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ABSTRACT

Beause of its promise of natural interaction, recognition is
coming into its own as a mainstream technology for use
with computers. Both commercial and research applica
tions are beginning to use it extensively. However the &-
rors made by reagnizers can be quite wstly, and this is
increasingly beaming a focus for researchers. We present
asurvey of existing error corredion techniques in the user
interface These mediation techniques most commonly fall
into ane of two strategies, repetition and choice Based on
the needs uncovered by this survey, we have developed
OOPS atodkit that supports resolution of input ambiguity
through mediation. This paper describes four new inter-
action tedhniques built usng OOPS and the todkit
medchanisms required to huild them. These interaction
techniques each address problems not direaly handled by
standard approaches to mediation, and can all be re-used
in avariety of settings.

INTRODUCTION

Beause of its promise of natural interaction, recognition is
coming into its own as a mainstream technology for use
with computers. Reaognition is being used in persona
asgstants such as the PalmPilot™, as well as on the desk-
top (e.g. IBM’s Viavoice™). Research initiativesin areas
such as multimodal computing are investigating how to
buil d effedive, usable appli cations involving recognizers.

However, the arors made by reagnizers can be quite
costly and annoying for users to corred, and this is in-
creasingly becoming a focus of research [7,11,23,28,30]
For example, when studying a speed dictation system,
Halverson et al. found that input speals deaease from the
120 words per minute (wpm) of conversational speed to
25wpm duein large part to time spent correding reaogni-
tion errors [11]. These erors are @rreded through ex-
plicit user interaction. For example, a user can delete mis-
reaognized words and then repeat them.

This repetition of input is one of the two common classes
of interaction techniques for correding recognition errors.
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The other common classgives the user a choice of differ-
ent posgble interpretations of her input. We all repetition
and choice mediation techniques becuse they are mediat-
ing between the user and the mmputer to spedfy the cr-
red interpretation of the user’sinput. Tables1 and 2 show
some of the variations of bath repetition and choice tech-
niques that we found in the literature. Figure 1 shows an
example of a hybrid mediator from IBM’s Viavoice™
system. It provides a choicetednique (an n-best list) with
an escape path to a repetition technique.  Other commer-
cial systems such as the Apple MessgePad™ and
DragonDictate™ provide similar hybrids. Choice and
repetition strategies have a fairly wide range of posshble
instantiations, making mediation techniques ripe for reus-
able todkit-level support.

In general, the goal of perfed reamgnition is difficult to
achieve because crred recognition is best defined as what
the user intends. Sincea system cannot know thisa priori,
we model possble interpretations of user input internally
as ambiguots input. Mediation techniques then serve to
resolve this ambiguity, helping to determine which of
those potential interpretations is the wrred one, the one
the user intended. In order to do this properly, integrated
architedural support for ambiguity at the input-handling
leve is required. This makes it possble to track which
interactors use ambiguous information and will need to be
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Figure 1: An nbest list from the Viavoice™ speech
system [3]. Note that it provides a text entry areafor me-
diation by repetition. Illustration reprinted with permis-
sion from IBM Corporation.



notified when interpretations are accepted or rejeded.
With such integrated support, we @n treat al events the
same way whether they are generated by a recognizer, sen-
sor, mouse, or keyboard. We have developed a todkit,
called the Organized Option Pruning System (OOPS that
provides these features, introduced in [19,20].

The important contribution of OOPS s the separation of
recognition and mediation from application development.
The separation of reaognition leads to the ability to adapt
mediation to situations which do not sean to be recogni-
tion-based, but where some problem in interaction causes
the system to do something other than what the user in-
tended (our ultimate definition of error). The separation of
mediation allows us to develop complex mediation inter-
actions independent of bath the source of ambiguity and
the application. It also alows us to defer mediation for
arbitrary periods when appropriate. OOPS also provides
hooks that facilitate application-spedfic mediation in
situations that benefit from spedfic knowledge to do the
right thing, such as dealing with errors of omission.

In addition to an architedure, OOPSincludes a library of
mediators that fill out the design space ill ustrated in Ta-
bles 1 and 2, described in the next sedion. In particular,
we have built re-usable, generic choice and repetition me-
diators that can be easily modified along the dimensions
shown.

