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Abstract. In this paper, we describe our effort to build an inference engine for
OWL reasoning based on the rule engine paradigm. Rule engines are very
practical and effective for their representational simplicity and optimized per-
formance, but their limited expressiveness and web unfriendliness restrict their
usability for OWL reasoning. We enumerate and succinctly describe extended
features implemented in our rule engine, Bossam, and show that these features
are necessary to promote the effectiveness of any ordinary rule engine’s OWL
reasoning capability. URI referencing and URI-based procedural attachment
enhance web-friendliness. OWL importing, support for classical negation and
relieved range restrictedness help correctly capture the semantics of OWL. Re-
mote binding enables collaborated reasoning among multiple Bossam engines,
which enhances the engine’s usability on the distributed semantic web envi-
ronment. By applying our engine to the W3C’s OWL test cases, we got a plau-
sible 70% average success rate for the three OWL species. Our contribution
with this paper is to suggest a set of extended features that can enhance the rea-
soning capabilities of ordinary rule engines on the semantic web.

1 Introduction

The semantic web is an extension of the current web in which information is given
well-defined meaning [1], by representing data formally and explicitly in a sharable
way. According to the semantic web stack, ontology and rules are the two key com-
ponents for formal and explicit data representation. To interpret data represented in
ontology and rules and derive new information, an appropriate inference mechanism
is necessary.

There are a number of reasoning mechanisms for the semantic web, but each of
them has its own pros and cons. Dedicated description logic reasoning engines like
FaCT[2] and Pellet[3] are great for their firm theoretical soundness, but they are not
very useful for practical problems as they strictly stick to open-world assumption and
logical perfection. We believe that practical solutions need to provide flexible reason-
ing ability that can deal with dynamic and very conflicting knowledge space. Another
class of tools such as Hoolet [4] and Surnia [5] are based on automatic theorem
provers and share the similar low practicality problem with description logic reason-
ing engines. These reasoning tools cannot deal with ECA rules and do not allow ref-
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erencing external objects in the rules. OWL reasoning engines like Jena [6], F-OWL
[7], and [8] are based on logic programming or production rule system. With effective
reasoning algorithms, they can process rules quite effectively. But [6] does not yet
support negation in its rule language, and JESS-based tools like [8] support only
negation-as-failure so they cannot correctly capture the semantics of OWL which is
based on classical monotonic logic. On the other hand, [7] supports both negation-as-
failure and classical negation, but it does not support procedural attachment. As pro-
cedural attachment is a necessary feature for practical applications, lacking the feature
imposes many problems to utilize the tool in the real setting. Also, these tools put
strict range-restrictedness on the head of rules. Range restrictedness dictates that
every variable in the consequent part should also be present in the antecedent. But to
properly implement entailments imposing OWL comprehension principle, it’s neces-
sary to introduce new variables in the consequent part.

We were motivated by the situation that there’s no reasoning engine that provides
sufficient expressiveness and extra-logical features we identified as required for ef-
fective OWL reasoning. We started to build Bossam as a typical rule engine and then
added to it a set of extended feature elements to promote effectiveness of the engine’s
OWL reasoning capability.

Bossam is a RETE-based forward chaining engine, which is equipped with ex-
tended representational and extra-logical features:

- Support for both negation-as-failure and classical negation
- Relieved range-restrictedness in the rule heads
- Remote binding for cooperative inferencing among multiple rule engines

In the following two sections, we generally characterize Bossam by presenting its
expressiveness and web-friendliness enhancements. In section 4 and 5, we describe
Bossam’s extended expressiveness elements and remote binding feature.

2 Bossam’s Expressiveness

Fig.1 illustrates the expressiveness of Bossam. The outermost rectangle is the bound-
ary of first-order logic’s expressiveness. Description logic and horn logic form two
overlapping fragments inside FOL. Logic programming is largely a part of FOL, but
it contains extra-logical features, such as negation-as-failure, procedural attachment,
conflict resolution etc, which are not characterized inside FOL. The extra-logical
features are essential even though they defile the clarity of a logic system’s formal
characterization. Because, in most real-life applications, interaction with external
objects, rapid decision making etc are key requirements, which are possible only
through employing aforementioned extra-logical features.

