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1. Introduction

In many real-life situations we want to be able to assign an object to one of
several categories based on some of its characteristics. For example, based on the
results of several medical tests we want to be able to say whether a patient has a
particular disease or should be recommended a specific treatment.

In computer science such situations are described as classification problems.
A binary (two-class) classification problem can be described as follows: given a
set of labeled points (xi, yi), i = 1, l, where xi ∈ <d are vectors of features and
yi ∈ {−1,+1} are class labels, construct a rule that correctly assigns a new point
x to one of the classes.

The vectors xi in this formulation correspond to objects, and the dimensions of
the space are the features or characteristics of these objects. For example, a vector
may represent a person, with individual features corresponding to the measurements
given by some medical tests — blood pressure, cholesterol level, white cell count
and so on.

Using labels {0, . . . ,K − 1} instead of {−1,+1} we can describe a multiclass
problem with K classes. A classification method or algorithm is a particular way
of constructing a rule, also called a classifier, from the labeled data and applying it
to the new data.

Support Vector Machines (SVM) recently became one of the most popular
classification methods. They have been used in a wide variety of applications such
as text classification [8], facial expression recognition [9], gene analysis[6] and many
others.

Support Vector Machines can be thought of as a method for constructing a
special kind of rule, called a linear classifier, in a way that produces classifiers with
theoretical guarantees of good predictive performance (the quality of classification
on unseen data). The theoretical foundation of this method is given by statistical
learning theory [15].
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While no general method for producing non-linear rules with such properties
is known, the so-called “kernel trick” can be used to construct special kinds of
non-linear rules using the SVM methodology.

2. Linear Classifiers

A classifier can frequently be represented as a function f(x) : <d → <. In
a two-class case, a point is assigned to the positive class if f(x) ≥ 0, and to the
negative class otherwise.

A classifier function f(x) is linear if it can be expressed as:

(2.1) f(x;w, b) =< w, x > +b

where w, b are parameters of the function and <,> denotes the inner product of
two vectors.

A set of points (xi, yi), i = 1, l, where yi ∈ {−1,+1} are class labels, is called
linearly separable if a linear classifier can be found so that yif(xi) > 0, ∀i = 1, . . . , l.

The use of linear classifiers in machine learning can be traced back to Rosen-
blatt’s work on the perceptron [14], though they have been used before that in
statistics. The perceptron algorithm works by taking one instance at a time and
predicting its class. If the prediction is correct, no adjustments are made. If the
prediction is wrong, the parameters, describing a hyperplane, are moved in the
direction of the point where the mistake occurred. A scalar value, η, called the
learning rate determines how the how far the parameters are moved. The choice of
a learning rate can significantly affect the number of iterations until convergence on
a linearly-separable set. The pseudocode for the perceptron learning, taken from
[4], is given as Algorithm 1.

Algorithm 1 Online Perceptron Learning Algorithm [4]

Require: A linearly separable set S, learning rate η ∈ <+

1: w0 = 0; b0 = 0; k = 0;
2: R = max

1≤i≤l
||xi||

3: while at least one mistake is made in the for loop do
4: for i = 1, . . . , l do
5: if yi(< wk, xi > +bk) ≤ 0 then
6: wk+1 = wk + ηyixi

7: bk+1 = bk + ηyiR
2 (updating bias1)

8: k = k + 1
9: end if

10: end for
11: end while
12: Return wk, bk, where k is the number of mistakes

1Usually this update is given as bk+1 = bk +ηyi. However, such formulation makes the result

of Novikov’s theorem, given below, dependent on the exact value of the bias, b∗, of the separating

hyperplane. This reflects the fact that R can be increased simply by moving all points away from

the origin. The update used in the Algorithm 1 (suggested in [4]) compensates for that.
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Figure 1. Here (w,−b) define the separating hyperplane and γ is
the size of the margin. The relation between w and γ is discussed
in the text.

2.1. Margin and VC dimension. The idea of margin (Figure 1) has come
to play an important role in the theory of statistical learning.

