
Starting Struts2 Ian R
oughley

FREE ONLINE EDITION
(non-printable free online version)

If you like the book, please support

the author and InfoQ by

purchasing the printed book:
http://www.lulu.com/content/813300

(only $22.95)

Brought to you

Courtesy of

This book is distributed for free on InfoQ.com, if

you have received this book from any other
source then please support the author and the

publisher by registering on InfoQ.com.

Visit the homepage for this book at:

http://infoq.com/minibooks/starting-struts2

Starting Struts2

Written By:
Ian Roughley

© 2006 C4Media Inc
All rights reserved.

C4Media, Publisher of InfoQ.com.

This book is part of the InfoQ Enterprise Software Development series
of books.

For information or ordering of this or other InfoQ books, please contact
books@c4media.com.

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recoding, scanning or otherwise except as
permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the
Publisher.

Designations used by companies to distinguish their products are
often claimed as trademarks. In all instances where C4Media Inc. is
aware of a claim, the product names appear in initial Capital or ALL
CAPITAL LETTERS. Readers, however, should contact the
appropriate companies for more complete information regarding
trademarks and registration.

Managing Editor: Diana Plesa
Cover art: Dixie Press
Composition: Dixie Press

Library of Congress Cataloguing-in-Publication Data:

ISBN: 978-1-4303-2033-3

Printed in the United States of America

iii

Acknowledgements

This book would never have been possible without the tireless
effort of all the developers of WebWork, XWork and Struts2.
For my transition from open source user to open source
developer, I would like to thank Patrick Lightbody and Jason
Carreira.

To the technical reviewers – Don Brown, Philip Luppens and
Rene Gielen – many thanks for providing the final adjustments
on a moving target. I would like to acknowledge and thank both
Jim Krygowski and James Walker for taking time out of their
busy schedules to provide an impartial judgment on the
continuity and content from a non-Struts2 perspective. With
their assistance, the readers experience has improved without a
doubt. I would like to thank Floyd Marinescu for his
confidence, and for providing writing opportunities in both
online and published formats.

I would also like to thank my remarkable wife LeAnn (a.k.a.
STR Worldwide). Her continuing support and ongoing review
and non-geek analysis of the manuscript has been invaluable.

Contents

INTRODUCTION 1

WHERE STRUTS2 FITS INTO THE WEB PARADIGM 5

Servlets 6
JSP and Scriptlet Development 6
Action-Based Frameworks 7
Component-Based Frameworks 7
The Great Equalizer – Ajax 8

CORE COMPONENTS 11

Configuration 12
Actions 19
Interceptors 25
Value Stack / OGNL 29
Result Types 31
Results / View Technologies 33

ARCHITECTURAL GOALS 37

Separation of Concerns 37
Loose Coupling 39
Testability 40
Modularization 44
Convention over Configuration 47

PRODUCTIVITY TIPS 49

Re-Using Action Configurations 50
Use Pattern Matching Wildcards in Configurations 51
Utilize Alternate URI Mapping Schemes 52
Know Interceptor Functionality 55
Use Provided Interceptor Stacks 58

Take Advantage of Result Types 60
Utilize Data Conversion 61
Utilize Tabular Data Entry Support 63
Expose Domain Models in the Action 65
Use Declarative Validation Where Possible 66
Move CRUD Operations into the same Action 70
Use Annotation Where Possible 73
Options for View Technologies 79
Know the Provided Tag Libraries and their Features 81
Customize UI Themes 87
Use Global Results for Common Outcomes 89
Manage Exception Handling Declaratively 89
Internationalization 92

INTEGRATING WITH OTHER TECHNOLOGIES 97

Page Decoration and Layout 98
Business Services / Dependency Injection 100
Databases 103
Security 104
Ajax 107

ABOUT THE AUTHOR 109

END NOTES 111

 1

1
Introduction

Developing web application in Java has come a long way since
the first servlet specification was released in 1997. Along the
way we have learned a lot and, more than a few times, we’ve
improved the ways we develop web applications. Apache Struts
was one of those times that we made a significant stride beyond
what was currently available.

Apache Struts was launched in May 2000 by Craig McClanahan,
with version 1.0 officially released in July 2001. Technically it
was an evolutionary step forward in web development but, more
importantly, it came at the right time. Web development had
been around long enough for many large projects to be built and
enter maintenance phases, and for lessons to have been learned
about re-usability and maintenance. Adding to this heightened
need for a better solution for web application development was
the “dot com boom” – as Apache Struts came on the scene in
2000, the number of web projects was dramatically increasing
and it looked like there was no end in sight. The project was a
welcome solution and become the de facto standard for web
development for several years.

Struts2i is the next generation of Apache Struts. The original
proposal, Struts Ti, was born out of a need to evolve Struts in a
direction that the code base did not easily lend itself to. Around
the time of that proposal, there was a movement by Patrick
Lightbody to bring together leaders on several different web
frameworks with the goal of achieving a common framework.
Although the movement lost momentum, a commonality
between WebWork and the goals of Struts Ti at the technology

Free Online Version.
Support this work, buy the print copy:
http://infoq.com/minibooks/starting-
struts2

2 | STARTING STRUTS2

and committer level was found, and the projects were merged
with WebWork providing the base technologyii.

When we speak about WebWork we are really referencing two
projects – XWork and WebWork. XWork is a generic command
framework. It provides many of the core features such as
actions, validation and interceptors, and is completely execution
context independent. XWork also provides an internal
dependency inject mechanism that is used for configuration and
factory implementation management.

WebWork, on the other hand, is a completely context dependent.
It provides a wrapper around XWork with the context that is
needed when working on web applications, along with specific
implementations that make web developer easier.

The goal of Struts2 is simple – to make web development easier
for the developer. To achieve this goal Struts2 provides features
to reduce XML configuration via intelligent defaults, utilizes
annotations and provides conventions over configuration.
Actions are now POJOs which increases testability and reduces
coupling in the framework, and HTML form field data is
converted to proper types for the action to use. Still further
decreasing coupling is request processing has been made more
modular by allowing a series of interceptors (custom or Struts2
provided) to provide pre-processing and post-processing
functionality. Modularity is a common theme – a plug-in
mechanism provides a way to augment the framework; key
classes with the framework can be replaced with custom
implementations to provide advanced features not provided out
of the box; tags can utilize a variety of different rendering
themes (including custom themes); and there are many different
result types available for performing after-action execution tasks
which include, but are not limited to, rendering JSPs, Velocity
and Freemarker templates. And finally, dependency injection is
now a first class citizen – provided via the Spring Framework
plug-in with an option for using Plexus, and work underway for
PicoContainer.

INTRODUCTION | 3

My goal with this book is to familiarize you with the Struts2
framework and provide you with a solid understanding of the
components that make up the framework and the configuration
options that are available. I will also introduce some ways to
increase your productivity – including default configurations and
implementation features to be aware of; different configuration
options that are available; and development techniques. We will
wrap-up with a discussion of various 3rd party integrations.

This is not a comprehensive guide to all the features of Struts2.
Being a new project, Struts2 is constantly evolving with ongoing
changes, updates and new features. I urge you to take some time
and visit the projects home page to discover options and features
not covered in this book.

This book refers to Struts2 version 2.0.6.

 5

2
Where Struts2 fits into the Web

Paradigm
There are many different web frameworks available for today’s
developer. Some of these come from Open Source communities,
some from commercial companies, and yet others are internally
developed for the current web development needs. There are
over 40iii open source frameworks alone and, although this is a
large number, there are probably as many again (if not
significantly more) internally built frameworks deployed in
production environments.

With so many choices out there, why choose Struts2? Here are
some of the features that may lead you to consider Struts2:

� Action based framework
� Mature with a vibrant developer and user community
� Annotation and XML configuration options
� POJO-based actions that are easy to test
� Spring, SiteMesh and Tiles integration
� OGNL expression language integration
� Themes based tag libraries and Ajax tags
� Multiple view options (JSP, Freemarker, Velocity and

XSLT)
� Plug-ins to extend and modify framework features

Of all the decisions in choosing a framework, choosing the style
of framework is going to be the most controversial. Let’s take a
look at how we got to today’s web application options, and
where Struts2 fits into the picture.

Free Online Version.
Support this work, buy the print copy:
http://infoq.com/minibooks/starting-
struts2

6 | STARTING STRUTS2

Servlets
Servlets provided the first Java-based foray in to web
development. Following the HTTP protocol, servlets provide a
way to map a URL to a special class whose methods would be
called.

It was quickly recognized that although this was a large step
forward, generating the HTML code from within the Java code
was a maintenance nightmare. Each time a simple user interface
change was needed, the Java developer needed to modify the
Servlet code, recompile the source and then to deploy the
application into the server environment.

JSP and Scriptlet Development
As a result of this “maintenance nightmare,” the style of
development was turned upside-down. Rather than placing the
HTML code within the Servlet or Java code, the Java code was
placed (as script-lets) inside the HTML code – as Java Server
Pages (JSP). Each JSP provided both the logic for processing of
requests, and the presentation logic.

One problem was solved, but another was introduced. The Java
code is the same as used in class files; however there is no
structure of methods or classes. Looking through early JSP files,
you would find one of two things:

� Cut-and-pasted code – Java code that has been copied
from one JSP, to another, and another, etc. Propagating
any defects or errors from the original code, and
increasing the amount of work required to make a
common change.

� Calling common Java formatting objects – common
formatting or logic code was incorporated into a reusable
object. Each JSP then used the common object.

From these findings a best practice as well as a pattern emerged
– use Java objects from JSPs.

WHERE STRUTS2 FITS INTO THE WEB PARADIGM | 7

As the JSP specification evolved, tags were introduced to
encapsulate re-usable java objects. Tags provided a HTML-like
façade for accessing the underlying code, allowing designer
(rather than developers) and IDEs to interact with dynamic
elements to compose page layouts. Examples of the tags

provided by JSP are <jsp:useBean … /> and
<jsp:getProperty … />. Along with the provided JSP tag
libraries, JSPs provided a way for developers to create their own
tag libraries.

Action-Based Frameworks
Action based frameworks came onto the scene to combine the
concepts of servlets and JSPs. The idea being to split the request
processing for the page the user sees into processing logic and
the presentation logic, letting each part do what it does the best.
The implementation used a pattern from Smalltalk known as the
model-view-controller pattern – or more recently known as the
front controller, or in Sun parlance Model 2.

In this pattern the servlet is the controller, providing a
centralized point of control for all client page requests. It maps
the request URL to a unit of work know as an action. The
action’s job was to perform specific functionality for a given
URL by accessing the HTTP session, HTTP request and form
parameter, calling business services, and then mapping the
response into a model, whose form is a plain old java object.
Finally, the action returned a result, which was mapped (via
configuration files) to a JSP to render as the view.

Struts2 is an action based MVC web framework.

Component-Based Frameworks

As web applications became more complex, it was realized that
a page was no longer the logical separation – web applications
had multiple forms per page, links for content updates and many

8 | STARTING STRUTS2

other custom widgets – all which needed processing logic to
perform their tasks.

To address these complexities, component based frameworks
have become popular. They provide a close tie between user
interface components and classes that represent the components,
and they are event-driven and more object orientated than action
based frameworks. A component could be a HTML input field,
a HTML form or custom widgets provided by or created for the
framework. Events, such as form submits or links, are mapped
to methods of the class representing the component, or to special
listener classes. An additional benefit of component based
frameworks is that they allow you to re-use components across
multiple web applications. Examples of component based
frameworks are JSF, Wicket and Tapestry.

The Great Equalizer – Ajax
In the beginning of 2005, a new fascination was starting in web
development. Coined by Jesse James Garrett, Ajax stood for
“Asynchronous JavaScript and XML.” Relatively speaking, the
technologies were nothing new. In fact, the primary web
browser components for making the asynchronous calls – the

XMLHttpRequest Object – had already been available for 6 years
(since version 5 of Internet Explorer).

But what was new was the application of the technology.
Google Maps was one of the first applications to take full
advantage of the technology. The web page had come alive –
you could interact with controls and widgets. By using a mouse
you could scroll maps around the screen; when entering an
address, the information would materialize above the maps
images; and finally, the culmination being route planning which
orchestrated all these features into a useable web application.
And all of this happened without a single page refresh!

User interfaces with Ajax functionality allows the web browser
to make requests to the server for smaller amounts of

WHERE STRUTS2 FITS INTO THE WEB PARADIGM | 9

information, and only when it is needed. The result from the
server request is formatted or manipulated and applied directly
to the page being displayed, with the web browser passing on the
changes to the user. Only the sections of the page that changed
are re-rendered, not the entire page, making the user feel that the
web application is more responsive to their actions.

The requests from the UI act like events – they are more
discrete, conveying information for a single component or
function. No longer does a single action need to retrieve data for
the entire page, they can be more concise and thus more re-
usable across applications. In effect, an Ajax user interface
calling an action based framework allows the action framework
to behave in a similar manner to a component based framework.
In fact, this combination of technologies provides a more
loosely-coupled and more re-usable system. The same actions
can provide JSON, XML or HTML fragment views for the Ajax
components as well as being combined with other actions to
provide HTML views for non-Ajax user interfaces.

 11

3
Core Components

From a high level, Struts2 is a pull-MVC (or MVC2)
framework; this is slightly different from a traditional MVC
framework in that the action takes the role of the model rather
than the controller, although there is some overlap. The “pull”
comes from the views ability to pull data from an action, rather
than having a separate model object available.

We have already spoken about what this means conceptually,
but what does it mean at the implementation level? The Model-
View-Controller pattern in Struts2 is realized with five core
components – actions, interceptors, value stack / OGNL, result
types and results / view technologies.

Figure 1: The MVC / Struts2 Architecture

Free Online Version.
Support this work, buy the print copy:
http://infoq.com/minibooks/starting-
struts2

12 | STARTING STRUTS2

Figure 1 overlays the model, view and controller to the Struts2
high level architecture. The controller is implemented with a
Struts2 dispatch servlet filter as well as interceptors, the model is
implemented with actions, and the view as a combination of
result types and results. The value stack and OGNL provide
common thread, linking and enabling integration between the
other components.

As we talk about the common components in the chapter, there
will be a lot of information that relates to configuration.
Configuration for the web application, as well as configuration
for actions, interceptors, results, etc. Keep in mind that this
explanation is to provide a background for what can be achieved,
and may not be the most efficient way to configure applications.
In subsequent chapters we will discuss easier and more
productive ways to achieve the same goal, using convention over
configuration, annotations and the zero configuration plug-in.

Before we go into the details on the core components we will
first talk about global configuration.

Configuration

Before configuring Struts2, you will first need to download the
distribution or configure it as a dependency in your Maven2
“pom.xml” file:

<dependency>

 <groupId>org.apache.struts</groupId>

 <artifactId>struts2-core</artifactId>

 <version>2.0.6</version>

</dependency>

CORE COMPONENTS | 13

Maven2 is a tool for managing the entire build process of a
project – including compilation of code, running tests,
generating reports and managing build artifacts. The most
interesting aspect for developers is in managing build artifacts.

Dependencies that your application has only need to be uniquely
specified in the projects “pom.xml” configuration file using a

groupId, artifactId and version. Before the artifact is
needed, a local caching repository as well as remote
organizational repositories and the standard ibiblio.com
repositories are searched. If the artifact is found on a remote
repository it is downloaded to the local cache and provided to
the project. As well as the artifact you requested, any additional
transitive dependencies that are needed by the requested artifact
are also downloaded (assuming that they are in-turn specified in
a “pom.xml” configuration file).

Struts2 is built with Maven2 and provides all the necessary
transitive dependency configurations. For more information on
Maven2, see the Apache web site at http://maven.apache.org.

Once this is done, the configuration of a Struts2 application can
be broken into three separate files as shown in figure 2.

