수학 영역 (나형)

5지선다형

1. \((\sqrt{3})^2\)의 값은? [2점]
 ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

2. \(\frac{1}{3} \times 16\)의 값은? [2점]
 ① 1 ② 2 ③ 4 ④ 8 ⑤ 16

3. 방정식 \(\sin\left(x - \frac{\pi}{6}\right) = \frac{1}{2}\)의 해는? (단, \(0 \leq x \leq \frac{\pi}{2}\)) [2점]
 ① 0 ② \(\frac{\pi}{6}\) ③ \(\frac{\pi}{4}\) ④ \(\frac{\pi}{3}\) ⑤ \(\frac{\pi}{2}\)

4. \(\log_{\frac{1}{3}} 4 + \log_{12} 12\)의 값은? [3점]
 ① 1 ② 2 ③ 3 ④ 4 ⑤ 5
수학 영역 (나형)

5. 다음은 상용로그표의 일부이다.

<table>
<thead>
<tr>
<th>수</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>⋯</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>.4771</td>
<td>.4786</td>
<td>.4800</td>
<td>.4814</td>
<td>⋯</td>
</tr>
<tr>
<td>3.1</td>
<td>.4914</td>
<td>.4928</td>
<td>.4942</td>
<td>.4955</td>
<td>⋯</td>
</tr>
<tr>
<td>3.2</td>
<td>.5051</td>
<td>.5065</td>
<td>.5079</td>
<td>.5092</td>
<td>⋯</td>
</tr>
</tbody>
</table>

이 표를 이용하여 구한 log₁₀₂의 값은? [3점]

① 1.4786 ② 1.4942 ③ 2.4942 ④ 2.5051 ⑤ 3.5051

6. \(1 \leq n \leq 15\)인 자연수 \(n\)에 대하여 \((\sqrt{7})^n\)이 자연수가 되도록 하는 모든 \(n\)의 개수는? [3점]

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

7. 함수 \(f(x) = \log_{10} (x + 12) + 2\)에 대하여 \(f^{-1}(5)\)의 값은? [3점]

① 15 ② 16 ③ 17 ④ 18 ⑤ 19
수학 영역 (나형)

8. \(\sin \left(\frac{5\pi}{6} \right) + \cos \left(-\frac{8\pi}{3} \right) \)의 값은? [3점]
 ① \(-\sqrt{3}\) ② \(-1\) ③ 0 ④ 1 ⑤ \(\sqrt{3}\)

9. \(0 \leq x \leq 4\)에서 정의된 함수 \(f(x) = \log_{4}(x+1)-2 \)의 최댓값은?
 [3점]
 ① \(-2\) ② \(-1\) ③ 0 ④ 1 ⑤ 2

10. \(\sqrt{(-2)^2 + (\sqrt{3} - \sqrt{2})(\sqrt{5} + \sqrt{6} + \sqrt{4})} \)의 값은? [3점]
 ① 7 ② 9 ③ 11 ④ 13 ⑤ 15
11. 함수 \(y = 2^x + b \)의 그래프가 그림과 같을 때, 두 상수 \(a, b \)에 대하여 \(a + b \)의 값을? (단, 직선 \(y = 3 \)은 그레프의 점근선이다.) [3점]

\[y = 2^x + b \]

12. \(\cos \theta = -\frac{1}{3} \)인 때, \(\tan \theta - \sin \theta \)의 값을? (단, \(x < \theta < \frac{3}{2} \pi \)) [3점]

\[1. \frac{5\sqrt{2}}{3} \quad 2. 2\sqrt{2} \quad 3. \frac{7\sqrt{2}}{3} \quad 4. \frac{8\sqrt{2}}{3} \quad 5. 3\sqrt{2} \]
수학 영역 (나형)

13. 함수 \(f(x) = \left(\frac{1}{5} \right)^{x^2-4x+1} \) 은 \(x = a \)에서 최댓값 \(M \)을 갖는다. \(a+M \)의 값은? [3점]