As explained in Fig.1, Bossam is based on LP, with two added expressiveness
fragments: (4) and (6). Fragment (4) provides syntactic convenience useful for con-
cise rule writing. Bossam breaks down the rules containing elements of (4) into sev-
eral horn rules according to Lloyd-Topor transformation [9]. With fragment (4), it’s
easy to write OWL inference rules that create an RDF graph with multiple nodes as
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an entailment from a premise document, which is not easy with horn rules. In Bos-
sam, every atom contained in the conjunction at the consequent is derived into a fact
in case of the rule firing. As for the fragment (6), we give detailed description in
section 4.

FOL
/
(1) (3) (%)
(6)
4)
[

Description Logic (DL)=(1)+(2)+(6), Horn Logic (HL)=(2)+(3),
Logic Programming (LP)=(2)+(3)+(5),

Description Logic Programming (DLP)=(2)

(4): A fragment which includes disjunctions in the body and con-
junctions in the head,

(5): NAF, procedural attachment, conflict resolution etc.

(6): Classical negation.

Fig. 1. Expressiveness of Bossam corresponds to (2)+(3)+(4)+(5)+(6).

3 Web Friendliness Enhancements

Any web rules language should make it easy to write rules with URIs. Bossam offers
some simple enhancements with its rule language and its interpreter so that URIs can
be used intuitively in its rule-bases.

3.1 Seamless URI Integration

Bossam facilitates web friendliness by adding URI as its native symbol type. Actu-
ally, all the symbols — except variable symbols — in Bossam’s rule-base are URIs. The
following example shows a rule and a fact, which are written in Bossam rule lan-
guage.

prefix family = http://family.com/Family#;
namespace = http://family.com/Johns#;
rule rl is
if
family:isFatherOf (?x, ?y)
and family:isBrotherOf (?z, ?x)
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then
family:isUncleOf (?z, ?y) ;
fact f1 is
family:isFatherOf (John, Bob) ;

In the example above, family:isFatherOf and family:isBrotherOf
may be the terms defined in a remote OWL ontology. Bossam can import remote
OWL documents into its internal working memory and perform reasoning on them.
The keyword namespace is used to define the base namespace of the rule-base. In
the above example, the constant John specified in the fact £1 is expanded to a full
URI: http://family.com/Johns#John. As shown, it’s easy in Bossam’s rule language to
specify and refer to namespaces and URIs. For a rule language to be used on the web,
it should offer syntactic medium to seamlessly and intuitively integrate web resources
into its rules.

3.2 OWL Importing

Many a web resource referred in Bossam rules are OWL vocabularies. For OWL
reasoning, we wrote a set of OWL inference rules in Bossam rule language. Bossam
imports and translates OWL ontology into a list of Bossam facts and then applies the
OWL inference rules on them.

There’re two approaches to OWL translation. The first is to translate OWL docu-
ments into a collection of RDF triples and then each triple into a plain fact with three
terms [10] [11]. The second is to translate OWL documents into a set of sentences of
the target logic system [4] [12]. The first approach is very simple and general, but
some basic logical meanings contained in the original documents are not preserved in
the translated result. That is, even the elementary logic constructs are axiomatized
such that the implied logical relations in the original OWL constructs are not pre-
served in the translated result [15]. The second approach does guarantee semantics-
preserving translation, but the translatability is limited by the target language’s ex-
pressiveness.

Table 1. OWL ontology translation examples

OWL statements Bossam facts

<owl:Class rdf:ID="Person”/> owl:Class (Person) ;
<Person rdf:about="#Sam” /> Person (Sam) ;
<owl:Individual rdf:about="#John”>

<person: father rdf:resource="#Sam”/> person: father (John, Sam) ;

</owl:Individual>

<owl:Class rdf:about="#Human”>
<owl:unionOf

rdf :parseType="Collection”>
<owl:Class rdf:about="#Woman” /> owl :unionOf (Human, <Woman, Man>) ;
<owl:Class rdf:about="#Man” />
</owl:intersectionOf>

</owl:Class>

With Bossam, we chose the first approach in favor of its simplicity. Bossam trans-
lates RDF triples involved in declaring OWL classes and restrictions into 1-ary predi-
cates, and the triples declaring property values into 2-ary predicates. And RDF col-
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lections are translated into Bossam’s built-in list constants. Table 1 shows three basic
examples of Bossam’s OWL translation strategy.