A hyperplane

(2.2) < w∗, x > +b∗ = 0, ||w∗|| = 1

is called γ-margin separating hyperplane if

(2.3) yi(< w∗, x > +b∗) ≥ γ

for all (xi, yi) in set S. Here γ (clearly γ > 0) is the margin.
Any separating hyperplane can be converted into this form. Suppose

(2.4) y(< w, x > +b) ≥ 1.

Then, by setting w∗ = w
||w|| and b∗ = b

||w|| , we obtain a γ-margin separating hyper-

plane with γ = 1
||w|| .

The first result suggesting a relation between the margin and predictive ability
of a classifier was Novikov’s theorem.

Theorem 2.1. Novikov’s Theorem [11] Let S, |S| = l be a training set, i.e. a
set of points with class labels, and let

(2.5) R = max
1≤i≤l

||xi||

Suppose that there exists a γ-margin separating hyperplane (w, b) such that yi(<
w, xi > +b) ≥ γ, ∀ 1 ≤ i ≤ l. Then the number of mistakes made by the on-line
perceptron algorithm on S is at most

(2.6)

(

2R

γ

)2

This theorem effectively proves that for a linearly separable set of points the
perceptron algorithm finds a separating hyperplane after making a finite number
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of mistakes. The number of mistakes is directly proportional to the ratio of the
volume of the data to the measure of separation of the classes, γ.

Note that Novikov’s theorem shows convergence on a periodic training se-
quence. This result has been extended to an arbitrary infinite sequence of points
(each belonging to one of two region that can be linearly separated) by Aizerman
et. al. [1].

Novikov’s theorem bounds the number of errors in the training stage. But in
classification we are interested in the accuracy of a classifier on unseen data. Such
a number clearly cannot be computed exactly, but it turns out it can be bounded.

Before proceeding let us define the notion of Vapnik-Chevronenkis dimension.

Definition 2.2. The Vapnik-Chervonenkis (VC) dimension of a set of classi-
fiers is the maximum number h of points that can be separated into all possible 2h

ways using classifiers in this set. If for any n there exists a set of n points that can
be separated into two classes in all possible ways, the VC dimension of this set of
functions is said to be infinite.

Intuitively, VC dimension measures the complexity of the classifiers in the set.
If the classifiers are simple, they have small VC dimension. If they are complicated,
the VC dimension is large. For example, the VC dimension of hyperplanes in Rd is
known to be d + 1. The following two results bound the VC dimension of the set
of γ-margin separating hyperplanes and the probability of misclassifying an unseen
instance with such a hyperplane chosen on the training data.

Theorem 2.3. Theorem 5.1 in [15] Let x ∈ X belong to sphere of radius R.
The the set of γ-margin separating hyperplanes has VC dimension h bounded by:

(2.7) h ≤ min

(

(

R

γ

)2

, d

)

+ 1

Theorem 2.4. Corollary to Theorem 5.1 in [15] With probability 1−η the
probability of a test example not being separated correctly by a γ-margin hyperplane
has the bound

(2.8) Perror ≤
m

l
+

E

2

(

1 +

√

1 +
4m

lE

)

where

(2.9) E = 4
h(ln 2l

h
+ 1) − ln η

4

l
,

m is the number of training examples not separated correctly by γ-margin hyper-
plane, and h is the bound of the VC dimension given in theorem 2.4.

The bound on the probability of making a mistake on unseen data is propor-
tional to the VC dimension of the set of classifiers. In other words, everything else
being equal, a classifier with a lower VC dimension is likely to be a better predictor.
Notice that this result does not depend on any assumptions about the distribution
of the test data — it is a “distribution-free” bound.

Since the upper bound on VC dimension is inversely proportional to the margin,
the strategy for building a good classifier is to have as large a margin as possible
while keeping the number of errors on the training set low.
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This is somewhat similar to the idea regularization but is motivated from the
perspective of the statistical learning theory. It can also be seen as a version of
Occam’s razor: we want to use the simplest classifier that makes no (or fewest)
mistakes on the training set.

2.2. The Maximal Margin in Separable Case. We have seen in the previ-
ous section that the probability of making a mistake is inversely proportional to the
size of the margin. Thus we would like to find a classifier with the largest margin
that still correctly separates the training points.