The focus of the work presented here is on expanding the
repertoire of mediation tedniques into settings where
standard techniques, such as the n-best list in Figure 1,
face problems. The work described in this paper involves
the design and implementation of re-usable mediation
tedhniques that address ®me of the deficiencies or prob-
lems not handled well by the standard set of techniques
found in the literature. We begin by describing the design
spacein more detail in the next sedion. After introducing
the todkit concepts necessary to understand our solutions

to these problems in the foll owing sedion, we will discuss
each probem in detail. The first problem involves addng
alternatives to choice mediators, as the wrred answer (as
defined by the user) may not appear in the list of choices.
The seond problem, ocdusion, ocaurs because doice
mediators may cover important information when they
appear. The third probdem we address is mediation for
target ambiguity, which can arise when there are multiple
possble targets of a user action (such as sleding part of a
drawing). Finaly, our fourth mediator ill ustrates one way
to deal with errors of omisson, where the user’s input is
completely missed by the recognizer.

DESIGN SPACE

Mediation is the process of seleding the @rred interpre-
tation of the user'sinput (as defined by the user). Because
of this, mediation often involves the user in determining
the wrred interpretation of her input. Automatic media-
tion, which does not involve the user, is also fully sup-
ported by OOPS although not a focus of this paper. Good
mediators (components or interactors representing spedfic
mediation strategies) minimize the dfort required of the
user to corred remgnition errors or sded interpretations.
This dion presents a survey of existing interfaces to rec-
ognition systems, including speed reaognition, handwrit-
ing reaognition, gesture reaognition, word prediction, and
others (expanded from [19)]).

The survey led us to identify two basic categories of inter-
active mediation techniques. The first, and most common
mediation strategy, is repetition. In this mediation strat-
egy, the user repeats her input until the system corredly
interprets it. In the semnd strategy, choice the system
displays sveral alternatives and the user seledsthe wrred
answer from among them.

Repetition
When the user spedfies the @rred interpretation of her
input by explicitly repeating some or al of it, we refer to

1/0 System Repair M odality Undo Repair Granularity
Handwriting | MessagePad™|[1], Microsoft Soft keyboard, or indvidua | Automatic Letters
[ Words Pen for Windows™ letter writing
Speech Viavoice™[3] Speech, letter spelli ng, typing Automatic Letters or words
/Pvr:/g;g Suhm speech dictation [30] Voice, pen User must select | Lettersor words
areato replace
Speech Chatter [22] Speech, letter spelling, military | Automatic Letters
/ Names spelli ng, with escape to choice
(non GUI)
Typing Word Prediction [2,10,25] Letters (as user enters addi- | Unnecessary (user | Letters
/ Words tional characters, new choices | has to explicitly
POBOX [21] are generated) acoept a choice)

Table 1: A representative set of systems (as defined by their input and output modaliti es) that vary along the dimensions of repetition
mediators. All of these systems provide alditionally unmediated repetiti on, in which the user deletes an entry and repeds it using the
origina system modality. In contrast, a system which does not provide mediated repetition is the PalmPilot™. I/O gives input/output
of recognizer. Systems are representative examples. Milit ary spelli ng uses “alpha” for ‘a’, “bravo” for ‘b’, etc.



this as repetition. For example, when a recognizer makes
an error of omissgon (and thus generates no alternatives at
all), this option is avail able to the user. Spedfic examples
aregivenin Table1l. See[28] for adiscusgon of how such
variations may affed input speeds. Below are the three
dimensions of repetition:

Modality: The user often has the option of repeating her
input in a different (perhaps less error-prone) modality.
However, research in speet systems sows that users
may choose the same modality for at least one repair be-
fore switching [11], despite the fact that the repair will
have lower reaognition accuracy [7].

Undo: In order to repeat her input, the user may first have
to undo some or all of it. Thisis most often required of
systems without explicit support for mediation (e.g. the
PalmPil ot™).

Repair granularity: Repair granularity may differ from
input granularity. For example, the user may speak
words or phrases, yet repair individual letters[30].

