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1  Nomenclature

Thermodynamic quantities: Superscripts:

cp Specific isobaric heat capacity o Ideal-gas part

cv Specific isochoric heat capacity r Residual part

f Specific Helmholtz free energy * Reducing quantity

g Specific Gibbs free energy ′ Saturated liquid state

h Specific enthalpy ″ Saturated vapor state

M Molar mass

p Pressure Subscripts:

R Specific gas constant

Rm Molar gas constant c Critical point

s Specific entropy max Maximum value

T Absolute temperature a RMS Root-mean-square value

u Specific internal energy s Saturation state

v Specific volume t Triple point

w Speed of sound tol Tolerance of a quantity

x General quantity

b Transformed pressure, Eq. (29a) Root-mean-square deviation:

g Dimensionless Gibbs free energy, g = g /(RT )

d Reduced density, d = r /r*

D Difference in any quantity

h Reduced enthalpy, h = h / h*

q Reduced temperature, q = T / T *

J Transformed temperature, Eq. (29b)

p Reduced pressure, p = p / p*

r Mass density

s Reduced entropy, s = s / s*

t Inverse reduced temperature, t  = T */ T

f Dimensionless Helmholtz free energy, f = f /(RT )

a Note: T denotes absolute temperature on the International Temperature Scale of 1990.

D Dx
N

xRMS = 1 21 6 ,

where Dx can be either absolute or

percentage difference between the

corresponding quantities x ; N is

the number of Dx values.
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2  Structure of the Formulation

The IAPWS Industrial Formulation 1997 consists of a set of equations for different regions

which cover the following range of validity:

  273.15 K ≤  T  ≤  1073.15 K p  ≤ 100 MPa

1073.15 K <  T  ≤  2273.15 K p  ≤ 10 MPa .

Figure 1 shows the five regions into which the entire range of validity of IAPWS-IF97 is

divided. The boundaries of the regions can be directly taken from Fig. 1 except for the

boundary between regions 2 and 3; this boundary is defined by the so-called B23-equation

given in Section 4. Both regions 1 and 2 are individually covered by a fundamental equation

for the specific Gibbs free energy g( p,T ), region 3 by a fundamental equation for the specific

Helmholtz free energy f ( r,T ), where r  is the density, and the saturation curve by a

saturation-pressure equation ps(T). The high-temperature region 5 is also covered by a g( p,T )

equation. These five equations, shown in rectangular boxes in Fig. 1, form the so-called basic

equations.

Fig. 1.  Regions and equations of IAPWS-IF97.

Regarding the main properties specific volume v, specific enthalpy h, specific isobaric heat

capacity cp,  speed of sound w, and saturation pressure ps, the basic equations represent the

corresponding values from the "IAPWS Formulation 1995 for the Thermodynamic Properties

of Ordinary Water Substance for General and Scientific Use" [3] (hereafter abbreviated to

IAPWS-95) to within the tolerances specified for the development of the corresponding

equations; details of these requirements and their fulfillment are given in the comprehensive

paper on IAPWS-IF97 [2]. The basic equations for regions 1 and 3 also yield reasonable

values for the metastable states close to the stable regions. For region 2 there is a special
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equation for the metastable-vapor region. Along the region boundaries the corresponding

basic equations are consistent with each other within specified tolerances; for details see

Section 10.

In addition to the basic equations, for regions 1, 2, and 4 so-called backward equations are

provided in form of T ( p,h ) and T ( p,s ) for regions 1 and 2, and Ts ( p ) for region 4. These

backward equations are numerically consistent with the corresponding basic equations and

make the calculation of properties as functions of  p,h and of  p,s for regions 1 and 2, and of p

for region 4 extremely fast. In this way, properties such as T ( p,h ), h ( p,s ), and h′( p ) can be

calculated without any iteration from the backward equation alone or by combination with the

corresponding basic equation, for example, h ( p,s ) via the relation h ( p,T ( p,s )). As a

consequence, the calculation of the industrially most important properties is on average more

than five times faster than the corresponding calculation with IFC-67; for details see

Section 11.

The estimates of uncertainty of the most relevant properties calculated from the

corresponding equations of IAPWS-IF97 are summarized in Section 12.

3  Reference Constants

The specific gas constant of ordinary water used for this formulation is

R = 0.461 526 kJ kg-1 K-1. (1)

This value results from the recommended values of the molar gas constant [4], and the molar

mass of ordinary water [5, 6]. The values of the critical parameters

Tc = 647.096 K (2)

pc = 22.064 MPa (3)

rc = 322 kg m-3 (4)

are from the corresponding IAPWS release [7].

4  Auxiliary Equation for the Boundary between Regions 2 and 3

The boundary between regions 2 and 3 (see Fig. 1) is defined by the following simple

quadratic pressure-temperature relation, the B23-equation

p q q= + +n n n1 2 3
2 , (5)

where p = p/p* and q = T / T * with p* = 1 MPa and T * = 1 K. The coefficients n1 to n3 of

Eq. (5) are listed in Table 1. Equation (5) roughly describes an isentropic line; the entropy

values along this boundary line are between s = 5.047 kJ kg-1 K-1 and s = 5.261 kJ kg-1 K-1.
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Alternatively Eq. (5) can be expressed explicitly in temperature as

q p= + −n n n4 5 3
1 21 6 / ,

/
(6)

with q  and p  defined for Eq. (5) and the coefficients n3 to n5 listed in Table 1. Equations (5)

and (6) cover the range from 623.15 K at a pressure of 16.5292 MPa to 863.15 K at 100 MPa.

Table 1. Numerical values of the coefficients of the B23-equation, Eqs. (5) and (6), for
defining the boundary between regions 2 and 3

i                      ni i                        ni

1 0.348 051 856 289 69 × 103 4 0.572 544 598 627 46 × 103

2 – 0.116 718 598 799 75 × 101 5 0.139 188 397 788 70 × 102

3 0.101 929 700 393 26 × 10-2

For computer-program verification, Eqs. (5) and (6) must meet the following T-p point:

T = 0.623 150 000 × 103 K ,  p = 0.165 291 643 × 102 MPa.

5  Equations for Region 1

This section contains all details relevant for the use of the basic and backward equations of

region 1 of IAPWS-IF97. Information about the consistency of the basic equation of this

region with the basic equations of regions 3 and 4 along the corresponding region boundaries

is summarized in Section 10. The results of computing-time comparisons between

IAPWS-IF97 and IFC-67 are given in Section 11. The estimates of uncertainty of the most

relevant properties can be found in Section 12.

5.1  Basic Equation

The basic equation for this region is a fundamental equation for the specific Gibbs free

energy g. This equation is expressed in dimensionless form, g = g/(RT ), and reads

g p T

RT
ni

I

i

Ji i
( , )

, . . ,= = − −
=
∑g p t p t0 5 0 5 0 571 1 222

1

34

(7)

where p = p/p* and t = T */T with p* = 16.53 MPa and T * = 1386 K ; R is given by Eq. (1).

The coefficients ni and exponents Ii and Ji of Eq. (7) are listed in Table 2.

All thermodynamic properties can be derived from Eq. (7) by using the appropriate

combinations of the dimensionless Gibbs free energy and its derivatives. Relations between

the relevant thermodynamic properties and g and its derivatives are summarized in Table 3.
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All required derivatives of the dimensionless Gibbs free energy are explicitly given in

Table 4.

Since the 5th International Conference on the Properties of Steam in London in 1956, the

specific internal energy and the specific entropy of the saturated liquid at the triple point have

been set equal to zero:
′ = ′ =u st t0 0; . (8)

In order to meet this condition at the temperature and pressure of the triple point

Tt = 273.16 K [8]      pt = 611.657 Pa [9] , (9)

the coefficients n3 and n4 in Eq. (7) have been adjusted accordingly. As a consequence, Eq. (7)

yields for the specific enthalpy of the saturated liquid at the triple point

 t�h = 0.611 783 J kg−1 . (10)

Table 2. Numerical values of the coefficients and exponents of the dimensionless Gibbs free energy
for region 1, Eq. (7)

i Ii Ji                         ni i Ii Ji                         ni

1 0 – 2  0.146 329 712 131 67 18 2 3 – 0.441 418 453 308 46 × 10–5

2 0 – 1 – 0.845 481 871 691 14 19 2 17 – 0.726 949 962 975 94 × 10–15

3 0 0 – 0.375 636 036 720 40 × 101 20 3 – 4 – 0.316 796 448 450 54 × 10–4

4 0 1  0.338 551 691 683 85 × 101 21 3 0 – 0.282 707 979 853 12 × 10–5

5 0 2 – 0.957 919 633 878 72 22 3 6 – 0.852 051 281 201 03 × 10–9

6 0 3  0.157 720 385 132 28 23 4 – 5 – 0.224 252 819 080 00 × 10–5

7 0 4 – 0.166 164 171 995 01 × 10–1 24 4 – 2 – 0.651 712 228 956 01 × 10–6

8 0 5  0.812 146 299 835 68 × 10–3 25 4 10 – 0.143 417 299 379 24 × 10–12

9 1 – 9  0.283 190 801 238 04 × 10–3 26 5 – 8 – 0.405 169 968 601 17 × 10–6

10 1 – 7 – 0.607 063 015 658 74 × 10–3 27 8 – 11 – 0.127 343 017 416 41 × 10–8

11 1 – 1 – 0.189 900 682 184 19 × 10–1 28 8 – 6 – 0.174 248 712 306 34 × 10–9

12 1 0 – 0.325 297 487 705 05 × 10–1 29 21 – 29 – 0.687 621 312 955 31 × 10–18

13 1 1 – 0.218 417 171 754 14 × 10–1 30 23 – 31  0.144 783 078 285 21 × 10–19

14 1 3 – 0.528 383 579 699 30 × 10–4 31 29 – 38  0.263 357 816 627 95 × 10–22

15 2 – 3 – 0.471 843 210 732 67 × 10–3 32 30 – 39 – 0.119 476 226 400 71 × 10–22

16 2 0 – 0.300 017 807 930 26 × 10–3 33 31 – 40  0.182 280 945 814 04 × 10–23

17 2 1  0.476 613 939 069 87 × 10–4 34 32 – 41 – 0.935 370 872 924 58 × 10–25
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Table 3. Relations of thermodynamic properties to the dimensionless Gibbs
free energy g and its derivatives a when using Eq. (7)

Property Relation

Specific volume

v g p
T

= � �/1 6
v

p

RT
( , )p t pg

p
=

Specific internal energy

u g T g T p g pp T= − −� � � �/ ( / )1 6
u

RT

p t t g p g
t p

,0 5 = −

Specific entropy

s g T p= − � �/1 6
s

R

p t t g g
t

,0 5 = −

Specific enthalpy

h g T g T p= − � �/1 6
h

RT

p t t g
t

,0 5 =

Specific isobaric heat capacity

c h Tp p= � �/1 6
cp

R

p t
t g

tt

,0 5
= − 2

Specific isochoric heat capacity

c u Tv v= � /�1 6
cv

R

p t t g g t g
gtt

p pt

pp

, ( )0 5 = − + −2
2

Speed of sound

w v p v s= − ( / )
/� � 1 2

w

RT

2 2

2

2

( , )

( )

p t g
g t g

t g
g

p

p pt

tt

pp

=
− −

a g � g
� p

g � g
�p

g � g
� t

g � g
�t

g � g
�p �tp

t t p p

pp t tt pt=
�
!  

