Open Source
Computer Vision
Library

Reference Manual

Copyright © 2001 Intel Corporation
All Rights Reserved

Issued in U.S.A.

Order Number: A77028-004

World Wide Web: http://developer.intel.com

http://developer.intel.com

Version Version History Date

-001 Original Issue. 12/2000

-002 Document OpenCV Reference Manual Beta 1 version. 04/2001
Changed Manual structure.

-003 Document OpenCV Reference Manual Beta 2 version. 08/2001

Added Cont our Boundi ngRect function.

-004 Document OpenCV Reference Manual Beta 2 version. 12/2001
Updated 22 and added 35 functions to Basic Structures and
Operations Reference.

This OpenCV Reference Manual aswell as the software described in it is furnished under license and may only be used or copied in accor-
dance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without
notice, and should not be construed as acommitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any
errors or inaccuracies that may appear in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in aretrieval system, or transmitted in any form or
by any means without the express written consent of Intel Corporation.

INFORMATION IN THISDOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTSIS GRANTED BY THIS DOCU-
MENT. EXCEPT ASPROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES
NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMSANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE
AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES, RELATING TO FITNESS FOR A PARTICU-
LAR PURPOSE , MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS. INTEL MAY MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME, WITH-
OUT NOTICE.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved” or "undefined." Intel reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to
them.

The OpenCV may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Intel, the Intel logo and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*QOther names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2001.

Contents

Chapter Contents

Chapter 1
Overview
ADOUL ThiS SOIWAIEuueiiiiiiiiiiiiiiiiiiiiei e ee e e e ereeeees 1-1
Why We Need OpenCV Library.......ccccciiiiiiiiiriiie e, 1-2
Relation Between OpenCV and Other Libraries...........ccccccevvvvvnnnnnns 1-2
Data TYPeS SUPPOIEdccuvuriiiiieee i e e e e e e e e e e ee e 1-3
Error HANAINGoooioioiee e 1-3
Hardware and Software Requirementsccccvevvviieiiieeeeeeeeevennnnnnn 1-3
Platforms SUPPOIEAeveiiiiiiiiiiiiie e 1-4
About This Manual ... 1-4
Manual Organizationccccooiiiiiiiiee e 1-4
FUNCtioN DESCIPLIONS ...ocvviiiiiiiie e e e e e e 1-8
Audience for This Manual..............eeuveiiieiiiiiieiiiiiicereer e 1-8
ON-lINE VEISION ..ttt 1-8
Related Publications ... 1-8
Notational CoNVENLIONSooooiiiiiiiiei e 1-8
FONt CONVENLIONS ...ooiiiiii e eeee e 1-9
Naming CONVENLIONScuuvuiiii i e e e e e s 1-9
Function Name CONVENLIONSccooeeeieee e 1-9
Chapter 2
Motion Analysis and Object Tracking
Background SUbtraction ... 2-1
Y Lo 1o g T E=T 0] 0] F= 1 (= 2-2

intel.)

OpenCV Reference Manual Contents

Motion Representation and Normal Optical Flow Method 2-2
Motion Representationc.ccuiiiiiiiie e e e 2-2

A) Updating MHI IMageS......cccvvviiiviiiiiiiiiiiiiiiieeeeeeeeeeeeeee e, 2-3

B) Making Motion Gradient Imagecccccccceeeiieeeeeevccciccee e, 2-3

C) Finding Regional Orientation or Normal Optical Flow 2-6
Motion SEgMENLAtIONcoiiieieece e 2-7
CamSIft .o ——————— 2-9
Mass Center Calculation for 2D Probability Distribution 2-11
CamShift AIGOrtNMeiiiiiii e 2-12
Calculation of 2D Orientationeeeeeeeemeeeeeeeeeeeeeeeeneeeeeeee. 2-14
ACHVE CONLOUIS ..uvviiiiiiiiiiieiiieiieeeteee e eee e e ee e ereeeeeeeteeaeaaaeaaaaaaaaaaaaaaaaaaaaans 2-15
(@ o] (o= I =l [0 1 2-18
Lucas & Kanade TeChNIQUEcuuceeiiiieiiieeieiie e 2-19

Horn & Schunck Technique...........coviiiiiiii e 2-19
BIOCK MatChiNg.......ccuviiiiii e 2-20

LY] = (] P 2-20
MOAEIS.....eeee et e e e e e e e e e e e e e e e e e e eeaaens 2-20
ESHMALOIS ..uiiiiiiiiiiiiiiiieiie et a e e e e e e e e e e e e aeaeaas 2-21
Kalman Filteringuioii i 2-22
ConDensation AIGOrthmcccuviiiiiiieii e 2-23

Chapter 3
Image Analysis

CONtOUN RETIHEVING ...ttt 3-1
BasiC DefiNitioNS..........uuuiueeiiiiiiiiiiiiiiiiiie et 3-1
Contour RePreSeNtationocuvvveiieieeer it 3-3
Contour Retrieving Algorithm ... 3-4
FRATUIES ...t e ettt et aeaas 3-5
FIXE@A FIEEIS ...ttt et e e e e e e e e e e e eaeaeas 3-5
SObEl DENVALIVES ..o e 3-6
Optimal Filter Kernels with Floating Point Coefficients 3-9
FIrSt DENVALIVESvvvviiiiiiiiiiiiiiiieieieieisrieeeeeeeeeeeeeeeeeeserereeerereereeeeeeees 3-9
SeCcOoNd DEerVALIVES ...ttt eeee e 3-10

OpenCV Reference Manual Contents

Laplacian ApproXimation...............eeeverueerrerererreeeeeeeeeeereeeeeeereeeeees 3-10
Feature DEeteCLION ittt e e e e eeeeeeeees 3-10
COrNer DEECTION ...ttt 3-11
(0% T o] 01V =0 [o ST BI=] (=] (o] (RN 3-11
Hough Transformcooii e 3-14
IMAQgE SLALISTICS .eivvviiiii i e e e e e e e e e e aeee 3-15
PYTAIMIAS ... 3-15
/o7 o] g o] [)2 3-19
Flat Structuring Elements for Gray Scale............occcvvvveeiiiniiiiiiiennnnn. 3-21
Distance TranSfOrmM ... ee e 3-23
THreSNOIAING ... 3-24
[o To o I 11 o Vo O 3-25
[L5530 | = o o 3-25
Histograms and SigNatures............coovuvieiiereeeeniiniiieee e 3-26
Example Ground DIStanCesScccoevieeiiiiieviiiiiiii e e 3-29
Lower Boundary for EMDcuiviiiiiiiiiiieiiiieieeeieevee e 3-30
Chapter 4
Structural Analysis
CONEOUN PrOCESSINGeivitiiieiee ettt e s e e e e e e 4-1
Polygonal ApproXimationceeeiiieeiiieiiciies e e e e eeeenens 4-1
Douglas-Peucker ApproxXimationcccueeeeiieeiniiiiinieeee e 4-4
CoNtOUrS MOMENTS. .. .cciiiiiiiiiii ettt 4-5
Hierarchical Representation of CONtOUISccooiviiiiiiieeeniniiiiieeeenen 4-8
LT <0 01T 4-14
EllPSE FItlING..eeee it 4-14
T TN 1] o o PP 4-15
COoNVEXItY DEECES ... 4-16
Chapter 5
Object Recognition
Eigen ODJECLS ...coooiiiiieeee e 5-1
Embedded Hidden Markov MOdEISuueveiiieiiiiiiiiiiiieiieeeeeeeeeeeeee e 5-2

intel. 3

OpenCV Reference Manual Contents

Chapter 6
3D Reconstruction
Camera Calibration.............eeiiiiiiiiii e 6-1
Camera ParametersS.o 6-1
PatlerN..ccee e 6-3
RV, [o o] 1 Vo 6-3
AlGOTIERIM Lo 6-4
Using Functions for View Morphing Algorithmccccccceeeeeie. 6-7
PO S T e 6-8
Geometric Image FOrmationcccvuviviiiiiiiieee v e e ee e 6-8
Pose Approximation Method............coooiiiiiiiiiniiiiiiee e 6-10
Y o o 11 o o o 6-12
Gesture RECOGNILIONccuuiiiiie e e e e e e s 6-14
Chapter 7
Basic Structures and Operations
T g F=To L= U T g od 1 o] g 1= 7-1
DynamicC Data StIUCLUIEScooiiiiiiiiiie et 7-4
Y =T g 10 VS (o] = T [7-4
SEUUENCES ...ttt ettt e e e e e 7-5
Writing and Reading SEQUENCESooeevviiviiiiiiiie e eeeeeeeeiiiin e e e e eenens 7-6
Y] £ PP UUPPPRRPPPRN 7-8
GlrAPNS .. e 7-11
MaLrX OPEIALIONSevieieeeeeeee ettt e e 7-15
Interchangability between Iplimage and CvMat.c..c....e. 7-18
Drawing PrimMitIVEScoviiiiiiiiiiiieie e 7-18
UITIEY oo e e e e e e e e e e 7-19
Chapter 8
Library Technical Organization and System Functions
g (o] g = o | 1 o U 8-1

intel. s

OpenCV Reference Manual Contents

Y =T aTe] YA\ =T F= o [<] o 0 =T o | S PP PPPT 8-1
Interaction With Low-Level Optimized Functionsccceevevvvvvinnnnnn. 8-1
LU LSTCT g T O =T 1T} o PP 8-1
Chapter 9
Motion Analysis and Object Tracking Reference
Background Subtraction FUNCLIONS...........cccceevviiiiiieiccsee e, 9-3
A e 9-3
Y0 |8 =T = Y o] o 9-4
MUIEIPIYACC ..ot 9-4
RUNNMINGAVG ..o e e e s s e e e e e e e e e ae et e s e e e eeeeennes 9-5
Motion TemplateS FUNCHONSuuiiiiiiiiiiiiiiiie e 9-6
UpdateMOotioNHISTOIYccooiviiiiiiiie e e e e 9-6
CalcMotioNGradientoooiiiiiie e 9-6
CalcGlobalOorientationoooii oo 9-7
SEGMENTMOTION ..ottt 9-8
CamShift FUNCLIONS ... 9-9
CamShift ... —————————— 9-9
MEANSRITE. ...t e e e e e e e eaeas 9-10
Active CoNtoUrs FUNCHIONuviiiiiiiiiiiiieeiieeieer e e a e e e 9-11
Y11= 1 CC] = o [P 9-11
Optical FIOW FUNCHONSoiiiiiiiiiiiiieeecees e 9-12
CalcOpticalFIOWHS ... e 9-12
CalcOPLICAIFIOWLKouiiiiiiieiiii e 9-13
CalcOpticalFIOWBMcoouiiiiiii e e eeaeees 9-13
CalcOptiCAIFIOWPYILKooiiiiiiiiieeeeeee et 9-14
EStimators FUNCHONScoo oo 9-16
CreateKalmancoooie i 9-16
ReleaseKalMman ... eeeee e eeeeeeeeeees 9-16
KalmanUpdateByTimeoouuiiiiiiieiiieiee e 9-17
KalmanUpdateByMeasurement...........cooeeeuiiiiiiiieeeeeeeeviiien s e ee e 9-17
CreateConDeNSAtiONccoeiiiiieieiiiiee e 9-17

OpenCV Reference Manual Contents

ReleaseConDeNSAtiONuuuururiuiiiiiiiiiiiiiiierirrererererrerereee . 9-18
ConDensINItSamMPIESEtvciiiii s 9-18
ConDensUpdateByTimecccooeiiiiiiiveeve e 9-19
EStimators Data TYPES ...ccvvviiiiiiiie et e e e e e e s 9-19
Chapter 10
Image Analysis Reference
Contour Retrieving FUNCLIONSoouiiiiii e 10-6
FINACONTOUISovvtiiii i e e e e eeaaaes 10-6
StartFINACONTOUIS ... e e e e e e e eeaeens 10-7
FINANEXICONTOUS . .uuieiiieeeieeeeeeee e e e et e e e e eeeeaeaes 10-8
SUDSHIULIECONTOUS e e e e e e e eeaeees 10-9
ENAFINACONIOUIS ..uuuuiiiccieeieeee et e e e e aeaes 10-9
Features FUNCHIONSoiiece e 10-10
Fixed Filters FUNCLIONS.........cocuuiiiiii e e 10-10
LAPIACE ... 10-10
SODEL e e 10-10
Feature Detection FUNCHONS............uuviiiiiiiiiiiiiieiieeeieeeieeeeeeeeeeeeeeeees 10-11
CANNY e 10-11
PreCornerDetecCt 10-12
CornerEigenValSANAVECS........ccoivviiiiiieeiien e e e 10-12
CornerMINEIGENVALouviiiiiiiiiiee e 10-13
FINACOMMErSUDPIXiiieiiiiieies e e e e e e e e e e e 10-14
GOoOdFeatureSTOTIACKccvvvviieiieeeeeieeece e eeeeans 10-16
Hough Transform FUNCLIONScocoviiiiiiiiiii e 10-17
HOUGNLINES ..o 10-17
HOUQNLINESSDIV ...uuiiiiii it e e e e e e 10-18
HOUGNLINESP ..o 10-19
Image StatisticS FUNCHONSuuuiiiiiii e e 10-20
(07010] 011\ 0] 8 174~ ¢ o 10-20
SUMPIXEIS ..o e e e 10-20
= Vo 10-21
Y =TT TS (o | = Y TP 10-21

OpenCV Reference Manual Contents

MINIMAXLOC .eeiiiieiiiiite e 10-22
1 (0] 1 0 PSP UUUPPPUPTRIN 10-22
MOMENTS ... et e e e e eeeeeeenes 10-24
GetSpatialMOMENL ..o 10-25
GetCentralMOMENLcoiiiiiiiie e 10-25
GetNormalizedCentralMomentcoooiiioiiiieie e 10-26
GetHUMOMENTSe e 10-27
Pyramid FUNCLIONScoiiiiiie e e 10-28
PYIDOWN ...ttt e e e e e e e e eene 10-28
Py U e 10-28
PyrSegmentationoooiiiiiiiie e 10-29
Morphology FUNCLIONScccuiiiii et ee e 10-30
CreateStructuringEIementEXcovviiiiiii e 10-30
ReleaseStructuringElement ... 10-31
[0o [PP 10-31
D)1= 1 (= PP OTUO S UUPPPUPTRIN 10-32
1 oTg o] aTo] [0)7 = o SEPUP 10-33
Distance Transform FUNCLION..............uuiiiiiiiiiiiiiiiiieieeeieeeiee e eeeeeee e 10-34
[I =V] 0] PP 10-34
Threshold FUNCLIONSuuuiiii e 10-36
Adaptive Threshold.........cooooo i 10-36
TRIESNOIA ...coviii i e 10-38
Flood Filling FUNCLIONoocviiiii e ee e 10-40
FIOOAFII ... e e ee e 10-40
Histogram FUNCLIONS............uuuiiiiii e e 10-41
CreateHISTo e 10-41
REIEASEHIST ...ttt eeeae s 10-42
MakeHiStHEaderFOrAITAYuuviiiiiiiiiiiiieee e 10-42
QUEINYHISTVAIUE 1Dccoeeieeeiiiiei e e 10-43
QueryHiIstValue_2Doooiiiii i 10-43
QUEINYHISTVAIUE 3D ..o e 10-44
QueryHistValue_NDccoooiiiii i 10-44

OpenCV Reference Manual Contents

GetHistValue_1Dcoooiiiiiiii e 10-45
GEtHISIVAIUE 2D ... e 10-45
GetHistValue_3Dcoooiiiiiiiie e 10-46
GetHIStValUE _ND ... e e 10-46
GetMINMaXHIStVAlUEc.ocvviiiiiieieieeece e 10-47
NOFMANIZEHIST ...t e e e eeeeeeas 10-47
TRIESHHISE .ovviiiii e e 10-48
COMPArEHIST.....viiii i e 10-48
COPYHIST e 10-49
SEtHISIBINRANGES.......c o i e e e e e e e eeees 10-50
CalCHIST ... e 10-50
(OF> 1 [of = = (o (o o] 1= oX (P 10-51
CalcBackProjectPatChcooeiiiiiiiieeie e 10-52
CalCEMDo 10-54
CalcContrastHiSt........cooei e 10-55
Pyramid Data TYPEScvveeeiiieeiiiiiiietie ettt 10-56
Histogram Data TYPESccuuvuiiiiii it eeee e e e e e e e e 10-57
Chapter 11
Structural Analysis Reference
Contour Processing FUNCLONSiieiiiicciiicceecsie e e 11-3
APPIOXCRNAINS ... 11-3
StartReadChainPoiNtS. ... 11-4
ReadChaiNPoOiNt........coiiiiiiiiccc e e 11-5
APPIOXPOIY ..o 11-5
DrawWCONIOUIS ... i 11-6
ContourBouNdiNGRECLEovvviiiiieie e e 11-7
CONOUISMOMENTS......coviiiiieii e e e 11-8
CONOUIATBA ...ttt e et e e e e e e e eeneees 11-8
MAtCHCONTOULS ...vvveiiiii e e e e e et e e e e e e e eeaenes 11-9
CreateCoONtOUITIEEot e e e 11-10
ContourFromMCONIOUITIEEuui e 11-11
MatCNCONIOUITIEES ...uuutiiiiiiiiiiiiiiiiieieieeebeeeete bttt ee e e e e eeeeeeeeeeas 11-12

OpenCV Reference Manual Contents

Geometry FUNCLONScoooiiii i 11-12
FIREIPSE ..o e e e e e e e e e e e e e eeaes 11-12
FILINE2D ..ottt 11-13
{0 T= G] U EERURSS 11-15
PrOJECI3D ...t 11-16
ConVexXHUIL ... 11-17
ContourConvexHUIL...........cooooii i 11-18
CONVEXHUIAPPIOX ...t e e e e e e e ee et e e e e e eeeeees 11-18
ContourConVEXHUIAPPIOXcooouiiiiiieieee it 11-20
CheckContOUrCONVEXILYuuuiiiieeieeieeeiiiiiii s e e eeeee et e e e e e eeeeaes 11-21
CONVEXItYDEECTS ..ot 11-21
MINATEARECT ...ttt ee e e e e e eeeeeeeeas 11-22
CalCPGH ... 11-23
MINENCIOSINGCIICIEevviiiiieiiie e 11-24

Contour Processing Data TYPESccvvuuiieiiiieeeeeeeietiiin s e e e e e eeeevean s 11-24

Geometry Data TYPES....ccuuuriii e e 11-25

Chapter 12
Object Recognition Reference

Eigen ODjJects FUNCHONS..........ccuuviiiiiie e 12-3
CalcCovarMatriXEXccoiiieiiiiie e 12-3
CalCEIGENODJECES ..ot 12-4
CalcDecompPCoEff.....cccc i 12-5
EigeNDECOMPOSITE.....eiiiiieiiiiiiiie e 12-6
[T 1] g1 = 10 [T 1] o TP 12-7

