로 굴절되도록 만드는 것이다.

먼저 민우가 두 개의 마커를 조작하여 빛줄기를 일정한 방향으로 굴절시키려고 한다. 이 때 철수는 자신의 HMD를 이용하여 민우의 조작과정을 관찰할 수 있다. 민우가 몇 번 시도하는 동안에 철수는 민우에게 프리즘을 조금 다른 방향으로 움직여볼 것을 요청한다.

민우와 철수는 직접적인 조작활동이 수반되는 학습활동을 하면서 상대방의 조작과정을 관찰하고 올바른 수행에 필요한 조언 등을 할 수 있다. 과학 활동은 지적인 탐구활동을 수반하게 되는데, 과학적 가설 수립 및 검증을 위해서는 관찰에 근거한 학습 참여활동이 매우 중요하다. 철수는 민우의 프리즘 조작과정을 관찰하면서 빛의 굴절 각도에 대한 이해를 높일 수 있었다.

2) 시나리오의 분석

이 시나리오를 구성하는 증강현실의 특징은 1) 조작마커의 직접적인 조작경험, 2) 협력적인 활동을 통하여 공간적 움직임에 대한 관찰이라고 할 수 있음

과학이나 수학 교과의 학습에서는 시공간적인 개념을 이해하기 위한 직접적인 조작이 필요한 경우가 많음. 증강현실에서는 마커의 조작활동에 기반해 유사한 학습경험을 제공할 수 있다는 장점이 있음

또한, 같은 문제 공간 내에서 두 명의 학습자가 서로의 조작활동
을 직접 확인하면서 학습을 수행한다면 매우 높은 상호작용성을 경험할 수 있을 것입니다. 특히, 태양계의 활동이나 지각변동 등과 같이 현실 세계에서 구현하기 어려운 학습내용의 경우 학습 효과를 더 높일 수 있음

□ 시나리오 3 - 원격학습과 증강현실

1) 학습 현존감의 증대를 위한 증강현실 시나리오

- 서울에 살고 있는 동우는 학교에서 돌아오자마자 부산에서 열리고 있는 과학 엑스포를 둘러보기 위해서 컴퓨터를 켰다. 올해 개최되는 과학 엑스포는 바다의 생물과 우주여행이라는 테마로 진행 중이다. 평소 바다는 생물과 우주에 관심이 많았던 동우는 부산에서 열리는 엑스포에 참석하려고 했지만, 집안 사정 때문에 직접 방문할 수가 없는 상황이었다. 그래서 학교를 마치고 집으로 돌아와 증강현실로 구현된 과학 엑스포에 들려 보기로 한 것이다.

- 이전에도 웹에서 개최되는 가상 엑스포 등이 있었지만, 오늘 동우가 참석하는 과학 엑스포는 증강현실 기법을 활용하여 색다른 경험을 할 수 있다. 일반 컴퓨터 로그인을 하면, 엑스포가 열리고 있는 장소가 그대로 생중계된다. 이 때 전시관 및 전시 생물의 정보를 알고 선택을 하면 전시되고 있는 장면이 그대로 중계가 된다. 이렇게 중계되고 있는 장면에서 증강현실 체험하기를 선택하면 모니터(혹은 HMD)를 통해서 생물제에 대한 인체적인 정보가 제공된다.

- 직접 엑스포장에 방문하지 못한 것은 아쉬웠지만 동우는 마치 현장을 체험한 것 같은 느낌을 받을 수 있었다. 특히, 생물체의 골격이나 심장 등의 모습이 화면에 추가적으로 제공되었기 때문에 충분히 높은 학습 홍미를 유지할 수 있었다.
2) 시나리오의 분석

◦ 이 시나리오를 구성하는 증강현실의 특징은 원격정보와 결합된 증강현실 기법의 적용임. 현장에 직접 참여할 수 없는 학습자를 위하여 원격방식의 화면을 제공하여 정말 현장에 와 있는 것 같은 현존감을 느낄 수 있도록 도움

◦ 가상 학습환경에서는 실제적인 느낌을 갖기 어렵지만, 마치 TV로 중계되는 것 같은 장면은 학습자의 현존감을 증대시킬 수 있음. 이와 같은 적용방법은 TV와 같이 일방적으로 화면을 전달하는 것이 아니라 보조적인 학습정보를 함께 제공할 수 있다는 장점을 가질 수 있음
IV. 사례 분석

1. Invisible Train

□ 개요

- 적용 분야: collaborative handheld augmented reality game
 - http://studierstube.icg.tu-graz.ac.at/invisible_train/
- 연구 기간: 2004년 ~ 현재
- 연구자: Daniel Lederman 외
- 지원 기관: Vienna University of Technology, 오스트리아

□ 내용

- PDA를 이용하여 두 명의 학습자가 상호작용할 수 있도록 되어 있는 시스템으로 최초로 PDA를 이용하여 AR을 구현한 사례임. 두 대의 PDA는 장착된 카메라를 통하여 기차의 레일이 놓여진 장면을 촬영함. 이 때 기차가 놓여진 판 위에 있는 마커의 인식을 통하여 각자의 기차가 PDA 상에서 나타나도록 되어 있음

- 기차는 사용자의 PDA에서만 볼 수 있기 때문에 기차 레일이 놓여있는 판에는 레일만 존재하는 방식임. PDA의 터치스크린을 이용하여 기차의 이동 방향 및 속도를 조절할 수 있음
이 사례는 상호작용적 멀티유저 게임으로 개발된 것임. PDA 사용자는 자신의 PDA를 조작하여 자신의 기차를 움직여야 하며, 기차가 서로 부딪치면 게임이 끝나도록 되어 있음.