"
$##

=
�
!
  

"
$
## =

�
!  

"
$##

=
�
!
  

"
$
## =

�
!
  

"
$
##, , , ,

2

2

2

2

2

Table 4. The dimensionless Gibbs free energy g and its derivatives a according to Eq. (7)

                                        g p t= − −
=
∑ ni

i

I Ji i

1

34

71 1 222. .0 5 0 5

g p t
p

= − − −
=

−∑ n Ii i

i

I Ji i

1

34
171 1 222. .0 5 0 5             g p t

pp
= − − −

=

−∑n I Ii

i

i i
I Ji i

1

34
21 71 1 2221 60 5 0 5. .

g p t
t

= − −
=

−∑ n Ji

i

I
i

Ji i

1

34
171 1 222. .0 5 0 5             g p t

tt
= − − −

=

−∑ n J Ji

i

I
i i

Ji i

1

34
271 1 1 222. .0 5 1 60 5

                                 g p t
pt

= − − −
=

− −∑ n I Ji

i

i
I

i
Ji i

1

34
1 171 1 222. .0 5 0 5

a g �g
�p

g � g
�p

g �g
�t

g � g
�t

g � g
�p �tp

t t p p

pp t tt pt=
�
!  

"
$##

=
�
!
  

"
$
## =

�
!  

"
$##

=
�
!
  

"
$
## =

�
!
  

"
$
##, , , ,

2

2

2

2

2
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Range of validity

Equation (7) covers region 1 of IAPWS-IF97 defined by the following range of

temperature and pressure; see Fig. 1:

273.15 K ≤ T ≤ 623.15 K        ps ( T ) ≤ p ≤ 100 MPa .

In addition to the properties in the stable single-phase liquid region, Eq. (7) also yields

reasonable values in the metastable superheated-liquid region close to the saturated liquid line.

Note: For temperatures between 273.15 K and 273.16 K at pressures below the melting pressure [10] (meta-

stable states) all values are calculated by extrapolation from Eqs. (7) and (30).

Computer-program verification

To assist the user in computer-program verification of Eq. (7), Table 5 contains test values

of the most relevant properties.

Table 5. Thermodynamic property values calculated from Eq. (7) for selected values of T and pa

T = 300 K,

p = 3 MPa

T = 300 K,

p = 80 MPa

T = 500 K,

p = 3 MPa

v / (m3 kg–1) 0.100 215 168 × 10–2 0.971 180 894 × 10–3 0.120 241 800 × 10–2

h / (kJ kg–1) 0.115 331 273 × 103 0.184 142 828 × 103 0.975 542 239 × 103

u / (kJ kg–1) 0.112 324 818 × 103 0.106 448 356 × 103 0.971 934 985 × 103

s / (kJ kg–1 K–1) 0.392 294 792 0.368 563 852 0.258 041 912 × 101

cp / (kJ kg–1 K–1) 0.417 301 218 × 101 0.401 008 987 × 101 0.465 580 682 × 101

w / (m s–1) 0.150 773 921 × 104 0.163 469 054 × 104 0.124 071 337 × 104

a It is recommended to verify programmed functions using 8 byte real values for all three combinations of T and

p given in this table.

5.2  Backward Equations

For the calculation of properties as function of p,h or of p,s without any iteration, the two

backward equations require extremely good numerical consistency with the basic equation.

The exact requirements for these numerical consistencies were obtained from comprehensive

test calculations for several characteristic power cycles. The result of these investigations,

namely the assignment of the tolerable numerical inconsistencies between the basic equation,

Eq. (7), and the corresponding backward equations, is given in Eqs. (12) and (14),

respectively.
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5.2.1  The Backward Equation T ( p, h )

The backward equation T ( p,h ) for region 1 has the following dimensionless form:

T
ni

i

I Ji i( , )
, ,

p h

T ∗
=

= = +∑q p h p h0 5 0 5
1

20

1 (11)

where q = T /T *, p = p/p*, and h = h/h* with T * = 1 K , p* = 1 MPa, and h* = 2500 kJ kg-1.

The coefficients ni and exponents Ii and Ji of Eq. (11) are listed in Table 6.

Table 6. Numerical values of the coefficients and exponents of the backward equation T ( p,h ) for
region 1, Eq. (11)

i Ii Ji ni i Ii Ji ni

1

2

3

4

5

6

7

8

9

10

0

0

0

0

0

0

1

1

1

1

0

1

2

6

22

32

0

1

2

3

– 0.238 724 899 245 21 × 103

0.404 211 886 379 45 × 103

0.113 497 468 817 18 × 103

– 0.584 576 160 480 39 × 101

– 0.152 854 824 131 40 × 10-3

– 0.108 667 076 953 77 × 10-5

– 0.133 917 448 726 02 × 102

0.432 110 391 835 59 × 102

– 0.540 100 671 705 06 × 102

0.305 358 922 039 16 × 102

11

12

13

14

15

16

17

18

19

20

1

1

1

2

2

3

3

4

5

6

4

10

32

10

32

10

32

32

32

32

– 0.659 647 494 236 38 × 101

0.939 654 008 783 63 × 10-2

0.115 736 475 053 40 × 10-6

– 0.258 586 412 820 73 × 10-4

– 0.406 443 630 847 99 × 10-8

0.664 561 861 916 35 × 10-7

0.806 707 341 030 27 × 10-10

– 0.934 777 712 139 47 × 10-12

0.582 654 420 206 01 × 10-14

– 0.150 201 859 535 03 × 10-16

Range of validity

Equation (11) covers the same range of validity as the basic equation, Eq. (7), except for

the metastable region (superheated liquid), where Eq. (11) is not valid.

Numerical consistency with the basic equation

For ten million random pairs of p and h covering the entire region 1, the differences ∆T

between temperatures from Eq. (11) and from Eq. (7) were calculated and the absolute

maximum difference |∆T |max and the root-mean-square difference ∆TRMS  were determined.

These actual inconsistency values and the tolerated value |∆T | tol (see the beginning of

Section 5.2) amount to:

 |∆T | tol = 25 mK   ;   ∆TRMS = 13.4 mK   ;   |∆T |max = 23.6 mK . (12)
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Computer-program verification

To assist the user in computer-program verification of Eq. (11), Table 7 contains the

corresponding test values.

Table 7. Temperature values calculated from Eq. (11) for selected
values of p and ha

p / MPa h/(kJ kg–1) T / K

3 500 0.391 798 509 × 10
3

80 500 0.378 108 626 × 10
3

80 1500 0.611 041 229 × 10
3

a It is recommended to verify the programmed equation (8 byte real values)

for all three combinations of p and h given in this table.

5.2.2  The Backward Equation T ( p, s )

The backward equation T ( p,s ) for region 1 has the following dimensionless form:

T p s

T
ni

i

I Ji i
( , )

,∗
=

= = +∑q p s p s0 5 0 5
1

20

2 , (13)

where q = T /T *, p = p/p*, and s = s/s* with T * = 1 K , p* = 1 MPa, and s* = 1 kJ kg-1 K-1.

The coefficients ni and exponents Ii and Ji of Eq. (13) are listed in Table 8.

Table 8. Numerical values of the coefficients and exponents of the backward equation T ( p,s ) for
region 1, Eq. (13)

i Ii Ji                         ni i Ii Ji                         ni

1 0 0 0.174 782 680 583 07 × 103 11 1 12 0.356 721 106 073 66 × 10-9

2 0 1 0.348 069 308 928 73 × 102 12 1 31 0.173 324 969 948 95 × 10-23

3 0 2 0.652 925 849 784 55 × 101 13 2 0 0.566 089 006 548 37 × 10-3

4 0 3 0.330 399 817 754 89 14 2 1 – 0.326 354 831 397 17 × 10-3

5 0 11 – 0.192 813 829 231 96 × 10-6 15 2 2 0.447 782 866 906 32 × 10-4

6 0 31 – 0.249 091 972 445 73 × 10-22 16 2 9 – 0.513 221 569 085 07 × 10-9

7 1 0 – 0.261 076 364 893 32 17 2 31 – 0.425 226 570 422 07 × 10-25

8 1 1 0.225 929 659 815 86 18 3 10 0.264 004 413 606 89 × 10-12

9 1 2 – 0.642 564 633 952 26 × 10-1 19 3 32 0.781 246 004 597 23 × 10-28

10 1 3 0.788 762 892 705 26 × 10-2 20 4 32 – 0.307 321 999 036 68 × 10-30
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Range of validity

Equation (13) covers the same range of validity as the basic equation, Eq. (7), except for

the metastable region (superheated liquid), where Eq. (13) is not valid.

Numerical consistency with the basic equation

For ten million random pairs of p and s covering the entire region 1, the differences ∆T

between temperatures from Eq. (13) and from Eq. (7) were calculated and the absolute

maximum difference |∆T |max  and the root-mean-square difference ∆TRMS  were determined.

These actual differences and the tolerated value |∆T | tol (see the beginning of Section 5.2)

amount to:

 |∆T | tol = 25 mK   ;   ∆TRMS = 5.8 mK   ;   |∆T |max = 21.8 mK . (14)

Computer-program verification

To assist the user in computer-program verification of Eq. (13), Table 9 contains the

corresponding test values.

Table 9. Temperature values calculated from Eq. (13) for selected
values of p and sa

p / MPa s/(kJ kg–1 K–1) T / K

3 0.5 0.307 842 258 × 10
3

80 0.5 0.309 979 785 × 10
3

80 3 0.565 899 909 × 10
3

a It is recommended to verify the programmed equation using 8 byte real

values for all three combinations of p and s given in this table.

6  Equations for Region 2

This section contains all details relevant for the use of the basic and backward equations of

region 2 of IAPWS-IF97. Information about the consistency of the basic equation of this

region with the basic equations of regions 3, 4 and 5 along the corresponding region

boundaries is summarized in Section 10. The auxiliary equation for defining the boundary

between regions 2 and 3 is given in Section 4. Section 11 contains the results of computing-

time comparisons between IAPWS-IF97 and IFC-67. The estimates of uncertainty of the most

relevant properties can be found in Section 12.



13

6.1  Basic Equation

The basic equation for this region is a fundamental equation for the specific Gibbs free

energy g. This equation is expressed in dimensionless form, g = g/( RT ), and is separated into

two parts, an ideal-gas part g o and a residual part g r, so that

g p T

RT

,
, , , ,

0 5 0 5 0 5 0 5= = +g p t g p t g p to r (15)

where p = p/p* and t = T */T with R given by Eq. (1).

The equation for the ideal-gas part g o of the dimensionless Gibbs free energy reads

g p to o o
= +

=
∑ln ,ni
i

Ji

1

9

(16)

where p = p/p* and t = T */T with p* = 1 MPa and T * = 540 K. The coefficients n1
o  and n2

o

were adjusted in such a way that the values for the specific internal energy and specific

entropy in the ideal-gas state relate to Eq. (8). Table 10 contains the coefficients ni
o  and

exponents Ji
o  of Eq. (16).