The maximal-margin separating hyperplane can be found by solving the fol-
lowing optimization problem:

minimizew,b < w,w >(2.10)

subject to:

yi(< w, xi > +b) ≥ 1, ∀i = 1, . . . , l(2.11)

One method for solving optimization problems involves introducing Lagrange
multipliers,αi, for the constraints [2]. In this case, the so-called Lagrangian function
is given by:

L(w, b, α) =
1

2
< w,w > −

l
∑

i=1

αi[yi(< w, xi > +b) − 1](2.12)

Taking derivatives with respect to w and b gives:

(2.13) w =
l
∑

i=1

yiαixi

and

(2.14) 0 =

l
∑

i=1

yiαi

Note that w is given by a linear combination of the training points. We will return
to this observation later on.

Re-substituting these into the primal problem (2.12) gives a dual formulation:

maximize W (α) =

l
∑

i=1

αi −

l
∑

i,j=1

yiyjαiαj < xi, xj >(2.15)

subject to:

l
∑

i=1

yiαi = 0, αi ≥ 0, ∀i = 1, . . . , l(2.16)

Let α∗ be a vector of parameters optimizing W (α). The the weight vector

w∗ =
l
∑

i=1

yiα
∗
i xi is a maximal margin hyperplane, with margin

(2.17) γ =
1

||w∗||2
.

The parameter b is not present in the dual problem and has to be computed from
the primal constraints (2.11).
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Notice that, because of (2.13), the classifier f(x) can be expressed as:

(2.18) f(x) =< w, x > +b =

l
∑

i=1

yiαi < xi, x > +b

If αi = 0, then xi is not used in decision rule and can be discarded. Points xi such
that αi 6= 0 lie on the margin and are called support vectors. They determine the
decision boundary.

2.3. Extension for the non-separable case. Until now we have discussed
only the linearly-separable case. However, similar machinery can be used to handle
the non-separable case. The main idea is that those points that lie on the wrong
side of the hyperplane are explicitly penalized by introducing slack variables, ξ,
that control how far on the wrong side of a hyperplane a point lies.

The optimization problem becomes:

minimizew,b

1

2
< w,w > +C

l
∑

i=1

ξi(2.19)

subject to:

yi(< w, xi > +b) ≥ 1 − ξi, ξi ≥ 0, ∀i = 1, . . . , l(2.20)

where the parameter C, controlling the trade-off between the size of the margin
and the training errors, is chosen by the user.

The dual then becomes:

maximize

l
∑

i=1

αi −

l
∑

i,j=1

yiyjαiαj < xi, xj >(2.21)

subject to:

l
∑

i=1

yiαi = 0, C ≥ αi ≥ 0, ∀i = 1, . . . , l(2.22)

Once again the solution is given by a linear combination of inner products

with support vectors: w =
l
∑

i=1

yiαixi. There are no general methods for choosing

parameters b in a non-separable case - it is usually set to optimize some performance
measure on a training or a validation set. The same approach is often taken for
choosing a value of C.

2.4. Multi-class classification. Many methods exist for building a multi-
class classifier system from binary classifiers (one-vs-all, one-vs-one, error-correcting
output codes (ECOC) [5], Directed Acyclic Graph (DAG) [13]). In all of these ap-
proaches multiple binary classifiers are trained separately and their predictions are
then combined. For example, in one-vs-all classification, with K classes, K classi-
fiers are constructed. Each recognizes points of one of the classes as positive and
those of all others as negative. A new point is assigned to the class h if the cor-
responding classifier gives this point the highest score among all K classifiers. In
one-vs-one, a classifier is trained for each pair of classes. Classification usually pro-

ceeds as follows: each of K(K−1)
2 classifiers makes a prediction and the number of

votes for each class is counted. The point is assigned to the class that has received
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most votes. DAG and ECOC are more sophisticated in how classifiers are trained
and how their predictions are combined.