① 127 ② 129 ③ 131 ④ 133 ⑤ 135

14. 함수 \(y = a \sin bx + c \)의 그래프가 그림과 같을 때,
세 상수 \(a, b, c \)에 대하여 \(2a+b+c \)의 값을? (단, \(a > 0, b > 0 \)) [4점]

\[
\begin{align*}
\text{그래프} & \\
\text{그림} & \\
\end{align*}
\]
15. 반지름의 길이가 r인 원형 도선에 전류가 I인 전류가 호를 때, 원형 도선의 중심에서 수직 거리 x만큼 떨어진 지점에서의 자기장의 세기를 B라 하면 다음과 같은 관계식이 성립한다고 한다.

$$B = \frac{kIr^2}{2(x^2 + r^2)^{3/2}}$$ (단, k는 상수이다.)

전류의 세기가 I_0($I_0 > 0$)으로 일정할 때, 반지름의 길이가 r_1인 원형 도선의 중심에서 수직 거리 x_1만큼 떨어진 지점에서의 자기장의 세기를 B_1, 반지름의 길이가 $3r_1$인 원형 도선의 중심에서 수직 거리 $3x_1$만큼 떨어진 지점에서의 자기장의 세기를 B_2라 하자. $\frac{B_2}{B_1}$의 값은? (단, 전류의 세기의 단위는 A, 자기장의 세기의 단위는 T, 길이와 거리의 단위는 m이다.)

[4점]

1. $\frac{1}{6}$ 2. $\frac{1}{4}$ 3. $\frac{1}{3}$ 4. $\frac{5}{12}$ 5. $\frac{1}{2}$

16. 두 양수 $a, b (b \neq 1)$가 다음과 같은 조건을 만족시킬 때, $a^2 + b^2$의 값은? [4점]

(가) $(\log_a 3)(\log_b 3) = 0$
(나) $\log_a a + \log_b b = 2$

① 3 ② 4 ③ 5 ④ 6 ⑤ 7
17. 다음은 \(0 < \theta < 2\pi\)에서 \(3 + 2\sin^2\theta + \frac{1}{3 - 2\cos^2\theta}\)의 최솟값을 구하는 과정이다.

\[
3 + 2\sin^2\theta = t \quad \text{로 놓으면}
\]

\[
3 + 2\sin^2\theta + \frac{1}{3 - 2\cos^2\theta} = t + \frac{1}{(t)}
\]

이므로, \(0 < \theta < 2\pi\)에서 \(t \geq 3\)이므로 \((t) > 0\)이다.

\[
t + \frac{1}{(t)} = t - 2 + \frac{1}{(t)} + 2 \geq 4
\]

이므로, \(t = \frac{1}{(t)}\) 일 때 성립한다.

따라서, \(3 + 2\sin^2\theta + \frac{1}{3 - 2\cos^2\theta}\)의 최솟값 4를 갖는다.

위의 (가)에 알맞은 식은 \(f(t)\), (나)와 (다)에 알맞은 수를 각각 \(p\), \(q\)라 할 때, \(f(p) + \tan\left(q + \frac{\pi}{3}\right)\)의 값은? [4점]

\[
\begin{align*}
(1) & \quad 4 \\
(2) & \quad 5 \\
(3) & \quad 6 \\
(4) & \quad 7 \\
(5) & \quad 8
\end{align*}
\]
19. 자연수 n에 대하여 $2^n = a$, $2^{n+1} = 6$라 하자.

\[
\left(\frac{3 \log_{10} a}{3 \log_{10} (2a)} \right)^3
\]
이 자연수가 되도록 하는 모든 n의 값의 합은?