Table 10. Numerical values of the coefficients and exponents of the ideal-gas part g o of the
dimensionless Gibbs free energy for region 2, Eq. (16)a

i Ji
o ni

o i Ji
o ni

o

1a 0 – 0.969 276 865 002 17 × 101 6 – 2 0.142 408 191 714 44 × 101

2a 1 0.100 866 559 680 18 × 102 7 – 1 – 0.438 395 113 194 50 × 101

3 – 5 – 0.560 879 112 830 20 × 10-2 8 2 – 0.284 086 324 607 72

4 – 4 0.714 527 380 814 55 × 10-1 9 3 0.212 684 637 533 07 × 10-1

5 – 3 – 0.407 104 982 239 28

a If Eq. (16) is incorporated into Eq. (18), instead of the values for n1
o  and n 2

o  given above, the following values

for these two coefficients must be used: n1
o  = – 0.969 372 683 930 49 × 101 , n 2

o  = 0.100 872 759 700 06 × 102.

The form of the residual part g r of the dimensionless Gibbs free energy is as follows:

g p tr = −
=
∑ ni

I

i

Ji i

1

43

0 5. ,0 5 (17)

where p = p/p* and t = T */T with p* = 1 MPa and T * = 540 K. The coefficients ni and

exponents Ii and Ji of Eq. (17) are listed in Table 11.
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Table 11. Numerical values of the coefficients and exponents of the
residual part g r of the dimensionless Gibbs free energy for
region 2, Eq. (17)

i Ii Ji                        ni

1 1 0 – 0.177 317 424 732 13 × 10-2

2 1 1 – 0.178 348 622 923 58 × 10-1

3 1 2 – 0.459 960 136 963 65 × 10-1

4 1 3 – 0.575 812 590 834 32 × 10-1

5 1 6 – 0.503 252 787 279 30 × 10-1

6 2 1 – 0.330 326 416 702 03 × 10-4

7 2 2 – 0.189 489 875 163 15 × 10-3

8 2 4 – 0.393 927 772 433 55 × 10-2

9 2 7 – 0.437 972 956 505 73 × 10-1

10 2 36 – 0.266 745 479 140 87 × 10-4

11 3 0 0.204 817 376 923 09 × 10-7

12 3 1 0.438 706 672 844 35 × 10-6

13 3 3 – 0.322 776 772 385 70 × 10-4

14 3 6 – 0.150 339 245 421 48 × 10-2

15 3 35 – 0.406 682 535 626 49 × 10-1

16 4 1 – 0.788 473 095 593 67 × 10-9

17 4 2 0.127 907 178 522 85 × 10-7

18 4 3 0.482 253 727 185 07 × 10-6

19 5 7 0.229 220 763 376 61 × 10-5

20 6 3 – 0.167 147 664 510 61 × 10-10

21 6 16 – 0.211 714 723 213 55 × 10-2

22 6 35 – 0.238 957 419 341 04 × 102

23 7 0 – 0.590 595 643 242 70 × 10-17

24 7 11 – 0.126 218 088 991 01 × 10-5

25 7 25 – 0.389 468 424 357 39 × 10-1

26 8 8 0.112 562 113 604 59 × 10-10

27 8 36 – 0.823 113 408 979 98 × 10 1

28 9 13 0.198 097 128 020 88 × 10-7

29 10 4 0.104 069 652 101 74 × 10-18

30 10 10 – 0.102 347 470 959 29 × 10-12

31 10 14 – 0.100 181 793 795 11 × 10-8

32 16 29 – 0.808 829 086 469 85 × 10-10

33 16 50 0.106 930 318 794 09

34 18 57 – 0.336 622 505 741 71

35 20 20 0.891 858 453 554 21 × 10-24

36 20 35 0.306 293 168 762 32 × 10-12

37 20 48 – 0.420 024 676 982 08 × 10-5

38 21 21 – 0.590 560 296 856 39 × 10-25

39 22 53 0.378 269 476 134 57 × 10-5

40 23 39 – 0.127 686 089 346 81 × 10-14

41 24 26 0.730 876 105 950 61 × 10-28

42 24 40 0.554 147 153 507 78 × 10-16

43 24 58 – 0.943 697 072 412 10 × 10-6
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All thermodynamic properties can be derived from Eq. (15) by using the appropriate

combinations of the ideal-gas part g o, Eq. (16), and the residual part g r, Eq. (17), of the

dimensionless Gibbs free energy and their derivatives. Relations between the relevant

thermodynamic properties and g o and g r and their derivatives are summarized in Table 12.

All required derivatives of the ideal-gas part and of the residual part of the dimensionless

Gibbs free energy are explicitly given in Table 13 and Table 14, respectively.

Table 12. Relations of thermodynamic properties to the ideal-gas part go and the residual part g  r  of
the dimensionless Gibbs free energy and their derivatives a when using Eq. (15) or Eq. (18)

Property Relation

Specific volume
v g p T= � �/1 6 v

p

RT
( , )p t p g gp p= +o r3 8
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RT

p t
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= + - +o r o r3 8 3 8

Specific entropy
s g T p= − � �/1 6

s

R
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,0 5 3 8 3 8= + − +o r o r

Specific enthalpy
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h

RT
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p p t
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tt tt
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Specific isochoric heat capacity
c u Tv v= � �/1 6

c

R
v p t t g g pg tpg

p gtt tt
p pt

pp

, ( )0 5 3 8= − + − + −
−

2
2

2
1

1
o r

r r

r

Speed of sound

w v p v
s

= − � �/
/1 6 1 2

w

RT

2 2 2

2

2

2

1 2

1
1

( , )p t pg p g

p g
pg tpg

t g g

p p

pp
p pt

tt tt

= + +

− +
+ −

+

r r

r
r r

o r3 8 3 8
3 8

a r
r

r
r

r
r

r
r

r
r

o
o

o
o

g �g
�p

gpp
� g
�p

gt
�g
�t

gtt
� g
�t

gpt
� g
�p �t

gt
�g
�t

gtt
� g
�t

p

t t p p p p

=
�
!
  

"
$
## =

�
!
  

"
$
## =

�
!
  

"
$
## =

�
!
  

"
$
## =

�
!
  

"
$
## =

�
!
  

"
$
## =

�
!
  

"
$
##, , , , , ,

2

2

2

2 2

2 2



16

Table 13. The ideal-gas part g o of the dimensionless Gibbs
free energy and its derivatives a according to
Eq. (16)

g o =    lnp + ni
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∑
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9

t
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9
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Table 14. The residual part g r of the dimensionless Gibbs free energy and its derivatives a according
to Eq. (17)
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Range of validity

Equation (15) covers region 2 of IAPWS-IF97 defined by the following range of

temperature and pressure, see Fig. 1:

273.15 K ≤ T ≤ 623.15 K 0  <  p ≤  ps ( T )Eq.(30)

623.15 K < T ≤ 863.15 K 0  <  p ≤  p ( T )Eq.(5)

863.15 K < T ≤ 1 073.15 K 0  <  p ≤  100 MPa

In addition to the properties in the stable single-phase vapor region, Eq. (15) also yields

reasonable values in the metastable-vapor region for pressures above 10 MPa. Equation (15)

is not valid in the metastable-vapor region at pressures p ≤ 10 MPa; for this part of the

metastable-vapor region see Section 6.2.

Note: For temperatures between 273.15 K and 273.16 K at pressures above the sublimation pressure [10]

(metastable states) all values are calculated by extrapolation from Eqs. (15) and (30).

Computer-program verification

To assist the user in computer-program verification of Eq. (15), Table 15 contains test

values of the most relevant properties.

Table 15. Thermodynamic property values calculated from Eq. (15) for selected values of T and p a

T = 300 K,

p = 0.0035 MPa

T = 700 K,

p = 0.0035 MPa

T = 700 K,

p = 30 MPa

v / (m3 kg–1) 0.394 913 866 × 102 0.923 015 898 × 102 0.542 946 619 × 10–2

h / (kJ kg–1) 0.254 991 145 × 104 0.333 568 375 × 104 0.263 149 474 × 104

u / (kJ kg–1) 0.241 169 160 × 104 0.301 262 819 × 104 0.246 861 076 × 104

s / (kJ kg–1 K–1) 0.852 238 967 × 101 0.101 749 996 × 102 0.517 540 298 × 101

cp / (kJ kg–1 K–1) 0.191 300 162 × 101 0.208 141 274 × 101 0.103 505 092 × 102

w / (m s–1) 0.427 920 172 × 103 0.644 289 068 × 103 0.480 386 523 × 103

a It is recommended to verify programmed functions using 8 byte real values for all three combinations of T and

p given in this table.

6.2  Supplementary Equation for the Metastable-Vapor Region

As for the basic equation, Eq. (15), the supplementary equation for a part of the metastable-

vapor region bounding region 2 is given in the dimensionless form of the specific Gibbs free

energy, g = g/( RT ), consisting of an ideal-gas part g o and a residual part g r, so that

g p T

RT

,
, , , ,

0 5 0 5 0 5 0 5= = +g p t g p t g p to r (18)

where p = p/p* and t = T */T with R given by Eq. (1).
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The equation for the ideal-gas part g o is identical with Eq. (16) except for the values of the

two coefficients n1
o  and n2

o , see Table 10. For the use of Eq. (16) as part of Eq. (18) the

coefficients n1
o  and n2

o  were slightly readjusted to meet the high consistency requirement

between Eqs. (18) and (15) regarding the properties h and s along the saturated vapor line; see

below.

The equation for the residual part g r reads

g p tr = −
=
∑ni

I

i

Ji i

1

13

0 5. ,0 5 (19)

where p = p/p* and t = T */T with p* = 1 MPa and T * = 540 K. The coefficients ni and

exponents Ii and Ji of Eq. (19) are listed in Table 16.

Note: In the metastable-vapor region there are no experimental data to which an equation can be fitted. Thus,

Eq. (18) is only based on input values extrapolated from the stable single-phase region 2. These

extrapolations were performed with a special low-density gas equation [11] considered to be more suitable

for such extrapolations into the metastable-vapor region than IAPWS-95 [3].

Table 16. Numerical values of the coefficients and exponents of the
residual part g r of the dimensionless Gibbs free energy for
the metastable-vapor region, Eq. (19)

i Ii Ji                        ni

1 1 0 – 0.733 622 601 865 06 × 10-2

2 1 2 – 0.882 238 319 431 46 × 10-1

3 1 5 – 0.723 345 552 132 45 × 10-1

4 1 11 – 0.408 131 785 344 55 × 10-2

5 2 1 0.200 978 033 802 07 × 10-2

6 2 7 – 0.530 459 218 986 42 × 10-1

7 2 16 – 0.761 904 090 869 70 × 10-2

8 3 4 – 0.634 980 376 573 13 × 10-2

9 3 16 – 0.860 430 930 285 88 × 10-1

10 4 7 0.753 215 815 227 70 × 10-2

11 4 10 – 0.792 383 754 461 39 × 10-2

12 5 9 – 0.228 881 607 784 47 × 10-3

13 5 10 – 0.264 565 014 828 10 × 10-2

All thermodynamic properties can be derived from Eq. (18) by using the appropriate

combinations of the ideal-gas part g o, Eq. (16), and the residual part g r, Eq. (19), of the

dimensionless Gibbs free energy and their derivatives. Relations between the relevant

thermodynamic properties and g o and g r and their derivatives are summarized in Table 12.
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All required derivatives of the ideal-gas part and of the residual part of the dimensionless

Gibbs free energy are explicitly given in Table 13 and Table 17, respectively.

Table 17. The residual part g r of the dimensionless Gibbs free energy and its derivatives a according
to Eq. (19)
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∑ni
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Range of validity

Equation (18) is valid in the metastable-vapor region from the saturated vapor line to the

5 % equilibrium moisture line (determined from the equilibrium h′ and h′′ values) at pressures

from the triple-point pressure, see Eq. (9), up to 10 MPa.