2대의 PDA는 사용자가 조작하고 있는 기차의 움직임을 서로 주고 받으면서 아래의 그림과 같이 서로 동조하도록 되어 있음. 나무로 제작된 소형 철도 길을 실제 상황으로 하고, 그 위에 구현된 가상 기차를 조작하면서 게임을 진행함.

[그림 9] Invisible train의 조작화면
구결과

○ 개발한 게임의 형성평가는 수행하지 않았지만, 비공식적으로 진행된 면담과 사용자 행동 평가를 활용하여 사용성을 평가하였음. 사용성 평가 결과에 따르면, 이전에 사용하던 장치보다 PDA를 이용한 경우에, 사용 대상이 다양해질 수 있고 다양한 영역에 적용될 수 있음을 확인

○ 기술적인 제한점으로 PDA에 비디오가 제시되는 속도가 게임에 영향을 준다는 의견이 약간 있었으며, PDA의 건전지 용량이 게임 진행에 영향을 미칠 수 있는 것으로 나타남, 게임적인 요소를 가미하여 보다 높은 상호작용성을 강조한 시도임

[그림 10] Invisible train의 작동원리
2. Archaeology and Cultural Heritage

□ 개요

○ 연구과제명: ARCO (Augmented Representation of Culture Objects) Project (http://www.soi.city.ac.uk/%7Efotisl/AREL/archaeology.htm)

○ 연구 기간: 2001년 ~ 현재

○ 연구자: M. White, F. Liarokapis 외

○ 지원 기관: EU IST Framework V programme, Key Action III-Multimedia Content and Tools, Augmented Representation of Cultural Objects (ARCO) Project, 영국

□ 내용

○ 유럽을 중심으로 박물관의 전시품목을 입체 도형으로 재현하여 웹으로 제공하기 위한 연구 프로젝트임. 이 연구에서는 문화 유물 등에 대한 정보를 증강 현실 기법으로 재현하는 것이 목적

○ ARCO 도구를 이용하여, 박물관에 비치되어 있는 유물들과 그 상황 정보를 이용하여 컴퓨터로 증강된 인공물을 제공하기 위한 것
사용자는 박물관에서 물리적인 유물과 함께 그와 연결되어 증강 현실로 구현된 입체 영상을 함께 관람할 수 있도록 되어 있으며, 대형 스크린을 활용하여 관람객에게 전시하고 있음

구현에 필요한 기술은 3D 모델링 기법, 3D 재현기법, 전시내용물을 관리하기 위한 관리도구, 가상공간을 통하여 운영되는 박물관 전시, XML을 활용하여 통합하는 방법 등이 활용됨

3. 뉴질랜드 HIT Lab의 Magic Book

개요

뉴질랜드 켄터베리 대학내 연구기관 HIT(Human Interface Technology) 연구소에서 동화책 “Giant Jimmy Jone”형태로 개발되었음. Children’s
증강현실 기반 체험형 학습 모델 해외 연구 동향

workshop을 운영, 학습자가 직접 증강현실을 만들어 볼 수 있도록 하였음

○ 프로젝트 기간: 2003 ~ 현재

○ 개발자: 뉴질랜드 HIT Lab(www.hitlabnz.org), CDC(Cantebury Development Corporation), Christchurch City Libaries

○ 연구자: McKenzie, J & Darnell, D(Centre for children’s literature, Christchurch College of Education)

○ 적용 대상은 K-12 학생이었으며, 동화책을 기반으로 하는 읽기 및 스토리텔링에 초점을 두고 있음

□ 내용

○ 이 프로젝트의 목적인 학습자가 직접 증강현실을 활용하여 그림책을 만들어보도록 하는 일임. 이를 위하여 5일간의 워크샵이 진행되었으며, 일자별 활동사항은 다음과 같음

- 1일: 학생들의 사전 능력과 흥미를 확인, picture book에 대한 논의를 진행

- 2일: pop-up picture book의 개념을 소개하고, AR book 및 책의 의도 등에 대해 소개

- 3-4일: 그룹별로 실질적인 그림 그리기 작업에 들어갔, 전문가의
도움으로 학생들이 그린 그림들이 컴퓨터에 저장됨

- 5일: 학생들 스스로에 의해 해석된 Gavin Bishop’s Magic Book story에 대한 프리젠테이션이 이루어짐. Anim8or 프로그램을 통해 만들어진 최종 결과물을 학생들에게 나눠줌