Use of Eigen Object FUNCLIONScoiiiiiiiiiiiiieeeeie e 12-7

Embedded Hidden Markov Models FUNCHIONS..........coeviiiiiiieeiieeeeeneen. 12-12
CreateZDHMM ... 12-12
RElEASE2DHMMouiiiiiiiiiiiiiiiiiiiiiieieeeeebee ettt ee e e e e eeeeeeeeeeas 12-13
CreateObsINfO ..o 12-13
ReleasS@ODSINTOuuuiiiiiiiiiiiiiiiiiiii e 12-14
IMQTOODS_DCT ...ttt 12-14
UNIfOrmMIMQSE0mM ...uee e e e e e e e e e 12-15

OpenCV Reference Manual Contents

INIEMIXSEOM Lttt 12-16
EstimateHMMStateParams............ccoeeeeiiiiiiiiiiiee e, 12-17
EStimateTranSProbcoooviiiiiiiei et 12-17
EsStimateODbSProbD.........ooviieeee e 12-18
Y1 (<] o] 12-18
MIXSEOMLZ ... e e e e e e e e e e anee 12-19
HIMM SHTUCIUIES ...t et e et e e e e e e een 12-19
Chapter 13
3D Reconstruction Reference
Camera Calibration FUNCLONScoouiiiiiiiiieeceecee e 13-4
081 1] o] = 1 =1 OF=11 0[] = VR 13-4
CalibrateCamera_B4d............coooeiiiiii i 13-5
FindEXtrinSicCameraParamscooveeeeveeiiiieiiie e 13-6
FindExtrinsicCameraParams_64dcccccceeiiiiiieiiieviiiciin e, 13-7
ROGIMQUES ..ttt 13-7
0T [To TU =TS 7 o P 13-8
UNDISEOMONCE . .oevvceeeee e 13-9
UNDISEOMINIE ...eeeceee e 13-9
L0 LT 1= (o] o S 13-10
FiNndChessBoardCorNerGUESSESccceevvueeeeieiieeeeeeeieeeeeet e 13-11
View Morphing FUNCHIONSuviiiiiiiiieieceee e 13-12
FindFundamentalMatriXcooovviiiiieiiiiieeeeeee e, 13-12
MaKESCANINESovveiiiiii e e 13-13
PreWarpImage e 13-13
FINARUNS ..ot 13-14
DynamicCorrespondMulticooeveeeriiiiiiiiiin e e 13-15
MakeAlphaScanlinesSoouiiiiiiiiii e 13-16
MOrphEPINESMUILIccooiieieiie e e 13-16
POSTWaIPIMAGEveeeiieeece e e e e e 13-17
DEIBLEMOIIE ..ovveiciee e 13-18
POSIT FUNCHIONS ..veceee et e e 13-19
CreatePOSITODJECTcoi e e e e 13-19

OpenCV Reference Manual Contents

P O ST e 13-19
ReleasePOSITODJECT.......cooieeici e e e 13-20
Gesture Recognition FUNCLONScooooiiiii i 13-21
[TaTe | =Yg o | Rd=To o] o SRR 13-21
FINAHANAREGIONAoiiiiiiiei it 13-22
CreateHandMasKoooooiiiiii e 13-23
CalclmageHOoMOGraphyccooiiiiiiiiiieeiiieee e 13-23
(OF>1 [od =i 701 o] D 1=T 0 157 | 2SS 13-24
MAXRECT. ... 13-25
Chapter 14
Basic Structures and Operations Reference
Image FUuNnctions REfEreNCeoooiiiiiiiiiiiiiii e 14-9
CreatelmageHEadEreviiiiiiiii e 14-9
CreatelMageccvv e 14-9
ReleaselmageHeader ..o 14-10
REIEASEIMAGE. ...ttt it e e e e e e e eeeeaes 14-10
CreatelmageData.........ccoeeuiiiiiiiieeeeeee e 14-11
ReleaselmageDatal........ccoovvviiiiiii i e 14-12
SetIMAGEDALA ..o 14-12
SetlMageCOl ... 14-13
SetIMAGEROIN ... e 14-13
GetlmageRawDatacooeuviiiiiiiii e 14-14
INIEIMAGEHEAUETeeiiiiiii s 14-14
L7004 11 4= T = 2P 14-15
PiXel ACCESS MACIOSuuueiiiiiiiiieiiiiiieiiietieneebeee e eeeeeeeeeeeeeees 14-15
CV_INIT_PIXEL_POS ..ottt 14-17
CV_MOVE_TO ..ttt 14-17
CV_IMOVE ..ottt e e e e e ennes 14-18
CV_MOVE_WRAP ...ttt 14-18
CV_MOVE_PARAMottt ettt et ee e e 14-19
CV_MOVE_PARAM_WRAPooiiiiitiaiiie et 14-19
Dynamic Data Structures Referencec.ccccevvvvevviiii e, 14-21

OpenCV Reference Manual Contents

Memory Storage ReferenCe.........ccccuuvvvvviviviiiiiiiiiiiiirieiieeeseeeseseeeeaes 14-21
CreateMemSIOrage.oovvveviii e e e 14-22
CreateChildMemStOrageooooeeeeeeeieeiiecceee s 14-22
ReleaseMEMSIOragecoovvviiuiii i eeeee et e e e e e e eeeeaes 14-23
ClearMemMSIOTAgEuvevreeie e ettt e e e 14-23
SaveMemMSIOragePoScccuuiiieee e 14-24
RestoreMemStoragePos.vueiiiiiiiiiii 14-24
Sequence REfEIENCEcuuuuci i e 14-26
01 (=T 1 (oY T o PP SRPPPPPPTIP 14-29
SetSEQBIOCKSIZE ..o e 14-30
SEOPUSN .. 14-30
SO P O P - it 14-31
Y= To | = U] a1 (0] o | P 14-31
SEAPOPFIONT. ... et 14-32
SEQPUSNMUII......eeeiiii e e 14-32
SEOPOPMUIL ... 14-33
SEOINSEIT .. 14-33
SEOREMOVE ... e e 14-34
(11T 1T [P 14-34
GetSEOEIBM ..o 14-35
Y=o | =1 1= 1 41T b PP 14-35
CVESEATOAITAY ... 14-36
MakeSeqHEaderFOrAITAYuciieieeeeeeeeeiis e e e e e e ee et e e eeeeeeaeees 14-36
Writing and Reading Sequences Reference.........cccccccovvviiiiieneeenn. 14-37
3= T VAN o] o1=T g [0 o 3o =To [T 14-37
SEAMWITEESEQ ..t e ettt e e e 14-38
o LAY € ST = o RSP 14-39
FIUSNSEQWIILET .. 14-39
S = (4= T= 10 K Y=o [P 14-40
GetSEeqREATEIPOS.uiiiiiiie et 14-41
SetSEegREAUTEIPOS ..o 14-41
SetS REfEIrEeNCEooo oo 14-42

OpenCV Reference Manual Contents

CrEALESEL. ...t 14-42
SEtAL . 14-42
SEIREMOVE ...t e e 14-43
GetSetEIem ... 14-43
ClEAISEL ... 14-44
Graphs REfEreNCEcoooveiiiiii e e 14-46
CreateGraph e 14-46
(€T =10 072X [0 AV A ot RPN 14-46
GraphREMOVEVIX ..ottt 14-47
GraphRemMOVEVIXBYPLIuvviiiiii i e e 14-47
GraphAdAEAGEcooiiiiiiiiie et 14-48
GraphAddEAgEBYPLNcovcii e e 14-49
GraphReEMOVEEAQEocovviiiiiiii e e e e 14-50
GraphRemoVeEdgeBYPIN ... 14-50
T Te (€] =T o] =l o = TP 14-51
FINdGraphEdQEBYPII.......ccoiiiiiiiiieeeeee e 14-52
T =10 gLV D= To | (=T TP 14-52
GraphViXxDegreeBYPIIccoi it 14-53
(O[T T] = '] o RPN 14-54
GELGIAPNVIX .ttt ettt 14-54
(€T r=1 0] 01V 04 o b RPN 14-54
GraphEAQeIUX....cciieiiiiiiiiiie et 14-55
Graphs Data StrUCUIESuuvuiiiie e e e e e e e e eeeaenens 14-55
Matrix Operations ReferenCeccccoiviiiiiiiiiiiiiiee e 14-57
CreateMaloueieii e 14-58
CreateMatHeadercoooi e 14-58
REIEASEMAL.uiiiiiiiiiiiiiiiiiiit ittt eeeae s 14-59
ReleaseMatHEAdEruuuuiiuiiiiiiiiiiiiiiiieiiieiiieiee e e e eeeeeeeeees 14-60
INItMAtHEAEN ..., 14-60
ClONEMAL ... 14-61
SEIDALA . ..ottt 14-62
GEIMAL ... e 14-62

OpenCV Reference Manual Contents

GO AL e 14-63
Y= /A SRR 14-64
GEIAIPI .. 14-65
GEESUDAIT .. e 14-65
LCT=T 1 20 11T PP 14-66
[T =] (0o | SRR 14-66
(€121 T Vo F PP PPRTTP R TPPPPPPPRPPP 14-67
GetRAWDALAccvu i 14-67
(1) AT 4 = 14-68
CreateData........cccuu i 14-69
ANOCAITAY ..ottt 14-69
REIEASEDALAceeeviieeeee e 14-69
T g = Y 14-70
1070} o)PP SRPPPPPPTRIN 14-70
S e 14-71
2o o R 14-71
AAAS Lo e 14-72
SUD 14-73
SUDS e 14-73
SUBRS o 14-74
Y PP 14-75
2 3 o [14-75
ANAS L e 14-76
O] TR 14-77
S e 14-78
D0 | PP 14-79
KOS e 14-80
[L0 d Yo U o 14-81
CroSSPIOAUCTvueiiiee e 14-82
SCAIBAAGoveiiee e 14-82
MAtMUIAG.......e e e e 14-83
MAIMUIAAAS ... e e 14-84

OpenCV Reference Manual Contents

MUITFANSPOSEueviiiiiiiiiiiiiiiiiiieie e re e e eeeeereeeeees 14-85
[NV et e e e 14-85
THBCE ettt e e 14-86
3 PP 14-86
=Yg F=1 0T o] o 1< PP 14-86
L= 1] 0101 14-87
I et 14-87
RESNAPE ... e e e 14-88
SEUZEIO ..t 14-89
Y=o [T o1 1] P 14-90
SV D i ———————— 14-90
(S0 o (o] | 1Y PSP 14-91
o 1= 0 YA RSP 14-92
PerspectiveTranSform ... 14-93
Drawing Primitives Referenceccccvciiiii i, 14-94
I 1P PPPPRT 14-94
I L= PSP 14-94
RECIANGIE ... 14-95
CIrCle e 14-96
EllPSE e 14-96
EIPSEAA. .. e anae 14-98
11| 0] Y2 PP 14-98
FIlICONVEXPOIY ...vveiiiei e e e e e e eeeaaees 14-99
POIYLING <. 14-100
POIYLINEAA Lttt eee e 14-100
T o | PSSP 14-101
P UL T XL .ttt e e e 14-102
GEtTEXESIZE oii i i 14-102
ULility REFEIENCE ..vuveii i 14-103
ADSDI Lo 14-103
ADSDIES L. 14-104
MatChTeMPIALE ... 14-104

OpenCV Reference Manual Contents

CVIPIXTOPIANE ... 14-107
(O3] (d P= T 0 TN o] = RPN 14-107
CONVEISCAIE ... 14-108
LU T e e e e e e e e e e nnees 14-109
INIELINEITEIALOrceeeeiiice e e e 14-110
7= 1 41 0] 1= T g = P 14-111
GEtRECISUDPIX ..vviiiiccecec et 14-111
o] = 1Y VY o = o P 14-112
1o | SRR OUPPSPPPRRR 14-112
03 o | 14-113
101 Yo | ST TPTT 14-113
BINVSIT .o e 14-114
(o] 2 LYol o] T or= | 14-114
DCATOPOIAr ..o 14-115
o] 1Y 1= o PP 14-115
DFASTLOQ ..ttt 14-116
RaNINIT ... e e 14-116
DRANG ... 14-117
RANG ... 14-117
FIIMAGE ... 14-118
RaNASEIRANGEvvuiiiii i e 14-118
KIMBANS ...t e 14-119

Chapter 15

System Functions
LOAAPTIMILIVES ..ovviviiiee et e eeeeeeaes 15-1
GetLibrarylnfo ... 15-2

Bibliography

Appendix A

intel. 16

OpenCV Reference Manual

Contents

Supported Image Attributes and Operation Modes

Glossary

Index

Overview 1

About

This manual describes the structure, operation, and functions of the Open Source
Computer Vision Library (OpenCV) for Intel® architecture. The OpenCV Library is
mainly aimed at real time computer vision. Some example areas would be
Human-Computer Interaction (HCI); Object Identification, Segmentation, and
Recognition; Face Recognition; Gesture Recognition; Motion Tracking, Ego Motion,
and Motion Understanding; Structure From Motion (SFM); and Mobile Robotics.

The OpenCV Library isacollection of low-overhead, high-performance operations
performed on images.

This manual explains the OpenCV Library concepts as well as specific data type
definitions and operation models used in the image processing domain. The manual
also provides detailed descriptions of the functions included in the OpenCV Library
software.

This chapter introduces the OpenCV Library software and explains the organization of
this manual.

This Software

The OpenCV implements awide variety of tools for image interpretation. It is
compatible with Intel® Image Processing Library (IPL) that implements low-level
operations on digital images. In spite of primitives such as binarization, filtering,
image statistics, pyramids, OpenCV is mostly a high-level library implementing
algorithms for calibration techniques (Camera Calibration), feature detection (Feature)
and tracking (Optical Flow), shape analysis (Geometry, Contour Processing), motion

11

OpenCV Reference Manual Overview 1

analysis (Motion Templates, Estimators), 3D reconstruction (View Morphing), object
segmentation and recognition (Histogram, Embedded Hidden Markov Models, Eigen
Objects).

The essential feature of thelibrary along with functionality and quality is performance.
The algorithms are based on highly flexible data structures (Dynamic Data Structures)
coupled with IPL data structures; more than a half of the functions have been

assembl er-optimized taking advantage of Intel® Architecture (Pentium® MM XL,
Pentium® Pro, Pentium® |11, Pentium® 4).

Why We Need OpenCV Library

The OpenCV Library isaway of establishing an open source vision community that
will make better use of up-to-date opportunities to apply computer vision in the
growing PC environment. The software provides a set of image processing functions,
aswell asimage and pattern analysis functions. The functions are optimized for Intel®
architecture processors, and are particularly effective at taking advantage of MM X[
technol ogy.

The OpenCV Library has platform-independent interface and supplied with whole C
sources. OpenCV is open.

Relation Between OpenCV and Other Libraries

OpenCV isdesigned to be used together with Intel® Image Processing Library (1PL)
and extends the latter functionality toward image and pattern analysis. Therefore,
OpenCV shares the same image format (I pl | mage) with IPL.

Also, OpenCV uses Intel® Integrated Performance Primitives (IPP) on lower-level, if
it can locate the IPP binaries on startup.

I PP provides cross-platform interface to highly-optimized low-level functions that
perform domain-specific operations, particularly, image processing and computer
vision primitive operations. | PP exists on multiple platformsincluding IA32, |A64,
and StrongARM. OpenCV can automatically benefit from using IPP on all these
platforms.

1-2

OpenCV Reference Manual Overview 1

Data Types Supported

There are afew fundamental types OpenCV operates on, and several helper datatypes
that are introduced to make OpenCV API more simple and uniform.

The fundamental data types include array-like types: | pl | mage (IPL image), CvMat
(matrix), growable collections: cvSeq (deque), CvSet , CvG aph and mixed types:
CvHi st ogr am(multi-dimensional histogram). See Basic Structures and Operations
chapter for more details.

Helper datatypesinclude: cvPoi nt (2d point), cvsi ze (width and height),
CvTernCriteria (termination criteriafor iterative processes), | pl ConvKer nel
(convolution kernel), cvMonent s (spatial moments), etc.

Error Handling

Error handling mechanism in OpenCV issimilar to IPL.

There are no return error codes. Instead, there isa global error status that can be set or
retrieved viacvError and cvGet Err St at us functions, respectively. The error
handling mechanism is adjustable, e.g., it can be specified, whether cvEr r or printsout
error message and terminates the program execution afterwards, or just sets an error
code and the execution continues.

See Library Technical Organization and System Functions chapter for list of possible
error codes and details of error handling mechanism.

Hardware and Software Requirements

The OpenCV software runs on personal computersthat are based on Intel® architecture
processors and running Microsoft* Windows* 95, Windows 98, Windows 2000, or
Windows NT*. The OpenCV integrates into the customer’s application or library
writtenin C or C++.

1-3

OpenCV Reference Manual Overview 1

Platforms Supported

The OpenCV software run on Windows platforms. The code and syntax used for
function and variable declarations in this manual are written in the ANSI C style.
However, versions of the OpenCV for different processors or operating systems may,
of necessity, vary slightly.

About This Manual

This manual provides a background for the computer image processing concepts used
in the OpenCV software. The manual includes two major parts, one is the Programmer
Guide and the other is Reference. The fundamental concepts of each of the library
components are extensively covered in the Programmer Guide. The Reference
provides the user with specifications of each OpenCV function. The functions are
combined into groups by their functionality (chapters 10 through 16). Each group of
functionsis described along with appropriate data types and macros, when applicable.
The manual includes example codes of the library usage.

Manual Organization
This manual includes two principal parts: Programmer Guide and Reference.

The Programmer Guide contains

Overview (Chapter 1) that provides information on the OpenCV software, application
area, overal functionality, the library relation to IPL, datatypes and
error handling, along with manual organization and notational
conventions.

and the following functionality chapters:
Chapter 2 Motion Analysis and Object Tracking comprising sections:

e Background Subtraction. Describes basic functions that enable
building statistical model of background for its further
subtraction.

intel.

OpenCV Reference Manual

Overview 1

Chapter 3

Motion Templates. Describes motion templates functions
designed to generate motion template images that can be used to
rapidly determine where a motion occurred, how it occurred, and
in which direction it occurred.

Cam Shift. Describes the functions implemented for realization
of “Continuously Adaptive Mean-SHIFT” algorithm (CamShift)
algorithm.

Active Contours. Describes afunction for working with active
contours (snakes).

Optical Flow. Describes functions used for cal culation of optical
flow implementing Lucas & Kanade, Horn & Schunck, and
Block Matching techniques.

Estimators. Describes a group of functions for estimating
stochastic models state.

Image Analysis comprising sections:

Contour Retrieving. Describes contour retrieving functions.

Features. Describes various fixed filters, primarily derivative
operators (1st & 2nd Image Derivatives); feature detection
functions; Hough Transform method of extracting geometric
primitives from raster images.

Image Statistics. Describes a set of functions that compute
different information about images, considering their pixels as
independent observations of a stochastic variable.

Pyramids. Describes functions that support generation and
reconstruction of Gaussian and Laplacian Pyramids.

Morphology. Describes an expanded set of morphol ogical
operatorsthat can be used for noisefiltering, merging or splitting
image regions, as well as for region boundary detection.

Distance Transform. Describes the distance transform functions
used for calculating the distance to an object.