14 | STARTING STRUTS2

Figure 2: Configuration file scope for framework elements

The web application configuration for the FilterDispatcher
servlet filter needs to be configured in your “web.xml” file:

<filter>

 <filter-name>action2</filter-name>

 <filter-class>

 org.apache.struts2.dispatcher.FilterDispatcher

 </filter-class>

</filter>

<filter-mapping>

 <filter-name>action2</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

That’s it for configuring a basic web application. What’s left is
to customize the web application execution environment – which
is done primarily in the “struts.properties” configuration file –
and to configure the components for the web application, which
is achieved via the “struts.xml” configuration file. We will now
look at these two configuration files in more detail.

CORE COMPONENTS | 15

The struts.properties File

This configuration file provides a mechanism to change the
default behavior of the framework. Generally you will not have
a need to modify this file, the exception being when you want to
enable a more friendly developer debugging environment. All
of the properties contained within the “struts.properties”
configuration file can also be configured using the “init-param”
tag in the “web.xml”, as well using the “constant” tag in the
“struts.xml” configuration file (we will talk about this tag’s
usage in the next chapter).

Properties that can be modified allow for changing Freemarker
options – changing the action mapping class, determining
whether XML configuration reloading should occur, what the
default user interface theme is, etc. For the most up-to-date
information on the properties take a looks at the Struts2 wiki at
http://struts.apache.org/2.x/docs/strutsproperties.html.

A default properties file named “default.properties” is contained
in the Strut2-Core JAR distribution. To enable modifications to a
property, simply create a file called “struts.properties” in the root
of your projects source files classpath. Then, add the properties
that you wish to modify. The new values will now override the
defaults.

In a development environment, there are a couple of properties
that you might consider changing:

» struts.i18n.reload = true – enables reloading of
internationalization files

» struts.devMode = true – enables development mode
that provides more comprehensive debugging

» struts.configuration.xml.reload = true – enables
reloading of XML configuration files (for the action)
when a change is made without reloading the entire web
application in the servlet container

» struts.url.http.port = 8080 – sets the port that the server
is run on (so that generated URLs are created correctly)

16 | STARTING STRUTS2

The struts.xml File
The “struts.xml” file contains the configuration information that
you will be modifying as actions are developed, and we will talk
in more detail about specific elements in the remaining sections
in this chapter. For now, let’s review the structure that won’t
change.

Depending on the functionality of your application, it is possible
to remove the “struts.xml” file from your application
completely. The configurations that we will talk about in this
chapter can be handled by alternative methods that include
annotations, “web.xml” startup parameters, and alternate URL
mapping schemes.

The only configurations that still need the “struts.xml” file are
global results, exception handling, and custom interceptor
stacks.

This is an XML file, so the first element is the XML versioning
and encoding information. Next is the document type definition
(or DTD) for the XML. The DTD provides information on the
structure the elements in the file should have, and is ultimately
used by XML parsers and editor.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE struts PUBLIC

"-//Apache Software Foundation//DTD Struts Configuration

2.0//EN"

"http://struts.apache.org/dtds/struts-2.0.dtd">

<struts>

<package

name="struts2"

extends="struts-default"

namespace="/struts2">

 …

</package>

</struts>

CORE COMPONENTS | 17

We now get to the <struts> tag. This is the outermost tag for
the Struts2 specific configuration. All other tags will be
contained within this one.

The Include Tag:

The <include … /> tag is used to modularize a Struts2
application by including other configuration files and is always a

child of the <struts> tag. It contains only one attribute “file”
that provides the name of the file to be included – which is a file
that has exactly the same structure as the “struts.xml”
configuration file. For example, if you wanted to break the
configuration of a billing application, you might choose to group
together the billing, admin and report configurations into
separate files:

<struts>

 <include file="billing-config.xml" />

 <include file="admin-config.xml" />

 <include file="reports-config.xml" />

 …

</struts>

When including files, order is important. The information from
the included file will be available from the point that the include
tag is placed in the file. Hence, to use a tag that is configured in
another file, the include configuration must occur before it is
referenced.

As well as the files that you explicitly include, there are some
that are included automatically. These are the “struts-
default.xml” and the “struts-plugin.xml” files. Both contains
default configurations for result types, interceptors, interceptor
stacks, packages as well as configuration information for the
web application execution environment (which can also

18 | STARTING STRUTS2

configured in the “struts.properties” file). The difference is that
“struts-default.xml” provides the core configuration for Struts2,
where “struts-plugin.xml” provides configurations for a
particular plug-in. Each plug-in JAR file should contain a
“struts-plugin.xml” file, all of which are loaded during startup.

The Package Tag:

The <package … /> tag is used to group together configurations
that share common attributes such as interceptor stacks or URL
namespaces. Usually this consists of action configurations, but
it may include any type of configuration information. It may
also be useful to organizationally separate functions, which may
be further separated into different configuration files.

The attributes for this tag are:

� name – a developer provided unique name for this
package

� extends – the name of a package that this package will
extend; all configuration information (including action
configurations) from the extended package will be
available in the new package, under the new namespace

� namespace – the namespace provides a mapping from
the URL to the package. i.e. for two different packages,
with namespace attributes defined as “package1” and
“package2”, the URLs would be something like
“/myWebApp/package1/my.action” and
“/myWebApp/package2/my.action”

� abstract – if this attribute value is “true” the package is
truly configuration grouping, and actions configured will
not be accessible via the package name

It is important to make sure you are extending the correct parent
package so that the necessary pre-configured features will be
available to you. In most cases this will be the “struts-default”
package from the “struts-default.xml” configuration file.
However, when you are utilizing plug-ins it will be different. In

CORE COMPONENTS | 19

this case, you will need to verify the needed parent package
name with the plug-ins documentation.

Configuration information that belongs within the package tag
will be discussed as it comes up in the remaining sections of this
chapter.

There are two additional configuration elements that can be used

within the <struts> tag. These are the <bean … /> and
<constant … /> tags. These tags provide advanced ways to re-
configure the framework. We will talk about the usage and
configuration of these tags in the next chapter when we talk
about plug-ins.

Actions
Actions are a fundamental concept in most web application
frameworks, and they are the most basic unit of work that can be
associated with a HTTP request coming from a user.

In Struts2 an action can be used in a couple of different ways.

Single Result
The first, and most basic usage of an action, is to perform work
with a single result always being returned. In this case, the action
would look like this:

class MyAction {

 public void String execute() throws Exception {

 return "success";

 }

}

A few things are worth noting. First, the action class does not
need to extend another class and it does not need to implement
any interfaces. As far as anyone is concerned, this class is a
simple POJO.

20 | STARTING STRUTS2

Second, the class has one method named “execute”. This name
is the one used by convention. If you wanted to call it
something other than “execute”, the only change needed would
be in the actions configuration file. Whatever the name of the

method is, it will be expected to return a String result code.
The actions configuration will match the result code the action
returned to a specific result that will be rendered to the user. If
needed, the method can also throw an exception.

The simplest configuration for the action looks like this:

<action name="my" class="com.fdar.infoq.MyAction" >

 <result>view.jsp</result>

</action>

The attribute “name” provides the URL information to execute
the action, in this case a URL of “/my.action”. The extension
“.action” is configured in the “struts.properties”iv configuration
file. The attribute “class” provides the full package and class
name of the action to be executed.

Multiple Results

The next, slightly more complicated use is when the action can
return different results depending on the outcome of the logic.
The class looks similar to the previous use:

class MyAction {

 public void String execute() throws Exception {

 if(myLogicWorked()) {

 return "success";

 } else {

 return "error";

 }

 }

}

CORE COMPONENTS | 21

Since there are now two different results that can be returned, we
need to configure what is to be rendered back to the user for
each case. Hence, the configuration will become:

<action name="my" class="com.fdar.infoq.MyAction" >

 <result>view.jsp</result>

 <result name="error">error.jsp</result>

</action>

This introduces a new “name” attribute of the result node. In
fact, it has always been there. The value (as in the first result
configuration) defaults to a value of “success” if not provided by
the developer.

22 | STARTING STRUTS2

 In the above sections we have seen the most common way
to determine the result for an action. There are, however,
four additional options available to you:

1. The action method returns a String – the String
returned matches an action configuration in the
“struts.xml” configure file. This is shown in the
example.

2. The code behind plug-in is utilized – when the code
behind plug-in is used, view templates are found by
concatenating the action name with the result string
returned from the action. For example, if the URL was
“/adduser.action” and the action returned “success”, then
“/adduser-success.jsp” would be rendered. More
information on the code behind plug-in can be found at
http://struts.apache.org/2.x/docs/codebehind-plugin.html.

3. The @Result annotation is used – the action class can be
annotated with a number of different results using the

@Results and @Result annotations. The String
returned from the action needs to match one of the
configured annotated results.

4. The action returns a Result class instance – the action

does not need to return a String, instead it can return an
instance of the Result class that is configured and ready
to use.

Result Types

The results that are generated, and returned to the user from an
action for different result values, do not all need to be the same
type. The result “success” may render a JSP page, but the result
“error” may need to send a HTTP header back to the browser.

The type of the result (which will be discussed in more detail
later in this chapter) is configured using the “type” attribute on
the result node. Like the “name” attribute, there is a default
value for this attribute – “dispatcher” – which will render JSPs.

CORE COMPONENTS | 23

Most of the time you will use provided result types, but it is
possible to provide custom implementations.

Request and Form Data

In order to make decisions about how the action should work,
and to provide data for database persistent objects, the action
may need to access values from the request string as well as the
form data.

Struts2 follows the JavaBean paradigm – if you want access to
data, you provide a getter and/or setter for the field. Providing
access to the request string and form values is no different. Each
request string or form value is a simple name value pair, so to
assign the value for a particular name, a setter is created on the
action. For example, if a JSP makes a call
“/home.action?framework=struts&version=2” the action would
need to provide a setter “setFramework(String frameworkName
)” as well as a setter “setVersion(int version)”.

Notice in this example that the setter does not always need to be
a String value. By default, Struts2 will convert from a String to
the type on the action. This is done for all primitive types and
basic object types, and can be configured for your own custom
classes. Struts2 will also handle the navigation of the value into
more complex object graphs, i.e. for a name on a form element
name of “person.address.home.postcode” and a value of “2”,
Struts2 will make the equivalent call
“getPerson().getAddress().getHome().setPostcode(2)”.

Accessing Business Services
Up until now we have been concerned with the actions
configuration, and how to control the rendering of a result back
to the user for different result codes. This is an important part of
what actions do but, before they return a result, some processing
needs to be performed. For this, they need access to a variety of
different objects – business objects, data access objects or other
resources.

24 | STARTING STRUTS2

To provide a loosely coupled system, Struts2 uses a technique
called dependency injection, or inversion of controlv.
Dependency injection can be implemented by constructor
injection, interface injection and setter injection. Struts2 uses
setter injection. This means that to have objects available to the
action, you need only to provide a setter. The preferred
dependency injection framework is the Spring Framework,
which is configured via a plugin. Another option is Plexus, or if
you prefer you can supply your own implementation.

There are also objects that are not managed by the spring

framework, such as the HttpServletRequest. These are
handled by using a combination of setter injection and interface
injection. For each of the non-business objects there is a
corresponding interface (known as an “aware” interface) that the
action is required to implement.

 WebWork originally had its own dependency injection
framework. It was in the 2.2 release that this feature was
removed and replaced by the Spring Framework. The original
component framework was based on interfaces, so for each
component an interface and implementation class of the
interface needed to be provided.

In addition, each component had an “Aware” interface, which
provided a setter for the component. If the interface was
“UserDAO” the aware interface would be called
“UserDAOAware” (by convention) and have one method – a
setter “void setUserDAO(UserDAO dao);”.

With the necessary interfaces and setters in place, interceptors
will manage the injection of the necessary objects.

CORE COMPONENTS | 25

Accessing Data from the Action
At some point there will be a need to view objects that have been
modified by the action. There are several techniques that can be
used.

A familiar technique for most web developers is to place the

object that needs to be accessed in the HttpServletRequest or
the HttpSession. This can be achieved by implementing the
“aware” interface (letting the dependency injection to do its
work) and then setting the object to be accessed under the
required name.

If you intend to use the built-in tag libraries or the included
JSTL support, accessing the data is much easier. Both of these
are able to directly access the action via the Value Stack. The
only additional work for developers is to provide getters on the
action that allows access to the objects that need to be accessed.
We will talk more about the Value Stack in a later section.

Interceptors
Many of the features provided in the Struts2 framework are
implemented using interceptors; examples include exception
handling, file uploading, lifecycle callbacks and validation.
Interceptors are conceptually the same as servlet filters or the

JDKs Proxy class. They provide a way to supply pre-processing
and post-processing around the action. Similar to servlet filters,
interceptors can be layered and ordered. They have access to the
action being executed, as well as all environmental variables and
execution properties.

Let’s start our discussion of interceptors with dependency
injection. Injecting dependencies into the action, as we have
already seen, can happen in a couple of different ways. Here are
the implementing interceptors for those we have already
mentioned:

� Spring Framework – the

 ActionAutowiringInterceptor interceptor.

26 | STARTING STRUTS2

� Request String and Form Values – the

ParametersInterceptor interceptor.
� Servlet-based objects – the ServletConfigInterceptor

interceptor.

The first two interceptors work independently, with no
requirements from the action, but the last interceptor is different.
It works with the assistance of the following interfaces:

� SessionAware – to provide access to all the session
attributes via a Map

� ServletRequestAware – to provide access to the
HttpServletRequest object

� RequestAware – to provide access to all the request
attributes via a Map

� ApplicationAware – to provide access to all the
application attributes via a Map

� ServletResponseAware – to provide access to the
HttpServletResponse object

� ParameterAware – to provide access to all the request
string and form values attributes via a Map

� PrincipalAware – to provide access to the
PrincipleProxy object; this object implements the
principle and role methods of the HttpServletRequest
object in implementation, but by providing a proxy,
allows for implementation independence in the action

� ServletContextAware – to provide access to the
ServletContext object

For the correct data to be injected into an action, it will need to
implement the necessary interface.

Configuration
If we want to enable dependency injection (or any other type of
functionality provided by an interceptor) on our action we need
to provide configuration. Like other elements, many
interceptors have been preconfigured for you. Just make sure

CORE COMPONENTS | 27

that the package your actions are in extends the “struts-default”
package.

To configure a new interceptor, we first need to define the

interceptor. The <interceptors … /> and <interceptor …
/> tags are placed directly under the <package> tag. For the
above mentioned Spring Framework interceptor, the
configuration is as follows:

<interceptors>

 …

 <interceptor name="autowiring"

 class="interceptor.ActionAutowiringInterceptor"/>

</interceptors>

We also need to ensure that the interceptor is applied to the
action that requires it. This can be achieved in two ways. The
first is to assign the interceptor to each action individually:

<action name="my" class="com.fdar.infoq.MyAction" >

 <result>view.jsp</result>

 <interceptor-ref name="autowiring"/>

</action>

Using this configuration there is no limitation on the number of
interceptors you can apply to an action. What is required, is that
the interceptors are listed in the order that they are to be
executed.

The second way is to assign a default interceptor for the current
package:

<default-interceptor-ref name="autowiring"/>

This declaration is made directly under the <package … /> tag,
and only one interceptor can be assigned as the default.

Now that the interceptor has been configured for a particular
action mapping, it will be executed on each and every request to
the mapped URL. But this is very limiting, as most of the time
we require more than one interceptor to be assigned to an action.

28 | STARTING STRUTS2

In fact, as Struts2 bases much of its functionality on interceptors,
it is not unlikely to have 7 or 8 interceptors assigned per action.
As you can imagine, having to configure every interceptor for
each action would quickly become extremely unmanageable.
For this reason, interceptors are managed with interceptor stacks.
Here is an example, directly from the struts-default.xml file:

<interceptor-stack name="basicStack">

 <interceptor-ref name="exception"/>

 <interceptor-ref name="servlet-config"/>

 <interceptor-ref name="prepare"/>

 <interceptor-ref name="checkbox"/>

 <interceptor-ref name="params"/>

 <interceptor-ref name="conversionError"/>

</interceptor-stack>

This configuration node is placed under the <package … />
node. Each <interceptor-ref … /> tag references either an
interceptor or an interceptor stack that has been configured
before the current interceptor stack.