Choice
When the user seleds the @rred interpretation of her in-

put from a set of choices presented by the system, we refer
to this as choice mediation. The n-best list in Figure 1 is
an example of this. Like repetition, choice mediators vary
aong a set of common dimensions. We ill ustrate the di-
mensions below by comparing two examples, the n-best
list used in Viavoice™ (Figure 1) and the Pegasus draw-
ing beautification system (Figure 2). Pegasus reagnizes
user input as lines and supports rapid sketching of geomet-
ric designs[14]. Additional examplesaregiven in Table 2.

Layout: The n-best list uses a menu layout. In contrast,
Pegasus does layout “in place’. Posdble lines are smply
displayed in the location they will eventually appear if
sdeded (Figure 2(c&€)).

Instantiation time: The n-best list can be instantiated by a
speet command, or can be always visible (even when no
ambiguity is present). Pegasus dows the aternative
lines as 0N asthey are generated.

Contextual information: Pegasus also shows contextual
information about the lines by indicating the @nstraints
that were used to generate them (Figure 2(c&€)). The n-
best list, which is more generic, shows no additional in-
formation.

/0 System L ayout Instantiation Context Interaction Feedback
Handwriting MessgePad'™ | Linear menu | Double click Original ink Click on choice ASCIl words
[ Words [1]
Speech Viavoice™ [3] | Linea menu | Speech command | None Speech command | ASCII words
/ Words / Continuous
Speech/Comma | Brennan and Spoken On System state | Natural language | Pos.&neg.
nds (non GUI) Hulteen [4] phrases completion (audio icons) evid.-nat. lang.
Handwriting Goldberg et Al. | Below On None Click on choice ASCII letters
[ Characters [9] top choice completion
Typing Assgstive Tech. | Bottom of Continuously None Click on choice ASCIl words
/ Words (Word [2, 10 screen (grid)
prediction) -

Netscape™ In place Continuously None Returns to select, | ASCIlI words

[25] arrow for more
Gesture Marking Menu | Piemenu On pause None Flick at choice Commands,
/ Commands [15] ASCII letters
Gesture Beautification | In place On prediction Constraints Click on choice Lines
/ Lines [14] / completion
Context Remembrance | Bottom of Continuously Certainty, result | Keystroke com- | ASCII sen-
| Text Agent [27] screen, excerpts mand tences

linea menu
Ul description/ | UIDE [29] Grid On command None Click on choice Thumbnail s
Interface spec. of results
Multi modal Quickset [23] Linea menu | On Output from mul- | Click on choice ASCII words
/ Commands completion tiple recognizers
Email / Ap- Lookout [12] Pop upagent, | On None Click OK ASCII words
pointment speech, dia completion
logue box

Table 2: The layout, instantiation mode, context, selection, and representation used by commercial and reseach choice mediators. Note
that feedback in the mediator may differ from the final output result of recognition. I/O gives inpu/output of recognizer. Systems are
representative examples.
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Figure 2: A choice mediator in the Pegasus drawing beautifica-
tion system (Figure 7 in [14]). The user can click on a line to
select it (€). © ACM (reprinted with permisgon).

Interaction: In bath examples, interaction is quite
straightforward. In Viavoice™, the user says “Pick
[#].” In Pegasus, the user can seled a choice by clicking
on it (Figure 2(e)). Drawing a new line will automati-
caly accept the auwrrently sdleded choice in Pegasus
(Figure 2(d&f)). The n-best list is only used to corred
errors, the top choiceis always snt to the airrent docu-
ment as on as reagnition is complete.

Feedback: As gated earlier, feedback in Pegasusisin the
form of lines on screen. Contrast this to the ASCII
words used in the n-best list.

In summary

We have identified arich design space of mediators which
fall into two mgjor classes of techniques. Each system we
reference implemented their solutions from scratch, but as
Tables 1 and 2 make dear, the same design dedsions $ow
up again and again. The space of mediation techniquesiis,
therefore, amenable to todkit-level support, and that is
why we built OOPS OOPSincludes bath an architedure
and a library of mediators, including a generic repetition
and a generic dhoice mediator that can be varied along the
dimensions described abowe in a pluggable fashion
[19,20]. We epand upon that work in this paper by iden-
tifying some significant gapsin the design space We were
able to use OOPSto create new mediators which address
the problems responsible for those gaps.

TOOLKIT-LEVEL SUPPORT FOR AMBIGUITY
OOPSis an extension of the subArctic todkit [6]. Herewe
will review the basic features of OOPS discussd in [20],

and describe additional features that facilit ated the devel-
opment of the mediators described in this paper.