3.3 Web-Friendly Procedural Attachment Mechanism

Even though web ontology is appropriate for expressing and sharing static knowl-
edge, it’s not adequate for denoting rapidly changing knowledge such as the values of
sensors, stock quotes, etc. This kind of knowledge can be made readily accessible by
calling external objects. Also, the ability to alter the status of external objects has
been the common requirement for rule applications, which might be the same for rule
applications on the web. Reading from and writing values onto external objects can
be realized by procedural attachment mechanism.

In Bossam, we implemented a web-friendly procedural attachment mechanism,
which can be extended to call any object exposed on the web. We defined a special
URI structure for denoting calls to external java objects. Here’s an example.

java://org.etri.sensor/Temperature#get (?x, ?1loc, ?t)

The URI scheme, java, indicates that the URI is denoting a resource different
from usual web resources; in this case, a java object. The path part denotes the pack-
age name and the class name. Then, the fragment ID, get, denotes the method name.
Every external object in the reasoning context is checked for its type and bound to ?x
if it is of the type org.etri.sensor.Temperature. ?1loc is the input pa-
rameter to the method. The returned value or object from calling the method
get (?loc) on ?x is then bound to ?t.

Extending URI structure in this way is an intuitive way of incorporating external
data or objects on the web into reasoning, as it can easily be extended to denote web
services, database tables, CORBA objects etc.

4 Extended Expressiveness

We describe in this section two extended expressiveness elements that are not sup-
ported in typical rule engines. The introduced expressiveness elements help correctly
capture the semantics of OWL.

4.1 Support for Classical Negation, as Well as NAF

OWL semantics is based on open-world assumption, so classical negation should be
available for correct representation of OWL semantics. For example, a disjoint class
relation, CI = =C2, can be written as two rules, {if C1(?x) then neg C2(?x); if C2(?x)
then neg CI(?x)}, where neg represents a classical negation. Ordinary rule engines are
based on closed-world assumption and they cannot properly represent and process
classical negation.
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Bossam includes two symbols for denoting negations: not for NAF and neg for
classical negation. Bossam can natively perform de Morgan’s law on classical nega-
tion, and declares inconsistency by detecting the presence of both positive and nega-
tive facts inside its knowledge base.

In [13] and [14], some interesting examples of showing the usefulness of using
both NAF and classical-negation on the web are introduced. One representative ex-
ample involving both NAF and classical-negation is the coherence principle, which is
the basis of common-sense reasoning [14]. The principle can be expressed in Bossam
rule language as follows.

rule cpll is if neg ?p(?x) then not ?p(?x);
rule cpl2 is if neg ?p(?x,?y) then not ?p(?x,?y);
rule cp2l is if ?p(?x) then not neg ?p(?x);
rule cp22 is if ?p(?x, ?y) then not neg ?p(?x,?y);

cpll and cp21 are for 1-ary predicates, and cpl2 and cp22 are for 2-ary predi-
cates. For some interesting examples and implications of the principle, the reader is
referred to [14].

We conjecture that there’re two kinds of knowledge that will be circulating on the
semantic web. The first is the static knowledge such as genealogy, monetary system,
membership representation schema etc that contains general truths that do not change
often. And the second is the dynamic knowledge such as membership management
rules, payment strategies, business contract rules etc that contains strategic and busi-
ness-centric truths and policies that do change often according to the business and
strategic needs. Monotonic reasoning based on open-world assumption is appropriate
for processing static knowledge to guarantee correct and safe propagation of truths.
But for dynamic knowledge, flexible and context-sensitive non-monotonic reasoning
is more appropriate to efficiently draw practical conclusions. We think it should be-
come a common requirement for an inference mechanism on the semantic web that it
has to effectively deal with a mixed set of static and dynamic knowledge. To satisfy
the requirement, an inference mechanism should be able to correctly represent and
perform reasoning with knowledge involving both negation-as-failure and classical-
negation.

4.2 Relieved Range Restrictedness

Most rule engines put a strict restriction on the rules: every variable in the consequent
part should appear in the antecedent part. This is called range restrictedness [9].
Range restrictedness guarantees the safeness of rules.