Consistency with the basic equation

The consistency of Eq. (18) with the basic equation, Eq. (15), along the saturated vapor line

is characterized by the following maximum inconsistencies regarding the properties v, h, cp , s,

g, and w :

|∆v |max =  0.014 % |∆s |max =  0.082 J kg−1 K−1

|∆h |max =  0.043 kJ kg−1 |∆g |max =  0.023 kJ kg−1

|∆cp |max =  0.78 % |∆w |max =  0.051 % .

These maximum inconsistencies are clearly smaller than the consistency requirements on

region boundaries corresponding to the so-called Prague values [13], which are given in

Section 10.
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Along the 10 MPa isobar in the metastable-vapor region, the transition between Eq. (18)

and Eq. (15) is not smooth, which is however, not of importance for practical calculations.

Computer-program verification

To assist the user in computer-program verification of Eq. (18), Table 18 contains test

values of the most relevant properties.

Table 18. Thermodynamic property values calculated from Eq. (18) for selected values of T and p a

T = 450 K,

p = 1 MPa

T = 440 K,

p = 1 MPa

T = 450 K,

p = 1.5 MPa

v / (m3 kg–1) 0.192 516 540 0.186 212 297 0.121 685 206

h / (kJ kg–1) 0.276 881 115 × 104 0.274 015 123 × 104 0.272 134 539 × 104

u / (kJ kg–1) 0.257 629 461 × 104 0.255 393 894 × 104 0.253 881 758 × 104

s / (kJ kg–1 K–1) 0.656 660 377 × 101 0.650 218 759 × 101 0.629 170 440 × 101

cp / (kJ kg–1 K–1) 0.276 349 265 × 101 0.298 166 443 × 101 0.362 795 578 × 101

w / (m s–1) 0.498 408 101 × 103 0.489 363 295 × 103 0.481 941 819 × 103

a It is recommended to verify programmed functions using 8 byte real values for all three combinations of T and

p given in this table.

6.3  Backward Equations

For the calculation of properties as function of  p,  h or of  p,  s without any iteration, the two

backward equations require extremely good numerical consistency with the basic equation.

The exact requirements for these numerical consistencies were obtained from comprehensive

test calculations for several characteristic power cycles. The result of these investigations,

namely the assignment of the tolerable numerical inconsistencies between the basic equation,

Eq. (15), and the corresponding backward equations, is given in Tables 23 and 29,

respectively.

Region 2 is covered by three T ( p,  h ) and three T ( p,  s ) equations. Figure 2 shows the way

in which region 2 is divided into three subregions for the backward equations. The boundary

between the subregions 2a and 2b is the isobar p = 4 MPa; the boundary between the

subregions 2b and 2c corresponds to the entropy line s = 5.85 kJ kg−1 K−1.
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Fig. 2. Division of region 2 of IAPWS-IF97 into the three subregions 2a,
2b, and 2c for the backward equations T( p,h ) and T( p,s ).

In order to know whether the T( p,h ) equation for subregion 2b or for subregion 2c has to

be used for given values of p and h, a special correlation equation for the boundary between

subregions 2b and 2c (which approximates s = 5.85 kJ kg−1 K−1) is needed; see Fig. 2. This

boundary equation, called the B2bc-equation, is a simple quadratic pressure-enthalpy relation

which reads

p h h= + +n n n1 2 3
2 , (20)

where p = p/p* and h = h/h* with p* = 1 MPa and h* = 1 kJ kg−1. The coefficients n1 to n3 of

Eq. (20) are listed in Table 19. Based on its simple form, Eq. (20) does not describe exactly

the isentropic line s = 5.85 kJ kg-1 K−1; the entropy values corresponding to this p-h relation

are between s = 5.81 kJ kg−1 K−1 and s = 5.85 kJ kg−1 K−1. The enthalpy-explicit form of

Eq. (20) is as follows:

h p= + −n n n4 5 3
1 21 6 / ,

/
(21)

with p and h according to Eq. (20) and the coefficients n3 to n5 listed in Table 19. Equations

(20) and (21) give the boundary line between subregions 2b and 2c from the saturation state at

T = 554.485 K and ps = 6.546 70 MPa to T = 1019.32 K and p = 100 MPa.

For the backward equations T( p,s ) the boundary between subregions 2b and 2c is, based

on the value s = 5.85 kJ kg−1 K−1 along this boundary, automatically defined for given values

of p and s.
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Table 19. Numerical values of the coefficients of the B2bc-equation, Eqs. (20) and (21),
for defining the boundary between subregions 2b and 2c with respect to
T( p,h ) calculations

i ni i ni

1 0.905 842 785 147 23 × 103 4 0.265 265 719 084 28 × 104

2 – 0.679 557 863 992 41 5 0.452 575 789 059 48 × 101

3 0.128 090 027 301 36 × 10-3

For computer-program verification, Eqs. (20) and (21) must meet the following p-h point:

p = 0.100 000 000 × 103 MPa ,  h = 0.351 600 432 3 × 104 kJ kg−1.

6.3.1  The Backward Equations T( p, h ) for Subregions 2a, 2b, and 2c

The backward equation T( p,h ) for subregion 2a in its dimensionless form reads

T p h

T
ni

i

I Ji i2
2

1

34

2 1a
a

( , )
, . ,∗

=

= = −∑q p h p h0 5 0 5 (22)

where q = T /T *
 , p = p/p* , and h = h/h* with T * = 1 K ,  p* = 1 MPa, and h* = 2000 kJ kg−1.

The coefficients ni and exponents Ii and Ji of Eq. (22) are listed in Table 20.

Table 20. Numerical values of the coefficients and exponents of the backward equation T ( p,h ) for
subregion 2a, Eq. (22)

i Ii Ji ni i Ii Ji ni

1 0 0 0.108 989 523 182 88 × 104 18 2 7 0.116 708 730 771 07 × 102

2 0 1 0.849 516 544 955 35 × 103 19 2 36 0.128 127 984 040 46 × 109

3 0 2 – 0.107 817 480 918 26 × 103 20 2 38 – 0.985 549 096 232 76 × 109

4 0 3 0.331 536 548 012 63 × 102 21 2 40 0.282 245 469 730 02 × 1010

5 0 7 – 0.742 320 167 902 48 × 101 22 2 42 – 0.359 489 714 107 03 × 1010

6 0 20 0.117 650 487 243 56 × 102 23 2 44 0.172 273 499 131 97 × 1010

7 1 0 0.184 457 493 557 90 × 101 24 3 24 – 0.135 513 342 407 75 × 105

8 1 1 – 0.417 927 005 496 24 × 101 25 3 44 0.128 487 346 646 50 × 108

9 1 2 0.624 781 969 358 12 × 101 26 4 12 0.138 657 242 832 26 × 101

10 1 3 – 0.173 445 631 081 14 × 102 27 4 32 0.235 988 325 565 14 × 106

11 1 7 – 0.200 581 768 620 96 × 103 28 4 44 – 0.131 052 365 450 54 × 108

12 1 9 0.271 960 654 737 96 × 103 29 5 32 0.739 998 354 747 66 × 104

13 1 11 – 0.455 113 182 858 18 × 103 30 5 36 – 0.551 966 970 300 60 × 106

14 1 18 0.309 196 886 047 55 × 104 31 5 42 0.371 540 859 962 33 × 107

15 1 44 0.252 266 403 578 72 × 106 32 6 34 0.191 277 292 396 60 × 105

16 2 0 – 0.617 074 228 683 39 × 10-2 33 6 44 – 0.415 351 648 356 34 × 106

17 2 2 – 0.310 780 466 295 83 34 7 28 – 0.624 598 551 925 07 × 102
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The backward equation T( p,h ) for subregion 2b in its dimensionless form reads

T p h

T
ni

i

I Ji i2
2

1

38

2 2 6b( , )
, . ,∗

=

= = − −∑q p h p hb0 5 0 5 0 5 (23)

where q = T /T *, p = p/p* , and h = h/h* with T * = 1 K ,  p* = 1 MPa, and h* = 2000 kJ kg−1.

The coefficients ni and exponents Ii and Ji of Eq. (23) are listed in Table 21.

Table 21. Numerical values of the coefficients and exponents of the backward equation T ( p,h ) for
subregion 2b, Eq. (23)

i Ii Ji ni i Ii Ji ni

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

2

2

2

0

1

2

12

18

24

28

40

0

2

6

12

18

24

28

40

2

8

18

0.148 950 410 795 16  × 104

0.743 077 983 140 34  × 103

– 0.977 083 187 978 37  × 102

0.247 424 647 056 74  × 101

– 0.632 813 200 160 26

0.113 859 521 296 58  × 101

– 0.478 118 636 486 25

0.852 081 234 315 44  × 10-2

0.937 471 473 779 32

0.335 931 186 049 16  × 101

0.338 093 556 014 54  × 101

0.168 445 396 719 04

0.738 757 452 366 95

– 0.471 287 374 361 86

0.150 202 731 397 07

– 0.217 641 142 197 50  × 10-2

– 0.218 107 553 247 61  × 10-1

– 0.108 297 844 036 77

– 0.463 333 246 358 12  × 10-1

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

2

3

3

3

3

4

4

4

4

4

4

5

5

5

6

7

7

9

9

40

1

2

12

24

2

12

18

24

28

40

18

24

40

28

2

28

1

40

0.712 803 519 595 51  × 10-4

0.110 328 317 899 99  × 10-3

0.189 552 483 879 02  × 10-3

0.308 915 411 605 37  × 10-2

0.135 555 045 549 49  × 10-2

0.286 402 374 774 56  × 10-6

– 0.107 798 573 575 12  × 10-4

– 0.764 627 124 548 14  × 10-4

0.140 523 928 183 16  × 10-4

– 0.310 838 143 314 34  × 10-4

– 0.103 027 382 121 03  × 10-5

0.282 172 816 350 40  × 10-6

0.127 049 022 719 45  × 10-5

0.738 033 534 682 92  × 10-7

– 0.110 301 392 389 09  × 10-7

– 0.814 563 652 078 33  × 10-13

– 0.251 805 456 829 62  × 10-10

– 0.175 652 339 694 07  × 10-17

0.869 341 563 441 63  × 10-14
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The backward equation T( p,h ) for subregion 2c in its dimensionless form reads

T p h

T
ni

i

I Ji i2
2

1

23

25 18c
c

( , )
, . ,∗

=

= = + −∑q p h p h0 5 0 5 0 5 (24)

where q = T /T *, p = p/p*, and h = h/h* with T * = 1 K ,  p* = 1 MPa, and h* = 2000 kJ kg−1.

The coefficients ni and exponents Ii and Ji of Eq. (24) are listed in Table 22.