Special multiclass methods have been developed for SVM. They usually involve
solving a single optimization problem. In [16] the optimization problem to be solved
(over K separating hyperplanes and lK slack variables) is:

minimizewj ,bj ,ξj

1

2

K
∑

j=1

< wj , wj > +C

l
∑

i=1

∑

j 6=yi

ξ
j
i(2.23)

subject to:

(< wyi , xi > +byi) ≥ (< wj , xi > +bj + 2 − ξ
j
i ), ∀j 6= yi(2.24)

ξ
j
i ≥ 0, ∀i = 1, . . . , l

A new point x is classified as follows:

(2.25) f(x) = argmaxj=1,...,K(< wj , x > +bj)

Cramer and Singer [3] suggested a somewhat different formulation, requiring
only l slack variables:

minimizewj ,ξ

1

2

K
∑

j=1

< wj , wj > +C

l
∑

i=1

ξi,(2.26)

subject to:

(< wyi , xi > − < wj , xi >) ≥ 1 − ξi(2.27)

∀i = 1, l, j = 1,K : ξi ≥ 0, j 6= yi.

The resulting decision function is:

(2.28) f(x) = argmaxj=1,...,K < wj , x >

2.5. Computational Issues. We have shown that the problem of finding a
maximal margin hyperplane can be formulated as a particular quadratic optimiza-
tion problem. Many numerical methods for solving general quadratic optimization
problems are known. For the special kind of optimization needed for SVM there
exist particularly efficient algorithms such as Platt’s sequential minimal optimiza-
tion (SMO) [12] capable of handling thousands of vectors in thousand-dimensional
spaces.

3. The “Kernel Trick”

The main idea behind the “kernel trick” is to map the data into a different
space, called feature space, and to construct a linear classifier in this space. It can
also be seen as a way to construct non-linear classifiers in the original space. Below
we explain what the kernel trick is and how these two views are reconciled.

Notice that in the the dual problem (2.15) the training points are included only
via their inner products. Also, as can be seen in (2.18), the classifier function f(x)
can be expressed as a sum of inner products with support vectors.

An important result, called Mercer’s theorem, states that any symmetric pos-
itive semi-definite function K(x, z) is an inner product in some space (and vice-
versa). In other words, any such function K(x, z) implicitly defines a mapping into
so-called feature space φ : x → φ(x) such that K(x, z) =< φ(x), φ(z) >. Such
functions K are called kernels.
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The feature space can be high-dimensional or even have infinite dimension.
However we don’t need to know the actual mapping since we can use kernel function
to compute similarity in the feature space.

Some examples of kernels include polynomial kernels

K(x, z) = (< x, z > +1)p(3.1)

and gaussian kernels

K(x, z) = e−
||x−z||2

2σ2 .(3.2)

Many kernels have been developed for special applications such as sequence match-
ing in bioinformatics [7]. General properties of kernels are described in many pub-
lications, including [4].

By replacing the inner product in the formulation of SVM by a kernel and
solving for Lagrange multipliers αi, we can obtain via (2.18) a maximal margin
separating hyperplane in the feature space defined by this kernel. Thus choosing
non-linear kernels allows us to construct classifiers that are linear in the feature
space, even though they are non-linear in the original space.

The dual problem in the kernel form is:

maximize W (α) =

l
∑

i=1

αi −

l
∑

i,j=1

yiyjαiαjK(xi, xj)(3.3)

subject to 0 =

l
∑

i=1

yiαi, αi ≥ 0, ∀i = 1, . . . , l(3.4)

and the classifier is given by:

(3.5) f(x) =
l
∑

i=1

yiαiK(xi, x).

The idea of viewing kernels as implicit maps into a feature space was first
suggested in [1]. However this approach was not widely used until the emergence
of SVM. Many algorithms other than SVM have now been “kernelized” — refor-
mulated in terms of kernels rather than inner products. A survey of kernel-based
methods is given by [10].

4. Conclusion

In this note we attempted to highlight the main ideas underlying the SVM
method. For a detailed explanation of these, and many other ideas in statistical
learning and kernel methods an interested reader is referred to [4, 15]. While [4]
provides a clear and broad introduction to the area, [15] goes into much greater
depth. Both of these books provide many references to relevant literature. Another
valuable resource is kernel-machines website (http://www.kernel-machines.org/)
which contains information on books, articles and software related to SVM and
other kernel-based methods.
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