» Wind Propulsion for Cargo Ships «
Performance Parameters and Operational Aspects
Maritime Department Leer

- Founded in 1854 as ‘School of Navigation’
- Incorporated in HS-Emden/Leer (University of applied Sciences)
- Maritime region (shipping, shipbuilding)
- About 350 students: Nautical Studies, Ship Management
- Special competence in ship operation research
Maritime Department Leer

- HS Emden-Leer was/is cooperating in ambitious sail related projects:

 - SkySails-Technology (2002-2008)
 - First full scale ship trials

 - E-Ship of Enercon (2007-2010)
 - First innovative Wind Hybrid Ship

 - Wind Hybrid Coaster (2011-2015)
 - Innovations in sail technology, e.g. light weight materials
Overview

- Introduction and Motivation
- FAQ and answers
- Performance Parameters
- Operational Parameters
- Recent Projects
- Conclusions
Introduction and Motivation

- Fossil fuels are increasingly expensive
 - Depletion of reserves;
 - growing demand (abt. 1.3 % yearly);
 - Combination of above causes is accelerating the rise in prices;
Introduction and Motivation

- **Political pressure**
 - Shipping is a significant air polluter
 - CO2 (abt. 3%)
 - SOx (abt. 7%)
 - NOx (abt. 12%)
 - Particulates
 - This causes damage
 - especially in the future
 - difficult calculations
 - actually not paid for (yet)
Introduction and Motivation

- Summary

- Chances for Wind Propulsion = f (energy prices, political pressure)
FAQ

- How much can you save with Sail Propulsion?

 or

- How long is the „Pay back Time“ on the investment?
FAQ + Answers

- How much can you save with Sail Propulsion?

- You can save „up to“ (0 ... 100%)

- (Salesman’s answer)
FAQ + Answers

- You can save „up to“ (0 ... 100%) !?

- Researcher’s view:

- This is not necessarily wrong but imprecise!
- A more precise answer:
- You can save approx. ... (%,$) of ... (reference) under the following conditions and assumptions:
 1. ...
 2. ...
 ...
 100. ...
FAQ + Answers

- **Summary:**
 - A precise prognosis of wind power for ships is complex, far more complex than for engine powered ships.

- **Result:**
 - Wind Propulsion as **auxiliary propulsion** for the near future.
 - Reliability of service
 - Innovation needs time to settle

- **Scientific Task:**
 - Find out and quantify all relevant parameters and influences regarding wind propulsion.
 - *(Wind Propulsion Model)*
Performance Parameters

- Basis: Aerodynamic Forces at foils and sails (also other fluids)

\[F = \frac{1}{2} \rho v^2 c A \]
Performance Parameters

- **Sail Coefficients**

 \[F_{\text{Lift}} = \frac{1}{2} \rho v^2 C_L A_{\text{Sail}} \]

 \[F_{\text{Drag}} = \frac{1}{2} \rho v^2 C_D A_{\text{Sail}} \]

 \[F_{\text{Sail(long)}} = \frac{1}{2} \rho v^2 C_x A_{\text{Sail}} \]

 \[F_{\text{Sail(trans)}} = \frac{1}{2} \rho v^2 C_y A_{\text{Sail}} \]

Source: T. Fujiwara

Source: T. Fujiwara
Performance Parameters

- **Lift Coefficient**

\[F_{Lift} = \frac{1}{2} \rho v^2 C_l A_{Sail} \]
Performance Parameters

- **Propulsion:**
 - Lift
 - Drag
 - Lift/Drag-Ratio

- **Overall Objective:**
 - High Thrust in sail direction

Source: T. Fujiwara

Natural Propulsion - Wageningen 20 Jan 2012
Operational Parameters

- Wind speed/direction

\[F_{\text{Sail (long)}} = \frac{1}{2} \rho \cdot v^2 \cdot c_x \cdot A_{\text{Sail}} \]