Table 22. Numerical values of the coefficients and exponents of the backward
equation T ( p,h ) for subregion 2c, Eq. (24)

i Ii Ji                           ni

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

– 7

– 7

– 6

– 6

– 5

– 5

– 2

– 2

– 1

– 1

0

0

1

1

2

6

6

6

6

6

6

6

6

0

4

0

2

0

2

0

1

0

2

0

1

4

8

4

0

1

4

10

12

16

20

22

– 0.323 683 985 552 42  × 1013

0.732 633 509 021 81  × 1013

0.358 250 899 454 47  × 1012

– 0.583 401 318 515 90  × 1012

– 0.107 830 682 174 70  × 1011

0.208 255 445 631 71  × 1011

0.610 747 835 645 16  × 106

0.859 777 225 355 80  × 106

– 0.257 457 236 041 70  × 105

0.310 810 884 227 14  × 105

0.120 823 158 659 36  × 104

0.482 197 551 092 55  × 103

0.379 660 012 724 86  × 101

– 0.108 429 848 800 77  × 102

– 0.453 641 726 766 60  × 10-1

0.145 591 156 586 98  × 10-12

0.112 615 974 072 30  × 10-11

– 0.178 049 822 406 86  × 10-10

0.123 245 796 908 32  × 10-6

– 0.116 069 211 309 84  × 10-5

0.278 463 670 885 54  × 10-4

– 0.592 700 384 741 76  × 10-3

0.129 185 829 918 78  × 10-2

Range of validity

Equations (22), (23), and (24) are only valid in the respective subregion 2a, 2b, and 2c

which do not include the metastable-vapor region. The boundaries between these subregions

are defined at the beginning of Section 6.3; the lowest pressure for which Eq. (22) is valid

amounts to 611.153 Pa corresponding to the sublimation pressure [10] at 273.15 K.
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Numerical consistency with the basic equation

For ten million random pairs of p and h covering each of the subregions 2a, 2b, and 2c, the

differences ∆T between temperatures calculated from Eqs. (22) to (24), respectively, and from

Eq. (15) were determined. The corresponding maximum and root-mean-square differences are

listed in Table 23 together with the tolerated differences according to the numerical

consistency requirements with respect to Eq. (15).

Table 23. Maximum differences |∆T |max and root-mean-square differences ∆TRMS between
temperatures calculated from Eqs. (22) to (24), and from Eq. (15) in comparison with the
tolerated differences |∆T | tol

Subregion Equation |∆T | tol /mK |∆T |max /mK ∆TRMS /mK

2a

2b

2c

22

23

24

10

10

25

9.3

9.6

23.7

2.9

3.9

10.4

Computer-program verification

To assist the user in computer-program verification of Eqs. (22) to (24), Table 24 contains

the corresponding test values.

Table 24. Temperature values calculated from Eqs. (22) to (24) for
selected values of p and h a

Equation p / MPa h/(kJ kg−1) T / K

0.001 3000 0.534 433 241 × 103

22 3 3000 0.575 373 370 × 103

3 4000 0.101 077 577 × 104

5 3500 0.801 299 102 × 103

23 5 4000 0.101 531 583 × 104

25 3500 0.875 279 054 × 103

40 2700 0.743 056 411 × 103

24 60 2700 0.791 137 067 × 103

60 3200 0.882 756 860 × 103

a It is recommended to verify the programmed equations using 8 byte real values

for all three combinations of p and h given in this table for each of the equations.
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6.3.2  The Backward Equations T( p, s ) for Subregions 2a, 2b, and 2c

The backward equation T( p,s ) for subregion 2a in its dimensionless form reads

T p s

T
ni

I

i

Ji i2
2

1

46

2a
a

( , )
, ,∗

=

= = −∑q p s p s0 5 0 5 (25)

where q = T /T *, p = p/p*, and s = s/s* with T * = 1 K ,  p* = 1 MPa, and s* = 2 kJ kg−1 K−1.

The coefficients ni and exponents Ii and Ji of Eq. (25) are listed in Table 25.

Table 25. Numerical values of the coefficients and exponents of the backward equation T( p,s ) for
subregion 2a, Eq. (25)

i Ii Ji                     ni i Ii Ji                     ni

1 – 1.5 – 24 – 0.392 359 838 619 84 × 106 24 - 0.25 -11 – 0.597 806 388 727 18 × 104

2 – 1.5 – 23 0.515 265 738 272 70 × 106 25 - 0.25 -6 – 0.704 014 639 268 62 × 103

3 – 1.5 – 19 0.404 824 431 610 48 × 105 26 0.25 1 0.338 367 841 075 53 × 103

4 – 1.5 – 13 – 0.321 937 909 239 02 × 103 27 0.25 4 0.208 627 866 351 87 × 102

5 – 1.5 – 11 0.969 614 242 186 94 × 102 28 0.25 8 0.338 341 726 561 96 × 10-1

6 – 1.5 – 10 – 0.228 678 463 717 73 × 102 29 0.25 11 – 0.431 244 284 148 93 × 10-4

7 – 1.25 – 19 – 0.449 429 141 243 57 × 106 30 0.50 0 0.166 537 913 564 12 × 103

8 – 1.25 – 15 – 0.501 183 360 201 66 × 104 31 0.5 1 – 0.139 862 920 558 98 × 103

9 – 1.25 – 6 0.356 844 635 600 15 32 0.5 5 – 0.788 495 479 998 72

10 – 1.0 – 26 0.442 353 358 481 90 × 105 33 0.5 6 0.721 324 117 538 72 × 10-1

11 – 1.0 – 21 – 0.136 733 888 117 08 × 105 34 0.5 10 – 0.597 548 393 982 83 × 10-2

12 – 1.0 – 17 0.421 632 602 078 64 × 106 35 0.5 14 – 0.121 413 589 539 04 × 10-4

13 – 1.0 – 16 0.225 169 258 374 75 × 105 36 0.5 16 0.232 270 967 338 71 × 10-6

14 – 1.0 – 9 0.474 421 448 656 46 × 103 37 0.75 0 – 0.105 384 635 661 94 × 102

15 – 1.0 – 8 – 0.149 311 307 976 47 × 103 38 0.75 4 0.207 189 254 965 02 × 101

16 – 0.75 – 15 – 0.197 811 263 204 52 × 106 39 0.75 9 – 0.721 931 552 604 27 × 10-1

17 – 0.75 – 14 – 0.235 543 994 707 60 × 105 40 0.75 17 0.207 498 870 811 20 × 10-6

18 – 0.5 – 26 – 0.190 706 163 020 76 × 105 41 1.0 7 – 0.183 406 579 113 79 × 10-1

19 – 0.5 – 13 0.553 756 698 831 64 × 105 42 1.0 18 0.290 362 723 486 96 × 10-6

20 – 0.5 – 9 0.382 936 914 373 63 × 104 43 1.25 3 0.210 375 278 936 19

21 – 0.5 – 7 – 0.603 918 605 805 67 × 103 44 1.25 15 0.256 812 397 299 99 × 10-3

22 – 0.25 – 27 0.193 631 026 203 31 × 104 45 1.5 5 – 0.127 990 029 337 81 × 10-1

23 – 0.25 – 25 0.426 606 436 986 10 × 104 46 1.5 18 – 0.821 981 026 520 18 × 10-5
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The backward equation T( p,s ) for subregion 2b in its dimensionless form reads

T p s

T
ni

I

i

Ji i2
2

1

44

10b
b

( , )
, ,∗

=

= = −∑q p s p s0 5 0 5 (26)

where q = T /T *, p = p/p*, and s = s/s* with T * = 1 K ,  p* = 1 MPa, and s* = 0.7853 kJ kg−1 K−1.

The coefficients ni and exponents Ii and Ji of Eq. (26) are listed in Table 26.

Table 26. Numerical values of the coefficients and exponents of the backward equation T( p,s ) for
subregion 2b, Eq. (26)

i Ii Ji                      ni i Ii Ji                    ni

1 - 6 0 0.316 876 650 834 97 × 106 23 0 2 0.417 273 471 596 10 × 102

2 - 6 11 0.208 641 758 818 58 × 102 24 0 4 0.219 325 494 345 32 × 101

3 - 5 0 – 0.398 593 998 035 99 × 106 25 0 5 – 0.103 200 500 090 77 × 101

4 - 5 11 – 0.218 160 585 188 77 × 102 26 0 6 0.358 829 435 167 03

5 - 4 0 0.223 697 851 942 42 × 106 27 0 9 0.525 114 537 260 66 × 10-2

6 - 4 1 – 0.278 417 034 458 17 × 104 28 1 0 0.128 389 164 507 05 × 102

7 - 4 11 0.992 074 360 714 80 × 101 29 1 1 – 0.286 424 372 193 81 × 101

8 - 3 0 – 0.751 975 122 991 57 × 105 30 1 2 0.569 126 836 648 55

9 - 3 1 0.297 086 059 511 58 × 104 31 1 3 – 0.999 629 545 849 31 × 10-1

10 - 3 11 – 0.344 068 785 485 26 × 101 32 1 7 – 0.326 320 377 784 59 × 10-2

11 - 3 12 0.388 155 642 491 15 33 1 8 0.233 209 225 767 23 × 10-3

12 - 2 0 0.175 112 950 857 50 × 105 34 2 0 – 0.153 348 098 574 50

13 - 2 1 – 0.142 371 128 544 49 × 104 35 2 1 0.290 722 882 399 02 × 10-1

14 - 2 6 0.109 438 033 641 67 × 101 36 2 5 0.375 347 027 411 67 × 10-3

15 - 2 10 0.899 716 193 084 95 37 3 0 0.172 966 917 024 11 × 10-2

16 - 1 0 – 0.337 597 400 989 58 × 104 38 3 1 – 0.385 560 508 445 04 × 10-3

17 - 1 1 0.471 628 858 183 55 × 103 39 3 3 – 0.350 177 122 926 08 × 10-4

18 - 1 5 – 0.191 882 419 936 79 × 101 40 4 0 – 0.145 663 936 314 92 × 10-4

19 - 1 8 0.410 785 804 921 96 41 4 1 0.564 208 572 672 69 × 10-5

20 - 1 9 – 0.334 653 781 720 97 42 5 0 0.412 861 500 746 05 × 10-7

21 0 0 0.138 700 347 775 05 × 104 43 5 1 – 0.206 846 711 188 24 × 10-7

22 0 1 – 0.406 633 261 958 38 × 103 44 5 2 0.164 093 936 747 25 × 10-8
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The backward equation T( p,s ) for subregion 2c in its dimensionless form reads

T p s

T
ni

I

i

Ji i2
2

1

30

2c
c

( , )
, ,∗

=

= = −∑q p s p s0 5 0 5 (27)

where q = T /T *, p = p/p*, and s = s/s* with T * = 1 K , p* = 1 MPa, and s* = 2.9251 kJ kg−1 K−1.

The coefficients ni and exponents Ii and Ji of Eq. (27) are listed in Table 27.

Table 27. Numerical values of the coefficients and exponents of the backward equation T( p,s ) for
subregion 2c, Eq. (27)

i Ii Ji                      ni i Ii Ji                    ni

1 - 2 0 0.909 685 010 053 65 × 103 16 3 1 – 0.145 970 082 847 53 × 10-1

2 - 2 1 0.240 456 670 884 20 × 104 17 3 5 0.566 311 756 310 27 × 10-2

3 - 1 0 – 0.591 623 263 871 30 × 103 18 4 0 – 0.761 558 645 845 77 × 10-4

4 0 0 0.541 454 041 280 74 × 103 19 4 1 0.224 403 429 193 32 × 10-3

5 0 1 – 0.270 983 084 111 92 × 103 20 4 4 – 0.125 610 950 134 13 × 10-4

6 0 2 0.979 765 250 979 26 × 103 21 5 0 0.633 231 326 609 34 × 10-6

7 0 3 – 0.469 667 729 594 35 × 103 22 5 1 – 0.205 419 896 753 75 × 10-5

8 1 0 0.143 992 746 047 23 × 102 23 5 2 0.364 053 703 900 82 × 10-7

9 1 1 – 0.191 042 042 304 29 × 102 24 6 0 – 0.297 598 977 892 15 × 10-8

10 1 3 0.532 991 671 119 71 × 101 25 6 1 0.101 366 185 297 63 × 10-7

11 1 4 – 0.212 529 753 759 34 × 102 26 7 0 0.599 257 196 923 51 × 10-11

12 2 0 – 0.311 473 344 137 60 27 7 1 – 0.206 778 701 051 64 × 10-10

13 2 1 0.603 348 408 946 23 28 7 3 – 0.208 742 781 818 86 × 10-10

14 2 2 – 0.427 648 397 025 09 × 10-1 29 7 4 0.101 621 668 250 89 × 10-9

15 3 0 0.581 855 972 552 59 × 10-2 30 7 5 – 0.164 298 282 813 47 × 10-9

Range of validity

Equations (25), (26), and (27) are only valid in the respective subregion 2a, 2b, and 2c

which do not include the metastable-vapor region. The boundaries between these subregions

are defined at the beginning of Section 6.3; the lowest pressure for which Eq. (25) is valid

amounts to 611.153 Pa corresponding to the sublimation pressure [10] at 273.15 K.