1-5

Overview 1

OpenCV Reference Manual
* Thresholding. Describes threshold functions used mainly for
masking out some pixels that do not belong to a certain range,
for example, to extract blobs of certain brightness or color from
the image, and for converting grayscale image to bi-level or
black-and-white image.
* Flood Filling. Describes the function that performs flood filling
of a connected domain.
* Histogram. Describes functions that operate on
multi-dimensional histograms.
Chapter 4 Structural Analysis comprising sections:
* Contour Processing. Describes contour processing functions.
* Geometry. Describes functions from computational geometry
field: line and ellipse fitting, convex hull, contour analysis.
Chapter 5 Image Recognition comprising sections:
* Eigen Objects. Describes functions that operate on eigen objects.
* Embedded HMM. Describes functions for using Embedded
Hidden Markov Models (HMM) in face recognition task.
Chapter 6 3D Reconstruction comprising sections:
® Camera Cadlibration. Describes undistortion functions and
camera calibration functions used for calculating intrinsic and
extrinsic camera parameters.
* View Morphing. Describes functions for morphing views from
two cameras.
* POSIT. Describes functions that together perform POSIT
algorithm used to determine the six degree-of-freedom pose of a
known tracked 3D rigid object.
* Gesture Recognition. Describes specific functions for the static
gesture recognition technology.
Chapter 7 Basic Structures and Operations comprising sections:

1-6

OpenCV Reference Manual

Overview 1

Chapter 8

Image Functions. Describes basic functions for manipulating
raster images: creation, allocation, destruction of images. Fast
pixel access macros are also described.

Dynamic Data Structures. Describes several resizable data
structures and basic functions that are designed to operate on
these structures.

Matrix Operations. Describes functions for matrix operations:
basic matrix arithmetics, eigen problem solution, SVD, 3D
geometry and recognition-specific functions.

Drawing Primitives. Describes simple drawing functions
intended mainly to mark out recognized or tracked featuresin

Utility. Describes unclassified OpenCV functions.

Library Technical Organization and System Fuctions comprising
sections:

Error Handling.

Memory Management.

Interaction With Low-Level Optimized Functions.
User DLL Creation.

Reference contains the following chapters describing respective functions, data types
and applicable macros.

Motion Analysis and Object Tracking Reference.
Image Analysis Reference.

Structural Analysis Reference.

Image Recognition Reference.

3D Reconstruction Reference.

Basic Structures and Operations Reference.
System Functions Reference.

Chapter 9

Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15

The manual also includes Appendix A that describes supported image attributes and
operation modes, a Glossary of terms, a Bibliography, and an Index.

1-7

OpenCV Reference Manual Overview 1

Function Descriptions

In Chapters 10 through 16, each function isintroduced by name and a brief description
of its purpose. Thisisfollowed by the function call sequence, definitions of its
arguments, and more detailed explanation of the function purpose. The following
sections are included in function description:

Arguments Describes all the function arguments.

Discussion Defines the function and describes the operation performed
by the function. This section also includes descriptive
equations.

Audience for This Manual

The manual isintended for al users of OpenCV: researchers, commercial software
developers, government and camera vendors.

On-line Version

This manual is available in an electronic format (Portable Document Format, or PDF).
To obtain a hard copy of the manual, print the file using the printing capability of
Adobe* Acrobat*, the tool used for the on-line presentation of the document.

Related Publications

For more information about signal processing concepts and agorithms, refer to the
books and materials listed in the Bibliography.

Notational Conventions
In this manual, notational conventions include:
* Fontsused for distinction between the text and the code
¢ Naming conventions
* Function name conventions

intel. 16

OpenCV Reference Manual Overview 1

Font Conventions

The following font conventions are used:

TH S TYPE STYLE Used in the text for OpenCV constant identifiers; for
example, CV_SEQ KI ND_GRAPH.
This type style Mixed with the uppercase in structure names asin

CvCont our Tr ee; also used in function names, code
examples and call statements; for example, i nt
cvFi ndCont ours().

This type style Variables in arguments discussion; for example, val ue, src.

Naming Conventions

The OpenCV software uses the following naming conventions for different items:
* Constant identifiers are in uppercase; for example, CV_SEQ KI ND_GRAPH.

* All names of the functions used for image processing have thecv prefix. In code
examples, you can distinguish the OpenCV interface functions from the
application functions by this prefix.

* All OpenCV externa functions’ names start with cv prefix, all structures’ names
start with cv prefix.

E NOTE. Inthismanual, thecv prefix in function namesis always
= used in the code examples. In the text, this prefix is usually omitted
when referring to the function group.

Each new part of a function name starts with an uppercase character, without
underscore; for example, cvCont our Tr ee.

Function Name Conventions

The function namesin the OpenCV library typically begin with cv prefix and have the
following general format:

intel. 19

OpenCV Reference Manual Overview 1

CV <action> <target> <nod> ()

where

action indicates the core functionality, for example, - Set -,
-Create-, -Convert-.

t ar get indicates the area where the image processing is being

enacted,forexample, - Fi nd Cont our s Of - Appr oxPol y.

In anumber of cases the target consists of two or more
words, for example, - Mat chCont our Tr ee. Some function
names consist of anact i on or target only; for example,
the functions cvUnDi st ort Or cvAcc respectively.

mod an optional field; indicates a modification to the core
functionality of afunction. For example, in the function
name cvFi ndExt ri nsi cCaner aPar ans_64d, _64d
indicates that this particular function works with double
precision numbers.

|nte|c 1-10

OpenCV Reference Manual Overview 1

intel@ 1-11

Motion Analysis and Object
Tracking

2

Background Subtraction

This section describes basic functions that enable building statistical model of
background for its further subtraction.

In this chapter the term "background” stands for a set of motionless image pixels, that
is, pixelsthat do not belong to any object, moving in front of the camera. This
definition can vary if considered in other techniques of object extraction. For example,
if adepth map of the sceneis obtained, background can be determined as parts of scene
that are located far enough from the camera.

The simplest background model assumes that every background pixel brightness
varies independently, according to normal distribution.The background characteristics
can be calculated by accumulating several dozens of frames, as well as their squares.
That means finding asum of pixel valuesinthelocations, , and asum of squares of
the values sq(y, for every pixel location.

. S .
Then mean is calculated as m,) = <2, where Nis the number of the frames
collected, and
standard deviati - S9py) _ (Sev)
andard deviation s o,) = sart (&L (2)).

After that the pixel in acertain pixel location in certain frame is regarded as belonging
to amoving object if condition abs(m, ,)—p.y)) >Co.) ISMEL, where Cisacertain
constant. If Cisequal to 3, it is the well-known "three sigmas" rule. To obtain that
background model, any objects should be put away from the camerafor afew seconds,
so that a whole image from the camera represents subsequent background observation.

The above technique can be improved. First, it is reasonable to provide adaptation of
background differencing model to changes of lighting conditions and background
scenes, e.g., when the camera moves or some object is passing behind the front object.

2-1

OpenCV Reference Manual Motion Analysis and Object Tracking 2

The simple accumulation in order to cal culate mean brightness can be replaced with
running average. Also, several techniques can be used to identify moving parts of the
scene and exclude them in the course of background information accumulation. The
techniques include change detection, e.g., viacvAbsDi f f with cvThr eshol d, optical
flow and, probably, others.

The functions from the section (See Motion Analysis and Object Tracking Reference)
are simply the basic functions for background information accumulation and they can
not make up a complete background differencing module alone.

Motion Templates

Motion

The functions described in Motion Templates Functions section are designed to
generate motion template images that can be used to rapidly determine where amotion
occurred, how it occurred, and in which direction it occurred. The algorithms are based
on papers by Davis and Bobick [Davis97] and Bradski and Davis [Bradsky00Q]. These
functions operate on images that are the output of background subtraction or other
image segmentation operations; thus the input and output image types are all
grayscale, that is, have a single color channel.

Representation and Normal Optical Flow Method

Motion Representation

Figure 2-1 (left) shows capturing aforeground silhouette of the moving object or
person. Obtaining a clear silhouette is achieved through application of some of
background subtraction techniques briefly described in the section on Background
Subtraction. As the person or object moves, copying the most recent foreground
silhouette as the highest values in the motion history image creates alayered history of
the resulting motion; typically this highest valueisjust afloating point timestamp of
time elapsing since the application was launched in milliseconds. Figure 2-1 (right)

2-2

OpenCV Reference Manual Motion Analysis and Object Tracking 2

shows the result that is called the Motion History Image (MHI). A pixel level or atime
deltathreshold, as appropriate, is set such that pixel valuesin the MHI image that fall
below that threshold are set to zero.

Figure 2-1 Motion History Image From Moving Silhouette

The most recent motion has the highest value, earlier motions have decreasing values
subject to athreshold below which the value is set to zero. Different stages of creating
and processing motion templates are described below.

A) Updating MHI Images

Generally, floating point images are used because system time differences, that is, time
elapsing since the application was launched, are read in milliseconds to be further
converted into afloating point number which isthe value of the most recent silhouette.
Then follows writing this current silhouette over the past silhouettes with subsequent
thresholding away pixels that are too old (beyond a maximum nhi Dur at i on) to create
the MHI.

B) Making Motion Gradient Image
1. Start with the MHI image as shown in Figure 2-2(left).
2. Apply 3x3 Sobel operators X and Y to the image.

2-3

OpenCV Reference Manual Motion Analysis and Object Tracking 2

3. If theresulting response at a pixel location (X,Y) is S, (x,y) to the Sobel
operator X and s, (x,y) to the operator Y, then the orientation of the gradient is
calculated as.

A(x,y) = arctanS ((x,y)/S,(x,y)),
and the magnitude of the gradient is:
Mx,y) = JS2(x,y) +S2(x,).

4. Theequations are applied to the image yielding direction or angle of aflow
image superimposed over the MHI image as shown in Figure 2-2.

Figure 2-2 Direction of Flow Image

OpenCV Reference Manual Motion Analysis and Object Tracking 2

5. The boundary pixels of the MH region may give incorrect motion angles and
magnitudes, as Figure 2-2 shows. Thresholding away magnitudes that are

either too large or too small can be aremedy in this case. Figure 2-3 showsthe
ultimate results.

Figure 2-3 Resulting Normal Motion Directions

OpenCV Reference Manual Motion Analysis and Object Tracking 2

C) Finding Regional Orientation or Normal Optical Flow

Figure 2-4 shows the output of the motion gradient function described in the section
above together with the marked direction of motion flow.

Figure 2-4 MHI Image of Kneeling Person

The current silhouette isin bright blue with past motions in dimmer and dimmer blue.
Red lines show where valid normal flow gradients were found. The white line shows

computed direction of global motion weighted towards the most recent direction of
motion.

To determine the most recent, salient global motion:

OpenCV Reference Manual Motion Analysis and Object Tracking 2

1. Cdculate ahistogram of the motions resulting from processing (see
Figure 2-3).

2. Find the average orientation of a circular function: angle in degrees.
a. Find the maximal peak in the orientation histogram.

b. Find the average of minimum differences from this base angle. The more
recent movements are taken with lager weights.

Motion Segmentation

Representing an image as a single moving object often gives a very rough motion
picture. So, the goal isto group MHI pixelsinto several groups, or connected regions,
that correspond to parts of the scene that move in different directions. Using then a
downward stepping floodfill to label motion regions connected to the current
silhouette helpsidentify areas of motion directly attached to parts of the object of
interest.

Once MHI image is constructed, the most recent silhouette acquires the maximal
values equal to the most recent timestamp in that image. The image is scanned until
any of these valuesis found, then the silhouette’s contour is traced to find attached
areas of motion, and searching for the maximal values continues. The algorithm for
creating masks to segment motion region is as follows:

1. Scanthe MHI until apixel of the most recent silhouette is found, use floodfill
to mark the region the pixel belongs to (see Figure 2-5 (@)).

2. Wak around the boundary of the current silhouette region looking outside for
unmarked motion history steps that are recent enough, that is, within the
threshold. When a suitable step is found, mark it with a downward floodfill. If
the size of thefill is not big enough, zero out the area (see Figure 2-5 (b)).

3. [Optional:
— Record locations of minimums within each downfill (see Figure 2-5 (c));

— Perform separate floodfills up from each detected location (see Figure 2-5
(d);

— Uselogical AND to combine each upfill with downfill it belonged to.

4. Storethe detected segmented motion regions into the mask.

5. Continue the boundary “walk” until the silhouette has been circumnavigated.

2-7

OpenCV Reference Manual Motion Analysis and Object Tracking 2

6. [Optional] Go to 1 until all current silhouette regions are found.

Figure 2-5 Creating Masks to Segment Motion Region

@) (b
2 =
=1 E
= =
= =
[[t
= =
5
5
.-----.-.--.... |
Maotion '* Blundary geqn
Walk
) {dy
- - Segmented
g motion region
] mask
=
=
=3
b
=
L oE
Fill Uip
frovm first
minimm
pizlis)

OpenCV Reference Manual Motion Analysis and Object Tracking 2

CamShift

This section describes CamShift algorithm realization functions.

Camshift stands for the “ Continuously Adaptive Mean-SHIFT” algorithm. Figure 2-6
summarizes this a gorithm. For each video frame, the raw imageis converted to a color
probability distribution image via a color histogram model of the color being tracked,
e.g., flesh color in the case of face tracking. The center and size of the color object are
found via the CamShift algorithm operating on the color probability image. The
current size and location of the tracked object are reported and used to set the size and
location of the search window in the next video image. The processisthen repeated for
continuous tracking. The algorithm is a generalization of the Mean Shift algorithm,

highlighted in gray in Figure 2-6.

2-9

OpenCV Reference Manual Motion Analysis and Object Tracking 2

Figure 2-6 Block Diagram of CamsShift Algorithm

FTTTTE T
. .
. v

"

v .

.....

Set calculation
region at search
window center
but larger in
sizethan the
search window

f

- up in calculation

HSV Image,

Color histogram look-

region

v

Color probability distribution
image

Use (X,Y) to set

N search window
center, 2*area’?
to set size.

> Find center of mass <

Y

within the search
window

v

Center search window
at the center of mass
and find area under it

Camshift operates on a 2D color probability distribution image produced from
histogram back-projection (see the section on Histogram in Image Analysis). The core
part of the CamShift algorithm is the Mean Shift algorithm.

The Mean Shift part of the agorithm (gray areain Figure 2-6) is as follows:
1. Choose the search window size.

2. Choosetheinitia location of the search window.

intel@ 2-10

OpenCV Reference Manual Motion Analysis and Object Tracking 2

3. Compute the mean location in the search window.
4. Center the search window at the mean location computed in Step 3.

5. Repeat Steps 3 and 4 until the search window center converges, i.e., until it has
moved for a distance less than the preset threshold.

Mass Center Calculation for 2D Probability Distribution

For discrete 2D image probability distributions, the mean location (the centroid) within
the search window, that is computed at step 3 above, is found as follows:

Find the zeroth moment
Mo = TSI (x.¥).
Xy

Find the first moment for x and y

Mo = 3 31 (x,y); My = >3yl (x,y).

Xy Xy

Mean search window location (the centroid) then isfound as
Mg My
© My Tf My
wherel (x, y) isthe pixel (probability) value in the position (x, y) intheimage, and x
and y range over the search window.

Unlike the Mean Shift algorithm, which is designed for static distributions, CamShift
is designed for dynamically changing distributions. These occur when objectsin video
sequences are being tracked and the object moves so that the size and location of the
probability distribution changes in time. The CamShift algorithm adjusts the search
window sizein the course of its operation. Initial window size can be set at any
reasonable value. For discrete distributions (digital data), the minimum window length
or width is three. Instead of a set, or externally adapted window size, CamShift relies
on the zeroth moment information, extracted as part of the internal workings of the
algorithm, to continuously adapt its window size within or over each video frame.

X

2-11

OpenCV Reference Manual Motion Analysis and Object Tracking 2

CamsShift Algorithm

1
2.
3.

Set the calculation region of the probability distribution to the whole image.
Choose the initial location of the 2D mean shift search window.

Calculate the color probability distribution in the 2D region centered at the
search window location in an ROI dlightly larger than the mean shift window
size.

Run Mean Shift algorithm to find the search window center. Store the zeroth
moment (area or size) and center location.

For the next video frame, center the search window at the mean | ocation stored
in Step 4 and set the window size to a function of the zeroth moment found
there. Go to Step 3.

Figure 2-7 shows CamShift finding the face center on a 1D slice through a face and
hand flesh hue distribution. Figure 2-8 shows the next frame when the face and hand
flesh hue distribution has moved, and convergence is reached in two iterations.

2-12

OpenCV Reference Manual

Motion Analysis and Object Tracking 2

Figure 2-7 Cross Section of Flesh Hue Distribution

Step 1

Step 4

Rectangular CamShift window is shown behind the hue distribution, while triangle in
front marks the window center. CamShift is shown iterating to convergence down the

left then right columns.

2-13

OpenCV Reference Manual Motion Analysis and Object Tracking 2

Figure 2-8 Flesh Hue Distribution (Next Frame)

Step 1 Step 2

Starting from the converged search location in Figure 2-7 bottom right, CamShift
converges on new center of distribution in two iterations.
Calculation of 2D Orientation

The 2D orientation of the probability distribution is also easy to obtain by using the
second moments in the course of CamShift operation, where the point (x, y) ranges
over the search window, and | (x, y) isthe pixel (probability) value at the point (x, y) .

Second moments are
My = ZZXZI (X, ¥)y My, = ZZXZI (x,y).
Xy Xy

Then the object orientation, or direction of the major axis, is

Thefirst two eigenvalues, that is, length and width, of the probability distribution of
the blob found by CamShift may be calculated in closed form as follows:

2-14

OpenCV Reference Manual Motion Analysis and Object Tracking 2

b= 2(——xcyc),and c = %)—yi.

Then length | and width w from the distribution centroid are

| = J(a+c)+A/b2+(a—c)2

2 k)

we J(a+c)—A/b2+(a—c)2
5 :

When used in face tracking, the above equations give head roll, length, and width as
marked in the source video image in Figure 2-9.

Figure 2-9 Orientation of Flesh Probability Distribution

Active Contours

This section describes a function for working with active contours, also called snakes.

The snake was presented in [Kass88] as an energy-minimizing parametric closed curve
guided by external forces. Energy function associated with the snakeis
E=En+E

ext ?
where E; ,, istheinterna energy formed by the snake configuration, E,,, isthe
external energy formed by external forces affecting the snake. The aim of the snakeis

to find alocation that minimizes energy.

2-15

OpenCV Reference Manual Motion Analysis and Object Tracking 2

Let p,,...,p, beadiscrete representation of asnake, that is, a sequence of points on an
image plane.

In OpenCV theinternal energy function is the sum of the contour continuity energy
and the contour curvature energy, as follows:

Ei nt = Econt + Ecurv ' Where
Econt is the contour continuity energy. 'I_'his energy is _
Econt = |d—|p; —P; _4||» Where d isthe average distance between all

pairs (p; —-p; _;) . Minimizing E,,,,, over all the snake points
Py - P, » CAUSES the snake points become more equidistant.

Ecury isthe contour curvature energy. The smoother the contour is, the less
isthe curvature energy.E. ., = [p; _1—2p; +p; .-

In [Kass88] external energy was represented as E,,,, = E; ., +E.,, , Where

con?
E, oy —iMage energy and E,,, - energy of additional constraints.
Two variants of image energy are proposed:

1. g, =-,wherel istheimageintensity. In this case the snakeis attracted to

the bright lines of the image.
2. E .y = -lgrad(1)l . The snakeis attracted to the image edges.