In the past, GUI todkits have separated recognized input
from mouse and keyboard input. Even when a reaognizer
generates the same data type as a device (such as text), the
application writer has to take responsbility for informing
interface widgets about information receved from the rec-
ognizer. Both the Amulet [17] and the Artkit [13] todkits
go beyond this model for pen gesture recognition by al-
lowing interactors to receve gesture results through the
same API as mouse and keyboard events.

OOPStakes a step further by al owing recgnizers to pro-
ducearbitrary input events that are dispatched through the
same input handling system as any raw events produced by
mouse or keyboard. Thus, they may be mnsumed by the
same things that consume raw events including, posshly,
other remgnizers. Here we use the term “event” in the
traditional GUI todkit sense, to mean a single discrete
pieceof input (e.g. “mouse down” or “key press(a)”).

A reagnizer produces events that are interpretations of
other events or raw data (such as audio receved from a
microphone). Thisis a very broad definition of reaogni-
tion. Esentialy, a reagnizer is a function that takes
events or raw data & input and produces interpretations
(also events) as output. For example, a reagnizer might
produce text from mouse events (which, as described
abowe, is dispatched and might then be cmnsumed by a
standard text entry widget such as the one in Figure 4). It
could start with text and produce more text. Or it could
start with audio and produce mouse events (which might
cause a button to depresg. It might also produce a new
event type such asa“command” or “interaction” event.

As mentioned in the previous dion, a reagnition error
is defined by the user's intent and neither the reagnizer
nor OOPS necessarily knows what the @rred interpreta-
tion is. It is through automatic or interactive mediation
that this is determined. Until mediation is completed,
OOPS stores information about all known posshble inter-
pretations. We refer to the input as ambiguous at this
point. Information about ambiguity is kept in a hierarchi-
cal ambiguous event graph in OOPS (which can be seen as
an extension of the commmand objeds described in [24]).
Raw input such as mouse down, drag, and up events make
up the roat nodes of that graph. Whenever input is inter-
preted, a node representing the new interpretation is added
tothe graph. For example, the graph shown in Figure 3(b)
represents a series of mouse events that have been inter-
preted as a stroke, and then reaognized as either a'c’ or an
's'. The'c' and 's' are ambiguous (only one of them is
corred). A graph nodeis considered ambiguous when it is
one of multi ple interpretations.

OOPS provides infrastructure for tracking ambiguity and
for resolving ambiguity (mediation). By providing a con-
sstent, reagnizer-independent internal model of ambigu-
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Figure 3: (a) A sketched letter and associated mediator.
(b) Our internal representation of the events making up the
sketched, recognized stroke.

ity, OOPSis able to provide re-usable support for media-
tion. For example, when the stroke in Figure 3(a) is inter-
preted asa ‘c’ or an ‘s’, OOPS automatically sends the
event hierarchy to the mediation subsystem because part of
it isambiguous. The default choice mediator (Figure 3(a))
simply displays the leaf nodes of the hierarchy. When the
user seleds hisintended input, it is accepted, and the other
interpretation is rejeded, resolving the ambiguity.

Most interpretations in OOPS are generated and ds
patched duing an initial input cycle before the start of
mediation. When a new interpretation is created after me-
diation has begun, it is dispatched as well, and the event
hierarchy being mediated is updated, along with any cur-
rent mediators. Any events that have already been ac-
cepted or rejeded remain that way.

OOPS supports bath automatic mediation and a variety of
interactive doice and repetition techniques. Mediation in
OOPS may ocaur immediately or at any later time deter-
mined by the arrent mediator. Thus, a mediator may
choose to wait for further input, or smply defer mediation
until an appropriate time in the interaction.

When separation is too separate

As gated, we provide a recognizer-independent internal
model of ambiguous input in OOPSwhich all ows the sepa-
ration of recognition, mediation, and application develop-
ment. However, there are times when two a more of these
pieces may neel to communicate. For example, recogniz-
ers may wish to know which interpretations are accepted
or regjeded by mediators in order to facilitate learning.
OOPS stores information about who created each event in
order to inform those reaognizers about which of their in-
terpretations are accepted or rgjeded by the user.