Numerical consistency with the basic equation

For ten million random pairs of p and s covering each of the subregions 2a, 2b, and 2c, the

differences ∆T between temperatures calculated from Eqs. (25) to (27), respectively, and from

Eq. (15) were determined. The corresponding maximum and root-mean-square differences are

listed in Table 28 together with the tolerated differences according to the numerical

consistency requirements with respect to Eq. (15).
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Table 28. Maximum differences |∆T |max and root-mean-square differences ∆TRMS between
temperatures calculated from Eqs. (25) to (27), and from Eq. (15) in comparison with the
tolerated differences |∆T | tol

Subregion Equation |∆T | tol /mK |∆T |max /mK ∆TRMS /mK

2a

2b

2c

25

26

27

10

10

25

8.8

6.5

19.0

1.2

2.8

8.3

Computer-program verification

To assist the user in computer-program verification of Eqs. (25) to (27), Table 29 contains

the corresponding test values.

Table 29. Temperature values calculated from Eqs. (25) to (27) for selected
values of p and s a

Equation p / MPa s/(kJ kg–1 K–1) T / K

0.1 7.5 0.399 517 097 × 10
3

25 0.1 8 0.514 127 081 × 10
3

2.5 8 0.103 984 917 × 10
4

8 6 0.600 484 040 × 10
3

26 8 7.5 0.106 495 556 × 10
4

90 6 0.103 801 126 × 10
4

20 5.75 0.697 992 849 × 10
3

27 80 5.25 0.854 011 484 × 10
3

80 5.75 0.949 017 998 × 10
3

a It is recommended to verify the programmed equations using 8 byte real values for all

three combinations of p and s given in this table for each of the equations.

7  Basic Equation for Region 3

This section contains all details relevant for the use of the basic equation of region 3 of

IAPWS-IF97. Information about the consistency of the basic equation of this region with the

basic equations of regions 1, 2, and 4 along the corresponding region boundaries is

summarized in Section 10. The auxiliary equation for defining the boundary between

regions 2 and 3 is given in Section 4. Section 11 contains the results of computing-time

comparisons between IAPWS-IF97 and IFC-67. The estimates of uncertainty of the most

relevant properties can be found in Section 12.
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The basic equation for this region is a fundamental equation for the specific Helmholtz free

energy f. This equation is expressed in dimensionless form, f = f/(RT ), and reads

f T

RT
n ni

i

I Ji i
( , )

, ln ,
r f d t d d t= = +

=
∑1 6 1

2

40

(28)

where d = r /r* , t = T */T with r* = rc , T * = Tc and R, Tc , and rc given by Eqs. (1), (2),

and (4). The coefficients ni and exponents Ii and Ji of Eq. (28) are listed in Table 30.

In addition to representing the thermodynamic properties in the single-phase region,

Eq. (28) meets the phase-equilibrium condition (equality of specific Gibbs free energy for

coexisting vapor + liquid states; see Table 31) along the saturation line for T ≥ 623.15 K to Tc .

Moreover, Eq. (28) reproduces exactly the critical parameters according to Eqs. (2) to (4) and

yields zero for the first two pressure derivatives with respect to density at the critical point.

Table 30. Numerical values of the coefficients and exponents of the dimensionless Helmholtz free
energy for region 3, Eq. (28)

i Ii Ji                     ni i Ii Ji                     ni

1 0 0 0.106 580 700 285 13 × 101 21 3 4 – 0.201 899 150 235 70 × 101

2 0 0 – 0.157 328 452 902 39 × 102 22 3 16 – 0.821 476 371 739 63 × 10-2

3 0 1 0.209 443 969 743 07 × 102 23 3 26 – 0.475 960 357 349 23

4 0 2 – 0.768 677 078 787 16 × 101 24 4 0 0.439 840 744 735 00 × 10-1

5 0 7 0.261 859 477 879 54 × 101 25 4 2 – 0.444 764 354 287 39

6 0 10 – 0.280 807 811 486 20 × 101 26 4 4 0.905 720 707 197 33

7 0 12 0.120 533 696 965 17 × 101 27 4 26 0.705 224 500 879 67

8 0 23 – 0.845 668 128 125 02 × 10-2 28 5 1 0.107 705 126 263 32

9 1 2 – 0.126 543 154 777 14 × 101 29 5 3 – 0.329 136 232 589 54

10 1 6 – 0.115 244 078 066 81 × 101 30 5 26 – 0.508 710 620 411 58

11 1 15 0.885 210 439 843 18 31 6 0 – 0.221 754 008 730 96 × 10-1

12 1 17 – 0.642 077 651 816 07 32 6 2 0.942 607 516 650 92 × 10-1

13 2 0 0.384 934 601 866 71 33 6 26 0.164 362 784 479 61

14 2 2 – 0.852 147 088 242 06 34 7 2 – 0.135 033 722 413 48 × 10-1

15 2 6 0.489 722 815 418 77 × 101 35 8 26 – 0.148 343 453 524 72 × 10-1

16 2 7 – 0.305 026 172 569 65 × 101 36 9 2 0.579 229 536 280 84 × 10-3

17 2 22 0.394 205 368 791 54 × 10-1 37 9 26 0.323 089 047 037 11 × 10-2

18 2 26 0.125 584 084 243 08 38 10 0 0.809 648 029 962 15 × 10-4

19 3 0 – 0.279 993 296 987 10 39 10 1 – 0.165 576 797 950 37 × 10-3

20 3 2 0.138 997 995 694 60 × 101 40 11 26 – 0.449 238 990 618 15 × 10-4

All thermodynamic properties can be derived from Eq. (28) by using the appropriate

combinations of the dimensionless Helmholtz free energy and its derivatives. Relations

between the relevant thermodynamic properties and f and its derivatives are summarized in

Table 31. All required derivatives of the dimensionless Helmholtz free energy are explicitly

given in Table 32.
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Table 31. Relations of thermodynamic properties to the dimensionless Helmholtz
free energy f and its derivatives a when using Eq. (28)

Property Relation
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p f

T
= r � �r2 /1 6

p

RT

d t
r

df
d

,1 6 =

Specific internal energy
u f T f T= − � � r/1 6

u

RT

d t
t f

t

,1 6 =

Specific entropy
s f T= − � �

r
/1 6

s

R

d t
t f f

t

,1 6 = −

Specific enthalpy
h f T f T f

T
= − +� � r � �r

r
/ /1 6 1 6

h

RT

d t
t f dft d

,1 6 = +

Specific isochoric heat capacity
c u Tv = � �

r
/1 6

c

R
v d t

t ftt

,1 6 = − 2

Specific isobaric heat capacity
c h Tp p

= � �/1 6 c

R
p d t

t f
df dtf
df d ftt

d dt

d dd

,1 6 2 7
= − +

−
+

2

2

22

Speed of sound

w p
s

= � �r/
/1 61 2

w

RT

2
2

2

22
d t

df d f
df dtf

t fd dd

d dt

tt

,1 6 2 7
= + −

−

Phase-equilibrium condition
(Maxwell criterion)

p

RT

p

RT
s s

�
= � �

��
= �� ��

r
d f d t

r
d f d t

d d
, ; ,0 5 0 5

p

RT
s 1 1

′′
−

′
�
��

�
�� = ′ − ′′

r r
f d t f d t, ,1 6 1 6

a f �f
�d

f � f
�d

f �f
�t

f � f
�t

f � f
�d �td dd t tt dt

t t d d

=
�
! 

"
$#

=
�
! 

"
$#

=
�
! 

"
$#

=
�
! 

"
$#

=
�
! 

"
$#

, , , ,
2

2

2

2

2

Table 32. The dimensionless Helmholtz free energy equation and its derivatives a

according to Eq. (28)
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Range of validity

Equation (28) covers region 3 of IAPWS-IF97 defined by the following range of

temperature and pressure, see Fig. 1:

623.15 K  ≤  T  ≤  T ( p )Eq.(6) p ( T )Eq.(5)  ≤  p  ≤  100 MPa .

In addition to the properties in the stable single-phase region defined above, Eq. (28) also

yields reasonable values in the metastable regions (superheated liquid and subcooled steam)

close to the saturated liquid and saturated vapor line.

Computer-program verification

To assist the user in computer-program verification of Eq. (28), Table 33 contains test

values of the most relevant properties.

Table 33. Thermodynamic property values calculated from Eq. (28), for selected values of T and r a

T = 650 K,

r = 500 kg m–3
T = 650 K,

r = 200 kg m–3
T = 750 K,

r = 500 kg m–3

p / MPa 0.255 837 018 × 102 0.222 930 643 × 102 0.783 095 639 × 102

h / (kJ kg–1) 0.186 343 019 × 104 0.237 512 401 × 104 0.225 868 845 × 104

u / (kJ kg–1) 0.181 226 279 × 104 0.226 365 868 × 104 0.210 206 932 × 104

s / (kJ kg–1 K–1) 0.405 427 273 × 101 0.485 438 792 × 101 0.446 971 906 × 101

cp / (kJ kg–1 K–1) 0.138 935 717 × 102 0.446 579 342 × 102 0.634 165 359 × 101

w / (m s–1) 0.502 005 554 × 10
3

0.383 444 594 × 10
3

0.760 696 041 × 10
3

a It is recommended to verify programmed functions using 8 byte real values for all three combinations of T and

r given in this table.

8  Equations for Region 4

This section contains all details relevant for the use of the equations for region 4 of

IAPWS-IF97 (saturation line). Information about the consistency of the basic equation for this

region, the saturation-pressure equation, and the basic equations of regions 1 to 3 at the

corresponding region boundaries is summarized in Section 10. The results of computing-time

comparisons between IAPWS-IF97 and IFC-67 are given in Section 11. The estimates of

uncertainty of the saturation pressure can be found in Section 12.

The equation for describing the saturation line is an implicit quadratic equation which can

be directly solved with regard to both saturation pressure ps and saturation temperature Ts.

This equation reads

b J b J b bJ bJ b J J2 2
1

2
2

2
3

2
4 5 6

2
7 8 0+ + + + + + + + =n n n n n n n n , (29)
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where b = ∗p ps /
/3 81 4

(29a)

and J = +
−∗ ∗

T

T

n

T T n
s

s

9

10/3 8 (29b)

with p*
 = 1 MPa and T * = 1 K; for the coefficients n1 to n10 see Table 34.