A variant of external constraint is described in [Kass88]. Imagine the snake points
connected by springs with certain image points. Then the spring forcek(x — xg)

2
produces the energy % . Thisforce pulls the snake points to fixed positions, which
can be useful when

snake points need to be fixed. OpenCV does not support this option now.
Summary energy at every point can be written as
(2.1)

where a, B,y are the weights of every kind of energy. The full snake energy is the sum
of E, over al the points.

Ei = Econt,i +Bi Ecurv,i +yi Ei mg,i

The meanings of a,p,y are asfollows:

a isresponsible for contour continuity, that is, abig a makes snake points more
evenly spaced.

2-16

OpenCV Reference Manual Motion Analysis and Object Tracking 2

B isresponsible for snake corners, that is, abig g for acertain point makes the angle
between snake edges more obtuse.

y isresponsible for making the snake point more sensitive to the image energy, rather
than to continuity or curvature.

Only relative values of a, B,y in the snake point are relevant.

The following way of working with snakesis proposed:

* create asnake with initial configuration;

e defineweights a,B,y at every point;

¢ allow the snake to minimize its energy;

* evaluate the snake position. If required, adjust a,,y, and, possibly, image data,
and repeat the previous step.

There are three well-known algorithms for minimizing snake energy. In [Kass88] the
minimization is based on variational calculus. In [Yuille89] dynamic programming is
used. The greedy algorithm is proposed in [Williams92].

The latter algorithm is the most efficient and yields quite good results. The scheme of
this algorithm for each snake point is as follows:

1. UseEquation (3.1) to compute E for every location from point neighborhood.
Before computing E, each energy term E .., E;, , Ei g MUSt be normalized
using formula E, ;; ,ai i zeq = (Ei g —M n)/(max —mi n), where max and ni n are
maximal and minimal energy in scanned neighborhood.

2. Choose location with minimum energy.
3. Move snakes point to this location.
4. Repeat al the steps until convergence is reached.
Criteria of convergence are asfollows:
* maximum number of iterationsis achieved;
e number of points, moved at last iteration, is less than given threshold.
In [Williams92] the authors proposed a way, called high-level feedback, to adjust b

coefficient for corner estimation during minimization process. Although thisfeatureis
not available in the implementation, the user may build it, if needed.

2-17

OpenCV Reference Manual Motion Analysis and Object Tracking 2

Optical Flow

This section describes several functions for calculating optical flow between two
images.

Most papers devoted to motion estimation use the term optical flow. Optical flow is
defined as an apparent motion of image brightness. Let 1 (x, y, t) betheimage
brightness that changes in time to provide an image sequence. Two main assumptions
can be made:

1. Brightnessi (x,y,t) smoothly depends on coordinates x, y in greater part of
the image.

2. Brightness of every point of a moving or static object does not change in time.

L et some object in theimage, or some point of an object, move and after time dt the
object displacement is (dx, dy).Using Taylor seriesfor brightnessi (x, y,t) gives
the following:

| (x+dx,y +dy,t +dt) = | (x,y,t)+g—|xdx+g—|ydy+g—ldt _— (2.2)
where“...” are higher order terms.

Then, according to Assumption 2:

| (x +dx,y +dy,t +dt) =1 (x,y,t), (2.3
and

g—l(dx+g—;dy+g—ldt +..=0. (2.9)
Dividing (18.3) by dt and defining

g_tx =, g_ty = v (2.5)
gives an equation

ol _al . 9l

—ﬁ = &U +(WV , (26)

usually called optical flow constraint equation, where u and v are components of
optical flow field in x and y coordinates respectively. Since Equation (2.6) has more
than one solution, more constraints are required.

Some variants of further steps may be chosen. Below follows a brief overview of the
options available.

2-18

OpenCV Reference Manual Motion Analysis and Object Tracking 2

Lucas & Kanade Technique

Using the optical flow equation for a group of adjacent pixels and assuming that all of
them have the same velocity, the optical flow computation task is reduced to solving a
linear system.

In anon-singular system for two pixels there exists a single solution of the system.
However, combining equations for more than two pixelsis more effective. In this case
the approximate solution is found using the least square method. The equations are
usually weighted. Here the following 2x2 linear system is used:

SVOGY) U+ TGV = =S WG YTl

X,y X,y X,y

NG U+ TG Y)Y = =S WGy

X,y X,y X,y

where W x, y) isthe Gaussian window. The Gaussian window may be represented as a
composition of two separable kernels with binomial coefficients. Iterating through the
system can yield even better results. It means that the retrieved offset is used to
determine a new window in the second image from which the window in the first
image is subtracted, while ; iscalculated.

Horn & Schunck Technique

Horn and Schunck propose a technique that assumes the smoothness of the estimated
optical flow field [Horn81]. This constraint can be formulated as

= (09" 2"+ (3" (& ooms @

Thisoptical flow solution can deviate from the optical flow constraint. To express this
deviation the following integral can be used:

_ ol al . 12
C —irjl;aggax u+ oy + (W) dxdy . (2.8)
Thevaue s+Ac, where A isaparameter, called Lagrangian multiplier, isto be

minimized. Typically, asmaller A must be taken for anoisy image and alarger one for
aquite accurate image.

To minimize s+\cC, asystem of two second-order differential equations for the whole
image must be solved:

2-19

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2 2
ou_ du_,(ol ol 0l ol

(;f(;z = }‘(ax”+ayV+at)ax’

Y (2.9)
OV L OV Ny 2y 00

ax2 dy 0x oy ot/ ox

Iterative method could be applied for the purpose when a number of iterations are
made for each pixel. Thistechnique for two consecutive images seems to be
computationally expensive because of iterations, but for along sequence of images
only an iteration for two images must be done, if the result of the previousiteration is
chosen asinitial approximation.

Block Matching

This technique does not use an optical flow equation directly. Consider an image
divided into small blocks that can overlap. Then for every block in the first image the
algorithm triesto find ablock of the same size in the second image that is most similar
to the block in the first image. The function searches in the neighborhood of some
given point in the second image. So al the pointsin the block are assumed to move by
the same offset that is found, just likein Lucas & Kanade method. Different metrics
can be used to measure similarity or difference between blocks - cross correlation,
squared difference, etc.

Estimators

This section describes group of functions for estimating stochastic models state.

State estimation programs implement amodel and an estimator. A model is analogous
to a data structure representing relevant information about the visual scene. An
estimator is analogous to the software engine that manipulates this data structure to
compute beliefs about the world. The OpenCV routines provide two estimators:
standard Kaman and condensation.

Models

Many computer vision applications involve repeated estimating, that is, tracking, of
the system quantities that change over time. These dynamic quantities are called the
system state. The system in question can be anything that happensto be of interest to a
particular vision task.

2-20

OpenCV Reference Manual Motion Analysis and Object Tracking 2

To estimate the state of a system, reasonably accurate knowledge of the system model
and parameters may be assumed. Parameters are the quantities that describe the model
configuration but change at a rate much slower than the state. Parameters are often
assumed known and static.

In OpenCV astate is represented with a vector. In addition to this output of the state
estimation routines, another vector introduced is a vector of measurements that are
input to the routines from the sensor data.

To represent the model, two things are to be specified:
* Estimated dynamics of the state change from one moment of time to the next
* Method of obtaining a measurement vector z, from the state.

Estimators

Most estimators have the same general form with repeated propagation and update
phases that modify the state's uncertainty asillustrated in Figure 2-10.

Figure 2-10 Ongoing Discrete Kalman Filter Cycle

- "

Time Update Measurement Update
{"Pradict') ['ﬂ"nrr? ct'l

The time update projects the current state estimate ahead in time. The measurement
update adjusts the projected estimate using an actual measurement at that time.

2-21

OpenCV Reference Manual Motion Analysis and Object Tracking 2

An estimator should be preferably unbiased when the probability density of estimate
errors has an expected value of 0. There exists an optimal propagation and update
formulation that is the best, linear, unbiased estimator (BLUE) for any given model of
the form. Thisformulation is known as the discrete Kalman estimator, whose standard
form isimplemented in OpenCV.

Kalman Filtering

The following explanation was taken from University of North Carolinaat Chapel Hill
technical report TR 95-041 by Greg Welch and Gary Bishop [Welsh95].

The Kalman filter addresses the general problem of trying to estimate the state x of a
discrete-time process that is governed by the linear stochastic difference equation

X 41 = AX, W, (2.10)
with ameasurement z, that is

z, = Hx, +v, (2.11)
The random variables w, and v, respectively represent the process and measurement
noise. They are assumed to be independent of each other, white, and with normal
probability distributions

p(W) = N(0,Q), (212)
p(w) = N(O,R). (2.13)
TheN x Nmatrix A in the difference equation (2.10) relates the state at time step k

to the state at step k+1, in the absence of process noise. ThemM x N matrix H inthe
measurement equation (2.11) relates the state to the measurement z, .

If X, denotesapriori state estimate at step k provided the process prior to step k is
known, and X, denotes a posteriori state estimate at step k provided measurement z, is
known, then a priori and a posteriori estimate errors can be defined
e, = X, —X
as ¢ K xE . The apriori estimate error covariance isthen P, = E[ee,'] and thea
€k = Xk
posteriori estimate error covariance is P, = E[e,e,] -

The Kalman filter estimates the process by using aform of feedback control: the filter
estimates the process state at some time and then obtains feedback in the form of noisy
measurements. As such, the equations for the Kalman filter fall into two groups: time

2-22

OpenCV Reference Manual Motion Analysis and Object Tracking 2

update equations and measurement update equations. The time update equations are
responsible for projecting forward in time the current state and error covariance
estimates to obtain the a priori estimates for the next time step. The measurement
update equations are responsible for the feedback, that is, for incorporating a new
measurement into the apriori estimate to obtain an improved a posteriori estimate. The
time update equations can also be viewed as predictor equations, while the
measurement update equations can be thought of as corrector equations. Indeed, the
final estimation a gorithm resemblesthat of a predictor-corrector algorithm for solving
numerical problems as shown in Figure 2-10. The specific equations for the time and
measurement updates are presented below.

Time Update Equations
Xe o1 = AXcs
P

_ T
g+1 = APATQ .

Measurement Update Equations:

_ T T -1
Ky = PRHk(HkPRHk+Rk))

X
=
|

= X + K (Zy —HXp)

P = (I —KH)Pg,

where K is the so-called Kalman gain matrix and | isthe identity operator. See
CvKal man in Motion Analysis and Object Tracking Reference.
ConDensation Algorithm

This section describes the ConDensation (conditional density propagation) agorithm,
based on factored sampling. The main idea of the algorithm is using the set of
randomly generated samples for probability density approximation. For simplicity,
general principles of ConDensation algorithm are described below for linear stochastic
dynamical system:

Xy 41 = AXy + W (2.14)

with a measurement z.

2-23

OpenCV Reference Manual Motion Analysis and Object Tracking 2

To start the algorithm, a set of samples X» must be generated. The samples are
randomly generated vectors of states. The function ConDensl ni t Sanpl eSet doesitin
OpenCV implementation.

During the first phase of the condensation algorithm every sample in the set is updated
according to Equation (3.14).

Further, when the vector of measurement z is obtained, the algorithm estimates
conditional probability densities of every sample P(x"|z) . The OpenCV
implementation of the ConDensation algorithm enables the user to define various
probability density functions. There is no such specia functionin the library. After the
probabilities are calculated, the user may evaluate, for example, moments of tracked
process at the current time step.

If dynamics or measurement of the stochastic system is non-linear, the user may
update the dynamics (A) or measurement (H) matrices, using their Taylor series at each
time step. See CvConDensat i on in Motion Analysis and Object Tracking Reference.

2-24

lmage Analysis

Contour Retrieving

This section describes contour retrieving functions.

Below follow descriptions of:

* severa basic functionsthat retrieve contours from the binary image and store them
in the chain format;

¢ functionsfor polygonal approximation of the chains.

Basic Definitions

Most of the existing vectoring algorithms, that is, algorithms that find contours on the
raster images, deal with binary images. A binary image contains only 0-pixels, that is,
pixels with the value O, and 1-pixels, that is, pixels with the value 1. The set of
connected 0- or 1-pixels makes the 0-(1-) component. There are two common sorts of
connectivity, the 4-connectivity and 8-connectivity. Two pixels with coordinates (x’,
y') and (x”,y”) are called 4-connected if, and only if, |x' —x"| +|y'-y”| = 1 and
8-connected if, and only if, max(|x'—x"|,ly’—=y"|) = 1. Figure 1-1 shows these relations.:

Figure 3-1 Pixels Connectivity Patterns

|:| Pixels, 8-connected to the black one

|:| Pixels, 4- and 8-connected to the black one

3-1

OpenCV Reference Manual Image Analysis 3

Using this relationship, the image is broken into severa non-overlapped 1-(0-)
4-connected (8-connected) components. Each set consists of pixels with equal values,
that is, al pixels are either equal to 1 or 0, and any pair of pixels from the set can be
linked by a sequence of 4- or 8-connected pixels. In other words, a4-(8-) path exists
between any two points of the set. The components shown in Figure 1-2 may have
interrelations.

Figure 3-2 Hierarchical Connected Components

/7

1-components W1, W2, and W3 are inside the frame (0-component B1), that is,
directly surrounded by B1.

O-components B2 and B3 are inside W1.

1-components W5 and W6 are inside B4, that is inside W3, so these 1-components
are inside W3 indirectly. However, neither W5 nor W6 enclose one another, which
means they are on the same level.

In order to avoid atopological contradiction, O-pixels must be regarded as 8-(4-)
connected pixelsin case 1-pixels are dealt with as 4-(8-) connected. Throughout this
document 8-connectivity is assumed to be used with 1-pixels and 4-connectivity with
O-pixels.

3-2

OpenCV Reference Manual Image Analysis 3

Since 0-components are complementary to 1-components, and separate 1-components
are either nested to each other or their internals do not intersect, the library considers
1-components only and only their topological structureis studied, O-pixels making up
the background. A O-component directly surrounded by a 1-component is called the
hole of the 1-component. The border point of a 1-component could be any pixel that
belongs to the component and has a 4-connected O-pixel. A connected set of border
pointsis called the border.

Each 1-component has a single outer border that separates it from the surrounding
0-component and zero or more hole border s that separate the 1-component from the
O-components it surrounds. It is obvious that the outer border and hole borders give a
full description of the component. Therefore al the borders, also referred to as
contours, of all components stored with information about the hierarchy make up a
compressed representation of the source binary image. See Reference for description
of the functions Fi ndCont ours, StartFindContours, and Fi ndNext Cont our
that build such a contour representation of binary images.

Contour Representation

The library uses two methods to represent contours. The first method is called the
Freeman method or the chain code (Figure 1-3). For any pixel al its neighbors with
numbers from O to 7 can be enumerated:

Figure 3-3 Contour Representation in Freeman Method

3|2

AN
~N|o|-

3-3

OpenCV Reference Manual Image Analysis 3

The 0-neighbor denotes the pixel on theright side, etc. As a sequence of 8-connected
points, the border can be stored as the coordinates of the initial point, followed by
codes (from 0 to 7) that specify the location of the next point relative to the current one

(see Figure 1-4).

Figure 3-4 Freeman Coding of Connected Components

Initial Point

Chain Code for the Curve: 34445670007654443

The chain code is a compact representation of digital curves and an output format of
the contour retrieving algorithms described bel ow.

Polygonal representation is a different option in which the curve is coded as a
sequence of points, vertices of a polyline. This alternative is often a better choice for
manipulating and analyzing contours over the chain codes; however, this
representation is rather hard to get directly without much redundancy. Instead,
algorithms that approximate the chain codes with polylines could be used.

Contour Retrieving Algorithm

Four variations of algorithms described in [Suzuki85] are used in the library to retrieve
borders.

1. Thefirst agorithm finds only the extreme outer contoursin the image and
returns them linked to the list. Figure 1-2 shows these external boundaries of
W1, W2, and W3 domains.

2. The second agorithm returns all contours linked to the list. Figure 1-2 shows
the total of 8 such contours.

3-4

OpenCV Reference Manual Image Analysis 3

3. Thethird algorithm finds all connected components by building atwo-level
hierarchical structure: on the top are the external boundaries of 1-domains and
every external boundary contains alink to thelist of holes of the
corresponding component. The third algorithm returns all the connected
components as a two-level hierarchical structure: on the top are the external
boundaries of 1-domains and every external boundary contour header contains
alink to the list of holesin the corresponding component. The list can be
accessed viav_next field of the external contour header. Figure 1-2 shows
that W2, W5, and W6 domains have no holes; consequently, their boundary
contour headersrefer to empty lists of hole contours. W1 domain hastwo holes
- the external boundary contour of W1 refersto alist of two hole contours.
Finally, W3 external boundary contour refersto alist of the single hole
contour.

4. The fourth agorithm returns the complete hierarchical tree where all the
contours contain alist of contours surrounded by the contour directly, that is,
the hole contour of W3 domain has two children: external boundary contours
of W5 and W6 domains.

All algorithms make a single pass through the image; there are, however, rare
instances when some contours need to be scanned more than once. The algorithms do
line-by-line scanning.

Whenever an algorithm finds a point that belongs to a new border the border following
procedure is applied to retrieve and store the border in the chain format. During the
border following procedure the algorithms mark the visited pixelswith special positive
or negative values. If the right neighbor of the considered border point is a 0-pixel and,
at the same time, the O-pixel islocated in the right hand part of the border, the border
point is marked with a negative value. Otherwise, the point is marked with the same
magnitude but of positive value, if the point has not been visited yet. This can be easily
determined since the border can cross itself or tangent other borders. Thefirst and
second algorithms mark all the contours with the same value and the third and fourth
algorithms try to use a unique ID for each contour, which can be used to detect the
parent of any newly met border.

3-5

OpenCV Reference Manual Image Analysis 3

Features

Fixed Filters

This section describes various fixed filters, primarily derivative operators.

Sobel Derivatives

Figure 1-5 showsfirst x derivative Sobel operator. The grayed bottom left number
indicatesthe originina“p-q” coordinate system. The operator can be expressed as a
polynomial and decomposed into convolution primitives.

Figure 3-5 First x Derivative Sobel Operator

q 1 |2]o0 2 1 1
— * * 1 1 * 1 -1
0 1 0 1 1 1
0 pl 2 (1+q) (1+q) (1+p) (1-p)

For example, first x derivative Sobel operator may be expressed as a polynomial
1+2q+q°-p”-2p°q-p°a® = (1+q)’(1-p?) = (1+q)(1+q)(1+p)(1-p) and
decomposed into convolution primitives as shown in Figure 1-5.

This may be used to express a hierarchy of first x and y derivative Sobel operators as
follows:
2 =@+ (1+0)"(1-p) (3.1)

2= @+p)(1+a)" " (1-0) (3.2)

for n>o0.