○ AR Book의 제작과정을 단계별로 살펴보면 다음과 같음

- 단계 1: 스토리보드(storyboard)
 • eyeMagic Book 개발을 위한 실질적인 스토리보드를 개발하고 페이지에 나타날 내용을 구성함

[그림 12] 최종 일러스트레이션 작업
[그림 13] 주요 장면

• 초안은 수차례에 걸쳐서 수정되었는데, 각각의 밑그림이 중요한 장면을 대표하는가, 각 화면에서 무엇이 일어나야 하는가, 각각의 주인공들이 어디에 위치해야 하는가 등이 명시됨

- 단계 2: 3차원 모델링
 • 증강현실에서 활용한 이미지들을 개발함(개발사: One Glass Eye Christchurch의 3D 컴퓨터 모델링 회사)
- 단계 3: 애니메이션

- 학습자가 손으로 잡고 그림책을 보는 장치(hand held display)를 통해 책의 해당 페이지를 열면 개발된 캐릭터가 움직이도록 개발함

- 예를 들어 책 속에서 Giant Jimmy Jones가 마을 사람들이 맑은 날씨에 소풍을 가도록 구름을 제거하는 장면을 연출하기 위해 Jimmy의 3D 모델들과, 구름 그리고 장면의 다른 부분들이 애니메이션 소프트웨어에 펼쳐지고, 애니메이션 진행 시간 등을 설정함

[그림 14] handheld display 장치를 활용
[그림 15] 불리 들어진 natural features
[그림 16] HIT Lab에서의 애니메이션 작업
[그림 17] 캐릭터들의 애니메이션
- 단계 4: Natural feature tracking

 ~학습자가 handheld display 장치를 통해 책을 볼 때, 펼쳐진 책의 페이지에 맞게 실제 3D 이미지들이 나타나도록 함
 ~Handheld display에는 작은 카메라가 부착되어 있어서 그 카메라가 책의 해당 페이지를 읽어 들이고, 내장된 컴퓨터의 소프트웨어가 그에 해당하는 애니메이션을 불러들이는 방식으로 개발됨

- 단계 5: 마무리 작업

 ~ 최종적으로 HIT Lab에서 Sound를 개발하고, 학습자는 작가(Gavin Bishop)가 읽어주는 동화의 내용을 듣게 됨

[그림 18] 테스트 하는 모습 [그림 19] 삽입된 음악의 작곡가

□ 결과

○ “3차원 속에서 동화책 읽기, 그리고 자신의 이야기 만들기”라는 주제로 프로젝트가 진행되었으며, 동화책 속에 포함되어 있는 이야기 설명이 학습자에게 효과적으로 전달된 것으로 평가됨

○ 전통적인 pop-up 형식의 책을 활용하여 증강현실을 구현한 사례로서, 증강현실 기법을 교재형식의 책에 적용한 것임
Seamless technology: 증강현실 자료들은 이야기 전달을 실감나게 하고, 어린이들의 몰입(immersion)을 유도하였음. 즉, 가상과 현실 세계 사이의 원활한 상호작용이 일어나도록 학습환경을 제공했다고 볼 수 있음.

증강현실 기술을 활용한 Magic book 개발 학습에 대한 학습자들의 반응은 매우 좋았으며, 학생들을 관찰한 교사들의 반응 역시 긍정적이었음

Magic Book을 실제 개발한 HIT Lab의 경우 지속적으로 AR 관련한 연구를 진행하고 있으며, 이를 모바일, 게임 등과 접목하여 활용 범위를 넓히고 있는 상황임

4. Education AR: Futurelab 프로젝트

개요

최근 증강현실을 도입한 사례가 지속적으로 개발되고 있으나, 대부분 의학이나 장비의 유지·수리, 응용 분야에 국한되고 있으며, 교육 관련 연구들은 이제 막 시작되는 추세라고 할 수 있음

2003년 영국의 BBC에서는 미래 방송 및 온라인 서비스 사업에서 AR의 잠재성을 평가하기 시작함
○ 이 연구소에서는 BETT 2005에 참가하면서 AR가 구현된 학습 시스템을 선보였는데, 이 시스템은 고동안 BBC에서 추진하고 있는 21세기 교실 프로젝트의 일환으로 추진되었으며, Westminster city 학습센터에서 여러차례 시범 적용해 보기로 하였음

○ 개발자: BBC, 파트너: IDEAs Lab, University of Sussex

○ 적용 대상: K-12 (교과 내용: 지구, 태양, 달)

□ 내용

○ 이 사례는 과학교과 수업에서 활용할 수 있는 증강현실 기술을 구현하기 위한 것임. 일반적으로 증강현실은 공간적 조작활동이 수반된 학습내용에 적합한 것으로 생각되고 있음. 특히, AR는 지구, 태양, 달 등의 개념을 가르치는데 유용함

○ 학습자는 지구본과 조명기구를 가지고 학습을 하기 보다는 바로 머리 위의 영상을 통해 실감나게 학습할 수 있음. 학습자는 지구 위에서 빛나고 있는 태양을 바로 볼 수 있음