8.1  The Saturation-Pressure Equation  (Basic Equation)

The solution of Eq. (29) with regard to saturation pressure is as follows:

p

p
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B B AC

s
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42 1 2
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where p*
 = 1 MPa  and
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J J
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2
1 2
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2
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2

7 8

with J  according to Eq. (29b). The coefficients ni of Eq. (30) are listed in Table 34.

Table 34. Numerical values of the coefficients of the dimensionless saturation
equations, Eqs. (29) to (31)

i                      ni          i                     ni

1 0.116 705 214 527 67 × 104 6 0.149 151 086 135 30 × 102

2 – 0.724 213 167 032 06 × 106 7 – 0.482 326 573 615 91 × 104

3 – 0.170 738 469 400 92 × 102 8 0.405 113 405 420 57 × 106

4 0.120 208 247 024 70 × 105 9 – 0.238 555 575 678 49

5 – 0.323 255 503 223 33 × 107 10 0.650 175 348 447 98 × 103

Equations (29) to (31) reproduce exactly the p-T values at the triple point according to

Eq. (8), at the normal boiling point [12] and at the critical point according to Eqs. (2) and (3).
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Range of validity

Equation (30) is valid along the entire vapor-liquid saturation line from the triple-point

temperature Tt to the critical temperature Tc and can be simply extrapolated to 273.15 K so

that it covers the temperature range

273.15 K  ≤  T  ≤  647.096 K .

Computer-program verification

To assist the user in computer-program verification of Eq. (30), Table 35 contains test

values for three selected temperatures.

Table 35. Saturation pressures calculated from
Eq. (30) for selected values of T a

T / K ps / MPa

300 0.353 658 941 × 10–2

500 0.263 889 776 × 101

600 0.123 443 146 × 102

a It is recommended to verify the programmed equation

using 8 byte real values for all three values of T given

in this table.

8.2  The Saturation-Temperature Equation  (Backward Equation)

The saturation-temperature solution of Eq. (29) reads

T

T

n D n D n n D
s
∗ =

+ − + − +10 10
2

9 10

1 2
4

2

1 6 1 6 /

(31)

where T * = 1 K  and

with

D
G
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=
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2
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5 8

and b  according to Eq. (29a). The coefficients ni of Eq. (31) are listed in Table 34.
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Range of validity

Equation (31) has the same range of validity as Eq. (30), which means that it covers the

vapor-liquid saturation line according to the pressure range

611.213 Pa  ≤  p  ≤  22.064 MPa .

The value of 611.213 Pa corresponds to the pressure when Eq. (31) is extrapolated to 273.15 K.

Consistency with the basic equation

Since the saturation-pressure equation, Eq. (30), and the saturation-temperature equation,

Eq. (31), have been derived from the same implicit equation, Eq. (29), for describing the

saturation line, both Eq. (30) and Eq. (31) are completely consistent with each other.

Computer-program verification

To assist the user in computer-program verification of Eq. (31), Table 36 contains test

values for three selected pressures.

Table 36. Saturation temperatures calculated from
Eq. (31) for selected values of p a

p / MPa Ts / K

0.1 0.372 755 919 × 103

1 0.453 035 632 × 103

10 0.584 149 488 × 103

a It is recommended to verify the programmed equation

using 8 byte real values for all three values of p given

in this table.

9  Basic Equation for Region 5

This section contains all details relevant for the use of the equations for region 5 of

IAPWS-IF97. Information about the consistency at the boundary between regions 2 and 5 is

summarized in Section 10. The results of computing-time comparisons between IAPWS-IF97

and IFC-67 are given in Section 11. The estimates of uncertainty of the most relevant

properties can be found in Section 12.

The basic equation for this high-temperature region is a fundamental equation for the

specific Gibbs free energy g. This equation is expressed in dimensionless form, g = g/( RT ),

and is separated into two parts, an ideal-gas part g o and a residual part g r, so that



36

g p T

RT

,
, , , ,

0 5 0 5 0 5 0 5= = +g p t g p t g p to r (32)

where p = p/p* and t = T */T with R given by Eq. (1).

The equation for the ideal-gas part g o of the dimensionless Gibbs free energy reads

g p to o o
= +

=
∑ln ,ni
i

Ji

1

6

(33)

where p = p/p* and t = T */T with p* = 1 MPa and T* = 1000 K. The coefficients n1
o  and n2

o

were adjusted in such a way that the values for the specific internal energy and specific

entropy in the ideal-gas state relate to Eq. (8). Table 37 contains the coefficients ni
o  and

exponents Ji
o  of Eq. (33).

Table 37. Numerical values of the coefficients and exponents of the ideal-gas part g o of the
dimensionless Gibbs free energy for region 5, Eq. (33)

i Ji
o ni

o i Ji
o ni

o

1 0 – 0.131 799 836 742 01 × 102 4 – 2 0.369 015 349 803 33

2  1 0.685 408 416 344 34 × 101 5 – 1 – 0.311 613 182 139 25 × 101

3 – 3 – 0.248 051 489 334 66 × 10-1 6  2 – 0.329 616 265 389 17

The form of the residual part g r of the dimensionless Gibbs free energy is as follows:

g p tr =
=
∑ ni

I

i

Ji i

1

5

, (34)

where p = p/p* and t = T */T with p* = 1 MPa and T * = 1000 K. The coefficients ni and

exponents Ii and Ji of Eq. (34) are listed in Table 38.

All thermodynamic properties can be derived from Eq. (32) by using the appropriate

combinations of the ideal-gas part g o, Eq. (33), and the residual part g r, Eq. (34), of the

dimensionless Gibbs free energy and their derivatives. Relations between the relevant

thermodynamic properties and g o and g r and their derivatives are summarized in Table 39.

All required derivatives of the ideal-gas part and of the residual part of the dimensionless

Gibbs free energy are explicitly given in Table 40 and Table 41, respectively.



37

Table 38. Numerical values of the coefficients and exponents of the
residual part g r of the dimensionless Gibbs free energy for
region 5, Eq. (34)

i Ii Ji ni

1 1 0 – 0.125 631 835 895 92 × 10-3

2 1 1 0.217 746 787 145 71 × 10-2

3 1 3 – 0.459 428 208 999 10 × 10-2

4 2 9 – 0.397 248 283 595 69 × 10-5

5 3 3 0.129 192 282 897 84 × 10-6

Table 39. Relations of thermodynamic properties to the ideal-gas part go and the residual part g r of
the dimensionless Gibbs free energy and their derivatives a when using Eq. (32)

Property Relation

Specific volume
v g p T= � �/1 6 v
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Table 40. The ideal-gas part g o of the dimensionless Gibbs free
energy and its derivatives a according to Eq. (33)

g o = lnp + ni
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Table 41. The residual part g r of the dimensionless Gibbs free energy and its
derivatives a according to Eq. (34)
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Range of validity

Equation (32) covers region 5 of IAPWS-IF97 defined by the following temperature and

pressure range:

1073.15  K  ≤  T  ≤  2273.15 K 0  <  p  ≤  10 MPa .

In this range Eq. (32) is only valid for pure undissociated water, any dissociation will have to

be taken into account separately.

Computer-program verification

To assist the user in computer-program verification of Eq. (32), Table 42 contains test

values of  the most relevant properties.

Table 42. Thermodynamic property values calculated from Eq. (32) for selected values of T and p a

T = 1500 K,

p = 0.5 MPa

T = 1500 K,

p = 8 MPa

T = 2000 K,

p = 8 MPa

v / (m3 kg–1) 0.138 455 354 × 101 0.865 156 616 × 10–1 0.115 743 146

h / (kJ kg–1) 0.521 976 332 × 104 0.520 609 634 × 104 0.658 380 291 × 104

u / (kJ kg–1) 0.452 748 654 × 104 0.451 397 105 × 104 0.565 785 774 × 104

s / (kJ kg–1 K–1) 0.965 408 431 × 101 0.836 546 724 × 101 0.915 671 044 × 101

cp / (kJ kg–1 K–1) 0.261 610 228 × 101 0.264 453 866 × 101 0.285 306 750 × 101

w / (m s–1) 0.917 071 933 × 103 0.919 708 859 × 103 0.105 435 806 × 104

a It is recommended to verify programmed functions using 8 byte real values for all three combinations of T and

p given in this table.

10  Consistency at Region Boundaries

For any calculation of thermodynamic properties of water and steam across the region

boundaries, the equations of IAPWS-IF97 have to be sufficiently consistent along the

corresponding boundary. For the properties considered in this respect, this section presents the

achieved consistencies in comparison to the permitted inconsistencies according to the so-

called Prague values [13].

10.1  Consistency at Boundaries between Single-Phase Regions

For the boundaries between single-phase regions the consistency investigations were

performed for the following basic equations and region boundaries; see Fig. 1:

• Equations (7) and (28) along the 623.15 K isotherm for pressures from 16.53 MPa (ps from

Eq. (30) for 623.15 K) to 100 MPa corresponding to the boundary between regions 1 and 3.
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• Equations (15) and (28) with respect to the boundary between regions 2 and 3 defined by

the B23-equation, Eq. (5), for temperatures between 623.15 K and 863.15 K.

• Equations (15) and (32) with respect to the 1073.15 K isotherm for p ≤ 10 MPa

corresponding to the boundary between regions 2 and 5.

The results of the consistency investigations for these three region boundaries are

summarized in Table 43. In addition to the permitted inconsistencies corresponding to the

Prague values [13], the actual inconsistencies characterized by their maximum and root-mean-

square values, ∆ xmax and ∆ xRMS , along the three boundaries are given for x = v, h, cp , s, g,

and w. It can be seen that the inconsistencies between the basic equations along the

corresponding region boundaries are extremely small.

Table 43. Inconsistencies between basic equations for single-phase regions at the joint region
boundary

Inconsistency
∆ x

Prague
value

Regions 1/3
Eqs. (7)/(28)

∆ xmax   ∆ xRMS a

Regions 2/3
Eqs. (15)/(28)

∆ xmax   ∆ xRMS a

Regions 2/5
Eqs. (15)/(32)

∆ xmax   ∆ xRMS a

∆v/% 0.05 0.004 0.002 0.018 0.007 0.002 0.001

∆ h/ (kJ kg−1) 0.2 0.031 0.014 0.134 0.073 0.020 0.012

∆cp/% 1 0.195 0.058 0.353 0.169 0.081 0.048

∆ s/ (J kg−1 K−1) 0.2 0.042 0.022 0.177 0.094 0.042 0.025

∆g/ (kJ kg−1) 0.2 0.005 0.005 0.005 0.003 0.026 0.021

∆w/% 1 b 0.299 0.087 0.403 0.073 0.021 0.009

a The ∆ xRMS values (see Nomenclature) were calculated from about 10 000 points evenly distributed along the

corresponding boundary.

b The permitted inconsistency value for w is not included in the Prague values.

10.2  Consistency at the Saturation Line

The consistency investigations along the vapor-liquid saturation line were performed for

the properties ps , Ts , and g. The calculations concern the following basic equations and

ranges of the saturation line, see Fig. 1; the way of calculating the inconsistencies D ps , DTs ,

and Dg is also given:

• Equations (7), (15) and (30) on the saturation line for temperatures from Tt = 273.15 K to

623.15 K.
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D ps =  ps, Eq.(7), Eq.(15) −  ps, Eq.(30) (35a)

DTs =  Ts, Eq.(7), Eq.(15) −  Ts, Eq.(31) (35b)

Dg =  g Eq.(7) −  g Eq.(15) (35c)

The calculation of ps and of Ts from Eqs. (7) and (15) is made via the Maxwell criterion

(phase-equilibrium condition) for given values of T or p. The g values are determined for

given T values and corresponding ps values from Eq. (30).