In addition to creating events and receving accept/rejed
messages, reamgnizers in OOPS may support guided re-
reaognition. Guided re-recognition allows a recognizer to
recave more detailed information than a simple reged.
This information may be domain spedfic, and includes an
event that should be re-recognized. The intent isto allow a

reaognizer to make a better guessas to how to interpret the
user'sinput. Reagnizers supporting guded re-reaognition
must implement the rerecognize(event, Object) method,
where evant is an event that the reagnizer interpreted at
some time in the past and Objed may contain additional
domain-spedfic information.

For example, a choice mediator could have a “none of the
abowe” option. If the user sdleds it, that mediator could
ask the reaognizer(s) that generated the arrent set of
choices to rerecognize() each of their source events. |If
there is more than one source event for a given interpreta-
tion, the mediator may call the resegment(Set, Object)
method instead. This tells the recognizer that a mediator
has determined that the events in Set should be treated as
one segment and re-interpreted.

Thus far, we have described the minimal architedural
support required by all of our example mediators. 1n addi-
tion to this architedure, we provide a library of standard
mediators in OOPS Since OOPS allows sparation of
mediation from recognition and from the application, it is
possble to swap between different mediation strategies
without redesigning any reagnizers or the appli cation.

The next four sedions consider four new mediation ted-
niques. Each of these techniques is designed to ill ustrate a
method for overcoming a problem with existing mediation
tedhniques. In each sedion, after discussng the identified
problem area (adding alternatives, ocdusion, target ambi-
guity, and omisdgon), and a new interaction technique that
addresss it, spedfic todkit medanisms necessary to sup-
port these solutions will be @mnsidered.

ADDING ALTERNATIVES TO CHOICE MEDIATORS

One probem with choicemediatorsis that they only let the
user seled from a fixed set of choices. If none of those
choices is right, the dhoice mediator is effedively useless
For example, as Figure 1 ill ustrates, if the user intended to
say ‘f or’, the choice mediator cannot help her—she must
escape to a repetiti on technique (spelli ng the word).

Our goal isto support a smoath transtion from seledion of
an existing choiceto spedfication of a new one. Our solu-
tion is to extend an n-best list to include some support for
repetition. We allow the user to spedfy new interpreta-
tionsaswel asto seded from existing ones using the same
mediator.

For example, in the application shown in Figure 4, the
user can sketch Graffiti ™ letters, which are recognized as
characters (by [18]). A word predictor then reaognizes the
characters as words, generating many more doices than
can be displayed by the mediator. When the graffiti | etters
are ambiguous, the word-predictor returns words gdarting
with each possble letter. Once mediation is completed,
the text edit window updates to show the wrred choice
Our goalsin this mediator are:
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Figure 4. A choice mediator which supports gecification. The user is writing ‘messges’. (a) The user sketches a
letter pA  which is interpreted as either a‘m or a‘w by a character recognizer. A word predictor then generates options for
both letters. The user clicksonthe ‘e’ in‘nme.’ (b) This causes the mediator to filter out all words that do not begin with ‘ne.’
The word ‘nessage’ is now the top choice, but it needs to be pluralized. The user clicks on the space dter ‘message’ indi-
cating that the mediator should generate aword beginning with ‘nmessage’ but one character longer. (c) The resulting word.

Provide choice at the word level: The user can sded
from among choices as he did in a standard choice me-
diator, by clicking on the gray button to the right of a
word.

Allow usersto contral filtering: By clicking on a charac-
ter, the user spedfies a prefix. The mediator refleds this
by displaying only words garting with the same prefix.
Although word-predictors support dynamic filtering, in
most cases, a prefix can only be spedfied by entering
each letter in the prefix in turn. If the user filters repest-
edly on the same prefix, the mediator will display a new
set of words each time.

Allow user s to specify length: by clicking on the space at
the end of a word, the user causes the mediator to add a
character to that word.

Allow users to specify individual characters: The user
can right-click on a character to cycle through other pos-
sible daracters. This can be used to generate words not
returned by the word-predictor.

Allow users an escape: if the user sketches a new letter,
only the airrent prefix will be accepted.