- Polar Diagramm
Operational Parameters

- Wind speed/direction

- Interdependencies:
 - Wind conditions in trading area („online fuel“)
 - Route vs. wind direction

\[F_{Sail\ (long)} = \frac{1}{2} \rho v^2 c_x A_{Sail} \]
Operational Parameters

- **Logistics**
 - New energy efficient liner services following wind patterns

\[
F_{Sail(\text{long})} = \frac{1}{2} \rho \cdot v^2 \cdot c_x \cdot A_{Sail}
\]
Operational Parameters

- **Weather Routing**
- High relevance for savings by wind energy
- **Algorithms**
 - Least time
 - Least fuel
 - Least cost

\[
F_{Sail(\text{long})} = \frac{1}{2} \rho \cdot v^2 \cdot c_x \cdot A_{\text{Sail}}
\]
Operational Parameters

- Side Effects
 - Added resistance by wind drift
 - Added resistance by yawing moments
 - Increased propeller efficiency by reducing propeller load
Operational Parameters

- **Side Effects**
 - Added resistance by wind drift
 - Can be minimized by design
 - Shape/Contours
 - Main particulars (L,B,T)
 - Fins, Deadwood, Rudder

Source: MOL
Operational Parameters

- **Side Effects**
 - Added resistance by yawing moments (counter rudder)
 - can be minimized by design
 - Longitudinal position of sail forces (center)
 - Rudder design
 - Area
 - Drag
Operational Parameters

- **Side Effects**
- **Improved propeller efficiency by reducing propeller load**
Operational Parameters

- Compatibility
 - Ship Operation – Sail System
 - Bridge visibility (SOLAS req.)
 - Navigation equipment (nav lights, radar)
 - Space requirements
 - Cargo operations
 - Air draft, bridge passage
 - Crew’s workload / automation
 - Maintenance requirements
 - Crew skills / training
 - Safety: ship stability, traffic, crew
Concepts

- **Concept “SkySails”**
 - System available

- **Concept “E-Ship” (Enercon)**
 - E-Ship 1 in regular service, data collection and evaluation phase
Concept “SkySails”

- Research Project funded by the German Government (BMBF):

 Programme: Climate Protection
 Title: Wind Power Propulsion for Cargo Ships (Low Emission Ship)
 Partners: HS Emden-Leer SkySails
Concept “SkySails”

- **System Advantages:**
 - Re-fit with small space requirements for all ship types available (80, 160, 320 m²)
 - Stowing Position:
 - No disturbing superstructures (cargo operations, bridge crossing)
 - Automatic Operation
 - Challenging task
Concept “SkySails”

- System Advantages:

 - Efficiency
 - Lift coefficient comparatively small
 - But increased lift through dynamic flight mode (down wind to beam wind)
Concept “SkySails”

- **System Advantages:**
 - **Efficiency**
 - utilizing stronger and more stable winds in higher altitudes
Concept “SkySails”

- System Advantages:
 - Safety
 - Less load on ship’s stability due to small heeling lever
Concept “SkySails”

- Experimental Platform: Research vessel « Beaufort »
 - September 2006: First Sea Trials of the operational system in the Baltic
Concept “SkySails”

- **Open questions:**
 - Long time overall performance - operational time?
 - System’s robustness (kite material)
 - Kite launch and recovery – (automation? loss of time?)
 - System handling – skilled and motivated crew (incentives?)
 - Flight regulations (international waters only?)
 - Safety items? (not sufficient operational experience yet)

- **Outlook**
 - Market acceptance?
 - Technical progress? (rigid ultra-light kite foils?)
Concept “E-Ship”

- R&D Project “E-Ship”

 performed by

 Enercon, Aurich/Germany
 one of the world’s leading wind turbine manufacturers

 Motto:
 “Energy for the World”

 supported by HS Emden/Leer
Concept “E-Ship”