• Equations (28) and (30) on the saturation line for temperatures from 623.15 K to

Tc = 647.096 K.

D ps =  ps, Eq.(28) −  ps, Eq.(30) (36a)

DTs =  Ts, Eq.(28) −  Ts, Eq.(31) (36b)

Dg =  g�Eq.(28), Eq.(30) −  g�Eq.(28), Eq.(30) (36c)

The calculation of ps and Ts from Eq. (28) is made via the Maxwell criterion for given

temperatures or pressures, respectively. The inconsistency Dg corresponds to the difference

g′( r ′, T ) - g″( r ″, T ) which is calculated from Eq. (28) after r ′ and r ″ are determined from

Eq. (28) by iteration for given T values and corresponding ps values from Eq. (30).

• Equations (7), (15) and (28) on the saturation line at 623.15 K. This is the only point on the

saturation line where the validity ranges of the fundamental equations of regions 1 to 3

meet each other.

D ps =  ps, Eq.(7), Eq.(15) −  ps, Eq.(28) (37a)

DTs =  Ts, Eq.(7), Eq.(15) −  Ts, Eq.(28) (37b)

Dg =  g Eq.(7), Eq.(15) −  g Eq.(28) (37c)

All three properties ps and Ts and g are calculated via the Maxwell criterion from the

corresponding equations.

The results of these consistency investigations along the saturation line are summarized in

Table 44. In addition to the permitted inconsistencies corresponding to the Prague values [13],

the actual inconsistencies characterized by their maximum and root-mean-square values,

∆ xmax and ∆ xRMS , for the two sections of the saturation line are given for x = ps , Ts and g.

It can be seen that the inconsistencies between the basic equations for the corresponding single-

phase region and the saturation-pressure equation are extremely small. This statement also

holds for the fundamental equations, Eqs. (7), (15), and (28), among one another and not only

in relation to the saturation-pressure equation, Eq. (30), see the last column in Table 44.
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Table 44. Inconsistencies between the basic equations valid at the saturation line

Inconsistency
∆ x

Prague
value

Tt ≤ T ≤ 623.15 K
Eqs. (7),(15)/(30)

∆ xmax   ∆ xRMS a

623.15 K ≤ T ≤ Tc

Eqs. (28)/(30)

∆ xmax   ∆ xRMS a

T = 623.15 K
Eqs. (7),(15)/(28)

∆ ps/% 0.05 0.0069 0.0033 0.0026 0.0015 0.0041

∆ Ts/% 0.02 0.0006 0.0003 0.0003 0.0002 0.0006

∆g/ (kJ kg−1) 0.2 0.012 0.006 0.002 0.001 0.005

a The ∆ xRMS values (see Nomenclature) were calculated from about 3000 points evenly distributed along the two

sections of the saturation line.

11  Computing Time of IAPWS-IF97 in Relation to IFC-67

A very important requirement for IAPWS-IF97 was that its computing speed in relation to

IFC-67 should be significantly faster. The computation-speed investigations of IAPWS-IF97

in comparison with IFC-67 are based on a special procedure agreed to IAPWS.

The computing times were measured with a benchmark program developed by IAPWS;

this program calculates the corresponding functions at a large number of state points well

distributed proportionately over each region. The test configuration agreed on was a

PC Intel 486 DX 33 processor and the MS Fortran 5.1 compiler. The relevant functions of

IAPWS-IF97 were programmed with regard to short computing times. The calculations with

IFC-67 were carried out with the ASME program package [14] speeded up by excluding all

parts which were not needed for these special benchmark tests.

The measured computing times were used to calculate computing-time ratios

IFC-67 / I A P W S - IF97, called CTR values in the following. These CTR values, determined

in a different way for regions 1, 2, and 4 (see Section 11.1) and for regions 3 and 5 (see

Section 11.2), are the characteristic quantities for the judgment of how much faster the

calculations with IAPWS-IF97 are in comparison with IFC-67. Metastable states are not

included in these investigations.

11.1  Computing-Time Investigations for Regions 1, 2, and 4

The computing-time investigations for regions 1, 2, and 4, which are particularly relevant

to computing time, were performed for the functions listed in Table 45. Each function is

associated with a frequency-of-use value. Both the selection of the functions and the values

for the corresponding frequency of use are based on a worldwide survey made among the

power plant companies and related industries.

For the computing-time comparison between IAPWS-IF97 and IFC-67 for regions 1, 2,

and 4, the total CTR value of these three regions together was the decisive criterion, where the
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frequencies of use have to be taken into account. The total CTR value was calculated as

follows: As has been described before, the computing times for each function were

determined for IFC-67 and for IAPWS-IF97. Then, these values were weighted by the

corresponding frequencies of use and added up for the 16 functions of the three regions. The

total CTR value is obtained from the sum of the weighted computing times for IFC-67 divided

by the corresponding value for IAPWS-IF97. The total CTR value for regions 1, 2, and 4

amounts to
CTRregions 1, 2, 4 = 5.1 . (38)

This means that for regions 1, 2, and 4 together the property calculations with IAPWS-IF97

are more than five times faster than with IFC-67.

Table 45. Results of the computing-time investigations of IAPWS-
IF97 in relation to IFC-67 for regions 1, 2, and 4 a

Region b Function
Frequency

of use
%

Computing-time
ratio

IFC-67 / IF97

1

v ( p, T )
h ( p, T )
T ( p, h )
h ( p, s )

2.9
9.7
3.5
1.2

2.7
2.9

24.8
10.0

S  region 1:    5.6 c

2

v ( p, T )
h ( p, T )
s ( p, T )
T ( p, h )
v ( p, h )
s ( p, h )
T ( p, s )
h ( p, s )

6.1
12.1
1.4
8.5
3.1
1.7
1.7
4.9

2.1
2.9
1.4

12.4
6.4
4.2
8.1
5.6

S  region 2:    5.0 c

4

ps( T )
Ts( p )
h�( p )
h�( p )

8.0
30.7
2.25
2.25

1.7
5.6
4.4
4.2

S  region 4:    4.9 c

S  regions 1, 2 and  4:    5.1 c

a Based on the agreed PC Intel 486 DX 33 with MS Fortran 5.1 compiler.
b For the definition of the regions see Fig. 1.
c This CTR value is based on the computing times for the single

functions weighted by the frequency-of-use values; see text.
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Table 45 also contains total CTR values separately for each of regions 1, 2, and 4. In
addition, CTR values for each single function are given. When using IAPWS-IF97 the
functions depending on p,h and p,s for regions 1 and 2 and on p for region 4 were calculated
from the backward equations alone (functions explicit in T ) or from the basic equations in
combination with the corresponding backward equation.

If a faster processor than specified above is used for the described benchmark tests, similar
CTR values are obtained. A corresponding statement is also valid for other compilers than the
specified one.

11.2  Computing-Time Investigations for Regions 3 and 5

For regions 3 and 5 the CTR values only relate to single functions and are given by the
quotient of the computing time needed for IFC-67 calculation and the computing time when
using IAPWS-IF97; there are no frequency-of-use values for functions relevant to these two
regions.

For region 3 of IAPWS-IF97, corresponding to regions 3 and 4 of IFC-67, the computing-
time investigations relate to the functions p ( v,  T ),  h ( v,  T ), cp ( v,  T ), and s ( v,  T ) where 10 % of
the test points are in region 4 of IFC-67. For region 5 of IAPWS-IF97, the computing-time
investigations relate only to the functions v ( p,  T ), h ( p,  T ), and cp ( p,  T ), where the CTR
values were determined for 1073.15 K, the maximum temperature for which IFC-67 is valid.

Table 46 lists the CTR values obtained for the relevant functions of regions 3 and 5.
Roughly speaking, IAPWS-IF97 is more than three times faster than IFC-67 for region 3 and
more than nine times faster for the 1073.15 K isotherm where region 5 overlaps IFC-67.

Table 46. Results of the computing-time investiga-
tions of IAPWS-IF97 in relation to IFC-67
for regions 3 and 5 a

Region b Function
Computing time

ratio
IFC-67 / IF97

3

p ( v,  T )

h ( v,  T )

cp ( v,  T )

s ( v,  T )

3.8

4.3

2.9

3.2

5
v ( p,  T )

h ( p,  T )

cp ( p,  T )

8.9 c

11.9 c

15.8 c

a Based on the agreed PC Intel 486 DX 33 with MS Fortran 5.1
compiler.

b For the definition of the regions see Fig. 1.
c Determined for the 1073.15 K isotherm for which IFC-67 is

valid.
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12  Estimates of Uncertainties

Estimates have been made of the uncertainty of the specific volume, specific isobaric heat

capacity, speed of sound, and saturation pressure when calculated from the corresponding

equations of IAPWS-IF97. These estimates were derived from the uncertainties of

IAPWS-95 [3], from which the input values for fitting the IAPWS-IF97 equations were

calculated, and in addition by taking into account the deviations between the corresponding

values calculated from IAPWS-IF97 and IAPWS-95. Since there is no reasonable basis for

estimating the uncertainty of specific enthalpy (because specific enthalpy is dependent on the

selection of the zero point, only enthalpy differences of different size are of interest), no

uncertainty is given for this property. However, the uncertainty of isobaric enthalpy differences

is smaller than the uncertainty in the isobaric heat capacity.

For the single-phase region, tolerances are indicated in Figs. 3 to 5 which give the estimated

uncertainties in various areas. As used here "tolerance" means the range of possible values as

judged by IAPWS, and no statistical significance can be attached to it. With regard to the

uncertainty for the speed of sound and the specific isobaric heat capacity, see Figs. 4 and 5, it

should be noted that the uncertainties for these properties increase drastically when approaching

the critical point. The statement "no definitive uncertainty estimates possible" for temperatures

above 1273 K is based on the fact that this range is beyond the range of validity of IAPWS-95

and the corresponding input values for IAPWS-IF97 were extrapolated from IAPWS-95. From

various tests of IAPWS-95 [3] it is expected that these extrapolations yield reasonable values.

For the saturation pressure, the estimate of uncertainty is shown in Fig. 6.
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Fig. 3. Uncertainties in specific volume, Dv /v, estimated for the corresponding equations of IAPWS-IF97. In the

enlarged critical region (triangle), the uncertainty is given as percentage uncertainty in pressure, Dp/p.

This region is bordered by the two isochores 0.0019 m3 kg-1 and 0.0069 m3 kg-1 and by the 30 MPa

isobar. The positions of the lines separating the uncertainty regions are approximate.

Fig. 4. Uncertainties in specific isobaric heat capacity, Dcp /cp, estimated for the corresponding equations of

IAPWS-IF97. For the definition of the triangle around the critical point, see Fig. 3. The positions of the

lines separating the uncertainty regions are approximate.
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Fig. 5. Uncertainties in speed of sound, Dw /w, estimated for the corresponding equations of IAPWS-IF97. For

the definition of the triangle around the critical point, see Fig. 3. The positions of the lines separating the

uncertainty regions are approximate.

Fig. 6.  Uncertainties in saturation pressure, Dps /ps, estimated for the saturation-pressure equation, Eq. (30).
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