We have already seen how to apply interceptor to the action,
applying interceptor stacks is no different. In fact, we use
exactly the same tag:

<action name="my" class="com.fdar.infoq.MyAction" >

 <result>view.jsp</result>

 <interceptor-ref name="basicStack"/>

</action>

The same holds true for the configuration of the default
interceptor – simply use an interceptor stack configuration name
rather than an individual interceptor name.

<default-interceptor-ref name="basicStack"/>

It is therefore very important to ensure that the name is unique
across all interceptor and interceptor stack configurations when
configuring the initial interceptors and interceptor stacks.

CORE COMPONENTS | 29

Implementing Interceptors
Using custom interceptors in your application is an elegant way
to provide cross-cutting application features. The interface that
needs implementing is simple, and comes from the XWork
framework. It has only 3 methods:

public interface Interceptor extends Serializable {

 void destroy();

 void init();

 String intercept(ActionInvocation invocation)

 throws Exception;

}

In fact, if there is no initialization or cleanup required, there is an

AbstractInterceptor class that can be extended instead. This
class provides a default no-op implementation of both the
“destroy” and “init” methods.

The ActionInvocation object provides access to the runtime
environment. It allows access to the action itself; the context
(which for a web application includes the request parameters,
session parameters, the users locale, etc.); the result of the
actions execution; and methods to invoke the action and
determine whether the action has already been invoked.

We have already seen how to configure interceptors, and
configuring custom interceptors is exactly the same. If you do
create your own interceptors, you will also want to consider
creating custom interceptor stacks. In this manner you will
ensure consistent application of the new interceptor across all
actions that require it.

Value Stack / OGNL
This section covers two ideas that are closely related. The value
stack is exactly what it says it is – a stack of objects. OGNL
stands for Object Graph Navigational Language, and provides
the unified way to access objects within the value stack.

30 | STARTING STRUTS2

The value stack consists of the following objects in the provided
order:

1. Temporary Objects – during execution temporary objects
are created and placed onto the value stack; an example
of this would be the current iteration value for a
collection being looped over in a JSP tag

2. The Model Object – if model objects are being used, the
current model object is placed before the action on the
value stack

3. The Action Object – the action being executed

4. Named Objects – these objects include #application,
#session, #request, #attr and #parameters and refer
to the corresponding servlet scopes

Accessing the value stack can be achieved in many different
ways. The most common way is via the tags provided for JSP,
Velocity and Freemarker. HTML tags are commonly used to
access properties of objects from the value stack; control tags
(such as if, elseif and iterator) are used with expressions; and
data tags are available to manipulate the stack itself (via set and
push).

When using the value stack there is no need to keep track of
which scope the target object is in. If you want the attribute
“name”, then you query the value stack for this attribute. Each
stack element, in the provided order, is asked whether it has the
property. If it does, then the value is returned and we are done.
If not, then the next element down is queried. This continues
until the end of the stack is reached. This is a great feature, as
you don’t care where the value is – the action, the model, or the
HTTP request – you just know that if the value exists it will be
returned.

There is a downside. If the property is common (for example
“id”) and you want the value from a specific object (say the
action) that is not the first object encountered with this property

CORE COMPONENTS | 31

on the value stack, the value returned may not be what you
expect. What will be returned is an “id” value, but it may be
from a JSP tag, interim object, or a value from the model object.
OGNL is more than just a means to access the properties of
objects, and we can use this to our advantage here. If we know
the depth in the stack of the action, we could use “[2].id” instead
of an expression of “id”,

In fact, OGNL is a fully featured expression language. As well
as using dot notation to navigate object graphs (i.e. using
“person.address” instead of “getPerson().getAddress()” as the
expression), OGNL supports features such as type conversion,
calling methods, collection manipulation and generation,
projection across collections, expression evaluation and lambda
expressions . The complete language guide can be found at
http://www.ognl.org/2.6.9/Documentation/html/LanguageGuide/
index.html.

Result Types
So far we have shown action configurations that result in a JSP
being rendered to the user. This is one case, but not the only
one. In fact, Struts2 supports many types of results. These can
be visual, or they can be interactions with the environment.

To configure an action to execute a result of a specific type, the
“type” attribute is used. If the attribute is not supplied, the
default type “dispatcher” is used – this will render a JSP result.
Here’s what the action configuration looks like:

<action name="my" class="com.fdar.infoq.MyAction" >

 <result type="dispatcher">view.jsp</result>

</action>

Configuration

Result types are configured within the <package … /> tag. The
configuration is similar to interceptor configuration. A “name”
attribute provides a unique identifier for the result type, and the

32 | STARTING STRUTS2

“class” attribute provides the implementation class. There is a
third attribute “default” – this allows the default result type to be
modified. If a web application was to be based on Velocity
rather than JSP, modifying the default would save time when
entering configuration information.

<result-types>

 <result-type name="dispatcher" default="true"

 class="….dispatcher.ServletDispatcherResult"/>

 <result-type name="redirect"

 class="….dispatcher.ServletRedirectResult"/>

 …

</result-types>

Implementing Result Types
Similar to interceptors, it is possible to create your own result
types and configure them in your web application. Many
common result types already exist so, before creating your own,
you should check to see if the type you want already exists.

To create a new result type, implement the Result interface.

public interface Result extends Serializable {

 public void execute(ActionInvocation invocation)

 throws Exception;

}

The ActionInvocation object provides access to the runtime
environment, allowing the new result type to access information
from the action that was just executed, as well as the context in
which the action was executed. The context includes the

HttpServletRequest object, which provides access to the
output stream for the current request.

CORE COMPONENTS | 33

Results / View Technologies
In all the examples given so far, there has been an assumption
that Java Server Pages (JSPs) are being rendered as the view
technology. Although it may be the most common, it is not the
only way to render results.

The result type is closely linked to the view technology used. In
the previous section, we saw that if the “type” attribute is absent
or if the value is “dispatcher”, then the JSPs are rendered. There
are three other technologies that can replace JSPs in a Struts2
application:

� Velocity Templates
� Freemarker Templates
� XSLT Transformations

Remember, too, that you can implement a new result type for
any view technology that exists. Then you will have additional
results available.

Apart from individual language syntax differences, Freemarker
and Velocity are very similar to JSP. All the properties of the
action (via the getter methods) are available to the template, as
well as the JSP tag libraries and the use of OGNL within the tag
libraries. The name of the JSP template is simply replaced with
the name of either the Velocity or Freemarker template in the
actions configuration. This is how a Freemarker result would be
configured to be returned instead of a JSP:

<action name="my" class="com.fdar.infoq.MyAction" >

 <result type="freemarker">view.ftl</result>

</action>

The XSLT result is a little different. Instead of replacing the
template name with the stylesheet name, additional parameters
are used. The parameter “stylesheetLocation” provides the name
of the stylesheet to use in rendering the XML. If this parameter
is not present, the untransformed XML will be returned to the
user.

34 | STARTING STRUTS2

The “exposedValue” property provides the property of the
action, or an OGNL expression to be exposed as XML. If this
parameter is not specified, the action itself will be exposed as
XML.

<result type="xslt">

 <param name="stylesheetLocation">render.xslt</param>

 <param name="exposedValue">model.address</param>

</result>

There is also a “struts.properties” configuration property that is
available when using XSLT as the result. The name of the
property is “struts.xslt.nocache” and it determines whether the
stylesheet is cached. During development you would want to
remove any caching to allow for faster development cycles,
however, when the application is deployed into production a
cached stylesheet will increase performance during rendering.

Tag Libraries
Tag libraries are generally used to define a feature exclusive to
JSPs that provide reusability. Freemarker and Velocity don’t
have the same concept; instead they provide a model or context
to the rendering engine and the template being rendered has
access to all those objects. When we speak of tag libraries in the
Struts2 world, we are talking about objects that provide the same
functionality as JSP tag libraries that are accessible to all view
technologies – JSP, Velocity and Freemarker.
There is more formality around defining the tag libraries, but the
underlying functionality is the same – to provide access to
methods on objects. This improves maintainability by keeping
the logic encapsulated, and reducing the temptation of cutting
and pasting code.

JSP tag libraries have another characteristic that seems outdated
in today’s web development environment – to place the text to
be rendered inside the Java code of the tag library itself. Struts2
has turned this idea around, creating a secondary MVC pattern

CORE COMPONENTS | 35

exclusively for tags. Logic is provided inside Java classes, but
the rendering is placed in Freemarker templates (this is a
default). The entire architecture looks like this:

The core of the architecture is a set of component objects. The
component object represents each tag in its most basic form, and
provides any necessary logic as well as managing and rendering
the templates. Each different result / view technology then
provides a wrapper around the component. The wrapper
provides the translation of what the specific view technology
requires in order to use the tag within the original page.

When using the tag libraries with Freemarker template
rendering, there is an additional configuration requirement. An
additional servlet needs to be configured in the “web.xml” file so
that Freemarker can obtain the information it needs for
rendering:

<servlet>

 <servlet-name>jspSupportServlet</serlet-name>

 <servlet-class>

 ….action2.views.JspSupportServlet.JspSupportServlet

 </servlet-class>

 <load-on-startup>10</load-on-startup>

</servlet>

36 | STARTING STRUTS2

Each component also has templates associated with it. If the
original tag contains other tags (i.e. a form tag), there will be an
opening template and a closing template. If the original tag is
self contained (i.e. a checkbox tag), there will be only a closing
template. As well as providing a separation between text and
logic within the UI architecture, using templates for tags
provides an additional benefit – it allows the developer to mix
and match different templates for the same tag, using a feature
called “themes”.

There are currently three themesvi: “simple”, “xhtml” and
“css_xhtml.” The “simple” theme provides the tag output
without any formatting. The “xhtml” theme takes formatting a
step further; for HTML form tags, this theme provides two-
column formatting using HTML tables. For CSS purists, there is
the “css_chtml” theme. Similar to the “xhtml” theme this theme
also provides formatting; however instead of using HTML tables
it uses a CSS DIV. The additional formatting is provided to the
developer without the additional clutter of HTML.

The “xhtml” and “css_xhtml” themes are good examples of what
developers can do for themselves – implement a theme to
provide specific formatting for HTML. Themes can be mixed
and matched on the same page, and the theme for the current tag
is defined using the “theme” attribute. If you are consistently
using one theme, it can be set as the default using the
“struts.ui.theme” property of the “struts.properties”
configuration file.

Themes are provided for all tag categories (control tags, data
tags, form tags and non-form UI tags); however, creating new
themes is only beneficial for the visual form tags.

37

4
Architectural Goals

For a particular code base, the architectural goals can be difficult
to determine. There are the goals that were documented before
development starts; these are idealistic, and as development
starts, the code usually evolves in a different direction. Then
there are the true characteristics of the code base; these are
harder to find, can be inconsistent across different packages or
features, and are a product of evolution rather than planning.

In this chapter we will talk about five such characteristics of the
Struts2 code base. Architectural elements that are still present
after the evolution of the code base since 2002 – from the
original WebWork, through the splitting of WebWork into
WebWork2 and XWork, and the final transition into Struts2.

Separation of Concerns
As a web application developer, there are many levels of
functionality that need to be addressed:

� There is the specific per-action logic that is the core of
what needs to be achieved during the request/response
cycle

� There is accessing or obtaining the business objects that
are needed to perform the action’s logic and access
resources

� There is translation, mapping and conversions that need
to occur in order to take a string-based value in the
HTML into primitives or types and to convert view
objects to business objects or database table
representations

Free Online Version.
Support this work, buy the print copy:
http://infoq.com/minibooks/starting-
struts2

38 | STARTING STRUTS2

� There are cross-cutting concerns that provide
functionality for groups of action, or for all actions in the
application.

Within the architecture of Struts2, each of these concerns is
separate. Functionality and logic no longer needs to be placed
exclusively within the action. Let’s take a look at of the
concerns mentioned above and see how they are handled:

� Per-Action Logic – this is the simplest concern; each
action is responsible for the logic or functionality it needs
to provide

� Accessing/Obtaining Business Objects – Struts2 takes
advantage of dependency injection, and hence the objects
that are required to complete the logic in the action are
supplied to the action

� Translation/Mapping/Conversions – each of these are
slightly different concerns, but they share the common
trait of being ancillary to the core actions logic.
Translation and conversion of types is handled by the
framework itself. String values from HTML are
converted to base types and injected into the action
before processing of the action starts – everything needed
is already there. Mapping is handled by a specific
interceptor. By configuring an action in a way that
determines it to have a domain model, and specifying the
fields in the HTML correctly, the framework will map
the UI to the domain model. It will even traverse into an
object graph.

� Cross-cutting Concerns – interceptors are the main
feature for providing for cross-cutting functionality.
Developers can implement interceptors, and then apply
them across all actions, across all actions in a specific
package, or pick and choose which actions that they are
applied to. Another cross-cutting concern is the user
interface layout. Struts2 can also help here with a feature
of the supplied tags called “themes”. Different themes
can be developed to provide different layout options, and

ARCHITECTURAL GOALS | 39

then applied to individual tags, or for the entire
application (by assigning it as the default).

Loose Coupling
One of the early goals of WebWork was to provide a loosely
coupled framework. The 2.0 release of WebWork reinforced
this, splitting the code into two projects: XWork – a generic
command framework; and WebWork – the web-specific
interface to XWork. This fundamental change in the architecture
of WebWork created a symbiotic relationship. What was once
known as “WebWork” is now essentially a combination of
WebWork and XWork.

XWork, being an independent project, could now be utilized as a
part of other projects – and it was. Swingworkvii was one such
project. It was a Swing-based MVC framework that used
XWork under the covers. Another example would be a JMS
front end, executing or sharing XWork actions with a web UI.
These provide great examples of a very high level loose
coupling. Struts2 is yet another consumer of XWork.

The ideology of loose coupling is taken much further, having
been integrated throughout the framework – from the very first
step in processing an action to the very last. In fact, there is very
little in Struts2 that cannot be configured – I believe this to be
one of Struts2’s greatest strengths, as well as one of its greatest
weaknesses.

Common examples of loosely coupled configuration include:

� Mapping URLs to actions
� Mapping different outcomes of an action to pages that

are rendered
� Mapping exceptions that occur during processing to an

exception page being rendered

Less common and Struts2 specific example include:

40 | STARTING STRUTS2

� Configuring the business object factory if you don’t want
to use Spring

� Changing the way the URL is mapped to an action class
� Adding new result types for action outcomes
� Adding plug-ins for new framework functionality
� Configuring the framework level functionality via

interceptors

The benefit of loosely coupled systems is well known and
understood – increasing testability, extending framework
features is easier, etc. But there is a downside. Because of the
level of configurability, especially with respect to interceptors,
the processing path of a specific action may not be understood
by developers. This becomes apparent when debugging. An
uninformed developer will not be able to debug quickly or
efficiently due to not understanding what is happening. This
problem could be as simple as an incorrectly configured
interceptor, or even the order of interceptors causing issues. By
understanding each piece in the processing path, solutions will
come more quickly.

Testability
Unit testing has become a de facto standard in software
development over the last few years. Not only does testing
ensure consistency in the logic of classes but, by implementing
the unit tests during (or even better, before) the development of
the class under test, a less complicated and more robust design
will emerge.

The predecessor of Struts2, WebWork, was built in such an
environment. With loose coupling of the framework elements,
testing becomes easy. The actions, interceptors, results, object
factories, and other components that are developed in web
application development, can be tested independently of the
framework.

ARCHITECTURAL GOALS | 41

As actions and interceptors are the most common, we’ll take a
closer look at these.

Actions
Actions are invoked within the framework by convention by
calling the “execute()” method, or by configuration by calling

any method that returns a String value. From a testability
standpoint, this couldn’t be much easier.