- Objectives:
 - Hybrid Propulsion
 - Innovative product – huge market
 - Optimized cargo carrier for the transport of wind turbine plants (own cargo)
 - Reduction of transportation costs
 - Environmental protection
Concept “E-Ship”

- Sailing Technology:
 - 4 Magnus Rotors (25 m x 4.30 m)
 - Functional principle: “Magnus Effect”
Concept “E-Ship”

- Historical Background:
 - The German engineer Anton Flettner developed an innovative wind propulsion system in the 1920’s – Flettner Rotors
 - Flettner had no economical success – The age of “Dieselization” had just started!
Concept “E-Ship”

- **System Advantages:**
 - High lift – about 10x higher than conventional square sails
 - Right: Lift Coefficient of Sail Systems in comparison
Concept “E-Ship”

- System Advantages:

 ➢ Small Sail Area (space requirements)
Concept “E-Ship”

- **System Advantages:**

 - Less load on ship’s stability:
 - smaller heeling lever
 - nearly constant heeling moments in squally winds (right + below)
 - no (nearly) impact on stability after ‘shut down’

\[
F_{Sail\,trans} = \frac{1}{2} \rho v^2 c_y A_{Sail}
\]
Concept “E-Ship”

- System Advantages:
 - Fully automated operation
 - no sail handling
 - automatic switch on/off
 - integrated power management and propulsion control (Diesel-electric)
 - automatic RPM-control
 - ‘routing’ for optimal efficiency (under construction)
Concept “E-Ship”

- First Sea Trials – North Sea 2010
Concept “E-Ship”

- Economic Potentials:
 - A ship of this size (130 m) and speed consumes about 30 tons fuel oil per day
 - i.e. about 6 Mio USD p.a. (IFO 380)
 - i.e. about 8.7 Mio USD p.a. (SECA)
 - You can save up to
Concept “E-Ship”

- Environmental Protection:
 - … less CO2
 - 90% less NOx (SCR-technology)
 - 97% less SOx
 (Diesel-electric main propulsion with low sulphur fuel oil)
 - No sludge
 - Clean ballast
 - “Foul release coating” under water
 (no poison)
 - Garbage segregation and recycling/disposal ashore only
 - Organic food for crew
 - Sailing incentives
Concept “E-Ship”

- **Outlook:**
 - First results after test and evaluation phase
 - Continuous optimization will increase savings, e.g. system settings, routing, cargo logistics
Conclusions

- All technical requirements can be handled;
- Technological developments in start up phase;
- A skilled and motivated crew will be more successful;
- Volatile markets with rising energy prices to be expected;
- Climate change will increase political pressure;
- “Good Seamanship”
- means to be prepared for all possible scenarios!
Conclusions

- **Our task: to be prepared (political) and to take chances (economical)!**

Table 1-2 – Assessment of potential reductions of CO₂ emissions from shipping by using known technology and practices

<table>
<thead>
<tr>
<th>DESIGN (New ships)</th>
<th>Saving of CO₂/tonne-mile</th>
<th>Combined</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept, speed & capability</td>
<td>2% to 50%⁺</td>
<td>10% to 50%⁺</td>
<td>25% to 75%⁺</td>
</tr>
<tr>
<td>Hull and superstructure</td>
<td>2% to 20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power and propulsion systems</td>
<td>5% to 15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-carbon fuels</td>
<td>5% to 15%*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renewable energy</td>
<td>1% to 10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust gas CO₂ reduction</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPERATION (All ships)

Fleet management, logistics & incentives	5% to 50%⁺	10% to 50%⁺
Voyage optimization	1% to 10%	
Energy management	1% to 10%	

* Reductions at this level would require reductions of operational speed.

* CO₂ equivalent, based on the use of LNG.
Outlook (for universities and institutes)

- Innovation begins in the minds …
- Innovation requires innovative people
 - open minded
 - motivated
 - special competences:
 - Sail Technology
 - Energy Management
 - Routing

Thank you!