Suppose the user enters anv  (for which the graffiti rec-

ognizer returns ‘m and ‘w). The word predictor returns
words garting with ‘ni and ‘w (derived from a frequency
analysis of a corpus of email messages), of which the me-
diator displays the top choicess was, wed, non, ...
(Figure 4(a)). The user, who intended ‘nessages’, fil-
ters for words garting with ‘e’ by clicking on the ‘e’ in
‘me.” Theresulting list (Figure 4(b)) includes ‘message’,
but not ‘nessages.’ The user indicates that a word one
character longer than ‘nessages’ is neeaded by clicking
on the space at the end of the word, and ‘nessages’ ap-
pears as the top choice (Figure 4(c)). The user sdeds this
chaiceby clicking on the gray button to its right.

Was this mediator really useful? Without word prediction,
the user would have had to sketch 8 characters. Given an
85% acauracy rate (typical for many reagnizers), she
would have to corred at least one letter (with a total of at
least 9 strokes). Here, the user has sketched one letter and
clicked 3 times. While this is only one data point, it
should be noted that the mediator is built with appropriate
defaults o that if the user simply ignores it and sketches
the 8 characters, the result will be identical to a situation
without word-prediction.

Figure5: (a) The original event hierarchy in Figure 4 (a-c) and (b) the final hierarchy after mediation.
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Figure 6: An example of fluid negatiation to position a mediator in the Burlap application. (a) The user needs to mediate whether
the object on the bottom left edge is a checkbox or radiobutton. (b) This mediator (an n-best list) ocdudes ome of the sketched
interactors. () This mediator repositions all i nteractors that intersect with it so as to remove any ocdusion.

Toolkit support for adding alternatives

This example dynamically generates new interpretations
during mediation. In the example of Figure 4, a new in-
terpretation (‘messages’) is created. All other interpre-
tations are rgeded. Figure 5 shows the origina and
changed hierarchy. The new event is accepted immedi-
ately since the user just spedfied that it was corred using
the mediator. It is then dispatched, with the result that it
is consumed by the text edit window. No further media-
tion is necessary since neither the new event nor the event
hierarchy it is added to is ambiguous.

Reusability

This mediator can be used with any reagnizer that returns
text, including speedt reaognition or handwriti ng recogni-
tion, since the alternatives generated by these recognizers
tend to have some simil arities to the intended word. For
example, some of the dharacters in a written word may be
reagnized corredly while others are not. The general
idea, to add interactivity supporting repetition to a selec-
tion task, can be applied to aher domains as wel. For
example, the automatic beautifier, Pegasus, uses a choice
mediator to display multiple lines [14]. Repetition could
be added to this by all owing the user to drag the end point
of alinearound. Thiswould also all ow Pegasus to display
fewer aternatives in cases where too many are generated,
in which case the line culd snap to hidden interpretations.

OCCLUSION IN CHOICE MEDIATORS

Choice mediators generally display several possble inter-
pretations on the screen for the user to seled from. They
are fairly large, and may obscure important information
neaded by the user to seled the crred choice Sincethey
are also temporary, it doesn't make sense to leave screen
space open just for them. An alternative is to dynamically
make spacefor them.

For example, consider Burlap, the application shown in
Figure 6 [20]. Burlap is adrawing program for sketching
user interface déements, based on SILK [16]. The user can
sketch buttons, scroll bars, and so-on. Theseinteractors are
reaognized and becme interactive. However, reaognition
is error-prone. For example, chedkbaxes are esily con-
fused with radiobuttons.

The n-best list in Figure 6(b) is obscuring two huttons. Is
the leftmost sketch a chedkbax or a radiobutton? This type
of ambiguity is not mediated in Burlap until the user tries
to interact with a button. So he may have drawn the hid-
den buttons me time ago. In order to be mnsistent, the
user may neel to seethe buttons now in order to determine
their status.

Our solution moves the sketches ocduded by the mediator
into a more visible location (Figure 6(c)). This approach
is based on one of the interface techniques used in fluid
negatiation, a concept that Chang et al. developed for
handling temporary displays of information [5]. Some of
the possble approaches they suggested include shrinking,
fading, and call-outs. In [5], the temporary display negoti-
ated the best approach with the underlying document.
Because our mediator is used for input as well as output,
and is the focus of the interaction, we have dosen a tech-
nique that only changes the underlying document (the
sketched interface), not the size or shape of the mediator.