Let’s take a look at an example. Here is an action class that
increments a number:

public class MyAction {

 private int number;

 public int getnumber() { return number; }

 public void setNumber(int n) { number = n; }

 public String execute() {

 number += 10;

 return “success”;

 }

}

As the actions are POJOs unit tests need only to instantiate the
action, call the method, and then assert that the result is that
which is expected. All data and resources are provided to the
action via setter methods. Therefore, any data the action may
need can be directly set on the action.

In our example we need two assertions – one for the outcome of
the “execute” method, and the other to verify that the state of the
action is what we are expecting. The unit test would then be:

public class myActionTest extends TestCase {

 …

 public void testExecute() {

 MyAction action = new MyAction();

 Action.setNumber(5);

42 | STARTING STRUTS2

 assertEquals("success", action.execute());

 assertEquals(15,action.getNumber());

 }

}

Resources are only slightly more complex. Libraries such as
jMockviii can be used to provide mock implementations of the
resources, testing that interactions between the action and the
resource are correct.

Although the example was written using JUnit, TestNG or any
other framework could have been used.

Interceptors
When you are building interceptors, testing will be slightly more
complex. However, there is additional help available. There are
two scenarios when working with interceptors.

The first is when you have an interceptor that, when called,

interacts with the ActionInvocation object. After execution,
you are able to verify the logic by asserting the state of the
interceptor itself. For this scenario you can test the interceptor
in exactly the same way as actions. Instantiate the interceptor;

create a mock implementation of the ActionInvocation object
with values that will be used in testing the interceptor; call the

intercept method; then assert that the changes are what is
expected. These could be on the interceptor itself, the result
from the method being called, or an exception that may have
been thrown.

The second scenario is when the interceptor interacts with its
environment or other interceptors in the interceptor stack. In this
case, the test will need to interact with the action via the

ActionProxy class, and assertions will need to access other
environmental objects that the interceptor, by itself, does not
have access to.

ARCHITECTURAL GOALS | 43

The XWork library helps here by providing the XWorkTestCase
for JUnit tests, and the TestNGStrutsTestCase and

TestNGXWorkTestCase classes for TestNG tests. These provide
a test implementation for the ConfigurationManager,

Configuration, Container and ActionProxyFactory class
instances. Several other classes are involved, including

XWorkTestCaseHelper and MockConfiguration.

Now that we have the infrastructure of setting up the
environment, the test itself becomes easy - following the same
steps outlined in the first scenario. The only difference being

that, instead of calling the intercept() method on the

interceptor, the execute method of the ActionProxy needs to be
called. The following code will do this:

ActionProxy proxy =

 actionProxyFactory.createActionProxy(NAMESPACE,NAME,null);

assertEquals("success", proxy.execute());

In this scenario, tests will be asserting an expected value of the
action result, values of the action, or values from the value stack.
The action being executed can be obtained before or after
execution by the call with:

MyAction action=(MyAction)proxy.getInvocation().getAction();

The value stack can be obtained with:

proxy.getInvocation().getStack()

44 | STARTING STRUTS2

Modularization
Being able to split web applications into modules becomes
important as applications become large. It allows functionality
or new framework features developed on one project to be
packaged independently, and then re-used across other projects.
Struts2 has adopted modularization as a fundamental part of the
architecture, allowing developers to work independently and
build upon each other’s work.

There are a few ways that applications can be modularized:

� Configuration information can be split into multiple files
– this does not affect the packaging of the application,
but makes the development easier as configuration
information is easier to find and logically separated along
functional boundaries

� Self-contained application modules can be created as

plug-ins – everything that is needed to provide a
particular feature can be packaged together and
independently distributed as a plug-in; this includes
actions, interceptors, interceptor stacks, view templates
(except JSPs), etc. An example is the config browser
plug-inix, this plug-in provides a complete module that,
when added to your application, provides a web interface
to view configuration information

� New framework feature plug-ins can be created – new
functionality that is non-application specific can be
bundled as a plug-in and used across many difference
applications

Technically speaking, all of these ways to modularize an
application are the same – they have the same configuration
elements (except the name might be different; “struts-
plugin.xml” is the configuration file that is automatically loaded
for plug-ins), the same directory structure, and they can contain
the same framework and application elements.

ARCHITECTURAL GOALS | 45

The only difference between the two types of plug-ins is how
you conceptually think of them, and which elements and
configurations are put in the distribution package.

Additional Configuration Elements
Because plug-ins can provide alternate implementations for
internal framework functionality, there are additional
configuration elements. Although these elements can be used in
the “struts.xml” configuration file, and are used in the “struts-
default.xml” file, they are used more common in configuring
plug-ins.

For plug-ins, configuration of alternate implementations happens
in two steps:

1. The alternate interface implementation is provided using

the <bean … /> tag, along with a unique key that
identifies it

2. One of possibly many configured interface

implementations is selected using the <constant … />
tag

Let’s take a look at each of these steps in more detail.

The <bean … /> tag allows plug-ins to supply implementation
information for extension points. Below is an example that
shows the configuration of an object factory from the “struts-
default.xml” configuration file:

<bean name="struts"

 type="com.opensymphony.xwork2.ObjectFactory"

 class="org.apache.struts2.impl.StrutsObjectFactory" />

Attributes provide everything that is needed to create and utilize
an alternate object implementation within Struts2. The attributes
that can be used are:

� class – this provides the full name of the class
� type – this is the interface the class implements
� name – a short name that is unique per type

46 | STARTING STRUTS2

� static – whether to inject static class methods into the
class instance

� scope – the scope that an instance is utilized in, this can
be “default”, “request”, “session”, “singleton” or
“thread”

� optional – if “true” loading will continue even if there
was an error creating an instance of the class

Next, the <constant … /> tag allows the developer to select
which configuration is used. There are only two attributes – a
property name that provides the name of the extension point that
your new implementation is changing, and the value which is the

unique name configured using a <bean … /> tag.

<constant name="struts.objectFactory" value="plexus" />

The <constant … /> tag is one way to apply a new value to a
known property, but it is not the only way. The value can also
be modified using an “init-param” in the “web.xml”
configuration file, or as a name-value pair in the
“struts.properties” configuration file.

If you are not developing a plug-in, but instead using these
techniques in a regular “struts.xml” configuration file, there is a

shortcut. In the <constant … /> tag, use the class value that
you would normally place in the <bean … /> tag – this avoids

the need for the <bean … /> tag altogether.

This table lists the interfaces and the property names for the
configurable extension points.

Interface Property Name Scope Description
com.opensymphony.
xwork2.
ObjectFactory

struts.object
Factory

singleton Creates objects
used in the
framework -
actions, results,
interceptors,
business, objects.

ARCHITECTURAL GOALS | 47

com.opensymphony.
xwork2.
ActionProxyFactory

struts.
actionProxyFactory

singleton Creates the
ActionProxy

com.opensymphony.
xwork2.util.
ObjectType
Determiner

struts.
objectTypeDeterminer

singleton Determines what
the key and the
element class of
a map or
collection are

org.apache.struts2.
dispatcher.mapper.
ActionMapper

struts.mapper.class singleton Determines the
ActionMapping
from a request
and a URI
from an Action
Mapping

org.apache.struts2.
dispatcher.multipart.
MultiPartRequest

struts.multipart.
parser

per
request

Parses a
multipart
Request (file
upload)

org.apache.struts2.
views.freemarker.
FreemarkerManager

struts.freemarker.
manager.classname

singleton Loads and
processes
Freemarker
templates

org.apache.struts2.
views.velocity.
VelocityManager

struts.velocity.
manager.classname

singleton Loads and
processes
Velocity
templates

The <constant … /> tag and “init-param” in the “web.xml”
configuration file is not limited to only extension point
properties. Any property from the “struts.properties”
configuration file can be modified using the same technique.

Convention over Configuration
Convention over configuration is a concept that Rails has
brought to main stream application development. Rather than
providing configuration files, which were very similar between
applications, an assumption was made that under most
circumstances developers would follow a particular pattern. The
pattern being followed was considered generic enough to be
deemed a convention and, rather than having to provide the
configuration for each new application, it was provided by the

48 | STARTING STRUTS2

framework as the default. As the default, developers no longer
needed to provide the configuration information. However, if
there was a need to deviate from the convention configuration
information, it could be provided to override the defaults.

Struts2 has adopted this concept. Loose coupling has provided
an opportunity for Struts2 to be extremely flexible, but it also
means that the framework can be extremely difficult to
configure. Conventions balance out these two opposing forces,
allowing for a simpler and more productive developer
experience.

Examples of convention over configuration in Struts2 include:

� Implicit Configuration File Loading – rather than
explicitly configuring the “struts-default.xml” file and
“struts-plugin.xml” file (for each plug-in), they are
loaded automatically during startup

� Code Behind Plug-in – when utilizing the code behind
plug-in, the result template is automatically searched for
using a combination of the action name and result string,
so that for an action “/user/add.action” the result template
“/user/add-success.jsp” will be returned for a “success”
result, and the result template “/user/add-error.jsp” would
be returned for an “error” result

� Default Result & Result Type – when configuring actions
there is no need to specify the result and the type when
using the default of “success” and JSP

� Wiring of Spring Business Service – with the Spring
framework plug-in installed, it is not necessary to
configure each Spring-provide business service that each
action requires; instead, the business service is wired into
the action automatically

In previous chapters we have seen several default settings, as
well as how to override the values and provide new defaults via
configuration. More configuration options, as well as more
conventions will be explored in the upcoming chapter on
productivity features.

49

5
Productivity Tips

This chapter contains a list of tips, techniques, features and
things to keep in mind to be as productive as possible when
developing web applications using Struts2. Some tips may be as
simple as listing default values, and some as complex as
showing the interface that needs to be implemented to create
custom declarative validations.

The information provided in this section is intended only as an
introduction – if a tip looks interesting, dig a little deeper. Go to
the Struts2 documentation at
http://struts.apache.org/2.x/docs/guides.html or do a search to
see what other developers think and how they have used it.

Finally, as you read each section think about how this tip may
interact with other tips; think about how this tip may be different
from other tips; and think about how you can utilize the tip in
your web development. Take your understanding to the next
level.

Having a plug-in architecture allows Struts2 to continuously
evolve. Regular visits to the Struts2 plug-in registry page will
keep you up to date on the latest developments. This page is the
source for all plug-in related announcements, and it can be found
at http://cwiki.apache.org/S2PLUGINS/home.html. It already
contains several 3rd party plug-ins for JSON, GWT and Spring
WebFlow functionality.

Free Online Version.
Support this work, buy the print copy:
http://infoq.com/minibooks/starting-
struts2

50 | STARTING STRUTS2

Re-Using Action Configurations
We have talked about configuring actions into packages, and
about how packages can extend other packages - but the benefit
of this may not be clear. Let’s take a look at a concrete example.
The example is an application that provides information to
visitors of zoos. There will be a portal page for each continent
providing information including animals, maps, etc.

One way to handle this feature request is to provide one action
that the user can invoke with a URL something like
“www.myzoo.com/home.action?continent=asia”. This
consolidates the application logic and makes it easy to determine
which continent is being requested. However, depending on
how the information to be rendered to the user is defined,
flexibility could be lost as hard coded path information is added
to the action or view.

A more flexible solution is to provide a URL such as
“www.myzoo.com/asia/home.action”. Using this scheme, a base
action would be provided and configured in the default package.
Each inheriting package then has access to the same action. So
“www.myzoo.com/home.action” calls exactly the same class as
“www.myzoo.com/asia/home.action” – without any additional
configuration.

Furthermore, the views can also be also customized without any
additional configuration. If the configuration of the action (in
the default package) is

<action name="home" class="com.fdar.infoq.HomeAction" >

 <result>portal.jsp</result>

</action>

then the JSP that is rendered by Struts2 will depend on the users
calling namespace, as provided by the URL. Hence, if the URL
is “www.myzoo.com/home.action” the “/portal.jsp” will be
rendered, but if the URL is “www.myzoo.com/asia/home.action”
is called, the JSP “/asia/portal.jsp” will be rendered. Once again,
this functionality is provided without any additional

PRODUCTIVITY TIPS | 51

configuration – because the configuration provides a relative JSP
location rather than a specific one.

Use Pattern Matching Wildcards in
Configurations

Action configuration files are somehow able to grow to
extremely large at incredible speeds. On way to combat this
phenomenon is to use pattern matching. Pattern matching works
by defining one or more patterns that URLs will conform to.

An example will be an easy way to see how things work. Let’s
say that the URLs in your web application always follows the
pattern “/{module}/{entity}/{action}.action”. This is a common
pattern; examples would be the URL’s
“/admin/User/edit.action”, “/admin/User/list.action” and
“/admin/User/add.action”.

The class configuration is such that there is a Struts2 action class
with the name “{entity}Action”, and each {action} is method on
the action class. All the results from invoking the action’s
methods will result in either the update page for the entity being
displayed, or a list of all the entities being displayed.

For our example, the “struts.xml” configuration will look like
this:

<action name=”*/*/*” method=”{3}”

 class=”com.infoq.actions.{1}.{2}Action”>

 <result name=”view”>/{1}/update{2}.jsp</result>

 <result name=”list”>/{1}/list.jsp</result>

</action>

Each asterisk in the actions name is a wildcard. In the example,
only asterisks are used – but this need not be the case. For
example, say you wish to map all entity view actions together.
Something like ‘name=”/*/View*”’ would do the trick. Token
identifiers, {1}, {2}, etc., are then used to obtain the text values
harvested from the wildcards (where the numeric value

52 | STARTING STRUTS2

correlating to the position of the asterisk, ascending from left to
right).

In the “struts.properties” configuration file (or using the constant
tag in the “struts.xml” configuration file) you need to ensure the
following property is correctly set:

struts.enable.SlashesInActionNames = true

This property allows slashes in the name of the action. Struts2’s
default configuration is to not have slashes in the action name,
instead using packages for namespace separation.

Finally, there is no shortcut if you are providing validation and
conversion property files rather than using annotations. We’ll
talk about this more in following sections. Each needs to
contain the full name of the action, along with the necessary
extension: i.e. “edit-validation.xml” and “edit-conversion.xml”
for the original example, in the “com.infoq.actions.admin”
package.

Utilize Alternate URI Mapping Schemes
A different approach than using wildcards in the configuration,
is to provide a custom mapping from the URI to the action and
method being invoked. Using this technique there will be less
configuration, and the mapping will be applied consistently
across the entire application. You can utilize URI patterns
combined with session information, or any other information
you can imagine, to determine the action to be called.

The interface that needs to be implemented is the

ActionMapper, and it has two methods to implement: the

getMapping() method that converts a URI into a known
configuration; and the getUriFromActionMapping() method
that converts an action configuration into a URI.

PRODUCTIVITY TIPS | 53

public interface ActionMapper {

 ActionMapping getMapping(

 HttpServletRequest request,

 ConfigurationManager configManager);

 String getUriFromActionMapping(

 ActionMapping mapping);

}

The ActionMapping class provides the resulting actions
namespace, name, method, result and parameters. And the

ConfigurationManager provides access to configuration
providers (which in turn allow for further customization).

To install the action mapper, the current action mapper needs to
be replaced in the “struts.xml” configuration file. The name and
the type are always the same - the difference is that the class
value is that of the custom ActionMapper type that has been
implemented.

<constant name="struts.mapper.class"

 value="com.fdar.infoq.MyActionMapper" />

The good news is that you don’t need to go through the effort of
implementing an ActionMapper to take advantage of this
feature. Struts2 has implemented several different types.

The Restful2ActionMapper class provides an implementation
of a ReST-style interface, and was inspired by the easy-to-use
URIs of Ruby on Rails. Something to keep in mind is that this
implementation is marked as experimental in the Struts2
documentation.