○ 사용된 기술
 • 실제 이미지와 가상이미지를 섞은 ‘virtual mirror’가 실시간으로 나타남. 또한 교실의 화이트보드가 거울 역할을 하도록 지원되며, AR tracking software와 3D virtual content가 사용되었음
결과

◦ 교사와 학생 모두 AR의 활용에 큰 호기심을 보였으며, 교사는 현재 AR 인터페이스의 제한점을 알고, 최소한의 실행을 하는 정도의 간단한 조작, 3D 콘텐츠의 관찰활동 등을 제한적으로 수행

◦ AR이 상당한 잠재성을 가지고 있으나 현재까지는 수준이 크게 높지는 못함
5. MIT의 핸드헬드 증강현실 시뮬레이션 프로젝트

□ 개요

◦ "from computer on every desktop to computer on every lap"

◦ 프로젝트 배경: 현실에 대한 직접 체험과 PDA가 주는 디지털 정보 부가가치를 결합하는 증강현실 시뮬레이션을 개발, 학습자들이 시뮬레이션 게임을 즐기듯 학습할 수 있는 미래 학습 환경을 개발

◦ 프로젝트 기간: 2003 ~ 현재

◦ 개발자: MIT Teacher Education Program

◦ 적용 대상: MIT 인근 고등학교 2학년

◦ 교과 내용: 과학/생태계

□ 내용

◦ GPS가 장착된 PDA를 사용하여 유해물질을 누출한 범인의 누구인지 밝혀내는 참여형 게임으로 개발되었음. 가상의 인물을 인터뷰하거나 전자도서관에서 데이터를 수집하여 분석하는 논리적 탐구 과정을 거침
- 단계 1: 교장 선생님의 미션 제시(동영상 비디오 활용)
 · “유해물질 누출한 사람이 누구인지 밝혀내고, 대책을 강구하라!”는 임무를 부여받으면, 학습자들은 팀 편성 및 각 팀원들 담당 조사 지역 할당받게 됨

- 단계 2: 실제 MIT 인근 지역 탐색 및 조사 활동 수행
 · 이 단계에서 학습자는 직접 자료를 수집하는데, 약 2시간에 걸쳐 조사 지역을 대상으로 건물, 시설, 하천 등으로부터 정보를 수집(probeware 활용)

※ 현장자료 수집기(probeware): 탐구학습 과정에서 관찰의 대상이 되는 현상을 장에서 계측·분석할 수 있는 하드웨어 및 소프트웨어 예) 하천수의 유해물질 농도 측정기, 학습자의 현재 위치 확인을 위한 GPS 등

- 간접적인 자료수집 방법으로 온라인 도서관 자료, NPC (Non Player Character)와의 인터뷰 동영상 자료를 활용할 수도 있음. 학습자는 GPS를 통하여 자료 수집 지점의 위치 정보를 제공받음
단계 3: 협동학습 기반 탐구 및 공유
- 각 팀원들이 담당 지역에서 조사한 내용을 서로 공유하고, 도출된 최종 결론을 발표함

○ 관련 학습 이론
- 상황학습 이론: 자신의 삶과 직접 관련된 현실적 문제를 제시하여 같은 지역 커뮤니티 구성원으로서 동료 학습자와 함께 참여할 수 있도록 임무를 부여함
- 인지유연성 이론: 실제 세계의 복잡성을 충분히 반영할 수 있는 정보에 기초하도록 하고, 팀 내 동료 학습자들의 다양한 관점을 서로 비교할 수 있는 기회를 제공함
- 탐구학습 이론: 이 활동을 통하여 학습자는 문제인식 → 가설 수립 → 정보 수집 분석 → 가설 검증 → 성찰의 과정을 거치게 됨

○ 개발 절차
- Rapid Prototyping: 프로토타입 기반, 동시공학 기법이 적용된 비선형적 설계 모델이 적용됨
- 사용자 시나리오(user scenarios) 기반 설계 방식을 채택하였음. 교수설계자나 내용전문가가 아닌, 실제 사용할 사람들이 그려 낸 탐구 활동을 시나리오 형태로 추출, 설계에 반영함

□ 결과
- 개발 초기에 GPS 기술의 안정성이 떨어져 게임 운영에 장애 발생
증강현실 기반 체험형 학습 모델 해외 연구 동향

생하기도 했음. 그러나 이 프로젝트를 진행할 때 활용되었던 Rapid Prototyping 설계 방식의 효과성을 확인할 수 있었음. 다양한 철단 기술, 방대한 학습 자료, 이들 간의 복잡한 연관성 등 여러 변수를 함께 고려해야 하는 설계적인 특성을 갖고 있음

○ 선형적-논리적 접근법인 ADDIE(Analysis→Design→Development →Implementation→Evaluation) 모델보다 비선형적-직관적 접근법인 Rapid Prototyping과 시나리오 기반 설계가 보다 적절한 것으로 나타났음 (기존 방식 2년 예상 → 6개월에 완료)