OpenCV Reference Manual Image Analysis 3

Figure 1-6 showsthe Sobel first derivative filters of equations(3.1) and (3.2) forn = 2,
4. The Sobel filter may be decomposed into simple “add-subtract” convolution

primitives.
Filter Differentiate Average
n=2 dx
1 0 -1 1
f— * 1 -1
2 0 -2 1
1 0 -1
1
* *| 1 1
dy 1
-1 -2 -1
0 0 0 -1
- 1 1 *
1 2 1 1
n=4 dx
1 2 0 -2 -1
4 8 0 -8 | -4
1
6 12| 0 12 6 | = x| 1|

-2 | -8|-12| -8 | -2

1
*

dy Ql 1 1
—| 1

2 8 12 8 2

intel. 37

OpenCV Reference Manual Image Analysis 3

Second derivative Sobel operators can be expressed in polynomial decomposition

similar to equations (3.1) and (3.2). The second derivative equations are:
2

a"—zz(l+p)”‘2(1+q)”(1—p)2, (3.3)
X
62 n-1 n-2 2
L@) A1), (3.4)
oy

2
soy = (1+p)" @) Ha-p)-a) (3.5)
forn = 2,3,....

Figure 1-7 shows the filters that result for n = 2 and 4. Just as shown in Figure 1-6,
these filters can be decomposed into simple “add-subtract” separable convolution
operators as indicated by their polynomial form in the equations.

3-8

OpenCV Reference Manual

Image Analysis 3

Figure 3-7 Sobel Operator Second Order Derivators forn=2and n=4

The polynomial decomposition is shown above each operator.

FIox® = (1+q)(1-py

&ldy? = (Lp)A(1-0)°

Fioxdy = (1+a)(L+p)(L-A)(L-P)

1|21 112 |1 1100 |1
2 |4 |2 2142 o (o |0
1|21 1|2 |1 1|0 |1
FIox? = (1+p)A(1+0)'(1-p)? Fldy? = (1+a)(1+p)'(1-0)°
1 o |20 |1 1 14 |6 |4 |1
4 o |-4]|0 |4 o (0|0 |0 |O
6 |0 |-12|0 |6 2|8 |12|8]|-=2
4 o |8|0 |4 o (0|0 |0 |O
1]o|-2]0 |1 1|4 |6 |4 |1
FIdxdy = (1+p) (1+)*(1-p)(1-0)
1 l-2]0 |2 |1
240 |4 |2
oo |0 |0 |oO
2 |4 |o |4]|-=2
1|2 |o|=2]4

Third derivative Sobel operators can aso be expressed in the polynomial
decomposition form:

intel.

3-9

OpenCV Reference Manual

Image Analysis 3

3
a"—sz(l+p)”‘3(1+q)”(1—p)3, (3.6)
X

03 n n-3 3
—=>01+p)"(1+a)" (1-0q)°, (3.7
oy

3

I = -+ A1+)" " (1-q), (38)
ox oy

3

s= (1-p)(1+p)" " H(1+q)" *(1-0)® (39

oxay

for n =3, 4,.... Thethird derivative filter needs to be applied only for the casesn = 4

and general.

Optimal Filter Kernels with Floating Point Coefficients

First Derivatives

Table 1-1 gives coefficients for five increasingly accurate x derivative filters, they
filter derivative coefficients are just column vector versions of the x derivative filters.

Table 3-1 Coefficients for Accurate First Derivative Filters
Anchor DX Mask Coefficients
0 0.74038 -0.12019
0 0.833812 -0.229945 0.0420264
0 0.88464 -0.298974 0.0949175 -0.0178608
0 0.914685 -0.346228 0.138704 -0.0453905 0.0086445
0 0.934465 -0.378736 0.173894 -0.0727275 0.0239629 -0.00459622
Five increasingly accurate separable x derivative filter coefficients. The table gives half
coefficients only. The full table can be obtained by mirroring across the central anchor
coefficient. The greater the number of coefficients used, the less distortion from the
ideal derivative filter.

Int9|c 3-10

OpenCV Reference Manual Image Analysis 3

Tab

le 3-2

Second Derivatives

Table 1-2 gives coefficients for five increasingly accurate x second derivative filters.
They second derivative filter coefficients are just column vector versions of the x
second derivative filters.

Coefficients for Accurate Second Derivative Filters

Anchor DX Mask Coefficients
-2.20914 1.10457

-2.71081 1.48229 -0.126882

-2.92373 1.65895 -0.224751 0.0276655

-3.03578 1.75838 -0.291985 0.0597665 -0.00827

-3.10308 1.81996 -0.338852 0.088077 -0.0206659 0.00301915

The table gives half coefficients only. The full table can be obtained by
mirroring across the central anchor coefficient. The greater the number of
coefficients used, the less distortion from the ideal derivative filter.

Laplacian Approximation
The Laplacian operator is defined as the sum of the second derivativesx and y:
L=+ 2 (3.10)

Thus, any of the equations defined in the sections for second derivatives may be used
to calculate the Laplacian for an image.

Feature Detection

A set of Sobel derivativefilters may be used to find edges, ridges, and blobs, especially
in a scale-space, or image pyramid, situation. Below follows a description of methods
in which the filter set could be applied.

* D isthefirst derivativein the direction x just asD,.
* Dy isthesecond derivative in the direction x just asD,.
* Dy isthepartia derivative with respect tox andy.
® Dy Isthethird derivative in the direction x just as Dyy,.

3-11

OpenCV Reference Manual Image Analysis 3

Corner

® Dy and By, arethethird partialsin the directionsx, y.

Detection

Method 1

Corners may be defined as areas where level curves multiplied by the gradient
magnitude raised to the power of 3 assume alocal maximum

2 2
DD, + D, D,x —2D,D, D, - (3.11)
Method 2

Sobel first derivative operators are used to take the derivatives x and y of an image,
after which asmall region of interest is defined to detect cornersin. A 2x2 matrix of
the sums of the derivatives x and y is subsequently created as follows:

D> $'D,D
c=| 25 225 (3.12)
B0, YO

The eilgenvalues are found by solving det (C—A1') = 0, where A isacolumn vector of
the eigenvalues and | istheidentity matrix. For the 2x2 matrix of the equation above,
the solutions may be written in a closed form:

DRI J(ZDi +300) -4y Dy 0 -(YD,0,))
- . . (3.13)

If A, A,>t , wheret issome threshold, then acorner isfound at that location. This can
be very useful for object or shape recognition.

A

Canny Edge Detector

Edges are the boundaries separating regions with different brightness or color. J.Canny
suggested in [Canny86] an efficient method for detecting edges. It takes grayscale
image on input and returns bi-level image where non-zero pixels mark detected edges.
Below the 4-stage algorithm is described.

3-12

OpenCV Reference Manual Image Analysis 3

Stage 1. Image Smoothing

The image data is smoothed by a Gaussian function of width specified by the user
parameter.

Stage 2. Differentiation

The smoothed image, retrieved at Stage 1, is differentiated with respect to the
directionsx andy.

From the computed gradient values x and y, the magnitude and the angle of the
gradient can be cal culated using the hypotenuse and arctangen functions.

In the OpenCV library smoothing and differentiation are joined in Sobel operator.

Stage 3. Non-Maximum Suppression

After the gradient has been calculated at each point of the image, the edges can be
located at the points of local maximum gradient magnitude. It is done via suppression
of non-maximumes, that is points, whose gradient magnitudes are not local maximums.
However, in this case the non-maximums perpendicular to the edge direction, rather
than those in the edge direction, have to be suppressed, since the edge strength is
expected to continue along an extended contour.

The agorithm starts off by reducing the angle of gradient to one of the four sectors
shown in Figure 1-8. The algorithm passes the 3x 3 neighborhood across the magnitude
array. At each point the center element of the neighborhood is compared with its two
neighbors aong line of the gradient given by the sector value.

If the central value is non-maximum, that is, not greater than the neighbors, it is
suppressed.

3-13

OpenCV Reference Manual Image Analysis 3

Figure 3-8 Gradient Sectors

e
A

Stage 4. Edge Thresholding

The Canny operator uses the so-called “hysteresis’ thresholding. Most thresholders
use asingle threshold limit, which means that if the edge values fluctuate above and
below this value, the line appears broken. This phenomenon is commonly referred to
as “streaking” . Hysteresis counters streaking by setting an upper and lower edge value
limit. Considering aline segment, if avalue lies above the upper threshold limit it is
immediately accepted. If the value lies below the low threshold it isimmediately
rejected. Points which lie between the two limits are accepted if they are connected to
pixels which exhibit strong response. The likelihood of streaking is reduced drastically
since the line segment points must fluctuate above the upper limit and below the lower
limit for streaking to occur. J. Canny recommends in [Canny86] the ratio of high to
low limit to be in the range of two or three to one, based on predicted signal-to-noise
ratios.

3-14

OpenCV Reference Manual Image Analysis 3

Hough Transform

The Hough Transform (HT) is a popular method of extracting geometric primitives
from raster images. The ssmplest version of the algorithm just detectslines, but it is
easily generalized to find more complex features. There are several classes of HT that
differ by the image information available. If theimageis arbitrary, the Standard Hough
Transform (SHT, [Trucco98]) should be used.

SHT, like all HT algorithms, considers a discrete set of single primitive parameters. If
lines should be detected, then the parametersare p and 6, such that the line equationis
p = xcos(B) +ysin(e) . Here

p is the distance from the origin to the line, and

0 isthe angle between the axis x and the perpendicular to the line
vector that points from the origin to the line.

Every pixel in theimage may belong to many lines described by aset of parameters. In
other words, the accumulator is defined which is an integer array A(p, 6) containing
only zeroes initially. For each non-zero pixel in the image all accumulator elements
corresponding to lines that contain the pixel are incremented by 1. Then athreshold is
applied to distinguish lines and noise features, that is, select all pairs (p,) for which
A(p, 0) isgreater than the threshold value. All such pairs characterize detected lines.

Multidimensional Hough Transform (MHT) isamodification of SHT. It performs
precalculation of SHT on rough resolution in parameter space and detects the regions
of parameter values that possibly have strong support, that is, correspond to linesin the
source image. MHT should be applied to images with few lines and without noise.

[Matas98] presents advanced algorithm for detecting multiple primitives, Progressive
Probabilistic Hough Transform (PPHT). The ideais to consider random pixels one by
one. Every time the accumulator is changed, the highest peak is tested for threshold
exceeding. If the test succeeds, points that belong to the corridor specified by the peak
are removed. If the number of points exceeds the predefined value, that is, minimum
line length, then the feature is considered a line, otherwise it is considered a noise.
Then the process repeats from the very beginning until no pixel remainsin the image.
The algorithm improves the result every step, so it can be stopped any time. [M atas98]
clamsthat PPHT iseasily generalized in amost all cases where SHT could be
generalized. The disadvantage of this method is that, unlike SHT, it does not process
some features, for instance, crossed lines, correctly.

3-15

OpenCV Reference Manual Image Analysis 3

For more information see [Matas98] and [Trucco98].

Image Statistics

This section describes a set of functions that compute various information about
images, considering their pixels as independent observations of a stochastic variable.

The computed values have statistical character and most of them depend on values of
the pixels rather than on their relative positions. These statistical characteristics
represent integral information about a whole image or its regions.

The functions Count NonZer o, SunPi xel s, Mean, Mean StdDev, M nMaxLoc
describe the characteristics that are typical for any stochastic variable or deterministic
set of numbers, such as mean value, standard deviation, min and max values.

The function Nor mdescribes the function for calculating the most widely used norms
for asingle image or apair of images. The latter is often used to compare images.

The functions Monent s, Get Spati al Monent, Get Central Morent

Get Nor mal i zedCent ral Moment,, Get HuMonent s describe moments functions for
calculating integral geometric characteristics of a 2D object, represented by grayscale
or bi-level raster image, such as mass center, orientation, size, and rough shape
description. As opposite to simple moments, that are used for characterization of any
stochastic variable or other data, Hu invariants, described in the last function
discussion, are unique for image processing because they are specifically designed for
2D shape characterization. They are invariant to severa common geometric
transformations.

Pyramids

This section describes functions that support generation and reconstruction of
Gaussian and Laplacian Pyramids.

Figure 1-9 shows the basics of creating Gaussian or Laplacian pyramids. The originad
image G, is convolved with a Gaussian, then down-sampled to get the reduced image
G,. This process can be continued as far as desired or until the image size is one pixel.

3-16

OpenCV Reference Manual Image Analysis 3

The Laplacian pyramid can be built from a Gaussian pyramid as follows: Laplacian
level “k” can be built by up-sampling the lower level image G, ;. Convolving the
image with a Gaussian kernel “g” interpolates the pixels “missing” after up-sampling.
The resulting image is subtracted from the image G,. To rebuild the original image, the
processisreversed as Figure 1-9 shows.

Figure 3-9 A Three-Level Gaussian and Laplacian Pyramid.

ga?gﬁ 9

v

!
H%g ;
!

h /
@

Intelc 3-17

OpenCV Reference Manual Image Analysis 3

The Gaussian image pyramid on the left is used to create the Laplacian pyramid in the
center, which is used to reconstruct the Gaussian pyramid and the original image on
theright. Inthefigure, | isthe original image, Gisthe Gaussian image, L isthe
Laplacian image. Subscripts denote level of the pyramid. A Gaussian kernel g is used
to convolve the image before down-sampling or after up-sampling.

Image Segmentation by Pyramid

Computer vision uses pyramid based image processing techniques on awide scale
now. The pyramid provides a hierarchical smoothing, segmentation, and hierarchical
computing structure that supports fast analysis and search algorithms.

P. J. Burt suggested a pyramid-linking algorithm as an effective implementation of a
combined segmentation and feature computation algorithm [Burt81]. This algorithm,
described also in [Jahne97], finds connected components without preliminary
threshold, that is, it works on grayscale image. It is an iterative algorithm.

Burt’s algorithm includes the following steps:
1. Computation of the Gaussian pyramid.
2. Segmentation by pyramid-linking.
3. Averaging of linked pixels.
Steps 2 and 3 are repeated iteratively until a stable segmentation result is reached.

After computation of the Gaussian pyramid a son-father relationship is defined
between nodes (pixels) in adjacent levels. The following attributes may be defined for
every node (i ,j) onthelevel I of the pyramid:

cli,j,I][t] isthevaue of thelocal image property, e.g., intensity;

ali,j,l][t] istheareaover which the property has been computed,

p[[i,j,1]1[t] ispointertothe node's father, whichisat level | +1;

s[i,j,11[t] isthesegment property, the average value for the entire segment
containing the node.

The letter t stands for the iteration number (¢t =0). Fort = 0, c[i,j,lI][0] = q"j .
For every node (i, j) atlevel I thereare 16 candidate son nodesat level 1 -1 (i’ ,j’),
where

3-18

OpenCV Reference Manual Image Analysis 3

i'O0{2i —1,2i,2 +1,2i +2,j'0{2j -1,2j,2j +1,2j +2 . (3.14)
For every node (i, j) atlevel | there are 4 candidate father nodes at level | +1
(i',j"), (seeFigure 1-10), where

i"O{G -1)/2,i +1)/2 ,j"0{(-1)/2,j +1)/2 . (3.15)

Son-father links are established for all nodes below the top of pyramid for every
iterationt . Letd[n] [t] be the absolute difference between the ¢ value of the node
(i,j)atlevel I and itsnth candidate father, then

pli i, 11[t] = argmin d[n][t] (3.16)

Figure 3-10 Connections between Adjacent Pyramid Levels

(N ENES I (WK
[[/
/

After the son-father relationship is defined, thet , ¢, and a values are computed from
bottom to the top for the o<1 <n as

ali ,j,0ft] =1, c[i,j,0ft] =cli,j,0f0],ali,j,l][t] =>ali"j"l -1][t],
where sum is calculated over all (i, j) node sons, asindicated by the linksp in (3.16).

3-19

OpenCV Reference Manual Image Analysis 3

If afi,j,110t]1>0 thencfi,j,I0t] = S (li%in 1 =10t] it -1t])/afi,j, 1it],
but if a[i,j,0][t] = 0, thenodehasno sons, c[i,j,0][t] issettothevaueof oneof its
candidate sons selected at random. No segment values are calculated in the top down
order. The value of the initial level L isan input parameter of the algorithm. At the
level L the segment value of each nodeis set equal to itslocal property vaue:

sfi,j,LIft] =cli,j,L]t].

For lower levels | <L each node vaueisjust that of its father
sfi,j,l1[t] =cli"j" | +1][t].

Herenode (i’ ,j’) isthefather of (i,|), asestablished in Equation (3.16).

After thisthe current iteration t finishes and the next iteration t +1 begins. Any
changesin pointers in the next iteration result in changes in the values of local image
properties.

The iterative process is continued until no changes occur between two successive
iterations.

The choice of L only determines the maximum possible number of segments. If the
number of segments less than the numbers of nodes at the level L, the values of
cli,j,L][t] are clustered into a number of groups equal to the desired number of
segments. The group average value is computed from the ¢ values of its members,
weighted by their areas a, and replaces the value ¢ for each node in the group.

See Pyramid Data Typesin Image Analysis Reference.

Morphology

This section describes an expanded set of morphological operators that can be used for
noise filtering, merging or splitting image regions, as well as for region boundary
detection.

Mathematical Morphology is a set-theory method of image analysis first developed by
Matheron and Serra at the Ecole des Mines, Paris[Serra82]. The two basic
morphological operations are erosion, or thinning, and dilation, or thickening. All
operations involve an image A, called the object of interest, and a kernel element B,
called the structuring element. The image and structuring element could be in any
number of dimensions, but the most common use is with a 2D binary image, or with a

3-20

OpenCV Reference Manual Image Analysis 3

3D grayscale image. The element B is most often a square or acircle, but could be any
shape. Just like in convolution, B is akernel or template with an anchor point.

Figure 1-11 shows dilation and erosion of object A by B. The element B is rectangular
with an anchor point at upper left shown as a dark square.

Figure 3-11 Dilation and Erosion of A by B

B

Dilation by B

Erosion by B

——

If B, isthetranslation of B around the image, then dilation of object A by structuring
elementBis

ADB = {t:B Az0[.

It means every pixel isinthe set, if the intersection is not null. That is, a pixel under
the anchor point of Bismarked “on”, if at least one pixel of Bisinside of A.

A0 nB indicates the dilation is done n times.

Erosion of object A by structuring element B is

\OB = {t:B, OA .

That is, apixel under the anchor of B ismarked “on”, if B isentirely within A.

3-21

OpenCV Reference Manual Image Analysis 3

AenB indicates the erosion is done n times and can be useful in finding oA, the
boundary of A:

0A = A—(AONB).

Opening of Aby Bis

AB = (A@nB) O nB. (3.17)
Closing of Aby Bis

A+ B = (AOnB)ONB, (3.18)

wheren > 0.

Flat Structuring Elements for Gray Scale

Erosion and dilation can be done in 3D, that is, with gray levels. 3D structuring
elements can be used, but the simplest and the best way isto use aflat structuring
element B asshown in Figure 1-12. In the figure, B has an anchor slightly to the right of
the center as shown by the dark mark on B. Figure 1-12 shows 1D cross-section of both
dilation and erosion of agray level image A by aflat structuring element B.

3-22

OpenCV Reference Manual

Image Analysis 3

Figure 3-12 Dilation and Erosion of Gray Scale Image.