The first thing that the Restful2ActionMapper does is
determine the namespace and action that is to be used. This is
achieved as you would expect – the last element in the URL is
the name of the action, with the values before the action
becoming the namespace. The exception to this is that attributes

54 | STARTING STRUTS2

may also be passed in the URL, with the pattern used to map the
action name and the attribute name and values to the URI being:

http://HOST/PACKAGE/ACTION/PARAM_NAME1/PARAM_VALUE1/PARAM

_NAME2/PARAM_VALUE2

There is no limit to the number of “PARAM_NAME/PARAM_VALUE”
pairs that you can have in the URI, and if the PARAM_NAME1 is
“id” the URI can be shortened to:

http://HOST/PACKAGE/ACTION/PARAM_VALUE1/PARAM_NAME2/PARAM

_VALUE2

Once the action is known, the next step is to find the method to
invoke on the action. The HTTP method is used for this
determination. As HTML doesn’t support PUT and DELETE
methods, an additional request attribute “__http_method”
provides the method information.

Here’s what happens for HTTP method and URL combinations:

� GET: “/user” – when the action is used alone the “index”
method is invoked

� GET: “/user/23” – when the action is used with
parameter name/value pairs the “view” method is
invoked, in this case the “id” attribute is set to a value of
“23”

� POST: “/user/23” – when the method is POST rather
than GET, the “create” method is invoked; the “id” (or
other identifying values) may be contained in the URL,
and the name-value pairs containing information to
update will be in the POST data

� PUT: “/user” – the “update” method is invoked; similar
to the POST scenario, the name-values pairs containing
data will be in POST data rather than the URL

� DELTE: “/user/23” – the “remove” method is invoked,
with the unique identifier (in this case the “id” attribute
having a value of “23”) supplied in the URL

PRODUCTIVITY TIPS | 55

� GET: “/user/23!edit” – the “!” is used to supply the
method name to use, so in this case the “edit” method
will be invoked

� GET: “/user/new” – the “new” suffix indicates that the
“editNew” method is to be invoked

There is also a CompositeActionMapper class. This
implementation allows you to chain different individual
ActionMapper implementations together. Each is checked in the
listed sequence to determine if it can resolve the URI. If the
URI can be resolved, the result is returned. If not, the next
implementation in sequence will be checked; if no match is
found a null result is returned.

As well as the normal ActionMapper configuration, the

configuration for the CompositeActionMapper includes a
constant that lists the class names of the ActionMapper
implementations that are to be chained together.

<bean name="struts"

 type="….dispatcher.mapper.ActionMapper"

 class="….dispatcher.mapper.CompositeActionMapper" />

<constant name="struts.mapper.composite"

 value="….dispatcher.mapper.DefaultActionMapper,

 ….dispatcher.mapper.RestfulActionMapper" />

Know Interceptor Functionality
Interceptors play a vital role in providing functionality to the
Struts2 framework. By knowing the available interceptors you
will understand what processing is happening during each step
of the processing of an action.

Another side benefit is with debugging actions. There will be
times that the action does not contain the data that is expected.
In these circumstances it is more often than not a problem with
either an interceptor not being applied when it should have, or
interceptors being applied in an incorrect order. By

56 | STARTING STRUTS2

understanding what each interceptor does, zeroing in on the
problem and correcting it will be easy.

Here is a list of the interceptors that are provided out of the box,
as well a description of the functionality that each provides.

Interceptor

Name

Description

alias Converts similar parameters that may be
named differently between requests.

chain Makes the previous Action's properties
available to the current Action. Commonly

used together with <result

type="chain"> (in the previous Action).
conversionError Adds conversion errors from the

ActionContext to the Action's field errors

createSession Create an HttpSession automatically,
useful with certain Interceptors that require

a HttpSession to work properly (like the
TokenInterceptor)

debugging Provides several different debugging
screens to provide insight into the data
behind the page.

execAndWait Executes the action in the background and
then sends the user off to an intermediate
waiting page.

exception Maps exceptions to a result.

fileUpload An interceptor that adds easy access to file
upload support.

I18n Remembers the locale selected for a user's
session.

logger Outputs the name of the action.

model-driven If the Action implements ModelDriven,

pushes the getModel Result onto the Value
Stack.

scoped-model-
driven

If the action implements

PRODUCTIVITY TIPS | 57

ScopedModelDriven, the interceptor
retrieves and stores the model from a scope
and sets it on the action calling

setModel().

params Sets the request parameters onto the
Action.

static-params Sets the “struts.xml” defined parameters

onto the action. These are the <param …
/> tags that are direct children of the

<action … /> tag.
scope Simple mechanism for storing action state

in the session or application scope.

servlet-config Provide access to Maps representing

HttpServletRequest and

HttpServletResponse.
timer Outputs how long the action takes to

execute (including nested Interceptors and
View)

token Checks for valid token presence in action,
prevents duplicate form submission.

token-session Same as token interceptor, but stores the
submitted data in session when handed an
invalid token

validation Performs validation using the validators
defined in action-validation.xml

workflow Calls the validate method in your action
class. If action errors are created then it

returns the INPUT view.

store Store and retrieve action messages / errors /
field errors for action that implements

ValidationAware interface into session.
checkbox Adds automatic checkbox handling code

that detect an unchecked checkbox and add
it as a parameter with a default (usually
'false') value. Uses a specially named
hidden field to detect unsubmitted
checkboxes. The default unchecked value

58 | STARTING STRUTS2

is overridable for non-boolean valued
checkboxes.

profiling Activate profiling through parameter

roles Action will only be executed if the user has
the correct JAAS role.

prepare If the action implements Preparable, calls

it’s prepare() method.

Use Provided Interceptor Stacks
Interceptor stacks provide functional groupings of interceptors to
apply to different action categories. Stacks can be constructed
for CRUD operations, for validation of action inputs or for
anything else you may need. But before you start creating your
own stacks, take a look at what Struts2 provides out of the box.
Many standard configurations have already been constructed and
are ready to use. Additionally, each plug-in can provide its own
interceptor stack, which should be used if utilizing the
functionality.

There are two ways to utilize the provided interceptor stacks –
either place you actions in the package that provides the
interceptor stack (using the zero configuration annotation or
“struts.properties” constant), or have new packages that you
define (that includes your action) extend the package that
provides the interceptor stack:

<package name="mypackage"

 extends="struts-default” namespace="/mypackage">

 …

</package>

Having said this, before deploying an application into production
you should always take a look at the interceptor stacks being
used to determine whether you need each and every interceptor.
The “paramsPrepareParamsStack” and “defaultStack” contain
interceptors such as “chain”, “il8n”, “fileUpload”, “profiling”
and “debugging”. These are not commonly used, and by
removing them you can avoid unnecessary processing work.

PRODUCTIVITY TIPS | 59

Stack Name Description

basicStack The most basic stack provided by
Struts2. Provides exception
handling, HTTP objects and
request/form parameters are injected
into the action, and conversion
errors handled.

Validation
WorkflowStack

Adds validation and workflow to the
basic stack.

fileUploadStack Adds automatic file uploading
support to the basic stack.

modelDrivenStack Adds support for model driven
actions to the basic stack.

chainStack Adds action chaining support to the
basic stack.

i18nStack Adds internationalization to the
basic stack.

paramsPrepare
ParamsStack

This is the most complex stack
provided. It is used when request
parameters are to be applied to an
action to load data (or perform other

task) when the prepare() method is
called, and then the request
parameters re-applied to override
some of the loaded values. A good
example of using this stack is for an
object update. The id is used to load
the object out of the database, and
then the data from the request is
used to override some of the data
loaded.

defaultStack This is the default stack. For most
scenarios it provides all the
functionality that is required. In
fact, it includes nearly all the
interceptors available in the core

60 | STARTING STRUTS2

distribution.

completeStack This stack provides backward
compatibility for WebWork
applications by providing an alias to
the “defaultStack”.

executeAnd
WaitStack

Adds asynchronous execution of
actions to the default stack.

Take Advantage of Result Types
Result types allow the developer to mix and match how elements
are rendered back to the user of the web application. In fact, one
action could have multiple results and each can be configured
with different result types.

Another important thing to keep in mind when developing, is
that results can be visual as well as non-visual. For example,
returning HTTP headers.

Here is the list of the pre-configured result types, and a brief
explanation of what they do. All of these are available when you
place you action within, or extend the “struts-default” package in
your application:

Name Description

chain Chains from the execution of one action to
another configured action. Copies all
property values with getter methods from
the initial action to corresponding setter
methods on the target action.

dispatcher Renders Java server pages. This is the
default result type, and is used if no result
type is configured in the action
configuration.

freemarker Renders Freemarker templates.

httpheader Returns HTTP headers with user defined
values.

PRODUCTIVITY TIPS | 61

redirect Redirects to any arbitrary URL.

redirect-action Redirect to a configured action. Can be
used to provide redirect after post
functionality.

stream Streams data back to the browser. Used to
stream PDF, Microsoft Word, images, or
other data.

velocity Renders Velocity templates.

xslt Uses an XSLT to format the properties
from the action that has been previously
executed.

Utilize Data Conversion
A common task for web development is converting the string
based form data to the correct types for the model, or for
business service methods. Usually this is a code- intensive
manual process. Struts2 expedites the process by providing data
conversion for you. The built in conversion will convert a

String to any of the following:
� String

� Boolean or boolean
� Character or char

� Integer or int
� Float or float
� Long or long

� Double or double
� Date – using the locale associated with the current

request

The setter provided on the action can then change from
“setId(String id)” to “setId(int id)”. We no longer need to do
conversions for each value, and can simply use the value with
the correct type that has been set on the action.

For custom type conversions you can implement the class

StrutsTypeConverter. There are two methods that need to be

62 | STARTING STRUTS2

implemented; one to convert from a string to a new type class,
and the other to convert from the new type back to a string.

public class MyTypeConverter extends StrutsTypeConverter{

 public Object convertFromString(

 Map context, String[] values, Class toClass) {

 …

 }

 public String convertToString(Map context, Object o){

 …

 }

}

If there is a problem during the conversion, a
TypeConversonException should be thrown to indicate to the
framework that the conversion could not be completed.

To use the new converter in your action class you need to
configure it. This can be achieved using annotation (discussed
in a later section) or by using a separate “*-
conversion.properties” file. If the action class that is using the
conversion is called “MyAction”, then you would create a file in
the same package called “MyAction-conversion.properties”.
The file contents would be:

typeVal = MyTypeConverter

The left hand side value “typeVal” is the name of the request or
form value that needs to be converted, and on the right is the full
path and class name of the converter.

If you are using the conversion for multiple actions, you can
avoid configuring each individually and instead use the global
configuration file “xwork-conversion.properties”. This file is
placed in the classpath root of your application. The contents of
the file would be:

MyType = MyTypeConverter

PRODUCTIVITY TIPS | 63

Both values need to be the full path and name of the type class
and the converter class. Notice here that the class name of the
type rather than the name of the request or form value is used.
Hence, the setter on the action would be “setTypeValue(
MyType type)”.

Utilize Tabular Data Entry Support
Struts2 provides support for using lists to transfer tabulated data
easily between the HTML user interface and actions. Let’s take a
look at an example. Here is a class for Person; each attribute has
a getter and setter (not shown):

public class Person {

 int id;

 String name;

 int age;

 float height;

}

Our action would then use the person class in a list:

public class MyAction {

 public List getPeopleList() { … }

 public void setPeopleList(List peopleList) { … }

 …

}

Before we can use the Person class as an element in MyAction,
we need to add configuration information. This is achieved with
the “MyAction-conversion.properties” file, which is created in

the same package as MyAction. The name follows the same
convention as for validation, the name of the action followed by
a “*-conversion.properties” suffix. The file contents are:

Element_peopleList=Person

The prefix “Element_” is constant, with the last part of the left-
hand value being the name of the list property in the action class.

64 | STARTING STRUTS2

The right-hand side value is the full class name (including
package) of the class that is placed into the list.

To finish the example we need to render the list to the user:

<ww:iterator value="peopleList" status="stat">

 <s:property value="peopleList[#stat.index].id" />

 <s:property value="peopleList[#stat.index].name" />

 <s:property value="peopleList[#stat.index].age" />

 <s:property value="peopleList[#stat.index].height"/>

</ww:iterator>

Lists are indexed, so we use the index property of the iterators
status object to reference the element being displayed. This is
not the most efficient way of achieving this particular result, as

the value of the <s:property … /> tags could have been simply
“id”, “name”, “age” and “height” respectively. What it does
show is a clean form of what is needed for an editable form.

For a tabular editable form using the same objects, the JSP is:

<s:form action="update" method="post" >

 <s:iterator value="peopleList" status="stat">

 <s:hidden

 name="peopleList[%{#stat.index}].id"

 value="%{peopleList[#stat.index].id}"/>

 <s:textfield label="Name"

 name="peopleList[%{#stat.index}].name"

 value="%{peopleList[#stat.index].name}"/>

 <s:textfield label="Age"

 name="peopleList[%{#stat.index}].age"

 value="%{peopleList[#stat.index].age}" />

 <s:textfield label="Height"

 name="peopleList[%{#stat.index}].height"

 value="%{peopleList[#stat.index].height}"/>

 </s:iterator>

 <s:submit value="Update"/>

</s:form>

PRODUCTIVITY TIPS | 65

Notice that the “name” and “value” attribute of this code is
similar to the “value” attribute above. The difference being in
the “name” we need to provide the actual index by surrounding
“#stat.index” with the correct token to obtain a value, and the
“value” attribute has the entire expression surrounded. Using

this code, Struts2 will create an ArrayList with populated
People objects, and set the list on the action using the

setPeopleList() method.

To allow Struts2 to create new objects in the list (perhaps you
are dynamically creating elements in the user interface), add the
following line to “MyAction-conversion.properties”
configuration file:

CreateIfNull_peopleList = true

Expose Domain Models in the Action
With both data conversion and collections, we have started to
introduce a trend. Rather than using String values for HTML
form field, proper types can be used. We have also seen that
request attributes and form field values are set directly on the
action via property setter methods.

We can take this a step further. Struts2 introduces the notion of
a “model-driven action,” reducing the code that is needed to map
the field from the user interface to those of domain objects or
value objects that are used when calling business services.

For an action to be model-driven, it needs to implement the

ModelDriven interface. This has one method that is to return
the object that the action has designated as the model.

public interface ModelDriven {

 java.lang.Object getModel();

}

66 | STARTING STRUTS2

The interceptor stack that is used for processing the action also
needs to contain the “model-driven” interceptor. Stacks that
include this interceptor are “modelDriven”, “defaultStack”,
“paramsPrepareParamsStack” and “completeStack”. This
interceptor obtains the model object from the action, and places
it on the value stack ahead of the action so that request or form
values are set on the model instead of the action. Similarly, in
reverse, the values being used and displayed in the JSP will be
obtained from the model.

This is not an “all or nothing” scenario. If there are request or
form values that do not have a corresponding setter on the
model, they will be passed through and be set on the action.
And if the JSP doesn’t find a value on the model, it will continue
down the value stack to obtain the information from the action.

These techniques together allow you to set or retrieve values on
either the model or action, without needing to explicitly specify
the target.

Use Declarative Validation Where Possible
There are two possible ways to provide validation in the Struts2
application – programmatically and declaratively.

To provide validation programmatically, an action needs to

implement the Validateable interface. This has one method,
which should contain the validations:

void validate();

To report validation problems back to the user, your action needs

to implement the ValidationAware interface. This is a more
complex interface, providing methods to add validation errors,
determine whether there are currently validation errors, etc.

If possible, your action can extend the ActionSupport class,
which provides a default implementation for both these

PRODUCTIVITY TIPS | 67

interfaces. Programmatic validations should only be used when
the validations are extremely complex. A better solution for
validation is to provide them declaratively.

Each action that requires declarative validations will need either
annotations (which will be discussed in a later section) on the
action class, or a corresponding XML file. For the action

MyAction, the file would be named “MyAction-validation.xml”,
and be in the same package as the action. The interceptor stack
that processes the action will also need to include the
“validation” (responsible for performing the validation) and
“workflow” (responsible for redirecting the user back to the
“input” result if a validation failure occurred) interceptors.
Stacks that contain these interceptors are the
“validationWorkflowStack”, paramsPrepareParamsStack ,
“defaultStack” and “completeStack”.