Toolkit support for dealing with occlusion

This is acoomplished in a way that requires no changes to
the underlying application. The only difference between
the application shown in Figure 6(b) and (c) is which me-
diator is installed. The new mediator is based on a lens
that uses the subArctic interactor treeto pick out al of the
interactorsthat intersed its bounding box. It then uses the
techniques described in [6] to modify the way they are
drawn (without changing the interactors themselves). This
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Figure 7: (a) The user istrying to click on a button. Which one? (b) A mediator magnifies the aeain order to let the user specify
this (The anbiguous choices are displayed in darker colors). (c) An example of the same mediator being used in Burlap.

mediator is modal, the user is required to resolve the am-
biguity before cntinuing his interaction.

Reusability

This mediator can be used anywhere an n-best list might
be used. For example, considering the mediators described
in Table 1, this includes word-prediction, speeti and
handwriting reaognition in GUI settings, and the Remem-
brance Agent [27]. More generaly, similarly to the fluid
negotiation work, the lens responsible for moving screen
elements out from under the mediator could be combined
with any mediator that is displayed on screen in aGUI. Of
coursg, there are some situations where ocdusion is appro-
priate, such asin the next example.

TARGET AMBIGUITY

We have encountered three major classes of ambiguity in
our work. These are recognition ambiguity (which word
did she write?); segmentation ambiguity (was that "sew
age' or "sewage'?) and target ambiguity. In [20], we
described these dasses of ambiguity in more detail, and
introduced a mediator of segmentation ambiguity. In a-
most al previous g/stems, mediation has only addressd
reaognition ambiguity. Here we demonstrate mediation of
target ambiguity.

Target ambiguity arises when the target of the user's input
isuncertain. For example, it is unclear if the drcle around

thewor intended to include "is" or not.

We are interested in using target ambiguity to model
stuations that, although they may seem ambiguous to the
user, are ommonly treated as draightforward by the com-
puter. In particular, we are interested in situations where
mouse motion becmes difficult. For example, people use
the term “fat finger syndrome’ to refer to stuations in
which the user's finger is larger than the button they want
to press (very small cdl phones, touch screens). In addi-
tion, misalignment on something like a digital white board
can cause a mouse dick to go to the wrong interactor.

Also, certain disabiliti es may make it difficult to control a
mouse, as can age. For example, research shows that older
users have trouble seleding common GUI targets [31] as
do people with disabiliti es such as cerebral palsy.

These problems can be addressed by treating the mouse as
an area instead of a point [31]. However, the resulting
area may overlap more than one interactor (an example of
target ambiguity). We mediate this target ambiguity using
a magnifier (Figure 7(b&c)). This magnifier only appears
when there is a nead due to ambiguity. For context, we
include an area four times the size of the area mouse. The
magnified area is interactive and users can click on inter-
actorsinside it just as they would on an unmagnified por-
tion of the screen. As on as the user completes his
action, or the mouse leaves the magnifier, it goes away.

Toolkit support for target ambiguity

First, target ambiguity is generated by a remgnizer that
chedks for multiple mouse targets. If only one target ex-
ists, the input is processed normally. |If several targets
exist, the results are passed to the mediator.

It is because of our extremely general support of recogni-
tion that thisis possble. For example, when the extended
mouse area (but not the mouse itsdlf) interseds a single
interactor, this recognizer creates a new mouse event over
that interactor as an interpretation of the raw mouse event
it getsasinput. Thisinterpretation is dispatched and con-
sumed by the interactor, which does not even know that a
reaognizer was involved. As far as the interactor is con-
cerned, the user clicked on it.

Our mediator makes use of a lens that magnifies the area
under the input [6]. In addition, the lensis responsible for
adjusting any positional input it gets based on the new size
and position of the pixels it is magnifying.

Reusability

The magnification mediator works with any interface built
in OOPS This includes animated (moving) interactors,
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Figure 8: (a) An interface sketched in Burlap. In the lower right is an urrecognized radiobutton. (b) The user has slected the
radiobutton in order to indicate that re-recognition should occur. (€) Re-recognition is completed, and the result is further ambigu-
ity. One of the posdble interpretations generated was a radiobutton. If that is correct, should the new button be in sequence with

the old one, or should it be separate?