○ 주요 기능

<table>
<thead>
<tr>
<th>소프트웨어</th>
<th>기능</th>
<th>교육적 가치</th>
</tr>
</thead>
<tbody>
<tr>
<td>시뮬레이션된 분석도구</td>
<td>자료 수집 및 분석을 위한 가장의 도구를 통해 현장 자료 수집기(probeeware)가 하지 못하는 자료 분석 수행</td>
<td>학습자들로 하여금 교육적으로는 유용하지만 실제 세계에서는 일어나지 않는 가설적 상황에 대한 정보 수집 및 분석을 가능케 함</td>
</tr>
<tr>
<td>위치 인식</td>
<td>실제 지역을 이동하면서 그 지역에 독특한 정보를 제공함</td>
<td>시뮬레이션 분석도구에서 수집한 자료들을 물리적 위치와 연동시킬 수 있도록 흥미 부여. 물리적 공간과의 상호작용을 유도함</td>
</tr>
<tr>
<td>NPC(non-player characters)</td>
<td>사람의 모습을 가진 일종의 컴퓨터 에이전트. 게임 중 학습자에게 조언을 제공</td>
<td>사람이 스토리텔링 형태로 정보를 제공함으로써 막막한 느낌이 적고 친밀감이 증가</td>
</tr>
<tr>
<td>공간 자료 수집기</td>
<td>공간적 속성 정보에 대한 자료를 수집하고 분석함</td>
<td>실제 물리적 환경의 행위유발성을 높이고 시뮬레이션된 행동을 상황화함</td>
</tr>
<tr>
<td>전자 도서관</td>
<td>주어진 문제에 대해 관련된 정보를 확득할 수 있도록 MIT 전자 도서관 접근 지원</td>
<td>적시(Just-In-Time)학습을 도움으로써 탐구 활동과 성찰이 동시에 이뤄지도록 함</td>
</tr>
</tbody>
</table>
협력학습 도구

<table>
<thead>
<tr>
<th>펌프PC의 무선통신(beaming) 기능을 활용, 동료 학습자(게이머)들과 정보를 공유</th>
<th>협동학습 및 지식 구성을 위한 참여를 지원. 실천 공동체를 가상 공간에서 실현함으로써 상황학습 환경 구현</th>
</tr>
</thead>
<tbody>
<tr>
<td>습격방 (covert interactions)</td>
<td>시간이 경과하거나 위치가 바뀌거나 학습자가 특정한 행위를 했을 때, 우연한 사태를 발생시킴. 게임의 돌발적 상황과 유사</td>
</tr>
<tr>
<td>예상 밖의 돌발 상황을 제시하여 신기 효과를 높이고, 그 원인에 대한 의문이 자연스럽게 생겨 유의미한 학습이 이뤄질 수 있도록 함</td>
<td></td>
</tr>
</tbody>
</table>

○ 특히, 성공적인 게임 원리가 적용될 수 있었는데, 학습자는 게임 방법을 쉽게 터득할 수는 있었지만, 게임내용을 완전히 숙달하기에는 어려운 경험을 할 수 있었음. 즉, 쉽게 배울 수 있지만, 반복적인 플레이를 통해 기능이 향상되고 학습이 심화됨

○ 그러나 원거리 통신이 불가능한 PDA의 단점을 극복하기 위해 Wi-Fi 등 광범위 무선통신을 활용할 수 있는 하드웨어 환경으로 전환될 필요성이 있음

6. 도쿄대학 증강현실 프로젝트

□ 개요

○ 프로젝트명: MonoGatahari http://beatiii.jp

○ 프로젝트 배경: 동경대학 정보과학원의 야마우치 교수 및 동료 연구원이 수행한 RFID를 이용한 증강현실 연구
프로젝트 기간: 현재 진행 중

개발자: Yuhei Yamauchi, 도쿄대학 정보과학원

내용

이 사례에서 적용된 학습 방식은 과학교과 수업을 활용하기 위한 증강현실의 적용임. 삼엽충의 화석을 만지면 그 만지는 방식에 따라 삼엽충 스스로가 자신의 화석화 과정과 내부 구조에 대해 안경형태의 착용형 스플레이를 통해 관련 영상을 보여주는 동시에 설명을 제공하여 스토리텔링 학습환경이 구현됨.

단계 1: 물체에 접촉하는 공간상 행위 발생

화석을 여기저기 만지고 돌려보는 조작 행위가 자연스럽게 발생하고, 이 때 센싱 마커로 조작 행위의 패턴을 찾아내어 상황을 인지함. 이를 학습자의 개인 이력과 연계하여 제시될 최적 콘텐츠를 결정함.