But some OWL entailments require creation of new RDF resources in the conse-
quent part of rules. OWL comprehension principle is the representative example. As a
sample, consider a cardinality restriction with a cardinality value 1. This OWL re-
striction entails a pair of a minimum and a maximum cardinality restriction both with
a cardinality value 1. That is, restriction(p, cardinality(1)) entails {restriction(p, min-
Cardinality(1)) and restriction(p, maxCardinality(1))}. This entailment requires two
new restrictions be created as a conclusion. To express this in a production rule, two
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new variables should be introduced at the consequent, which is not possible with typi-
cal rule engines. Bossam supports this by relieving range-restrictedness.

We extended typical production algorithm so that range restrictedness can be alle-
viated in a specific case. In Bossam, you can introduce new variables in fype-
declaring 1-ary predicates in the consequent part. The introduced variables can be
referenced in subsequent predicates in the same consequent. The following is a simple
Bossam rule that implements the aforementioned comprehension principle regarding
cardinality restriction.

rule CardinalityEntailment001 is

if
owl:Restriction(?r) and owl:onProperty(?r, ?p)
and owl:cardinality(?r, ?n)

then
owl:Restriction(?rl) and owl:onProperty(?rl, ?p)
and owl:minCardinality(?rl, ?n)
and owl:Restriction(?r2) and owl:onProperty(?r2, ?p)
and owl:maxCardinality(?r2, ?n);

In the consequent part of the rule above, two new variables, r1 and r2, are intro-
duced for the predicate owl : Restriction. Upon encountering predicates of the
form like this, Bossam internally creates new anonymous resources and binds each of
them to the corresponding new variable.

5 Remote Binding for Distributed Reasoning

Remote binding is a simple mechanism to enable cooperative reasoning among mul-
tiple Bossam engines. On the semantic web, knowledge bases, whether they are speci-
fied in ontology or rules, are distributed and managed independently. To perform
reasoning on them, it is necessary to collect and combine knowledge from various
sources. One direct way to accomplish this is to read all the required ontologies and
rule-bases from remote hosts and combine them into one big local knowledge base.
This approach is easy to implement, but it should be noted that as the size of knowl-
edge base gets bigger, the performance of reasoning mechanisms downgrades very
quickly. It’s important to keep the size of a knowledge base reasonable.

Distributed (or collaborated) reasoning, when implemented in a proper way, en-
ables sharing knowledge between inference engines and each of them can be free
from knowledge saturation. Bossam provides a collaboration mechanism that enables
a simple form of distributed reasoning. Every instance of Bossam engine maintains a
knowledge catalog that maps namespaces to engines. When a Bossam engine en-
counters a vocabulary it does not maintain locally, it looks up the catalog to find a list
of relevant engines based on the namespace of the vocabulary. Upon finishing the
lookup, the engine issues a query to each relevant engine one by one until a satisfac-
tory answer is achieved.

Fig 2 shows the overall structure of remote binding mechanism. The knowledge
catalog contains a map of namespaces to physical URIs. Each URI refers to the point
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of contact to send queries about the corresponding namespace. In the current version
of Bossam, knowledge catalogs should be specified and provided by the user.

Requests binding for a

predicate p
Bossam | Bossam

Enginel > Engine2
Substitution sets for p

Lookup Engines
for a namespace n

Knowledge
Catalog

Fig. 2. Overall structure of remote binding

In remote binding, the content of a query is the request for substitution set for a
predicate p. The answer to the query is a set of bindings, which in turn is fed by the
asking engine into its ongoing process of producing further implied models.

In RETE network, unification is performed at alpha nodes. In Bossam, when a
RETE network is built, an alpha node capable of remote binding is created whenever
a predicate with a predicate symbol that has a foreign namespace is encountered. The
remote-binding alpha nodes always contact remote inference engines to perform
unification.

6 OWL Inference Test Results

In this section, we present Bossam’s OWL inference test results. We tested Bossam
against OWL test cases defined by W3C [17], in part, to validate the effectiveness of
our approach. Out of the 10 categories of OWL tests, we applied our engine only to
positive entailment tests that are more relevant to the inferencing capability.

6.1 On Processing Positive Entailment Tests

Each OWL positive entailment test is composed of two OWL documents: one prem-
ise document and one conclusion document. OWL reasoning engine should be able to
entail the conclusion document when given with the premise document as an input.
For each positive entailment test, we executed an inference session on Bossam with
the given test’s premise document and then queried the engine with the conclusion
document to find out if the conclusion document holds in the models Bossam pro-
duced from the premise document. To do this, we converted each conclusion docu-
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ment into a Bossam query, which is then transformed into a Bossam rule for further
processing.