Dilation of A by B

Erosion of A by B

In Figure 1-12 dilation is mathematically

A)
yg

InteL 3-23

OpenCV Reference Manual Image Analysis 3

and erosion is

inf A
y OB,

Open and Close Gray Level with Flat Structuring Element

The typical position of the anchor of the structuring element B for opening and closing
isin the center. Subsequent opening and closing could be done in the same manner as
in the Opening (3.17) and Closing (3.18) equations above to smooth off jagged objects
as opening tends to cut off peaks and closing tendsto fill in valleys.

Morphological Gradient Function

A morphological gradient may be taken with the flat gray scale structuring elements as

follows:
(AO B 4¢) —(AOBy 4¢)
5 .

Top Hat and Black Hat

Top Hat (TH) is afunction that isolates bumps and ridges from gray scale objects. In
other words, it can detect areasthat are lighter than the surrounding neighborhood of A
and smaller compared to the structuring element. The function subtracts the opened
version of A from the gray scale object A:

grad(A) =

THg(A) = A—(AenBy, 5,) -

Black Hat (TH) isthe dual function of Top Hat in that it isolates valleys and “ cracks
off” ridges of a gray scale object A, that is, the function detects dark and thin areas by
subtracting A from the closed image A:

THI(A) = (A*nB, 4,)—A.
Thresholding often follows both Top Hat and Black Hat operations.

Distance Transform

This section describes the distance transform used for calculating the distance to an
object. The input is an image with feature and non-feature pixels. The function labels
every non-feature pixel in the output image with a distance to the closest feature pixel.

intel@ 3-24

OpenCV Reference Manual Image Analysis 3

Feature pixels are marked with zero. Distance transform is used for awide variety of
subjects including skeleton finding and shape analysis. The [Borgefors86] two-pass
algorithm is implemented.

Thresholding

This section describes threshold functions group.

Thresholding functions are used mainly for two purposes:

— masking out some pixels that do not belong to a certain range, for example, to
extract blobs of certain brightness or color from the image;

— converting grayscale image to bi-level or black-and-white image.
Usually, the resultant image is used as amask or as a source for extracting higher-level

topologica information, e.g., contours (see Active Contours), skeletons (see Distance
Transform), lines (see Hough Transform functions), etc.

Generally, threshold is a determined function t (x, y) on the image:

t(x,y) = A(p(x,y)), f(x,y,p(x,y)) = true
| B(P(x,y)). f(x,y,p(x,y)) = fal se

The predicate function f (x, y, p(x, y)) istypicaly represented as g(x,y) < p(X,Y)
< h(x,y),whereg and h are some functions of pixel value and in most casesthey are
simply constants.

There are two basic types of thresholding operations. The first type uses a predicate
function, independent from location, that is, g(x, y) and h(x, y) are constants over the
image. However, for concrete image some optimal, in a sense, values for the constants
can be calculated using image histograms (see Histogram) or other statistical criteria
(see Image Statistics). The second type of the functions chooses g(x, y) and

h(x, y) depending on the pixel neigborhood in order to extract regions of varying
brightness and contrast.

The functions, described in this chapter, implement both these approaches. They
support single-channel images with depth | PL_DEPTH_8U, | PL_DEPTH _8S Or
| PL_DEPTH_32F and can work in-place.

3-25

OpenCV Reference Manual Image Analysis 3

Flood

Filling
This section describes the function performing flood filling of a connected domain.

Flood filling means that a group of connected pixels with close valuesisfilled with, or
isset to, acertain value. Theflood filling process starts with some point, called “ seed”,
that is specified by function caller and then it propagates until it reaches the image RO
boundary or cannot find any new pixelsto fill dueto alarge differencein pixel values.
For every pixel that isjust filled the function analyses:

* 4 neighbors, that is, excluding the diagona neighbors; this kind of connectivity is
called 4-connectivity, or

* 8neighbors, that is, including the diagonal neighbors; this kind of connectivity is
called 8-connectivity.

The parameter connect i vi ty of the function specifies the type of connectivity.

The function can be used for:
* segmenting agrayscale image into a set of uni-color areas,
* marking each connected component with individual color for bi-level images.

The function supports single-channel images with the depth 1 PL_DEPTH_8uU or
| PL_DEPTH_32F.

Histogram

This section describes functions that operate on multi-dimensional histograms.

Histogram is a discrete approximation of stochastic variable probability distribution.
The variable can be either a scalar or avector. Histograms are widely used in image
processing and computer vision. For example, one-dimensional histograms can be
used for:

* grayscae image enhancement
* determining optimal threshold levels (see Thresholding)

* selecting color objects via hue histograms back projection (see CamShift), and
other operations.

Two-dimensional histograms can be used for:

3-26

OpenCV Reference Manual Image Analysis 3

¢ analyzing and segmenting color images, normalized to brightness (e.g. red-green
or hue-saturation images),

¢ anayzing and segmenting motion fields (x- y or magnitude-angle histograms),

* analyzing shapes (see Cal cPGHin Geometry Functions section of Structural
Analysis Reference) or textures.

Multi-dimensional histograms can be used for:
e content based retrieval (see the function Cal cPGH),
* bayesian-based object recognition (see [Schiele0Q]).

To store all the types of histograms (1D, 2D, nD), OpenCV introduces specia
structure CvHi st ogr amdescribed in Example 2-2 in Image Analysis Reference.

Any histogram can be stored either in a dense form, as a multi-dimensional array, or in
a sparse form with a balanced tree used now. However, it is reasonabl e to store 1D or
2D histograms in adense form and 3D and higher dimensional histogramsin a sparse
form.

The type of histogram representation is passed into histogram creation function and
thenitisstoredint ype field of cvHi st ogr am The function

MakeH st Header For Ar r ay can be used to process histograms allocated by the user
with Histogram Functions.

Histograms and Signatures

Histograms represent a simple statistical description of an object, e.g., an image. The
object characteristics are measured during iterating through that object: for example,
color histograms for an image are built from pixel valuesin one of the color spaces.
All possible values of that multi-dimensional characteristic are further quantized on
each coordinate. If the quantized characteristic can take different k; values on the first
coordinate, k, valueson second, and k, on the last one, the resulting histogram has

thesize

size = I_lki'

i=1

3-27

OpenCV Reference Manual Image Analysis 3

The histogram can be viewed as a multi-dimensional array. Each dimension
corresponds to a certain object feature. An array element with coordinates[i 4,i, ...

i ,] , otherwise called a histogram bin, contains anumber of measurements done for the
object with quantized value equal toi ; on first coordinate, i , on the second
coordinate, and so on. Histograms can be used to compare respective objects:

D, (HK) = 3| —k; |, Or

D(H,K) = J(F —K) A(R —K).

But these methods suffer from several disadvantages. The measure D, sometimes
givestoo small difference when there is no exact correspondence between histogram
bins, that is, if the bins of one histogram are sightly shifted. On the other hand,

D, givestoo large difference due to cumulative property.

Another drawback of pure histogramsis large space required, especially for
higher-dimensional characteristics. The solution is to store only non-zero histogram
bins or afew binswith the highest score. Generalization of histogramsis termed
signature and defined in the following way:

1. Characteristic values with rather fine quantization are gathered.
2. Only non-zero bins are dynamically stored.

This can be implemented using hash-tables, balanced trees, or other sparse structures.
After processing, a set of clustersis obtained. Each of them is characterized by the
coordinates and weight, that is, a number of measurements in the neighborhood.
Removing clusters with small weight can further reduce the signature size. Although
these structures cannot be compared using formulas written above, there exists arobust
comparison method described in [RubnerJan98] called Earth Mover Distance.

Earth Mover Distance (EMD)

Physically, two signatures can be viewed as two systems - earth masses, spread into
several localized pieces. Each piece, or cluster, has some coordinates in space and
weight, that is, the earth mass it contains. The distance between two systems can be
measured then as a minimal work needed to get the second configuration from the first
or vice versa. To get metric, invariant to scale, the result isto be divided by the total
mass of the system.

3-28

OpenCV Reference Manual Image Analysis 3

Mathematically, it can be formulated as follows.

Consider msuppliers and n consumers. Let the capacity of i th supplier be x; and the
capacity of j th consumer be y;j - Also, let the ground distance between i th supplier and
j th consumer bec; i - The following restrictions must be met:

X; 20,y; 20,¢; ; 20,

2Xiz2 Vi

0<i <mO0<j <n.

Then the task isto find the flow matrix |f,; |, where f;; isthe amount of earth,
transferred from i th supplier to j th consumer. This flow must satisfy the restrictions

below:

f . >0,

=

Zfi,jSXi1
i
i =y
i

and minimize the overal cost:

i nZZci’j,fi’j .
i

If |f;;| istheoptimal flow, then Earth Mover Distance is defined as
xciifi
EMD(X,y) = ~——1— |
NN
i
The task of finding the optimal flow isawell known transportation problem, which
can be solved, for example, using the simplex method.

il

InteL 3-29

OpenCV Reference Manual Image Analysis 3

Example Ground Distances

As shown in the section above, physically intuitive distance between two systems can
be found if the distance between their elements can be measured. The latter distanceis
called ground distance and, if it is atrue metric, then the resultant distance between
systemsisametric too. The choice of the ground distance depends on the concrete task
as well as the choice of the coordinate system for the measured characteristic. In
[RubnerSept98], [RubnerOct98] three different distances are considered.

1. Thefirstisused for human-like color discrimination between pictures. CIE
Lab model represents colorsin away when a simple Euclidean distance gives
true human-like discrimination between colors. So, converting image pixels
into CIE Lab format, that is, representing colors as 3D vectors (L,a,b), and
guantizing them (in 25 segments on each coordinate in [RubnerSept98]),
produces a color-based signature of the image. Although in experiment, made
in [RubnerSept98], the maximal number of non-zero bins could be 25x 25x 25
= 15625, the average number of clusters was ~8.8, that is, resulting signatures
were very compact.

2. The second example is more complex. Not only the color values are
considered, but also the coordinates of the corresponding pixels, which makes
it possible to differentiate between pictures of similar color palette but
representing different color regions placements:. e.g., green grass at the bottom
and blue sky on top vs. green forest on top and blue lake at the bottom. 5D
space is used and Metric is; [(AL)2 + (8a)?+ (ab)2 + A((&x)% + (ay) D]~ 2, where A
regul ates importance of the spatial correspondence. When » =0, the first
metric is obtained.

3. Thethird exampleisrelated to texture metrics. In the example Gabor
transform is used to get the 2D vector texture descriptor (1, m), whichisa
log-polar characteristic of the texture. Then, no-invariance ground distance is
defined as: d((l 3, my), (I ,,my)) = |AI|+alam, Al = min(|l y=1 5, L—|l ;=1 ,)),

Am = |m —my| , where a isthe scale parameter of Gabor transform, L isthe
number of different angles used (angle resolution), and Mis the number of
scales used (scale resolution). To get invariance to scale and rotation, the user
may calculate minimal EMD for several scales and rotations:

(Hpmy), (1o m),

3-30

OpenCV Reference Manual Image Analysis 3

EMD(t 3,1 5) = m n END(t 3.t 5| o),
-M<nm, <M

where d ismeasured as in the previous case, but Al and am look slightly different:

Al =min(l =1 ,+1g(modL), L =|l ;=1 ;+1 o(modL)|) , Am = |my —mp, + 1y .

Lower Boundary for EMD

If ground distance is metric and distance between points can be calculated viathe norm
of their difference, and total suppliers capacity isequal to total consumers’ capacity,
then it is easy to calculate lower boundary of EVMD because:

DHILNELINERD I LIt/ LENED I LIl] LN

jiZZ“Oi ~ai |fil,jJ ‘;[Zf”})‘ —JZ[iZfiqu,-
‘in p; —Zyj q;

i
2

Asit can be seen, the latter expression is the distance between the mass centers of the
systems. Poor candidates can be efficiently rejected using this lower boundary for EMD
distance, when searching in the large image database.

3-31

Sructural Analysis

Contour Processing

This section describes contour processing functions.

Polygonal Approximation

Assoon asall the borders have been retrieved from theimage, the shape representation
can be further compressed. Several algorithms are available for the purpose, including
RLE coding of chain codes, higher order codes (see Figure 4-1), polygonal
approximation, etc.

Figure 4-1 Higher Order Freeman Codes

24-Point Extended Chain Code

intel.

OpenCV Reference Manual Sructural Analysis 4

Polygonal approximation is the best method in terms of the output data simplicity for
further processing. Below follow descriptions of two polygonal approximation
algorithms. The main idea behind them is to find and keep only the dominant points,
that is, points where the local maximums of curvature absolute value are located on the
digital curve, stored in the chain code or in another direct representation format. The
first step hereisthe introduction of a discrete analog of curvature. In the continuous
case the curvature is determined as the speed of the tangent angle changing:

X'y"=x"y'
k = ——(er+ y,z)éz -

In the discrete case different approximations are used. The simplest one, called L1
curvature, is the difference between successive chain codes:

¢, ™ = ((f, -f, _,+4)m0d8)—4. (4.1)

This method covers the changes from 0, that corresponds to the straight line, to 4, that
corresponds to the sharpest angle, when the direction is changed to reverse.

The following algorithm is used for getting a more complex approximation. First, for
the given point (x; , y;) theradiusm of the neighborhood to be considered is selected.
For some algorithms m is amethod parameter and has a constant value for al points;
for othersit is calculated automatically for each point. The following valueis
Ca|CU|aIed fOI’ a” palI’S (Xi _ ks Yi —k) al’]d (Xi +kr Yi +k) (k:l . m)Z
_ (@i D)
T ai b k]
where a; = (¢ k=X i k=Yi)s Bk = (Xi sk =% Y1 _=Yi) -

= cos(a; \.b;),

Thenext stepisfinding theindex h; suchthat ¢; ,<c; ;<. <c;y 2¢;y _;. Thevalue
¢, Isregarded asthe curvature value of the ith point. The point value changes from
—1 (straight line) to 1 (sharpest angle). This approximation is called the k-cosine
curvature.

Rosenfeld-Johnston algorithm [Rosenfeld73] is one of the earliest algorithms for
determining the dominant points on the digital curves. The algorithm requires the
parameter m the neighborhood radius that is often equal to 1/10 or 1/15 of the number
of pointsin the input curve. Rosenfel d-Johnston algorithm is used to calculate
curvature values for all points and remove points that satisfy the condition

g.i -jlsh;/72; cihi<cjhj.

4-2

OpenCV Reference Manual Sructural Analysis 4

The remaining points are treated as dominant points. Figure 4-2 shows an example of
applying the algorithm.

Figure 4-2 Rosenfeld-Johnston Output for F-Letter Contour

Source Image Rosenfeld-Johnston Algorithm Output

The disadvantage of the algorithm is the necessity to choose the parameter mand
parameter identity for all the points, which resultsin either excessively rough, or
excessively precise contour approximation.

The next algorithm proposed by Teh and Chin [Teh89] includes a method for the
automatic selection of the parameter mfor each point. The algorithm makes severa
passes through the curve and deletes some points at each pass. At first, all points with
zero ¢, ! curvatures are deleted (see Equation 5.1). For other points the parameter m
and the curvature value are determined. After that the algorithm performs a
non-maxima suppression, same as in Rosenfeld-Johnston algorithm, deleting points
whose curvature satisfies the previous condition where for ¢, the metric h; is set to
m . Finally, the algorithm replaces groups of two successive remaining points with a
single point and groups of three or more successive points with a pair of the first and
thelast points. Thisalgorithm does not require any parameters except for the curvature
to use. Figure 4-3 shows the agorithm results.

4-3

OpenCV Reference Manual Sructural Analysis 4

Figure 4-3 Teh-Chin Output for F-Letter Contour

Source Picture Teh-Chin Algorithm Output

Douglas-Peucker Approximation

Instead of applying arather sophisticated Teh-Chin algorithm to the chain code, the
user may try another way to get a smooth contour on a little number of vertices. The
ideais to apply some very simple approximation techniques to the chain code with
polylines, such as substituting ending points for horizontal, vertical, and diagonal
segments, and then use the approximation algorithm on polylines. This preprocessing
reduces the amount of data without any accuracy loss. Teh-Chin agorithm also
involves this step, but uses removed points for calculating curvatures of the remaining
points.

The agorithm to consider is a pure geometrical algorithm by Douglas-Peucker for
approximating a polyline with another polyline with required accuracy:

1. Two points on the given polyline are selected, thus the polylineis
approximated by the line connecting these two points. The algorithm
iteratively adds new pointsto thisinitial approximation polyline until the

OpenCV Reference Manual Sructural Analysis 4

required accuracy is achieved. If the polyline is not closed, two ending points
are selected. Otherwise, some initial algorithm should be applied to find two
initial points. The more extreme the points are, the better.

2. Theagorithm iterates through all polyline vertices between the two initial
vertices and finds the farthest point from the line connecting two initial
vertices. If this maximum distance is less than the required error, then the
approximation has been found and the next segment, if any, is taken for
approximation. Otherwise, the new point is added to the approximation
polyline and the approximated segment is split at this point. Then the two parts
are approximated in the same way, since the algorithm is recursive. For a
closed polygon there are two polygonal segments to process.

Contours Moments

The moment of order (p; q) of an arbitrary region Ris given by
Vpq = ”xp y%dxdy . (4.2

R

If p = q = 0, weobtain the area a of R. The moments are usually normalized by the
area a of R. These moments are called normalized moments:

Upq = (l/a)”xp 0y 9dxdy . (4.3

R

Thus ay, = 1. For p +q=2 normalized central moments of R are usually the ones of
interest:

Mg = 1/a”(x —alo)p Oy —ag,) dxdy (4.9)
R

It isan explicit method for calculation of moments of arbitrary closed polygons.
Contrary to most implementations that obtain moments from the discrete pixel data,
this approach cal culates moments by using only the border of aregion. Since no
explicit region needs to be constructed, and because the border of aregion usually
consists of significantly fewer points than the entire region, the approach is very
efficient. The well-known Green’s formulais used to calculate moments:

4-5

OpenCV Reference Manual Sructural Analysis 4

H(aQ/(ax —9P/dy)dxdy = j(de +Qdy),
R b

where b isthe border of the region R.

It follows from the formula (4.2) that:

oyax = xP % opPsay = 0,

hence

P(x,y) =0,Qx,y) =1/(p+1) D('Hlyq .