단계 2: 학습에 이어지는 심적 활동 환기

화석의 특정한 물리적 부위를 만질 때, 그로부터 과학적 탐구 심을 일으킬 수 있는 콘텐츠를 제공함으로써 사용자의 주의를 학습으로 전환하는 것이 특징임.
- 단계 3: 심적 협응구조 생성
 · 품질적인 접촉과 심리적인 학습 탑구 의지 및 콘텐츠로 제시된 정보가 하나의 융합된 협응 구조를 생성토록 함

[그림 24] 디스플레이를 통한 체험형 학습 장면

○ 관련 학습 이론
 · 행위유발 이론(affordance theory): 공간이 지닌 정보 환경을 가리키는 용어. 지각-특히 시/지각의 주체 관계에서 객체/대상은 지각 주체에게 특정 행위를 촉발시킴. 종래 망막과 뇌의 정보 처리 과정으로 환원되었던 시/지각 활동이, 실은 공간과의 역동적 상호작용의 결과임을 밝힌 이론임. 따라서 효과적인 학습을 위해서 제시되는 시/지각 정보는 공간 속 사물과 동시에 제시되어야 함을 시사함

 · 실천공동체 이론: 유비쿼터스 기술은 RFID와 같이 환경에 고정되는 기술과 모바일 장비와 같이 사람이 움직이는 기술에 의해 완성된다고 할 수 있음. 그 중 모바일 기술은 공동체 소속 구성원과 계속해서 이어주는 beacon(인도자)의 역할을 수행
함. 모바일 미디어는 공동체 진입 과정 (주변 → 중첩 → 경계 실천) 중 경계 실천을 전개하는 데 큰 힘을 발휘하게 될 것임

○ 사용된 기술
 * RFID 및 센싱 마커 기술, 실물 접촉 패턴 및 상황 인식 기술, 학습자 개별 특성, 콘텐츠 시청 이력 등 활용한 지능형 콘텐츠 결정 시스템

□ 결과

○ 이론적으로는 행위유발 이론과 실천 공동체 이론 간의 연결 고리를 구축해야 할 필요성이 제기되었음. 그러나 사용자 반응, 학업 성취 등에 대한 구체적인 평가자료는 없음

7. Kanji Teaching

□ 개요

○ 연구과제명: A mobile AR memory game

○ 연구 기간: 2003년 ~ 현재

○ 연구자: Daniel Wagner 외

○ 지원 기관: Vienna University of Technology, 오스트리아

□ 내용

○ PDA를 이용하여, AR로 구현된 한자 공부를 게임으로 진행함. 두 명의 사용자가 PDA를 각자 이용하여 진행하도록 설계됨
○ 한자가 인쇄된 종이 카드를 테이블에 올려놓고, PDA를 통해서 제시된 아이콘에 해당하는 글자 카드를 찾아움. 찾은 카드를 뒤집으면 해당하는 그림이 3차원으로 제시됨

[그림 25] Kanji 학습의 실행화면

8. 지리학 프로젝트

□ 개요

○ 연구 기간: 2002년 ~ 현재

○ 적용 대상: 대학생(적용 내용: 지리학, 지구-태양의 관계)
증강현실 기반 체험형 학습 모델 해외 연구 동향

○ 연구자: Brett E Shelton, Nicholas R Hedley - 지원 기관: University of Washington, 미국

□ 내용

○ ARToolkit이라는 저작도구를 사용하여 지구-태양의 관계를 가르치기 위하여 개발된 사례임. 이 연구에서는 시공간적인 관계를 이해해야 하는 학습과제에 적합한 학습환경을 구축하기 위하여 시도되었음

○ 2차원으로 학습용 영상을 제시하는 것이 아니라 3차원으로 학습용을 제공함으로써 학습자는 공간적 관계를 쉽게 이해할 수 있을 것으로 보았음. 사용자는 카메라가 달린 헤드장치(HMD)인 Cy-Visor DH-440을 머리에 쓰고 AR로 구현된 상황을 관찰하여, 지구-태양의 관계와 지구에서 발생하는 계절변화를 이해할 수 있도록 함

[그림 26] 증강현실을 활용하고 있는 학습자
결과

○ 34명의 지리학 전공 대학생을 대상으로 하여 연구가 진행되었으며, 주로 질적 자료 분석 방법을 활용하여 개념획득 및 이해과정을 연구 하였음

○ 학생들의 행동을 제3의 관점에서 녹화하고 개념 이해 과정을 해석하였음. 이 연구를 통하여 사용자와 증강현실로 구현된 대상과의 상호작용 과정을 파악할 수 있었음. 연구결과에 따르면, 증강 현실 기법을 활용함으로써 학생들의 사설적 개념에 대한 이해가 증진되었으며, 학습내용에 대한 오개념도 줄일 수 있었던 것으로 나타났음
V. 증강현실 기술과 교육

1. 교육적 활용을 위한 시사점

- 증강현실을 적용한 학습 환경을 제공한다면, 감각적 몰입의 증대, 직접 조작에 의한 경험중심 학습, 맥락인식의 촉진, 협력학습 환경 구축이라는 측면에서 효과적인 학습을 기대할 수 있음

- 감각적 몰입(sensory immersion)의 유발

 - 증강현실은 학습자가 관찰하고 있는 학습대상이나 장소에 대한 감각적 몰입을 제공한다는 점에서 가장 큰 매력을 갖고 있음

 - 감각적 몰입을 유발시키는 요소는 입체적인 영상물이 제공된다는 점이며, 이와 같은 보조적인 시각자료를 매개로 할 경우 학습자는 학습내용과 더욱 밀도 높은 상호작용을 수행할 수 있음