Here is an example of the validation file:

<!DOCTYPE validators PUBLIC

"-//OpenSymphony Group//XWork Validator 1.0.2//EN"

"http://www.opensymphony.com/xwork/xwork-validator-

1.0.2.dtd">

<validators>

 <field name="count">

 <field-validator type="int" short circuit="true">

 <param name="min">1</param>

 <param name="max">100</param>

 <message key="invalid.count">

 Value must be between ${min} and${max}

 </message>

 </field-validator>

 </field>

 <field name="name">

 <field-validator type="requiredstring">

 <message>You must enter a name.</message>

 </field-validator>

 </field>

 <validator type="expression"short-circuit="true">

 <param name="expression">

 email.equals(email2)

 </param>

 <message>Email not the same as email2</message>

 </validator>

</validators>

68 | STARTING STRUTS2

A couple of things to note from this example:

� Each field can have one or more “field-validator” nodes
� Each fields validators are executed in the order they are

defined
� Each field validator has a “short-circuit” attribute; if this

is true and the validation fails, all further validations are
skipped and a failed result returned for the field

� The message node can include a “key” attribute which
looks up the message to display to the user from a
message bundle; the value of the node is then used if no
message bundle key exists

� Validator configuration information (such as min and
max) as well as values from the value stack can be used
in the validation message by placing the value between
the tokens “${“ and “}”

� Validators can have a scope of either “field” or
“expression”; expression validators can work across
multiple fields

Below is the full list of validator types along with their
descriptions. More information, including configurations, can
be found at http://struts.apache.org/2.x/docs/validation.html.

Name Description

required Ensures that the property is not null

requiredstring Ensures that a String property is not null
and not empty

stringlength Checks whether a String is within a
specific length range

int Checks whether an int property is within
a specific range

double Checks whether a double property is
within a specific range

date Checks whether a date property is within
a specific range

expression Evaluates an ONGL expression (which

PRODUCTIVITY TIPS | 69

must return a boolean) using the value
stack

fieldexpression Validates a field using an OGNL
expression

email Ensures the property is a valid email
address

url Ensures that the property is a valid URL

conversion Checks whether the there was a
conversion error for the property

regex Checks whether the property value
matches the regular expression

visitor The visitor validator defers the validation
of a field to another validation file specific
to the class of the field.

For example, you are using a model
driven actions and each has a property

called “person” which is a class Person.
If this same model is used across many
actions you will want to extract the
validation information and re-use it. The
visitor validation type allows this
functionality.

In addition to those validators provided by Struts2, you can write
your own. Your custom validator would need to implement the

Validator interface (for expression validations) or the

FieldValidator interface (for field validations).

The new validator would need to be registered in a
“validators.xml” file, which is placed in the classpath root
directory. Usually this file is accessed from the distribution JAR
file, but when one is provided the distribution file is ignored. So
if you intend to add any new validators you will need to copy it
from the Struts2 JAR into the root of the classpath directory, so
that all the current validators are included in your application,
and then add your new validators. Like other configuration it is

70 | STARTING STRUTS2

relatively easy, consisting of a chosen unique name and the class
name of the validator.

<validators>

 <validator name="postcode"

 class="com.validators.PostCodeValidator"/>

 …

</validators>

Move CRUD Operations into the same Action
By combining a model-driven action with the “preparable”
interceptor/interface, wildcards in the action configuration,
validation and workflow you can simplify CRUD operations into
a single action. This approach provides similar functionality to

using the Restful2ActionMapper.

The URL pattern we are using is “/{model}/{method}.action”.
For example, we want “/User/add.action” to call the “add”

method on the UserAction class. We also need to ensure that
there are several result mappings – for “success” (the default),
“input” (for validation problems) and a “home” or default page.
Each of these pages will be specific to the model. The “success”
mapping redirects to an action, following the redirect-after-post
pattern.

The “struts.xml” configuration to manage this is:

<action name=”*/*” method=”{2}”

 class=”com.infoq.actions.{1}Action”>

 <result type=”redirect”>/{1}/view.action</result>

 <result name=”view”>/{1}/view.jsp</result>

 <result name=”input”>/{1}/edit.jsp</result>

 <result name=”home”>/{1}/home.jsp</result>

</action>

The action will need to extend the ActionSupport class
(providing validation and error message handling

implementations) and implement the ModelDriven and

PRODUCTIVITY TIPS | 71

Preparable interfaces. The interceptor stack along with the two
interfaces is the key to making the implementation easy, so let’s
take a look at those in more detail.

The ModelDriven interface provides one method, getModel()
which, in conjunction with the “model-driven” interceptor,
places the model from the action on the value stack ahead of the
action. When request parameters are being set, they are applied
to the model rather than the action. This is what we are after –
setting the values on the model and not the action – as we can
then just update the action. But what if there are data values
already on the model that we do not wish to override?

This is where the “paramsPrepareParamsStack” interceptor stack
comes into play. The steps that we want performed, and the
interceptors within the stack that performs them are:

1. Set the id on the action – the “params” interceptor

2. Allow the action to perform some logic to either create a
new model, or obtain an existing model from a service or
the database – the “prepare” interceptor calling the

prepare() method from the Preparable interface
3. Now that the model exists, set the request attributes onto

the model – the “model-driven” interceptor, followed by

the “params” interceptor again
4. Check the model for validation problems and redirect

back to the input page if necessary – the “validation”

and “workflow” interceptors
5. Execute the logic for the method being invoked - normal

action processing

By following these conventions, every model or entity object in
your web application can be managed with the “struts.xml”
configuration above. What will change is the action

implementation. Following our User example, this is what the
UserAction class will look like:
public class UserAction

 extends ActionSupport

 implements ModelDriven, Preparable{

 private User user;

72 | STARTING STRUTS2

 private int id;

 private UserService service; // user business service

 …

 public void setId(int id) {

 this.id = id;

 }

 /** create a new user if none exists, otherwise

 load the user with the specified id */

 public void prepare() throws Exception {

 if(id==0) {

 user = new User();

 } else {

 user = service.findUserById(id);

 }

 }

 public Object getModel() {

 return user;

 }

 /** create or update the user and then

 view the created user */

 public String update() {

 if(id==0) {

 service.create(user);

 } else {

 service.update(user);

 }

 return “redirect”;

 }

 /** delete the user and go to a default home page */

 public String delete() {

 service.deleteById(id);

 return “home”;

 }

 /** show the page allowing the user to

 view the existing data */

 public String view() {

 return “view”;

 }

 /** show the page allowing the user to view

 the existing data and change the values */

 public String edit() {

 return “input”;

 }

}

PRODUCTIVITY TIPS | 73

The edit() method is invoked by the user when they want to
create a new user or edit an exiting user. This method is simple,
returning ”input”, which returns a page with a HTML form on it.

The form action target URL that is mapped to the update()

method. The update() method could have been split into two
separate methods, but this would complicate the HTML form
and makes little sense as it is easy to determine whether the
object exists by using a unique key field.

Finally, the view() method is a simple pass-through method,
forwarding to a page that displays the user, and the delete()
method removed the user with the specified id and returns to the
user’s default home page.

All of these methods have little or no logic within them, and
could easily be mistaken for doing nothing. In fact, there is
functionality, but it is a cross-cutting concern and as such has

been refactored into the prepare() method. For each of the
edit(), update() and view() methods – if there is a model
that exists it needs to be retrieved, and if there is no model then
one needs to be created.

The action is still relatively simple, and could be easily
parameterized allowing it to be generated for different model
classes and services. With this infrastructure in place, the most
complex piece of developing a CRUD application is creating the
page templates.

Use Annotation Where Possible

Struts2 was developed for JDK 5, and as such is able to utilize
annotations for configuration. Annotations manifest themselves
in a couple of ways. More information, on annotations,
including code samples, can be found at
http://struts.apache.org/2.x/docs/annotations.html.

74 | STARTING STRUTS2

Zero Configuration
Zero Configuration provides annotation support to avoid the
“action” XML configuration, and if you are always extending
from existing packages the “struts.xml” configuration file can be
avoided all together. It consists of four class-level annotations,
these are:

Annotation Description

Namespace A string value of the desired namespace
(defined in the “struts.xml” configuration
file)

ParentPackage A string value of the desired parent package

Results A list of the “Result” annotations

Result Provides the mapping to the results for the
action, there are four attributes:

� name – the string result from the
action method to configure

� type – the class to
� value – any value that the result type

is expecting, this would be an action
name for redirect result type and a
JSP for the dispatcher result type

� parameters – an array of string
parameters

In addition to using these annotations, there is additional
configuration that is required. In the filter configuration in
web.xml, the packages that are being configured via annotations
need to be specified. This is achieved using an “init-param”
called “actionPackages”, the value being a comma delimited list
of packages.

<filter>

 <filter-name>struts</filter-name>

 <filter-class>

 org.apache.struts2.dispatcher.FilterDispatcher

 </filter-class>

 <init-param>

 <param-name>actionPackages</param-name>

PRODUCTIVITY TIPS | 75

 <param-value>

 user.actions,other.actions

 </param-value>

 </init-param>

</filter>

Each of these packages, as well as all their sub-packages, will be

scanned for classes that implement Action or whose name ends
in “Action”, and the annotation configuration is added to the
runtime configuration. If no namespace annotation is used, the
namespace is generated from the package name. This is done by
dropping the part of the package name used in the
“actionPackages” configuration value. In other words, if
“actions” was the “actionPackages” value, and the action being
configured is “actions.admin.user.AddAction”, then the
namespace would be “/admin/user”.

Using these annotations doesn’t avoid the XML altogether - but
it is a great start. Package information such as default
interceptor stacks still needs to be configured, as well as package
hierarchies.

Lifecycle Callbacks
There are three method-level lifecycle callback annotations, each
invoked at a specific time during the processing of an action.
The lifecycle callbacks are different from interceptors and action
proxies, as they are specific to the action class being invoked
instead of a single class that is utilized across many action
classes.

Annotation Description

Before The method annotated will be invoked
before the method that performs the logic
for the action.

BeforeResult The method annotated will be invoked after
the method that performs the logic for the
action, but before the result is invoked.

After The method annotated will be invoked after
result is invoked, but before the result is
returned to the user.

76 | STARTING STRUTS2

Validation
For each of the XML configured validators, there is a
corresponding annotation. Each annotation will have properties
similar to those configured via XML. There are also annotations
for defining a class as using annotation based validation,
configuring custom validators, and to group validations for a
property or class.

Annotation Name XML

Equivalent

Description

RequiredFieldValidator required Ensures that
the property is
not null.

RequiredStringValidator requiredstring Ensures that a
String
property is not
null and not
empty.

StringLengthFieldValidator stringlength Checks
whether a

String is
within a
specific
length range.

IntRangeFieldValidator int Checks
whether an

int property
is within a
specific range.

DoubleRangeFieldValidator double Checks
whether a
double
property is
within a
specific range.

DateRangeFieldValidator date Checks
whether a

date property

PRODUCTIVITY TIPS | 77

is within a
specific range.

ExpressionValidator expression Evaluates an
ONGL
expression
(which must
return a
boolean)
using the
value stack.

FieldExpressionValidator fieldexpressio
n

Validates a
field using an
OGNL
expression.

EmailValidator email Ensures the
property is a
valid email
address.

UrlValidator url Ensures that
the property is
a valid URL.

ConversionError
FieldValidator

conversion Checks
whether the
there was a
conversion
error for the
property.

RegexFieldValidator regex Checks
whether the
property value
matches the
regular
expression.

VisitorFieldValidator

visitor The visitor
validator
defers the
validation of a
field to

78 | STARTING STRUTS2

another
validation file
specific to the
class of the
field.

StringRegexValidator n/a Checks
whether the
string
property value
matches the
regular
expression.

CustomValidator n/a Used to
signify that a
custom
validator is
being used.

ValidationParameter n/a Used as a
parameter
within the
CustomValida
tor annotation.

Validation n/a Used to
signify that
the class is
using
annotation
based
validation –
can be used
on interfaces
or classes.

Validations n/a Used to group
together
multiple
validations for
a property or
class.

PRODUCTIVITY TIPS | 79

Conversion and Collections
Like the validation annotations, the conversion and collection
annotation provide a corresponding annotation for each option
that is configured via the “*-conversion.properties” file.

Annotation Name Description

KeyProperty Used to specify the property that is to be
used as the key.

Key The class to use for the key of the map.

Element The class to use for the value/element of
the collection, list or map.

CreateIfNull Determines if the new element should be
created if it currently does not exist in the
list or map.

Conversion Used to signify that the class is using
annotation based conversion – can be
used on interfaces or classes.

TypeConversion Determine the converter class to use. If
used on a collection, a rule of
PROPERTY, MAP, KEY,
KEY_PROPERTY or ELEMENT can be
used to specific exactly which part is to
be converted.

Options for View Technologies
As we saw when talking about the core elements, the tag
libraries are not only accessible using JSPs, but they can also be
used in Velocity and Freemarker templates or extended for other
view technologies. As Velocity and Freemarker are first-class
citizens with full tag library support, the developer can choose
the best view technology for the project.

As an example of the similarities and differences, let’s take a
look at how the text field tag would be rendered in each view
technology. The text field tag is a common form tag – rendering
a HTML form element that allows the user to enter text. There

80 | STARTING STRUTS2

are many attributes to this element, but just two will be shown
here – the name attribute, which is the name used to reference
this element (both in the HTML and the action attribute); and the
label attribute, which is used to display a label in front of the text
input box.

For JSPs, the tag library needs to be defined before any tags are
used. This occurs once at the start of each JSP page, after which
the prefix (in this case “s”) can be used to reference the tag
libraries.

<%@taglib prefix="s" uri="/struts-tags" %>

<s:textfield label="Name" name="person.name" />

In Freemarker and Velocity there is less structure than with JSP,
as there is no concept of tag libraries. Instead, any object that is
added into the templates context will be accessible to the page
template. The JSP tag libraries are such objects. The HTTP
servlet request and response, value stack and the action just
executed are also placed in the templates context to be used.

Similarly to JSPs, Freemarker templates use the “s” prefix to
reference the JSP tag libraries. Other attributes of the templates
are also very similar to HTML – they start with an”<”, they end
with a “/>”, and the attributes are the same. The one difference
is that an “@” symbol is used after the initial angled bracket.

<@s.textfield label="First Name" name="person.name"/>

More information on Freemarker can be found at
http://freemarker.sourceforge.net/.

Velocity is much less HTML-like syntax than Freemarker. Each
JSP tag name is prefixed with “#s”, and the name-value pairs are
delimited by double quotes within parenthesis.

#stextfield ("label=Name" "name=person.name")

PRODUCTIVITY TIPS | 81

More information on Velocity can be found at
http://velocity.apache.org/.

As well as JSP, Velocity and Freemarker, XML can be rendered
either directly from the action, or via an XSL transformation
using the XSLT result type. There is also some interesting work
going on that would allow Struts2 to accept form or request
input in JSON format, and render output results as JSON format
– making Struts2 a flexible server for any type of view
technology, or even a combination of view technologies for the
same action in the same project.

Know the Provided Tag Libraries and their
Features

To provide integration from the user interface back into the
action, and to manipulate this information, Struts2 provides
various tag libraries that are accessible to JSP, Velocity and
Freemarker views.

By default, the value attribute of the form tags and many of the
attributes of the other tags accept OGNL expressions. If the
attribute you are interested in does not do this by default – for
example the “label” attribute – there is a high probability that
you can execute expressions by surrounding the expression with
the tokens “%{“ and “}”.