Therefore, the moments from (4.2) can be calculated as follows:

Vpq = j(l/(p+1)x’”1tyq)dy. (4.5)
b

If the border b consists of n points p; = (x;,y;), 0<i <n, p, = p,, it follows that:

b(t) = [bj(t),
i =1
where b, (t), t 0[01] isdefined as
b,(t) =tp+(1-t)p; _;.
Therefore, (4.5) can be calculated in the following manner:
Vog = Y j(l/(p+1)x"”tyq)dy (4.6)
i = 1bj
After unnormalized moments have been transformed, (4.6) could be written as:
1
(p+a+2p+a+n("

VpA =

n p q
k +t +g—-k-t -
3G i XY) Y (Xp i)Xikxip—liyit

q-
t q-t :
i=1 k=0i =0

t
Yi_1

intel. v6

OpenCV Reference Manual Sructural Analysis 4

Central unnormalized and normalized moments up to order 3 look like

a=L2% X 1Y =Xi¥i -1,
i=1
ay = 1/(6a) 3 (Xj _1yi =X ¥i)X _1 %),
i=1
agy = 1/(6a) Y (Xj _Yi =X ¥i)i —1%Yi)»
i=1
2 2
a,, = 1/(12a) Z (Xi _qYi =X Y)X Zp % g% +X),
i=1
ap = 1/(24a) 3 (X _aYi =X ¥Yi)X+ X 1Y XY 1+ 2% Y),
i=1
2 2
ag = 1/(12a) Z (X Y =X Y D) ZaFYs ZYi YY)
i=1
3 2 2 3
agy = 1/(20a) z (Xi _qYi =X Y)G X g% XX 1+ %),
i=1
2
ap = 1/(60a) 3 (Xj _qyi =X ¥Yi —) (X _1(BY; _1+Yi) + 2% _qXi (Y _1tYy)
i=1

+xZ(yi _1+3y))),

aj, = 1/(60a) 3 (X _1¥j =X ¥ _1)(yi2_1(3xi X)) 2y gy (X X)+
i=1

ya(X; _1+3x,)),

1

1/(208) 3 (i _a¥; =X ¥i)05 _a+ Y7 _a¥i FYiYi _a YD),

i=1

_ 2
Moo = Op—0Uqg;

OpenCV Reference Manual Sructural Analysis 4

My = Oy — 010001,
B 2
Moz = Ogx— 0oz s
B 3
Hgg = Ogp+20735—30 405,
_ 3
Hpp = Qg+ 2004001 — 200003 = 0pn0 ¢y
_ 3
Hip = Qgp+ 200,005 — 201 03 — O gp0 40

_ 3
Hog = Ogg+ 200y =30 0y *

Hierarchical Representation of Contours

Let T be the simple closed boundary of a shape with n points T:{p(1), p(2), ..., p(n)}
and n runs: ‘s(1),s(2), ..., s(n)}. Every run s(i) isformed by the two points

(p(i), p(i +1)). For every pair of the neighboring runs s(i) and s(i +1) atriangleis
defined by the two runs and the line connecting the two far ends of the two runs

(Figure 4-4).
Figure 4-4 Triangles Numbering

Trianglest (i —-2),t (i —1),t(i +1),t(i +2) arecaled neighboring trianglesof t (i)
(Figure 4-5).

intel. o8

OpenCV Reference Manual Sructural Analysis 4

Figure 4-5 Location of Neighboring Triangles

For every straight line that connects any two different vertices of a shape, the line
either cuts off aregion from the original shape or fillsin aregion of the original shape,
or does both. The size of the region is called the interceptive area of that line

(Figure 4-6). Thislineis called the base line of the triangle.

A triangle made of two boundary runsis the locally minimum interceptive area
triangle (LMIAT) if the interceptive area of its base lineis smaller than both its

neighboring triangles areas.

4-9

OpenCV Reference Manual Sructural Analysis 4

Figure 4-6 Interceptive Area

The shape-partitioning a gorithm is multilevel. This procedure subsequently removes
some points from the contour; the removed points become children nodes of the tree.
On each iteration the procedure examines the triangles defined by all the pairs of the
neighboring edges along the shape boundary and finds all LMIATSs. After that all
LMIATswhose areas are less than areference value, which is the algorithm parameter,
are removed. That actually means removing their middle points. If the user wants to
get a precise representation, zero reference val ue could be passed. Other LMIATs are
also removed, but the corresponding middle points are stored in the tree. After that
another iteration is run. This process ends when the shape has been simplified to a
guadrangle. The algorithm then determines a diagonal line that divides this quadrangle
into two triangles in the most unbalanced way.

Thus the binary tree representation is constructed from the bottom to top levels. Every
tree node is associated with one triangle. Except the root node, every node is connected
to its parent node, and every node may have none, or single, or two child nodes. Each
newly generated node becomes the parent of the nodes for which the two sides of the

new node form the base line. The triangle that uses the left side of the parent triangleis
theleft child. Thetriangle that usesthe right side of the parent triangleisthe right child

(See Figure 4-7).

4-10

OpenCV Reference Manual Sructural Analysis 4

Figure 4-7 Classification of Child Triangles

Theroot node is associated with the diagonal line of the quadrangle. Thisdiagonal line
divides the quadrangle into two triangles. The larger triangle is the left child and the
smaller triangleisitsright child.

For any tree node we record the following attributes:

Coordinates x and y of the vertex P that do not lie on the base line of LMIAT, that
is, coordinates of the middle (removed) point;

Area of thetriangle;
Ratio of the height of the triangle h to the length of the base line a (Figure 4-8);

Ratio of the projection of the left side of the triangle on the base line b to the length
of the base line a;

Signs“+” or “-”; thesign “+” indicates that the triangle lies outside of the new
shape dueto the ‘cut’ type merge; thesign“-” indicates that the triangle liesinside
the new shape.

4-11

OpenCV Reference Manual Sructural Analysis 4

Figure 4-8 Triangles Properties

Figure 4-9 shows an example of the shape partitioning.

Figure 4-9 Shape Partitioning

AV

D- E+

It is necessary to note that only the first attribute is sufficient for source contour
reconstruction; all other attributes may be calculated from it. However, the other four
attributes are very helpful for efficient contour matching.

intel@ 4-12

OpenCV Reference Manual Sructural Analysis 4

The shape matching process that compares two shapes to determine whether they are
similar or not can be effected by matching two corresponding tree representations, e.g.,
two trees can be compared from top to bottom, node by node, using the breadth-first
traversing procedure.

L et us define the corresponding node pair (CNP) of two binary tree representations TA
and TB. The corresponding node pair is called [A(i), B(i)], if A(i) andB(i) areat the
same level and same position in their respective trees.

The next step is defining the node weight. The weight of N(i) denoted as WN()] is
defined as the ratio of the size of N(i) to the size of the entire shape.

Let N(i) and N(j) betwo nodeswith heightsh(i) and h(j) and baselengthsa(i)
and a(j) respectively. The projections of their |eft sides on their base linesare b(i)
and b(j) respectively. The node distance dn[N(i), N(j)] between N(i) and N(j) is
defined as:

dn[N@i), N(j)] = [h(i)7a(i) DAN(G I Fh(j)/a(j) DANG)1
+[b(i)7a(i) DANG)T Fb(j)7a() DANG)1

In the above equation, the “+” signs are used when the signs of attributes in two nodes
are different and the “- " signs are used when the two nodes have the same sign.

For two trees TA and TB representing two shapes SA and SB and with the corresponding
node pairs [A(1), B(1)],[A(2), B(2)]...., [A(n), B(n)] the tree distance dt (TA, TB) between
TAand TB is dgfined as.

dt (TA, TB) = 3 dn[A(i), B(i)] -

i =1

If the two trees are different in size, the smaller treeis enlarged with trivial nodes so
that the two trees can be fully compared. A trivial node isanode whose size attributeis
zero. Thus, the trivial node weight is also zero. The values of other node attributes are
trivial and not used in matching. The sum of the node distances of the first k CNPs of
TA and TBis called the cumulative tree distance dt (TA, TB, k) and is defined as:

dc(TA, TB,k) = 3 dn[A(i), B(i)] -

i=1

4-13

OpenCV Reference Manual Sructural Analysis 4

Cumulative tree distance shows the dissimilarity between the approximations of the
two shapes and exhibits the multiresol ution nature of the tree representation in shape
matching.

The shape matching algorithm is quite straightforward. For two given tree
representations the two trees are traversed according to the breadth-first sequence to
find CNPs of the two trees. Next dn[A(i), B(i)] anddc(TA, TB, i) are calculated for
every i . If for somei dc(TA, TB, i) islarger than the tolerance threshold value, the
matching procedure is terminated to indicate that the two shapes are dissimilar,
otherwise it continues. If dt (TA, TB) isstill less than the tolerance threshold value,
then the procedure is terminated to indicate that there is a good match between TA and
TB.

Geometry

This section describes functions from computational geometry field.

Ellipse Fitting

Fitting of primitive models to the image data is a basic task in pattern recognition and
computer vision. A successful solution of thistask results in reduction and
simplification of the data for the benefit of higher level processing stages. One of the
most commonly used modelsisthe ellipse which, being a perspective projection of the
circle, is of great importance for many industrial applications.

The representation of general conic by the second order polynomial is
FA, %) = &, X =ax’+bxy +cy’+dx+ey +f = o with the vectors denoted as
d=1[ab,c,def]andz=[x%xy,yix,y, 1 .

F(&, X) iscaled the “agebraic distance between point (x,, y,) and conic F(a, x)“.

Minimizing the sum of squared algebraic distances % F(To)2 may approach thefitting
of conic. i=1

In order to achieve ellipse-specific fitting polynomial coefficients must be constrained.
For ellipse they must satisfy b?-4ac <0.

4-14

OpenCV Reference Manual Sructural Analysis 4

Moreover, the equality constraint 4ac —b® = 1can be imposed in order to incorporate
coefficients scaling into constraint.

This constraint may be written asamatrix ' ci = 1.

Fi naIIy, the problem could be formulated as minimizing |pa|* with constraint
a'ca = 1, where D isthenx6 matrixX [x;, X,..... xn] .

Introducing the Lagrange multiplier resultsin the system

2D'DE&-2\C3 = 0 , which can bere-written as

a'ca=1
S3 = 2AC3
a'cd =1,

The system solution is described in [Fitzgibbon95].

After the system is solved, ellipse center and axis can be extracted.

Line Fitting

M-estimators are used for approximating a set of points with geometrical primitives
e.g., conic section, in cases when the classical |east squares method fails. For example,
theimage of aline from the camera contains noisy data with many outliers, that is, the
points that lie far from the main group, and the least squares method failsif applied.

The least squares method searches for a parameter set that minimizes the sum of
squared distances:

m=2di2,
i

whered; isthe distance from the ith point to the primitive. The distance type is
specified as the function input parameter. If even afew points have alarged, , then the
perturbation in the primitive parameter values may be prohibitively big. The solutionis
to minimize

m= zp(d|)1

4-15

OpenCV Reference Manual Sructural Analysis 4

wherep(d,) grows slower than d?. This problem can be reduced to weighted |east
squares [Fitzgibbon95], which is solved by iterative finding of the minimum of

me = Y Wi hdf
where k istheiteration number, d“~* is the minimizer of the sum on the previous
iteration, and Wx) = %S—s. If d; isalinear function of parameters p; -d; = AP

then the minimization vector of the m_ isthe eigenvector of ATPA matrix thit
corresponds to the smallest eigenvalue.

For more information see [Zhang96].

Convexity Defects

Let (p,, p,, -..p,) beaclosed smple polygon, or contour, and (h,, h,, ...h) aconvex
hull. A sequence of contour points exists normally between two consecutive convex
hull vertices. This sequence forms the so-called convexity defect for which some
useful characteristics can be computed. Computer Vision Library computes only one
such characteristic, named “ depth” (see Figure 4-10).

Figure 4-10 Convexity Defects

H k

|

|

| 1
LYy
~— /8

intgl. 416

OpenCV Reference Manual Sructural Analysis 4

The black lines belong to the input contour. The red lines update the contour to its
convex hull.

The symbols*“s’ and “€” signify the start and the end points of the convexity defect.
The symbol “d” is a contour point located between “s’ and “€” being the farthermost
from the line that includes the segment “se”. The symbol “h” stands for the convexity
defect depth, that is, the distance from “d” to the “se” line.

See CvConvexi t yDef ect structure definition in Structural Analysis Reference.

4-17

ODbject Recognition 5

Eigen Objects

This section describes functions that operate on eigen objects.

Let us define an object u = {uy, u,...,u} asavector inthe n-dimensional space. For
example, u can be an image and its components u; are the image pixel values. In this
case n is equal to the number of pixelsin the image. Then, consider a group of input
objects u' = {ul,u},...,u'} ,where i =1, .., mandusualy m << n. The averaged, or
mean, object o = {u,, 0, ...,a,} of thisgroup is defined as follows:

Covarignce matrix €= |c;;| is asquare symmetric matrix mxm:
cij = % (uy —o,) Qul -q;) .

I =1

Eigen objects basise' = {e!, e},e'} , i = 1, .., m <m of theinput objects group
may be calculated using the following relation:

[1 i k
e = ———kaE(uI -0,),
Pt

where A, andv' = {v},v},..,vl} areeigenvalues and the corresponding eigenvectors
of matrix C.

5-1

OpenCV Reference Manual Object Recognition 5

Any input object ul aswell as any other object u may be decomposed in the eigen
obj ectsm- D sub-space. Decomposition coefficients of the object u are:
W= Ze: Huy -0;).

I =1

Using these coefficients, we may calculate projection a = {a,,a,...,a,} of the object u
to the eigen objects sub-space, or, in other words, restore the object u in that sub-space:

Iy

_ ko
0 = > we +0; .
k=1

For examples of use of the functions and relevant data types see |mage Recognition
Reference Chapter.

Embedded Hidden Markov Models

This section describes functions for using Embedded Hidden Markov Models (HMM)
in face recognition task. See Reference for HMM Structures.

3D

Reconstruction

Camera Calibration

This section describes camera calibration and undistortion functions.

Camera Parameters

Camera calibration functions are used for calculating intrinsic and extrinsic camera
parameters.

Camera parameters are the numbers describing a particular camera configuration.

The intrinsic camera parameters specify the camera characteristics proper; these
parameters are:

e focal length, that is, the distance between the cameralens and the image plane,
* |ocation of the image center in pixel coordinates,

* effective pixel size,

* radial distortion coefficient of the lens.

The extrinsic camera parameters describe spatial relationship between the camera and
the world; they are

® rotation matrix,
* trandation vector.

They specify the transformation between the camera and world reference frames.

A usual pinhole camerais used. The relationship between a 3D point M and itsimage
projection m is given by the formula

m= A[Rt]M,

where A isthe cameraintrinsic matrix:

6-1

OpenCV Reference Manual 3D Reconstruction 6

(c,. c,) arecoordinates of the principal point;
(f,.f,) arethefocal lengths by the axesx andy;

(R t) areextrinsic parameters. the rotation matrix R and translation vector t that
relate the world coordinate system to the camera coordinate system:

ETRETRET ty
R=rprpprgglst = ty-
M3 M3 M3 ts

Camera usually exhibits significant lens distortion, especially radial distortion. The
distortion is characterized by four coefficients: k4, k», p;, p,. The functions

UnDi stortOnce and UnDi stortlnit + UnDi stort correct theimage from the
camera given the four coefficients:

X = x +x[kyr 24 k2r4] +[2p Xy +py(r 2+2x2)]

2 4 2 2
¥ =y +y[ker T+ Kor T+[2poxy +py(rT+2y7)],

wherex, y areideal, that is, distortion-free image physical coordinatesand x, y are
real, that is, distorted image physical coordinates, whiler2 = x2 + y2,

The following agorithm, described in [Zhang99] and [Zhang00], was used for camera
calibration:

1. Find homography for all points on series of images, where homography isa
matrix of perspective transform between calibration pattern plane and camera
view plane.

2. Initializeintrinsic parameters; distortion is set to 0.
3. Find extrinsic parameters for each image of pattern.

OpenCV Reference Manual 3D Reconstruction 6

4. Make main optimization by minimizing error of projection pointswith all
parameters.

Pattern

To calibrate the camera, the calibration routine is supplied with several views of a
planar model object, or pattern, of known geometry. For every view the points on the
model plane and their projections onto the image are passed to the calibration routine.
In OpenCV achessboard pattern is used (see Figure 6-1). To achieve more accurate
calibration results, print out the pattern at high resolution on high-quality paper and put
it on ahard, preferably glass, substrate.

Figure 6-1 Pattern

View Morphing

This section describes functions for morphing views from two cameras.

The View Morphing technique is used to get an image from avirtual camerathat could
be placed between two real cameras. The input for View Morphing a gorithms are two
images from real cameras and information about correspondence between regions in
the two images. The output of the algorithmsis a synthesized image - "aview from the
virtual camera’'.

6-3

OpenCV Reference Manual 3D Reconstruction 6

This section addresses the problem of synthesizing images of real scenes under
three-dimensional transformation in viewpoint and appearance. Solving this problem
enables interactive viewing of remote scenes on acomputer, in which a user can move
the virtual camerathrough the environment. A three-dimensional scene transformation
can be rendered on avideo display device through applying simple transformation to a
set of basisimages of the scene. The virtue of these transformationsisthat they operate
directly on the image and recover only the scene information that is required to
accomplish the desired effect. Consequently, the transformations are applicablein a
situation when accurate three-dimensional models are difficult or impossible to obtain.

The agorithm for synthesis of avirtual cameraview from apair of images taken from
real cameras is shown below.

Algorithm
1. Find fundamental matrix, for example, using correspondence pointsin the
images.

Find scanlines for each image.

Warp the images across the scanlines.

Find correspondence of the warped images.

Morph the warped images across position of the virtual camera.
Unwarp the image.

© 0~ DN

6-4

OpenCV Reference Manual 3D Reconstruction 6

7. Delete moire from the resulting image.

Figure 6-2 Original Images

Original Image From Left Camera Origina Image From Right Camera

Figure 6-3 Correspondence Points

-
%f_ﬁﬁ_ ’,

i

Correspondence Points on Left Image Correspondence Points on Right Image

OpenCV Reference Manual 3D Reconstruction 6

Figure 6-4 Scan Lines

Some Scanlines on Left limage Some Scanlines on Right Image

Figure 6-5 Moire in Morphed Image

OpenCV Reference Manual 3D Reconstruction 6

Figure 6-6 Resulting Morphed Image

Morphed Image From Virtual Camera With Deleted Moire

Using Functions for View Morphing Algorithm

1

Find the fundamental matrix using the correspondence points in the two
images of cameras by calling the function Fi ndFundanent al Matri x.

Find the number of scanlines in the images for the given fundamental matrix
by calling the function Fi ndFundanent al Mat ri x with null pointersto the
scanlines.

Allocate enough memory for:

scanlinesin the first image, scanlines in the second image, scanlinesin the
virtual image (for each nunscan*2* 4*si zeof (i nt));

lengths of scanlinesin the first image, lengths of scanlinesin the second
image, lengths of scanlinesin the virtual image (for each

numscan* 2* 4*sj zeof (i nt));

buffer for the prewarp first image, the second image, the virtual image (for
each wi dt h* hei ght * 2*si zeof (i nt));

data runs for the first image and the second image (for each

Wi dt h* hei ght *4*si zeof (i nt));

correspondence data for the first image and the second image (for each

Wi dt h* hei ght *2*si zeof (i nt));

6-7

OpenCV Reference Manual 3D Reconstruction 6

POSIT

4,
5,

10.
11.

numbers of lines for the first and second images (for each

wi dt h* hei ght *4*si zeof (i nt)).

Find scanlines coordinates by calling the function Fi ndFundament al Mat ri x.
Prewarp the first and second images using scanlines data by calling the
function Prewvar pl nage.

Find runs on the first and second images scanlines by calling the function
Fi ndRuns.

Find correspondence information by calling the function
Dynam cCor respondMul ti .

Find coordinates of scanlinesin the virtual image for the virtual camera
position al pha by calling the function MakeAl phaScanl i nes.

Morph the prewarp virtual image from the first and second images using
correspondence information by calling the function Mor phEpi | i nesMul ti .

Postwarp the virtual image by calling the function Post War pl nage.