Burlap; and any other interface which uses mouse dicks.
Although it is currently limited to mouse input, in theory it
could be generali zed to any positional inpLi.

ERRORS OF OMISSION

The last problem area aldressd in this paper is errors of
omisgon. An error of omisgon occurs when some or all of
the usar's input is not interpreted at all by the reaognizer.
For example, in Figure 8, the user has ketched a radio
button in the lower right, but those strokes were not reag-
nized. An error of omisson has occurred.

The rules used for reagnition in Burlap are taken from
[16] and are based upon the shape and size of individual
strokes drawn by the user and the graphical relationships
between sets of strokes (such as distance, orientation, etc.).
When the user draws omething too kg, too far apart, or
S0 on, it is not reaognized. In general, the cuses of errors
of omisdon are very reagnizer-dependent. For example,
an error of omisgon may occur in speed recgnition be-
cause the user speakstooquietly.

One solution to this problem is repetition. The user can
samply try the sketch again. However, research in bath
pen [8], and speed [7], rewgnition has found that re-
recognition accuracy rates are no better than reaognition
rates

We addressthis with guided re-recognition. The user can
initi ate re-recognition by sdeding the strokes that should
have been reaognized using the right mouse button. By
doing this, the user is giving the system important new
information. In Burlap’s case, the new information is that
the sdeaed strokes should be interpreted as an interactor.
We @n use this information to eliminate options, such as
interactors that have a different number of strokes.

Toolkit support for guided re-recognition

Esentially what the user is doing in this example is pro-
viding segmentation information to the reagnizer. Al-
though the unistroke gesture regnizer used in Burlap (a

third perty reamgnizer [18]) does not support guided re-
reaognition, the interactor recognizer does. We pass the
seleded strokes to the interactor recognizer using reseg-
ment(Set, Object) method described in the todkit sedion
of this paper. The reagnizer generates a new set of inter-
pretations based on those strokes. Because the reagnizer
now knows the number of strokes, it can quickly narrow
the possgble interactors and generate alternatives.

Since the recognizer generates new events during media-
tion, those events must be dispatched, potentially resulting
in further interpretations. The new events are ambiguous
and OOPS will mediate them (Figure 8(c)), and tell any
currently visible mediators to update themselves to show
the new interpretations. Any events that were already ac-
cepted or rgjeded in the hierarchy remain that way.

Reusability

The same mediator could be applied in other graphical
settings with segmentation isues such as handwriting rec-
ognition. This mediator must be told which recognizer it
should work with (in the @ase of Figure 8, the interactor
reagnizer). It will automatically cache any events gener-
ated by that recognizer. Alternatively, it may be given a
filter that knows enough about the domain to cache the
corred events. In either case, once the user spedfies an
area, any cached events inside that area ae sent to appro-
priate reaognizer to be re-recognized.

CONCLUSIONS AND FUTURE WORK

Recognition today is used in many applications and these
applications make use of some @mmon user-interface
tedhniques, called mediators, for handling the reaognition
errors and ambiguity. However, there are problems with
existing techniques. Some reqognition errors, such as
those cused by target ambiguity and errors of omisgons,
are harder to deal with. Also, there are limitations to how
choiceinterfaces are ommonly handled.



The work described in this paper addresses these problems.
All of the mediators presented in this paper were enabled
by the OOPStodkit. They were built with the intent to be
re-used in many situations.

We have shown that it is possble to huild a variety of
techniques that go beyond the arrrent state of the art in
corredion strategies. Beyond our exploration of the previ-
ously known classes of mediation tedhniques, we have
shown how principled handling of ambiguity at the input
leve allows for mediation in other important settings.

In the future, we wish to explore mediation strategies ap-
pli cable to segmentation errors, non-GUI appli cations, and
command reaognition. All are difficult to mediate because
they have no obvous representation (unlike, for example,
the text generated in handwriti ng recognition).

We also plan to use the OOPStodkit to support empirical
work comparing the dfediveness of different mediation
techniques. OOPScan alow us to kuild a framework for
evaluating existing and new mediation technologies in a
more @ntrolled setting. Because we @an build a variety of
mediators and easily apply them to the same application,
controlled studies to compare the dfediveness of the me-
diation strategies is now made much smpler.
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