Being able to execute OGNL expressions is a powerful feature,
especially since the tag libraries also have access to the value
stack with which you can:

� Access named HTTP objects for the application scope,
session scope, request scope as well as the attributes and
parameters of the request

� Access the action that has just been executed
� Access the model from the action that has just been

executed

82 | STARTING STRUTS2

� Access temporary object – for example the object
representing the current loop of the iteration, or perhaps
an object that you have placed on the value stack

� Store temporary objects
� Obtain validation issues from the last action executed
� Obtain internationalization text for provided keys
� Make calls to methods of static objects and obtain values

of static properties

Up-to-date information regarding the tag libraries can be found
at http://struts.apache.org/2.x/docs/tag-reference.html. To get
you started, here are the tags from all four categories along with
descriptions. Individual attributes of each tag, as well as more
detailed usage information, can be found by following the link
above.

Those tags marked with an asterisk (*) are either Ajax-based
tags, or are able to operate in either an Ajax or non-Ajax mode.

Control Tags

Name Description

if, elseif & else These three tags provide flow control
logic with the page. The “if” and “elseif”
provide a “test” attribute which must
contain an OGNL expression that
evaluates to a boolean result.

append Used to append multiple iterators together
into a single iterator. Each iterator is
specified using a contained “param” tag.
All elements from each iterator are added
to the resulting iterator in the order
specified.

generator Generates an iterator from a delimited list
within a string value. The delimiter
character, as well as custom converters

PRODUCTIVITY TIPS | 83

can be specified.

iterator Iterate over a collection. Accessing an
iterator status object (to provide
information about the current loop
position) as well as being able to specify
the id of the current loop object is
possible.

merge Used to merge multiple iterators together
into a single iterator. Each iterator is
specified using a contained “param” tag.
The resulting iterator has all the first
elements, then all the second elements,
etc. from each iterator, in turn, in the
resulting iterator (in the order specified).

sort Sorts a collection by a specific
comparator. The resulting collection can
then be iterated over from within this tag.

subset Selects a subset of the collection. This
can be decided by range, or by providing
a custom decider object. The resulting
collection can then be iterated over from
within this tag.

Data Tags

Name Description

a* Renders a HTML link element.

action Calls an action from within a page, and
can be configured to render the results.
This tag can be used as a dynamic include,
to call a common action to obtain data
without rendering a result, or in place of
calling actions before the page template.

bean Instantiates a bean of the specified class
and places it on the value stack. Using the
contained “param” tag you can set
properties on the newly created object.

84 | STARTING STRUTS2

date Formats a Date object.

debug Renders information about the value stack
for debugging.

i18n Places additional resource bundles on the
stack to use for internationalization text.

include Makes a call and dynamically includes the
result in the current page. Request
parameters can be specified using a
contained “param” tag.

param A generic tag used to specify name value
pairs, where the value can be static text or
specified as an expression obtained via the
value stack. This tag is not used by itself,
but rather contained as a sub-tag of other
tags.

push Pushes a value on to the value stack.

set Takes a value from the value stack and
sets it as an attribute under a specific
HTTP scope (application, session, request,
page or action).

text Retrieves a text value from a resource
bundle for a specified key. The “param”
tag can be used to specify additional
variables from within the resulting text.

url Generates a valid URL (including the
servlet context or any portlet information)
assigning it to an id in the value stack.

property Obtains the value of a property from the
value stack. This may be a complex path,
and a default value can be specified if the
value has not been assigned.

PRODUCTIVITY TIPS | 85

Form Tags

Name Description

checkbox Renders a single HTML checkbox
element.

checkboxlist Renders a series of HTML checkbox
elements by using a list of objects as the
input data.

combobox Provides combo-box functionality by
placing a text HTML input and select
HTML input elements together. The
user can then either select from the list
or enter a new value.

datetimepicker Renders a HTML drop-down widget
that allows the user to select a date /
time.

doubleselect Renders two HTML select elements.
Selecting a value from the first list will
change the options in the second list.

head Renders HTML header information,
specifically used to include CSS and
JavaScript files used in themes.

file Renders a HTML file input element.

form* Renders a HTML form element.

hidden Renders a HTML hidden element.

label Renders a HTML label, allowing for
consistent UI treatments.

optiontransfer
select

Renders two HTML select elements
with HTML buttons between them. The
buttons allowing the user to transfer
values between the lists.

optgroup Creates an option select group with a
HTML select element.

password Renders a HTML password element.

reset Renders a reset button as either a HTML
button or HTML input field.

select Renders a HTML select element.

86 | STARTING STRUTS2

submit* Renders a HTML submit button or link
– could be a HTML input element, and
image element or a button element.

When using the default ActionMapper
there are four special “name” attribute
prefixes for the submit tag that alter the
URL, action or method that the form
would normally invoke. These are:
“method:”, “action:”, “redirect:” and
“redirect-action”. Place the method,
URL or action to be invoked after the
colon in the name. More information
can be found at
http://struts.apache.org/2.x/docs/actionm
apper.html.

textarea Renders a HTML text area element.

textfield Renders a HTML text field element.

token Renders a token that stops the double
submission of forms by the user. Works
in conjunction with the “token” or
“token-session” interceptors.

updownselect Renders a HTML select element along
with HTML buttons that move the
selected item in the list up or down.
When submitted, the list elements will
remain in the order that they are
arranged.

Non-Form UI Tags

Name Description

actionerror Renders any errors from the action that
has just executed.

actionmessage Renders any messages from the action
that has just executed.

component Renders a custom UI widget.

PRODUCTIVITY TIPS | 87

Code that is being copied into multiple
templates can be extracted into a custom
component. The custom component is
placed into the target template before
rendering starts. Each component can
be further customized via “param” tags
from each template it is being included
from.

div* Renders a HTML DIV element.

fielderror Renders any field level errors from the
action that has just executed.

tabbedpanel* Renders a HTML tabbed panel widget.

tree & treenode Renders a HTML tree widget.

Customize UI Themes
As part of the tag library architecture, each tag has classes that
manage the model and the logic, as well as one or more
Freemarker templates that control how the element is rendered in
HTML. The templates can be utilitarian, providing just the
necessary HTML elements or, in the case of the form and non-
form UI tag categories, it can provide rich formatting, including
data for the form element as well as message and error
information.

For the most basic user interface needs, the default layouts may
suffice. However, it is more likely that there are more complex
requirements that need to be incorporated. With the new layouts
you have two options – the HTML can be incorporated into each
and every page in the application, or the default theme templates
can be modified to provide new themes for the necessary
changes. Like extracting visual formatting information into CSS
files, creating new themes provides significant maintenance
benefits (especially as the number of pages in the application
grows).

88 | STARTING STRUTS2

Creating or modifying a theme is easy. Create a directory called
“template” in the root web application directory. Now you have
some options.

If you want to create a new theme, create a new directory with
the name for the new theme in the “template” directory – for
example let’s call it “modified”. From here, you can start
building templates from scratch, or you can copy the templates
from the Struts2 distribution and modify them as needed. When
you want the tag to use the new “modified” theme rather than
the default “xhtml” theme, you will need to change the theme
attribute on each and every tag to “modified”.

<s:textfield label="Name" name="person.name"

 theme=”modified” />

If you only wish to change certain templates, you can override
specific templates only. Create a directory called “xhtml” (this
is the default theme in Struts2) in the “template” directory
created above. Next, create new templates or modify template
from the Struts2 distribution. It is very important to keep the
names the same as they are in the Struts2 distribution. As the
template is the same name, we are using the same theme as the
default, and the web applications “template” directory is
searched before the Struts2 JAR file – the modified templates
will be used without any further intervention from us.

If you wish to completely replace a theme, modify the
“struts.properties” file. In our case, we want the change the
“struts.ui.theme” property to our new “modified” theme. There
is also an option to change the directory that the theme templates
reside in.

struts.ui.theme=modified

struts.ui.templateDir=template

PRODUCTIVITY TIPS | 89

Use Global Results for Common Outcomes
Results are configured for the outcomes of specific actions, but
they can also be defined globally for a package scope.
Refactoring out common action results, such as “error” or
“logon”, as application results allows each action configuration
to be streamlined and deal only with those results that are
specific to the logic being executed.

The <result … /> tag used in the global results has exactly the
same form as that used in the action results – with a unique user
provided “name” attribute and a “type” attribute to allow for
different rendering options. The difference is that the global

results tags are placed in a <global-results … /> tag under
the root <package … /> tag.

<package … >

 <global-results>

 <result name=”logon”>/logon.jsp</result>

 <result name=”error”>/error.jsp</result>

 …

 <global-results>

 …

</package>

Once defined in the “struts.xml” configuration file, any action in
the application can utilize the result.

Manage Exception Handling Declaratively
When developing web applications, there are several different
categories of exceptions that need to be handled. There are
those exceptions that are specific to the service or business
object being called – these cannot be handled declaratively, and
will need to be handled programmatically as normal.

But there are also exceptions that:

� Cannot be handled and need the user to be directed to an
error page until the problem is rectified. This is

90 | STARTING STRUTS2

generally a system level or resource level problem, and
not related to the web application logic. An example
would be a network problem causing issues connecting
to the database.

� Are not logic related problems, but do require the user to
be redirected to perform additional tasks. An example
would be a security exception being thrown because the
user has tried to access a web page without logging on.
Once the user has logged on to the system, they can
continue without problems.

� Are logic related problems and can be recovered from by
modifying the user workflow. This category is usually
resource related and would include exceptions related to
unique constraint violations, concurrent modification of
data or locking problems.

All these exception categories can be handled declaratively
without the need to modify actions.

When the exception can be thrown by any action in the web
application, it should be defined as a global exception. Global

exceptions are placed in a <global-exception-mappings … />
tag under the <package … > tag in the “struts.xml”
configuration file.

<global-exception-mappings>

 <exception-mapping result="sqlException"

 exception="java.sql.JDBCConnectionException"/>

 <exception-mapping result="unknownException"

 exception="java.lang.Exception"/>

</global-exception-mappings>

Under the <global-exception-mappings … /> tag there can

be any number of <exception-mapping … /> tags. Each
mapping has two attributes – an “exception” attribute that
defines the package and name of the class of the exception, and
the “result” attribute that defines the result to be redirected to.

Each exception mapping is checked in the order that it is
configured. Once a matching exception (or a sub-class) is

PRODUCTIVITY TIPS | 91

found, processing stops and the request is forwarded to the
configured and previously mapped result. Otherwise, the next
exception configured is processed for a match.

If the exception is limited to the scope of an action, the same

<exception-mapping … /> tag can be configured within the
<action … /> tag.

<action name="my" class="com.fdar.infoq.MyAction" >

 <result>view.jsp</result>

 <interceptor-ref name="basicStack"/>

 <exception-mapping result="exists"

 exception="ConstraintViolationException" />

</action>

The attributes of the tag are exactly the same as the global
definition. If no matching exception is found for an action level
exception mapping, the global mappings are processed for a
match.

You will also need to ensure that the “exception” interceptor is
in the interceptor stack configured for actions that require
declarative exception handling. By default, the “exception”
interceptor is included in all interceptor stacks provided in
Struts2.

As well as modifying the result that is processed when an
exception is thrown, the “exception” interceptor adds two
elements to the value stack to provide information about the
exception.

Name Description

exception The exception object that was thrown.

exceptionStack The string value of the stack trace.

These values can be used to display the exception stack trace to
the user, to display a friendly user message, or even to re-arrange
the page layout to allow for additional data entry and then re-
submission of a form.

92 | STARTING STRUTS2

Internationalization
Struts2 provides extensive internationalization support through
resource bundles, interceptors and tag libraries. The core
functionality is provided via resource bundles, so we’ll start our
discussion there.

Resource Bundles
Struts2 uses resource bundles to provide multiple language and
locale options to the users of the web application. There is no
requirement to provide a single monolithic file with all the text
from the entire application (although this option is supported by
using only a properties file for a common action base). Instead,
the properties files for the application can be broken down into
manageable sizes.

Properties files named corresponding to the action class (base
classes and interfaces) and package scopes, or as arbitrary file
names. To find a keys value, the properties files are searched in
the following order until the key is found:

1. The properties file for the action class – i.e.
MyAction.properties

2. The properties file for each base class in the action
hierarchy, all the way up to Object.properties

3. A properties file for each interface and sub-interface
4. If the action is model-driven, a properties file for the

model objects class (and each base class, interface and
sub-interface for the model class)

5. A properties file called “package.properties” in each
package from the action back up to the root package

6. Properties files configured in “struts.properties” under
the “struts.custom.i18n.resources” configuration key.

This provides a lot of flexibility.

PRODUCTIVITY TIPS | 93

Interceptors and Determining the Locale
By default, Struts2 will set the users locale for the session from

the HttpServletRequest object. This comes directly from the
web browser, and is based on the Accept-Language HTTP
header.

When a web application needs to present content in multiple
languages that are not dependant on the locale of the web
browser, the “i18n” interceptor can be used. This interceptor
checks for a request parameter called “request_locale”, and
saves this information to the user session. Then, until it is
changed by the request parameter again, the specified locale will
remain as the locale for the remained of the user’s session.

Tag Libraries
Tag libraries are the final piece in the puzzle. All tags support
internationalization via locales when it makes sense. For
example, the “date” tag uses the users locale to determine the
correct formatting for the date; the “actionerror” and “fielderror”
tags use the provided keys from the declarative validation
configuration to obtain message text to render; as does the
“actionmessage” tag. There are a few tags that deserve more
detailed attention.

There are two way to programmatically obtain internationalized

text for a page, both require the action to extend ActionSupport
so that the necessary internationalization methods are available.
The first is by using the “text” tag, which searches for text for
the key provided by the “name” attribute:

<s:text name="label.greeting"/>

<s:text name="label.greeting2">

 <s:param >Mr Smith</s:param>

</s:text>

94 | STARTING STRUTS2

Additional information can be provided in the resource bundle
values using tokens. The examples above would correspond to
the following properties file entries:

label.greeting=Hello there!

label.greeting2=Hello there {0}!

The second way of obtaining the text values is by using OGNL
methods and the “property” tag. The difference between this
technique and the previous one is the stylistic choice of the
developerx. Being a method call, the OGNL expression can be
used in any tag that evaluates expressions. Using the same
example from above, the JSP would be:

<s:property value="getText(‘label.greeting’)"/>

<s:property value="getText(‘label.greeting2’)">

 <s:param >Mr Smith</s:param>

</s:text>

Because the “label” attribute is not by default an OGNL
expression, we need to use the “%{“ and “}” token to force
Struts2 to interpret it as an expression.

<s:textfield label="%{getText(‘label.greeting’)}"/>

If there is a need for large sections of text, OGNL expressions
can be used in the “include” tag to specify special language
directories. Just make sure that each action extends a base class
that exposes a method to determine the locale directory. In this

case we have a getLocaleDirectory() method:

<s:include

 value="/include/%{localeDirectory}/copyright.html" />

The i18n tag provides a way to provide additional resource
bundles to the value stack of the page being rendered, the
“name” attribute providing the name of the resource bundle.
Any tag contained within the “i18n” tag will then have access to
the new resource bundle text.

PRODUCTIVITY TIPS | 95

<s:i18n name="myCustomBundle">

 The value for abc in myCustomBundle

 is <s:text name="abc"/>

</s:i18n>

6
Integrating with Other Technologies

In previous chapters we have covered the techniques for
integrating external technologies with Struts2. To recap, here
are the techniques:

� Interceptors – can change the user’s workflow, modified
the result and inject objects into the action

� Result Types – allows post-processing, and additional
result-based processing or rendering of information
returned by the action

� Plug-in packages – new interceptors, result types, results
and actions can be packaged together into a plug-in that
can be re-used across many projects

� Plug-in extensions points – allows new implementations
of the core framework classes to be substituted in to
Struts2, thus changing the way the framework behaves

The goal of this chapter is not to describe every and each of the
integration options in detail, but rather to provide a brief
overview to what types of integrations are possible, how the
integration is achieved, some basic configuration information
and where to find more information. This chapter is also not
intended to provide information on how to use the library used
for integration, but assumes that the reader understands the
functionality already.