The following is an example that illustrates the basic approach of the con-
version. This example document was depicted from the OWL test case at
http://www.w3.0rg/2002/03owlt/FunctionalProperty/Manifest005#test. The name-
space prefix eg corresponds to http://www.example.org/, and foo corresponds to
http://www.example.org/foo#.

(dl) Original conclusion document in N3 [16]:

eg: foo#object rdf:type owl:Thing.

_:a rdf:type owl:Restriction.

eg: foo#prop rdf:type owl:FunctionalProperty.

_:a owl:onProperty eg:foo#fprop.

_:a owl:maxCardinality "l1"""xsd:nonNegativelInteger.
eg: foo#object rdf:type _:a.

(d2) Bossam query generated from (dl):

(((((?a(foo:0bject) and owl:Restriction(?a)
) and owl:onProperty (?a, foo:prop)
) and owl:FunctionalProperty (foo:prop)
) and owl:Thing(foo:object)
) and owl:maxCardinality(?a,1)

)
(d3) Bossam rule transformed from (d2):

rule g is

if
?a(foo:object) and owl:Restriction(?a)
and owl:onProperty (?a, foo:prop)
and owl:FunctionalProperty (foo:prop)
and owl:Thing(foo:object)
and owl:maxCardinality(?a,1l)

then
Result (?a) ;

As can be seen, anonymous RDF nodes in the conclusion document are converted
into Bossam variables. Bossam tries to answer the query by finding some successful
bindings to the variables. If a conclusion document does not contain anonymous RDF
nodes, it’s converted into a query composed of only ground predicates. As Bossam is
a forward-chaining engine that is data-driven, it internally converts queries into rules
and applies the rules to the forward-chaining process to see if the rules fire with suc-
cessful bindings. If any rule fires, then the corresponding query is declared to be true.
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6.2 Test Results

Table.2 summarizes the success rates of Bossam and other OWL inference engines.
The number of tests for each species of OWL is 23 for OWL Lite, 29 for OWL DL,
and 41 for OWL Full [17]. The success rate of Bossam marked middle to high among
representative OWL inference engines.

Table 2. OWL Test Results (data excerpted from W3C site, as of Dec. 2003)

Engine|
Bossam | Hoolet | Cerebra | Pellet Euler | FOWL | FaCT | Surnia | Jena2
Species

OWL Lite 95% 82% 3% 82%| 100% 65%) 4% 26%) 69%]

OWL DL 51% 62%) 51%) 89%| 100% 6% 10% 3% 17%)|

OWL Full 68% N/A 12% 82%| 100% 48%) N/A| 41% 68%)

One thing to be noted is that other engines listed in Table 2 do not offer the practi-
cal features that Bossam do offer. For example, there’s no engine except Bossam in
Table 2 that supports procedural attachment, two negations and remote binding. Also,
it needs to be commented that description logic based engines like Pellet, FaCT and
Cerebra are not capable of dealing with rules.

As the semantic web technology development progresses further into the higher
layer of the semantic web stack, rule-processing capability will be much required
from reasoning engines. And, as the semantic web technology gets wide acceptance
by the business fields, practical — extra-logical — reasoning features will become the
deciding factor for choosing the solutions for web reasoning.

7 Concluding Remarks

If a reasoning tool were to be utilized pervasively in the real world settings, it should
provide rich practical features. The strength of successful reasoning mechanisms,
especially rule engines, is related to their highly efficient reasoning performance and
rich extra-logical features. On the semantic web, we believe that the reasoning tools
inheriting the pros of (currently commercial) rule engines will survive as the most
viable reasoning mechanism.

In this paper, we described Bossam, a rule engine extended with various features to
improve web friendliness, OWL reasoning capability, and usability on the web. We
plan to extend and refine reasoning capability of Bossam to make it a more reliable
and competitive reasoning tool for the semantic web, and to investigate the possibility
of applying it to some real semantic web applications. Especially, we’re trying to
extend Bossam’s remote binding mechanism so that knowledge catalog can be auto-
matically created and maintained.
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