- 직접 조작(direct manipulation)에 의한 경험중심 학습

 - 학습자는 마커 등을 직접 조작(direct manipulation)해 봉으로써 학습내용에 대해 깊은 이해를 할 수 있음. 직접 조작활동은 공간적인 감각 및 이해 능력이 필요한 학습내용에서 매우 중요한 요소가 될 수 있음

 - 증강현실을 이용하여 다양한 객체를 직접 조작해 보고, 조작 결과를 활용하여 심도 깊은 이해를 할 수 있음
□ 맥락인식(context-awareness)에 의한 학습 현존감 발생

○ 중앙현실 기법은 장소 의존(location dependent)적인 학습 환경을 구축할 수 있도록 만들어 줄 수 있으며, 학습내용에 대한 맥락인식을 증진시킬 수 있음

○ 학습자가 관찰하고 있는 대상이나 장소의 정보를 활용하여 학습에 필요한 자료를 부가적으로 제공해 줄 수 있다는 의미임

○ 특히, 모바일 장비나 GPS 등을 활용하여 실시간으로 학습상황을 점검할 수 있고 학습자의 요구에 적합한 내용을 제공할 수 있음

□ 이동성 중심의 협력학습(collaborative mobile learning)의 강화

○ 일반적으로 협력학습을 촉진하기 위해서는 네트워크에 접속된 컴퓨터 등이 필요함. 그러나 중앙현실 기법이 적용된 모바일 장비를 이용한다면, 소규모 네트워크만을 사용해서도 매우 효과적인 협력학습 환경을 구축할 수 있음

2 경험이적 학습환경을 구성하기 위한 요소

○ 중앙현실은 감각적 몰입과 직접 조작을 통하여 경험중심의 학습 환경(experiential learning environment)을 구성할 수 있음. 물론 중앙현실을 제대로 구현하려면 앞 장에서 다루었던 것과 같이 여러 가지 기술적인 문제들을 극복해야 함

○ 그리고 이러한 기술적인 문제들을 극복했다고 하더라도, 학습환
경 설계에 대한 고려가 함께 이루어져야 함

<table>
<thead>
<tr>
<th>학습환경의 속성</th>
<th>학습환경 내에서 느끼는 학습자의 지각</th>
</tr>
</thead>
<tbody>
<tr>
<td>가상성 (virtuality)</td>
<td>상호작용 (interaction)</td>
</tr>
<tr>
<td>물리적 구조 (physical structure)</td>
<td>감각적 몰입 (sensory immersion)</td>
</tr>
<tr>
<td>공간적 경계 (spatial boundaries)</td>
<td>이동성 (mobility)</td>
</tr>
<tr>
<td>시간적 경계 (time boundaries)</td>
<td>통각시간 (apperception of time)</td>
</tr>
</tbody>
</table>

- 가상성은 학습공간에서 제공하고 있는 표상수준의 정도를 의미하는 것으로, 가상현실에 가까워질수록 더 높은 차원의 표상체제가 동원되어야 함
- 물리적 구조, 공간적 경계, 시간적 경계는 학습자가 학습공간 속에서 학습활동을 수행할 때 느끼게 되는 요소들을 나열하고 있음
○ 감각적 몰입을 촉진할 수 있는 경험중심의 학습환경을 만들기 위해서는 [표 5]에 제시된 항목들을 모두 고려해야 함

○ 학습환경의 속성은 설계 단계에서 직접적으로 고려되어야 할 요소로서 학습환경을 개발할 때 기술적인 적용가능성 등을 고려해야 함

○ 한편 학습자의 지각적인 요인은 비록 설계자가 통제할 수 있는 변수들은 아니지만, 경험적 학습환경을 구축했는지를 확인할 수 있는 평가요소로 작용할 수 있다고 제안하고 있음. 예를 들어서, 학습자들이 실제로 지각한 상호작용, 감각적 몰입, 이동성, 통각 시간의 정도를 평가하여 성공적으로 학습환경이 구현되었는가를 평가할 수 있음

3. 제언

○ 인간과 컴퓨터 상호작용의 관점에서 10여년후의 교육 현장은 다음과 같이 예측할 수 있음
 • 지능적 맞춤형 상호작용
 • 교실, 학교, 가정 등 모든 곳의 체험장화
 • 협동기반 교육을 위한 상호작용
 • 모바일/Handheld 교육 시스템에서의 상호작용
 • On site Augmentation

○ 이 중에서 모든 곳을 체험의 장으로 만들고 현장에서 증강 영상을 통한 교육 등 증강현실이 공현할 수 있는 부분이 많음
 특히 상기 기술한 바와 같이 증강현실이 모바일 기술과 융합 할 때, 더욱 그 힘을 발휘 할 수 있을 것임. [그림 28]은 이와 같은 모바일 증강현실을 이용한 현장 교육의 예시임

[그림 28] 모바일 증강현실을 이용한 황룡사 재현

요약하면 증강현실은 학교학습을 위하여 다음의 장점을 가질 것 이라고 볼 수 있음

- 첫째, 현실과 가상의 조합을 통하여 학습 홍미도를 높일 수 있을 것임

- 둘째, 데스크톱 인터페이스와 달리 증강현실 기술은 마커의 활용을 통하여 직접적이고 실감적인 상호작용을 제공할 수 있음: 즉 사물을 직접 만져 보고 느낄 수 있으며 동작에 의하여 어떠한 행위를 할 수 있음

- 셋째, 증강현실은 실제 환경 속에서 진행되기 때문에 가상 객체와 실제 객체 사이의 상호작용을 가능하게 할 수 있음.