Up-to-date information regarding all integrations (Apache and
3rd party) can be found on the Struts2 wiki at
http://cwiki.apache.org/S2PLUGINS/home.html. New projects
are constantly being added. If you don’t see what you need now,
check back in a few months because it might have been added.
And if you’re adding a new integration to your own web

Free Online Version.
Support this work, buy the print copy:
http://infoq.com/minibooks/starting-
struts2

98 | STARTING STRUTS2

application, consider implementing it as a plug-in and sharing it
with others.

Page Decoration and Layout
Developing web applications usually means there is going to be
a standard page layout that is used for the entire application, as
well as a selection of additional layouts to be used for various
modules, pages and wizards. Depending on whether your
preference is to specify the layout, or to let the URL specify the
layout, you will most likely choose either Struts Tilesxi or
SiteMeshxii. Struts2 provides integrations for both these layout
technologies.

SiteMesh
SiteMesh is installed by adding the plug-inxiii into your web
applications “/WEB-INF/lib” directory or by adding a
dependency to your Maven2 “pom.xml” build file:

<dependency>

 <groupId>org.apache.struts</groupId>

 <artifactId>struts2-sitemesh-plugin</artifactId>

 <version>2.0.6</version>

</dependency>

A servlet filter also needs to be configured. This filter enables
access to the value stack from the SiteMesh decorators, and

ensures that the ActionContext is cleaned up when the
decorator has finished (and not before).

<filter>

 <filter-name>struts-cleanup</filter-name>

 <filter-class>

 org.apache.struts2.dispatcher.ActionContextCleanUp

 </filter-class>

</filter>

If you are using Freemarker or Velocity for page rendering, you
will need to add one of these additional filters:

 INTEGRATING WITH OTHER TECHNOLOGIES| 99

<filter>

 <filter-name>sitemesh</filter-name>

 <filter-class>

 org.apache.struts2.sitemesh.FreeMarkerPageFilter

 </filter-class>

</filter>

<filter>

 <filter-name>sitemesh</filter-name>

 <filter-class>

 org.apache.struts2.sitemesh.VelocityPageFilter

 </filter-class>

</filter>

Finally, the order of the filter mappings is important. Both the
“struts-cleanup” and the “sitemesh” (if used) filter need to be

configured before the “struts” (FilterDispatcher) filter:

<filter-mapping>

 <filter-name>struts-cleanup</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

<filter-mapping>

 <filter-name>sitemesh</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

…
<filter-mapping>

 <filter-name>struts</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

The specific decorator files for the web application can now be
developed, and configured to match specific URL patterns or
metadata in “decorators.xml”.

Tiles
Apache Tiles, just like SiteMesh, is installed by adding the plug-
inxiv into your web applications “/WEB-INF/lib” directory or by
adding a dependency to your Maven2 “pom.xml” build file:

<dependency>

 <groupId>org.apache.struts</groupId>

 <artifactId>struts2-tiles-plugin</artifactId>

 <version>2.0.6</version>

</dependency>

100 | STARTING STRUTS2

In order to load the tiles configuration, a servlet listener needs to
be configured:

<listener>

 <listener-class>

 org.apache.struts2.tiles.StrutsTilesListener

 </listener-class>

</listener>

The listener loads the “tiles.xml” configuration file, which
defines each tile for your application, from the “WEB-INF”
directory. Unlike SiteMesh, Tiles are implemented as a new
result type. Each action result that wishes to use a Tiles layout
needs to provide the attribute “type” with value “tiles” (or
alternately set the Tiles result to be the default), and provide the
name of the tile to use. The Tile name needs to be defined in the
configuration file “tiles.xml”.

<action name="my" class="com.fdar.infoq.MyAction" >

 <result type="tiles">myaction.layout</result>

</action>

Version 2 of Tiles is used in Struts2. This version has not yet
had a stable release and could undergo further change. For this
reason Tiles support is currently marked as experimental in
Struts2.

Business Services / Dependency Injection
The Spring Framework plug-in is the preferred dependency
injection (DI) or inversion of control (IoC) container for Struts2,
and as such is responsible for providing fully configured
business service instances to actions.

There are several options available, each at different levels of
stability:

� The Plexusxv plug-in is a new addition to the code base,
and it is currently marked as experimental. By using a
Plexus id, rather than the class name in any of the
“struts.xml” configuration file entries, Plexus will create
the class instance and inject all dependencies it is aware

 INTEGRATING WITH OTHER TECHNOLOGIES| 101

of. More information of the plug-in can be found at
http://cwiki.apache.org/S2PLUGINS/plexus-plugin.html.

� PicoContainerxvi is another option for an IoC container
and although WebWork provided support, a Struts2 plug-
in does not currently exist.

� EJB3, although not an IoC container, is another
technology that can be used to provide business services
to your actions. EJB3 is currently not supported via
plug-ins; however the implementation would be simple.
There are three options available – implement a custom

ObjectFactory to obtain EJB references for actions and
install the new factory in your web application using the
“struts.objectFactory” property in the “struts.properties”
configuration file; create a new interceptor that
interrogates each actions and injects an EJB reference as
required; or use the Spring framework plug-in to access
either JPA or EJBs; a tutorial is provide at
http://cwiki.apache.org/S2WIKI/struts-2-spring-jpa-
ajax.html.

As the Spring Framework is the preferred library, we are going
to focus on it.

Spring Framework
Installing Spring support involves downloading and copying the
Spring plug-inxvii into your web applications “/WEB-INF/lib”
directory or adding the Spring plug-in as a dependency to your
Maven2 “pom.xml” build file:

<dependency>

 <groupId>org.apache.struts</groupId>

 <artifactId>struts2-spring-plugin</artifactId>

 <version>2.0.6</version>

</dependency>

To the “web.xml” configuration file you will need to add two
blocks of code. The first registers a listener that enables Spring
integration for application objects:

102 | STARTING STRUTS2

<listener>

 <listener-class>

 org.springframework.web.context.ContextLoaderListener

 </listener-class>

</listener>

And then the location of the Spring configuration file needs to be
specific. In this case, any XML file starting with
“applicationContext” will be loaded:

<context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>

 classpath*:applicationContext*.xml

 </param-value>

</context-param>

You are now ready to go with Spring support. Any object that
needs to be created will be delegated to the Spring object
factory. If it knows how to create the object instance it will,
otherwise the responsibility will fall back to the framework to
create the instance.

For all objects created, whether by the Spring object factory or
by Struts2, Spring will be consulted to determine whether it
manages any dependant objects. As the default DI container, it
will obtain an instance of any dependant objects and set them on
the target object instance as necessary. This is especially
important for the action class, as the action itself will most likely
be created by Struts2 but it will need to have its business
services injected by Spring.

Another important factor is how the dependency wiring is
determined. For the following class, should Spring inject the
bean with an id value of “service” or class type “MyService”?

 INTEGRATING WITH OTHER TECHNOLOGIES| 103

public class MyAction {

 private MyService myService;

 public void setService(MyService service) {

 myService = service;

 }

 public String execute() {

 …

 }

}

The answer is the id with value “service”, but this can be
configured. The property in the “struts.properties” file that need
to be modified is “struts.objectFactory.spring.autoWire” – by
default this value is “name” but there are four options:

Value Description

name Spring uses the name / id value in the
bean definition to auto-wire the bean.

type Spring uses the class name in the bean
definition to auto-wire the bean.

auto Spring will determine the best method
of wiring the bean.

constructor Spring will auto-wire via the beans
constructor.

There is also a way to have the action completely managed by
Spring. This is a more complex configuration, and those that are
interested can refer to the Spring plug-in documentation.

Databases
There is nothing special that enables database integration in
Struts2, however, there are different ways that database access
can be employed:

� Via Tag Libraries – since you are using an action based
framework this is probably not the best option, but it is
possible; data can be accessed directly from JSPs via tag
libraries (JSTL or custom libraries) that then format the
information

104 | STARTING STRUTS2

� Custom DAOs via Dependency Injection – if you are
using dependency inject, you can take advantage of the
library to inject in your custom data access objects
(DAO) that are required in the action; once the action has
a reference to the DAO, it can call the methods as if it
had created the instance itself

� DAO / ORM via Dependency Injection – if you are taking
advantage of advanced DAO or ORM libraries (such as
iBatis or Hibernate) you should invest in utilizing a fully-
features dependency injection framework such as Spring;
Spring provides everything necessary to configure and
initialize many different DAO and ORM libraries,
requiring very little from the actions; when the action is
ready for the business logic to be executed, all the
necessary data access object instances are ready to go

� Accessed Indirectly via Business Services – instead of
accessing the data access object directly, the calls are
made indirectly via business services; the business
service, like the previous options, are injected into the
action by the dependency injection framework

As a side note, if you are thinking about utilizing Hibernate as an
ORM technology on your project, investigate the
“OpenSessionInView” filter or interceptor. Having the
Hibernate session open until the rendering of the JSP is complete
allows Hibernate to perform lazy-loading fetches to the database
successfully. Otherwise, the action or business service or DAO
would need to pre-fetch all the collections that the JSP needs
ahead of time.

Security
Like database integration, there is nothing special that provides
security integration in Struts2. It is up to the application
architect or developer to decide at which layers in the
infrastructure or application authorization and authentication
occur.

 INTEGRATING WITH OTHER TECHNOLOGIES| 105

Authentication can occur:
� External to the application – an example would be a

single sign-on (SSO) server or authentication modules
provided by the application server

� Within the application – via a HTML form or another
type of challenge-response mechanism

Authorization can occur:

� At the URI level – each URI that is requested is matched
against the user credentials (that made the request) to see
if they are allowed access

� At the sub-page level – there may be certain sections of a
page can only be viewed, modified or have action
performed for particular access levels

� At the action level – each action may be required to
determine access levels before performing business
operations or logic

� At the business service level – each method on a business
service may be required to determine access levels before
performing logic

� At the domain object or database level – for a generic
method call to obtain data or domain objects, different
results could be returned depending on the callers’ access
level

From the perspective of a Struts2 web application, the user is
authenticated to access the URL or not. Once the user is allowed
to access the application, there are a couple of options.

The first is that an external solution provides the users’

credentials via the HttpServletRequest object. From here, the
username and as well the users role information can be accessed

at the action level (by implementing the PrincipalAware
interface and configuring the “servlet-config” on the interceptor
stack) and exposed from the action to the page being rendered.
Existing Struts2 tags can then be used to limit access depending
on roles.

106 | STARTING STRUTS2

Next, is that the users’ credentials to the HttpServletRequest
haven’t been populated. In this case an interceptor needs to be
developed to authenticate and obtain the necessary role
information, and to populate the information. This may be as
complex as developing the logon form, logon and logoff code,
authentication logic, etc., or it may be as simple as obtaining the
information from an exposed API and setting it on the action.

The last case is when a 3rd party solution does everything for
you. An example would be the acegi project. Acegi provides
everything that is needed to secure a web application –servlet
filters, custom tag libraries, and integration into Spring for
securing business objects as well as domain objects – and all
completely external to the Struts2 web application. Integration
would only be necessary if the authorization information is
required during the processing of the action. In this case, an
interceptor could be paired with an action interface to supply the

Authz instance to the action. More details on this approach can
be found at http://struts.apache.org/2.x/docs/can-we-use-acegi-
security-with-the-framework.html.

Although not related to 3rd party security integration, one
security concern in using Struts2 is that any action has access to
any object within the Value Stack. This assumption may not
always be correct. To designate specific Value Stack objects
that are allowed or blocked from an action, you can configure

and utilize the com.opensymphony.xwork2.interceptor.
ParameterFilterInterceptor interceptor (this interceptor is
not currently configured like the others that were discussed in
the previous chapter). More information on the configuration is
contained in the JavaDoc for the interceptor.

 INTEGRATING WITH OTHER TECHNOLOGIES| 107

Ajax
The Ajax support in Struts2 has been a little tumultuous of late.
There is a lot going on, and it’s going to take a while for the dust
to settle.

At the most basic level, any action can perform as a data server.
A request made to a URI can result in a HTML fragment (to be
rendered directly in to a DIV), an XML document (via the XSLT
result type) or a JSON document (by tweaking the JSP to JSON
rather than HTML) that are then processed by JavaScript at the
web browser. This is by far the most solid from an
implementation standpoint, and is of production quality.

Following this same concept there are three projects to keep and
eye on. These are all fairly new, and will take time to mature.

� To automate some of the work needed to provide JSON
results, there is the JSON plug-in project – this is a 3rd
party plug-in and can be found at
http://cwiki.apache.org/S2PLUGINS/2007/01/11/json-
plugin.html

� Providing interoperability between the Google Web
Toolkit (GWT) and Struts2 as a back end data source is
the GWT plug-in project –
http://cwiki.apache.org/S2PLUGINS/2007/01/10/gwt-
plugin.html

� Direct web remoting (DWR) has recently added support
for remote WebWork2 action invocation using their
framework; WebWork2 is the predecessor of Struts2, so
all the techniques should be applicable; more information
can be found at
http://getahead.ltd.uk/dwr/server/webwork

Struts2 also provides tag libraries with Ajax functionality, these
are:

� a / link tag – make a remote call to the server using Ajax
� form – provides Ajax-based validation for the form fields

(using DWR), and provides the ability to submit the form
remotely via Ajax

108 | STARTING STRUTS2

� submit – used in conjunction with a Ajax based form
submit

� div – obtain the content for a DIV via an Ajax remote
call

� tabbedpanel – the content for each panel of the tabbed
panel is obtained via a Ajax remote call

The underlying implementations of the tags use the dojo library,
and some of the tags are making the move from a combination
custom JavaScript and dojo implantation to a pure dojo
implementation. In the near future, the Ajax tags will be moving
into a plug-in. This will allow for different implementation
based on different Ajax libraries, which has been requested for
some time now.

For all these reasons, the Ajax tag libraries are currently marked
as experimental.

109

About the Author

Ian Roughley is a speaker, writer and independent consultant
based out of Boston, MA. For over 10 years he has been
providing architecture, development, process improvement and
mentoring services to clients ranging in size from fortune 10
companies to start-ups. His professional background includes
work in the financial, insurance, pharmaceutical, retail, e-
learning, hospitality and supply-chain industries.

Focused on a pragmatic and results-based approach, he is a
proponent for open source, as well as process and quality
improvements through agile development techniques. Ian is a
committer to the WebWork project; member of the Apache
Struts PMC; and speaker at No Fluff Just Stuff Symposiums. He
is also a Sun Certified Java Programmer and J2EE Enterprise
Architect; and an IBM Certified Solutions Architect.

110

111

End Notes
i. http://struts.apache.org/2.x
ii. Don Brown, the lead on the Struts Ti project, has more information on the
history at
http://www.oreillynet.com/onjava/blog/2006/10/my_history_of_struts_2.html
iii. A list of different open source web frameworks can be found at
http://www.java-source.net/open-source/web-frameworks.
iv. Specifically the property to change this value is “struts.action.extension”.
v. Martin Fowler has a thorough explanation of dependency injection at
http://www.martinfowler.com/articles/injection.html
vi. Technically there are four themes – with the fourth being the “ajax” theme.
It has been decided to remove the Ajax functionality from the core Struts2
framework into a plug-in in the next version, and for this reason it will not be
discussed in this section
vii. Swingwork can be found at https://swingwork.dev.java.net/. There is no
longer active development on the project.
viii. For more information see http://www.jmock.org
ix. Documentation for the config browser plug-in can be found at
http://struts.apache.org/2.x/docs/config-browser-plugin.html
x. This is generally true however, using the property tag, the developer would
be able to access the Value Stack and obtain the internationalized text for a
key name that is not known at development time.
xi. http://tiles.apache.org
xii. http://www.opensymphony.com/sitemesh
xiii. http://cwiki.apache.org/S2PLUGINS/sitemesh-plugin.html
xiv. http://cwiki.apache.org/S2PLUGINS/tiles-plugin.html
xv. http://plexus.codehaus.org
xvi. http://picocontainer.codehaus.org
xvii. http://cwiki.apache.org/S2PLUGINS/spring-plugin.html