[4점]

1. 14 2. 15 3. 16 4. 17 5. 18

20. $0 < \theta < \frac{\pi}{4}$인 θ에 대하여 <보기>에서 옳은 것만을 있는 대로 고른 것은? [4점]

- $0 < \sin \theta < \cos \theta < 1$
- $0 < \log_{10} \sin \theta \cos \theta < 1$
- $(\sin \theta)^{\sin \theta} < (\cos \theta)^{\sin \theta < (\cos \theta)^{\sin \theta}}$

[보기]

1. γ 2. γ, ς 3. γ, ς
4. ς, ς 5. $\gamma, \varsigma, \varsigma$
수학 영역 (나형)

21. 유일 아닌 세 정수 \(a, b, n\)에 대하여
\[
(a^2 + b^2 + 2ab - 4) \cos \frac{n}{4} \pi + (b^2 + ab + 2) \tan \frac{2n+1}{4} \pi = 0
\]
일 때, \(a+b+\sin^2 \pi\)의 값은? (단, \(a \geq b\)) [4점]
① 4 ② \(\frac{19}{4}\) ③ \(\frac{11}{2}\) ④ \(\frac{25}{4}\) ⑤ 7

22. 방정식 \(\log_2 x = 4\)의 해를 구하시오. [3점]

23. \(\log_3 (6 - x)\)가 정의되도록 하는 모든 자연수 \(x\)의 값의 합을 구하시오. [3점]
수학 영역 (나형)

24. \(\sin \theta - \cos \theta = \frac{1}{2} \) 일 때, \(8\sin \theta \cos \theta \)의 값을 구하시오. [3점]

25. 상수 \(k \)에 대하여 함수 \(f(x) = 2\sqrt{3} \tan x + k \)의 그래프가 점 \(\left(\frac{\pi}{6}, 7 \right) \)을 지날 때, \(f\left(\frac{\pi}{3} \right) \)의 값을 구하시오. [3점]

26. 방정식
\[
\left(\log_2 \frac{x}{2} \right)^2 = 4
\]
의 서로 다른 두 실근 \(\alpha, \beta \)에 대하여 \(64\alpha\beta \)의 값을 구하시오. [4점]
수학 영역 (나형)

27. 두 함수 \(f(x) = \log_2 x + 2 \), \(g(x) = 3\tan\left(\frac{x}{6}\right) \)가 있다.
\(0 \leq x \leq \frac{\pi}{6} \) 에서 정의된 합성함수 \((f \circ g)(x)\)의 최댓값과 최솟값을 각각 \(M, m \)이라 할 때, \(M + m \)의 값을 구하시오. [4점]

28. 곡선 \(y = \log_2 x \)를 원점에 대하여 대칭이동한 후 \(x \)축의 방향으로 \(\frac{5}{2} \)만큼 평행이동한 곡선을 \(y = f(x) \)라 하자.
두 곡선 \(y = \log_2 x \)와 \(y = f(x) \)의 두 교점을 A, B라 할 때,
직선 AB의 기울기는 \(\frac{2}{p} \)이다. \(10p+q \)의 값을 구하시오.
(단, \(p \)와 \(q \)는 서로소인 자연수이다.) [4점]
29. 함수 \(y = k \sin \left(\frac{2x + \pi}{3} \right) + k^2 - 6 \)의 그래프가 제1 사분면을 지나지 않도록 하는 모든 정수 \(k \)의 개수를 구하시오. [4점]

30. 두 양수 \(a, k (k \neq 1) \)에 대하여 함수
\[
f(x) = \begin{cases}
2 \log_4 (x-k+1) + 2^{-x} & (x \geq k) \\
2 \log_4 (-x+k+1) + 2^{-x} & (x < k)
\end{cases}
\]
가 있다. \(f(x) \)의 역함수를 \(g(x) \) 라 할 때,\n방정식 \(f(x) = g(x) \)의 해는 \(-\frac{3}{4}, \frac{5}{4} \)이다. \(30(a+k+1) \)의 값을 구하시오. (단, \(0 < t < 1 \)) [4점]

※ 확인 사항
○ 답안지의 해당란에 필요한 내용을 정확히 기입(표기)하였다 확인하시오.