- 넷째,
들면, 가상 액체를 실제 소금에 뿌렸을 때 어떤 반응을 보이게 할 수 있음

- 넷째, 구현 플랫폼이 모바일 장치인 경우 장소에 구애받지 않고 교육이 가능함 예를 들면, 해변가에서 증강현실을 통하여 오염된 가상환경을 보고 이를 어떻게하면 깨끗하게 할 수 있는 지와 같은 문제에 대해서 토의하는 협력학습이 가능함

- 그러나 이러한 장점에도 불구하고 교육장면에 적합한 증강현실을 구현하기 위해서는 증강현실이라는 기술적인 측면과 학습내용을 연계시켜줄 수 있는 교수-학습적인 판단이 필요함

□ 증강현실의 기술적인 특징에 적합한 학습유형이나 주제에 대한 판단기준이 필요함

○ 현재 증강현실과 관련된 연구들은 기술 중심적인 차원에서 진행되는 경우가 많으며, 주로 증강현실 기법의 적용이라는 측면에서 부각되고 있는 상황임

○ 그러나 증강현실 기법을 교육에 적용하기 위해서는 증강현실 기법이 적용되지 않는 다른 학습상황과의 연계성을 고려해야 함

□ 감각적 몰입의 유형을 구분할 필요가 있음

○ 실감형 증강현실은 학습자의 운동기능적인 활동과 결합된 인터페이스를 활용하고 있으나, 구체적인 학습자의 운동기능에 대한 유형의 구분이 모호함
증강현실 기반 체험형 학습 모델 해외 연구 동향

- 직접적인 조작의 유형, 예를 들어서 마커의 회전이나 제시 등의 학습자 활동을 구분해 좀으로써 감각적 몰입에 영향을 미치는 요소를 확인할 필요가 있음

- 가장 중요한 요소로서 증강현실을 적절하게 운영할 수 있는 체계적인 교수-학습모형에 대한 검증이 이루어져야 함

- 지금까지 진행된 연구들은 대체로 연구실 단위에서 이루어지는 실험적 연구들이 많았기 때문에 학습성취나 이해의 과정에 대한 심층적인 연구가 부족한 상황

- 그렇기 때문에 증강현실이라는 잠재력이 높은 방법에도 불구하고 교실학습에서 어떻게 활용할 것인가에 대한 논의는 부족함

- 학습자에게 어떠한 안내를 제공해야 하며, 교수자의 역할은 어떠해야 하는지에 대한 연구가 진행되어야 함

- 학습자의 인지과정 및 사용성 평가에 대한 연구가 더욱 활성화되어야 함

- 증강현실은 감각적 몰입을 유발할 수 있는 학습환경이지만, 전통적인 수업상황과 다르기 때문에 학습자에게는 익숙한 학습환경이 아님. 또한 실험로 제시되고 있는 화면 위에 가상의 객체가 부가적으로 제시되므로써 학습자는 상대적으로 많은 인지적 부하를 경험할 수 있음

- 직접적 조작이 많아지면 그 만큼 학습자는 이해 과정 이외에 부가
적으로 할당해야 하는 인지적인 과정이 더 많아진다는 의미가 됨

○ 따라서 학습자의 인지과정과 사용성에 대한 평가가 지속적으로 이루어져야 함
<table>
<thead>
<tr>
<th>연구자료 RM 2006-59</th>
</tr>
</thead>
<tbody>
<tr>
<td>증강현실 기반 체험형 학습 모델 해외 연구동향</td>
</tr>
<tr>
<td>발행 2006년 10월 일</td>
</tr>
<tr>
<td>발행인 황 대 준</td>
</tr>
<tr>
<td>발행처 한국교육학술정보원 (www.kers.or.kr)</td>
</tr>
<tr>
<td>주소 서울 중구 쌍림동 22-1</td>
</tr>
<tr>
<td>전화: (02)2118-1114</td>
</tr>
<tr>
<td>팩스: (02)2278-4367</td>
</tr>
<tr>
<td>등록 제22-1584호(1999년 7월 3일)</td>
</tr>
<tr>
<td>인쇄처 방문사</td>
</tr>
<tr>
<td>전화: (02)776-9416</td>
</tr>
<tr>
<td>본 내용의 무단 복제를 금함 <비매품></td>
</tr>
<tr>
<td>* 에듀넷 : www.edunet.net</td>
</tr>
<tr>
<td>* 리스 : www.riss4u.net</td>
</tr>
</tbody>
</table>