Delete moire from the resulting virtual image by calling the function
Del et eMbi re.

This section describes functions that together perform POSIT agorithm.

The POSIT agorithm determines the six degree-of-freedom pose of a known tracked
3D rigid object. Given the projected image coordinates of uniquely identified pointson
the object, the algorithm refines an initial pose estimate by iterating with a weak
perspective cameramodel to construct new image points; the algorithm terminates
when it reaches a converged image, the pose of which is the solution.

Geometric Image Formation

The link between world points and their corresponding image points is the projection
from world space to image space. Figure 6-8 depicts the perspective (or pinhole)
model, which is the most common projection model because of its generality and
usefulness.

6-8

OpenCV Reference Manual 3D Reconstruction 6

The points in the world are projected onto the image plane according to their distance
from the center of projection. Using similar triangles, the relationship between the
coordinates of animage point p; = (x;,y;)and itsworld point P, = (X;,Y,,Z;) canbe
determined as

_ f _ f
Xj = in VY = zYi . (6.1)

Figure 6-7 Perspective Geometry Projection

Center of
Projection

f) Pi:(xiaYifzi)

Optical Axis

Image Plane

The weak-per spective projection model simplifies the projection equation by replacing
al z; with arepresentative z sothat s = f /2 isaconstant scale for all points. The
projection equations are then

X, =sX ,y, =sY. (6.2)
Because this situation can be modelled as an orthographic projection (x; = X ,
y; =Y,) followed by isotropic scaling, weak-perspective projection is sometimes

called scaled orthographic projection. Weak-perspectiveis avalid assumption only
when the distances between any z, are much smaller than the distance between the z,

6-9

OpenCV Reference Manual 3D Reconstruction 6

and the center of projection; in other words, the world points are clustered and far
enough from the camera. z can be set either to any z; or to the average computed over
al z; .

More detailed explanations of this material can be found in [Trucco98].

Pose Approximation Method

Using weak-perspective projection, a method for determining approximate pose,
termed Pose from Orthography and Scaling (POS) in [DeM enthon92], can be derived.
First, areference point p, intheworld is chosen from which all other world points can
be described as vectors: P = P, —P, (see Figure 6-9).

Figure 6-8 Scaling of Vectors in Weak-Perspective Projection

Center of

Po P

Projection Image Object

Similarly, the projection of this point, namely p,, is areference point for the image
points: p; = p; -p, . Asfollows from the weak-perspective assumption, the x
component of p; is ascaled-down form of the x component of p; :

X; —Xg = S(X; =Xg) = s(Po). (6.3)

OpenCV Reference Manual 3D Reconstruction 6

Thisisalso true for their y components. If 1 and J are defined as scaled-up versions
of theunit vectorsi and| (I =si andJ =sj), then
X; =X =P; 0 andy, -y, =P (6.4)

as two equations for each point for which 1 and J are unknown. These equations,
collected over al the points, can be put into matrix form as

x =M andy = MJ, (6.5)

where x and y arevectorsof x andy componentsof p, respectively, and M isamatrix
whose rows are the P; vectors. These two sets of egquations can be further joined to
construct asingle set of linear equations:

[x yl =MI J]=p C=MI J], (6.6)

where p. isamatrix whose rows are p; . The latter equation is an overconstrained
system of linear equations that can be solved for I and J in aleast-squares sense as

[I 3] =Mp,, (6.7)
where M is the pseudo-inverse of m.

Now that we have | and J, we construct the pose estimate as follows. First, i and |
areestimated as 1 and J normalized, that is, scaled to unit length. By construction,
these are the first two rows of the rotation matrix, and their cross-product is the third
row:

R = J,~T . (68)
(=)’
The average of the magnitudesof | and J isan estimate of the weak-perspective scale

s . From the weak-perspective equations, the world point P, in camera coordinatesis
theimage point p, in camera coordinates scaled by s:

Py = Po/s = [xq Yo f1/s, (69)
which is precisely the translation vector being sought.

6-11

OpenCV Reference Manual 3D Reconstruction 6

Algorithm

The POSIT agorithm was first presented in the paper by DeMenthon and Davis
[DeMenthon92]. In this paper, the authors first describe their POS (Pose from
Orthography and Scaling) a gorithm. By approximating perspective projection with
weak-perspective projection POS produces a pose estimate from a given image. POS
can be repeatedly used by constructing a new weak perspective image from each pose
estimate and feeding it into the next iteration. The calculated images are estimates of
theinitial perspective image with successively smaller amounts of “perspective
distortion” so that the final image contains no such distortion. The authors term this
iterative use of POS as POSIT (POS with I Terations).

POSIT requires three pieces of known information:

* Theobject model, consisting of N points, each with unique 3D coordinates. N must
be greater than 3, and the points must be non-degenerate (non-coplanar) to avoid
algorithmic difficulties. Better results are achieved by using more points and by
choosing points as far from coplanarity as possible. The object model isan N x 3
matrix.

* Theobject image, which isthe set of 2D points resulting from a camera projection
of the model points onto an image plane; it is afunction of the object current pose.
The object image isan N x 2 matrix.

* The cameraintrinsic parameters, namely, the focal length of the camera.

Given the object model and the object image, the algorithm proceeds as follows:

1. The object image is assumed to be a weak perspective image of the object,
from which aleast-squares pose approximation is calculated via the object
model pseudoinverse.

2. From this approximate pose the object model is projected onto the image plane
to construct a new weak perspective image.

3. From thisimage a new approximate pose is found using least-squares, which
in turn determines another weak perspective image, and so on.

6-12

OpenCV Reference Manual 3D Reconstruction 6

For well-behaved inputs, this procedure converges to an unchanging weak perspective
image, whose corresponding pose is the final calculated object pose.

Example 6-1

POSIT Algorithm in Pseudo-Code

POSI T (i magePoi nts, objectPoints, focal Length) {

1)

count = converged = 0;
nodel Vect ors = nobdel Poi nts — nodel Poi nt s(0);

ol dWeakl magePoi nts = i magePoi nt s;
whil e (!converged) {
if (count ==
i mageVectors = i nagePoi nts — i magePoi nts(0);
el se {
weakl magePoi nts = i magePoi nts . *

((1 + nodel Vectors*row3/translation(3)) * [1

i mageDi fference = sunm(sun(abs(round(weakl nragePoi nts) -
round(ol dWeakl magePoi nts))));

ol dWweakl nagePoi nts = weakl nagePoi nt s;

i mgeVect ors = weakl magePoi nts — weakl magePoi nt s(0);

[1 J] = pseudoi nverse(nodel Vectors) * inmageVectors;
rowl =1 / norn(l);

row2 =J / norm(J);

row3 = crossproduct (rowl, row2);

rotation = [rowl; row2; row3];

scale = (norm(l) + norm(J)) / 2;

translation = [imgePoi nts(1,1); inmgePoints(1,2); focal Length] /
scal e;

converged = (count > 0) && (diff < 1);

count = count + 1;

return {rotation, translation};

Asthefirst step assumes, the object image isaweak perspective image of the object. It
isavalid assumption only for an object that is far enough from the camera so that
“perspective distortions” are insignificant. For such objects the correct pose is
recovered immediately and convergence occurs at the second iteration. For lessideal
situations, the poseis quickly recovered after several iterations. However, convergence
is not guaranteed when perspective distortions are significant, for example, when an
object is close to the camera with pronounced foreshortening. DeMenthon and Davis
state that “ convergence seems to be guaranteed if the image features are at a distance
from the image center shorter than the focal length.” [DeM enthon92] Fortunately, this
occurs for most realistic camera and object configurations.

6-13

OpenCV Reference Manual 3D Reconstruction 6

Gesture Recognition

This section describes specific functions for the static gesture recognition technology.

The gesture recognition algorithm can be divided into four main components as
illustrated in Figure 6-10.

The first component computes the 3D arm pose from range image data that may be
obtained from the standard stereo correspondence algorithm. The process includes 3D
line fitting, finding the arm position along the line and creating the arm mask image.

Figure 6-9 Gesture Recognition Algorithm

6-14

OpenCV Reference Manual 3D Reconstruction 6

The second component produces a frontal view of the arm image and arm mask
through a planar homograph transformation. The process consists of the homograph
matrix calculation and warping image and image mask (See Figure 6-11).

Figure 6-10 Arm Location and Image Warping

The third component segments the arm from the background based on the probability
density estimate that a pixel with a given hue and saturation value belongs to the arm.
For this 2D image histogram, image mask histogram, and probability density
histogram are calculated. Following that, initial estimateisiteratively refined using the
maximum likelihood approach and morphology operations (See Figure 6-12)

InteL 6-15

OpenCV Reference Manual 3D Reconstruction 6

Figure 6-11 Arm Segmentation by Probability Density Estimation

-

The fourth step is the recognition step when normalized central moments or seven Hu
moments are cal culated using the resulting image mask. These invariants are used to
match masks by the Mahalanobis distance metric calculation.

The functions operate with specific data of several types. Range image datais a set of
3D pointsin the world coordinate system calculated via the stereo correspondence
algorithm. The second data typeis a set of the original image indices of this set of 3D
points, that is, projections on the image plane. The functions of this group

* enablethe user to locate the arm region in a set of 3D points (the functions
Fi ndHandRegi on and Fi ndHandRegi onA),

* create an image mask from a subset of 3D points and associated subset indices
around the arm center (the function Cr eat eHandMask),

¢ caculate the homography matrix for the initial image transformation from the
image plane to the plane defined by the frontal arm plane (the function
Cal cl mageHonogr aphy),

e caculate the probability density histogram for the arm location (the function
Cal cProbDensi ty).

Basic Sructures and
Operations

Image Functions
This section describes basic functions for manipulating raster images.

OpenCV library representsimagesin the format | pl | mage that comes from Intel®
Image Processing Library (IPL). IPL reference manual gives detailed information
about the format, but, for completeness, it is also briefly described here.

Example 7-1 | pl | mage Structure Definition

typedef struct _Ipllnmage {
int nSize; /* size of ipllmge struct */
int 1D, /* imge header version */
i nt nChannel s;
i nt al phaChannel ;
int depth; /* pixel depth in bits */
char col or Model [4];
char channel Seql 4] ;
i nt dataOrder;
int origin;
int align; /* 4- or 8-byte align */
int wdth;
i nt height;
struct _IplRO *roi; /* pointer to RO if any */
struct _Ipllmage *maskRO; /*pointer to mask RO if any */
void *imageld; /* use of the application */
struct _IplTilelnfo *tilelnfo; /* contains information on tiling
*/
int imgeSize; /* useful size in bytes */
char *imageData; /* pointer to aligned inmage */
int wwdthStep; /* size of aligned line in bytes */
int BorderMode[4]; /* the top, bottom Ileft,
and right border node */
int BorderConst[4]; /* constants for the top, bottom
left, and right border */
char *imageDataOrigin; /* ptr to full, nonaligned i mage */
} Ipllnage;

OpenCV Reference Manual Basic Sructures and Operations 7

Only afew of the most important fields of the structure are described here. The fields
wi dt h and hei ght contain image width and height in pixels, respectively. The field
dept h contains information about the type of pixel values.

All possible values of the field dept h listed ini pl . h header file include:
| PL_DEPTH_8U - unsigned 8-bit integer value (unsigned char),
| PL_DEPTH_8S - signed 8-bit integer value (signed char or simply char),
| PL_DEPTH_16S - signed 16-bit integer value (short i nt),
| PL_DEPTH_32S - signed 32-bit integer value (i nt),
| PL_DEPTH_32F - 32-hit floating-point single-precision value (f | oat).

In the above list the corresponding typesin C are placed in parentheses. The parameter
nChannel s meansthe number of color planesin theimage. Grayscaleimages contain a
single channel, while color images usually include three or four channels. The
parameter or i gi n indicates, whether the top image row (ori gin ==1PL_ORI G N_TL)
or bottom image row (ori gi n ==1PL_ORI G N_BL) goes first in memory. Windows
bitmaps are usually bottom-origin, while in most of other environments images are
top-origin. The parameter dat aOr der indicates, whether the color planesin the color
image are interleaved (dat aOr der == 1 PL_DATA_ORDER_PI XEL) Or separate

(dat aOrder == 1 PL_DATA ORDER_PLANE). The parameter wi dt hSt ep contains the
number of bytes between points in the same column and successive rows. The
parameter wi dt h is not sufficient to cal culate the distance, because each row may be
aligned with a certain number of bytes to achieve faster processing of the image, so
there can be some gaps between the end of i th row and the start of (i +1) th row. The
parameter i mageDat a contains pointer to the first row of image data. If there are
several separate planesin the image (when dat aOr der == 1 PL_DATA_ ORDER_PLANE),
they are placed consecutively as separate images with hei ght *nChannel s rowstotal.

7-2

OpenCV Reference Manual Basic Sructures and Operations 7

It is possible to select some rectangular part of the image or a certain color plane in the
image, or both, and process only this part. The selected rectangle is called "Region of
Interest” or ROI. The structure | pl | mage containsthefieldr oi for this purpose. If the
pointer not NULL, it points to the structure | pl RO that contains parameters of selected
ROI, otherwise awholeimage is considered selected.

Example 7-2 | pl RO Structure Definition

typedef struct _Ipl RO

int coi; /* channel of interest or CO */
int xOfset;
int yOfset;
int wdth;
int height;
} 1plRO;

Ascan be seen, |1 pl RO includes ROI origin and size aswell as COI (“ Channel of
Interest”) specification. Thefield coi , equal to O, meansthat all theimage channelsare
selected, otherwise it specifies an index of the selected image plane.

Unlike IPL, OpenCV has several limitationsin support of | pl | mage:

— Each function supports only afew certain depths and/or number of channels.
For example, image statistics functions support only single-channel or
three-channel images of the depth | PL_DEPTH_8U, | PL_DEPTH_8S Or
| PL_DEPTH_32F. The exact information about supported image formatsis
usually contained in the description of parameters or in the beginning of the
chapter if al the functions described in the chapter are similar. It is quite
different from IPL that triesto support al possible image formats in each
function.

— OpenCV supports only interleaved images, not planar ones.

— Thefieldscol or Model , channel Seq, Bor der Mode, and Bor der Const are
ignored.

— Thefieldal i gn isignored and wi dt hSt ep issimply used instead of
recalculating it using the fieldswi dt h and al i gn.

— ThefieldsmaskRO andti | el nf o must be zero.

— COl support isvery limited. Now only image statistics functions accept
non-zero COI vaues. Usethe functions Cvt Pi xToPl ane and Cvt Pl aneToPi x
as awork-around.

7-3

OpenCV Reference Manual Basic Sructures and Operations 7

— ROIsof al theinput/output images have to match exactly one another. For
example, input and output images of the function Er ode must have ROIs with
equal sizes. It isunlike IPL again, where the ROIs intersection is actually
affected.

Despite al the limitations, OpenCV still supports most of the commonly used image
formats that can be supported by I pl | mage and, thus, can be successfully used with
IPL on common subset of possible pl | mage formats.

The functions described in this chapter are mainly short-cuts for operations of creating,
destroying, and other common operationson | pl | mage, and they are often
implemented as wrappers for original 1PL functions.

Dynamic Data Structures

This chapter describes severa resizable data structures and basic functions that are
designed to operate on these structures.

Memory Storage

Memory storages provide the space for storing all the dynamic data structures
described in this chapter. A storage consists of a header and a double-linked list of
memory blocks. Thislist istreated as a stack, that is, the storage header contains a
pointer to the block that is not occupied entirely and an integer value, the number of
free bytesin this block. When the free space in the block has run out, the pointer is
moved to the next block, if any, otherwise, a new block is allocated and then added to
the list of blocks. All the blocks are of the same size and, therefore, this technique
ensures an accurate memory allocation and helps avoid memory fragmentation if the
blocks are large enough (see Figure 7-1).

7-4

OpenCV Reference Manual Basic Sructures and Operations 7

Figure 7-1 Memory Storage Organization

Storage Header

BOTTOM

TOP

Free Space

—
Memory Blocks

Sequences

A sequenceisaresizable array of arbitrary type elements located in the memory
storage. The sequence is discontinuous. Sequence data may be partitioned into several
continuous blocks, called sequence blocks, that can be located in different memory
blocks. Sequence blocks are connected into a circular double-linked list to store large
sequences in several memory blocks or keep several small sequencesin asingle
memory block. For example, such organization is suitable for storing contours. The
sequence implementation provides fast functions for adding/removing elements
to/from the head and tail of the sequence, so that the sequence implements a deque.
The functions for inserting/removing elements in the middle of a sequence are also
available but they are slower. The sequence is the basic type for many other dynamic
data structuresin the library, e.g., sets, graphs, and contours; just like all these types,
the sequence never returns the occupied memory to the storage. However, the
sequence keeps track of the memory released after removing elements from the

7-5

OpenCV Reference Manual Basic Sructures and Operations 7

sequence; this memory is used repeatedly. To return the memory to the storage, the
user may clear awhole storage, or use savelrestoring position functions, or keep
temporary datain child storages.

Figure 7-2 Sequence Structure

Storage Header

(Links Between Blocks.
w Vv v

=3I~ \

Vit =3I~y
Sequence Header and, probably, Sequence Blocks.
the First Sequence Block.

Writing and Reading Sequences

Although the functions and macros described below are irrelevant in theory because
functionslike SeqPush and Get SeqEl emenable the user to write to sequences and
read from them, the writing/reading functions and macros are very useful in practice
because of their speed.

The following problem could provide an illustrative example. If the task isto create a
function that forms a sequence from N random values, the PUSH version runs as
follows:

CvSeq* create_seql(CvStorage* storage, int N) {

CvSeq* seq = cvCreateSeq(O, sizeof(*seq), sizeof(int), storage);
for(int i =0; i <N i++) {

int a = rand();

cvSeqPush(seq, &a);

}

return seq;

7-6

OpenCV Reference Manual Basic Sructures and Operations 7

}

The second version makes use of the fast writing scheme, that includes the following
steps: initialization of the writing process (creating writer), writing, closing the writer
(flush).

CvSeq* create_seql(CvStorage* storage, int N) {

CvSeqWiter witer;

cvStartWiteSeq(0, sizeof(*seq), sizeof(int),

storage, &witer);

for(int i =0; i <N i++) {

int a = rand();

CV_WRI TE_SEQ ELEM a, witer);

}

return cvEndWiteSeq(&witer);

}

If N= 100000 and 500 MHz Pentium® |1l processor is used, the first version takes 230
milliseconds and the second one takes 111 milliseconds to finish. These characteristics
assume that the storage already contains a sufficient number of blocks so that no new
blocks are alocated. A comparison with the simple loop that does not use sequences
gives an idea as to how effective and efficient this approachiis.

int* create_seq3(int* buffer, int N) {

for(i =0, i <N i++) {
buffer[i] = rand();

}

return buffer;

}

This function takes 104 milliseconds to finish using the same machine.

Generally, the sequences do not make a great impact on the performance and the
difference is very insignificant (less than 7% in the above example). However, the
advantage of sequences isthat the user can operate the input or output data even
without knowing their amount in advance. These structures enable him/her to allocate
memory iteratively. Another problem solution would be to use lists, yet the sequences
are much faster and require less memory.

7-7

OpenCV Reference Manual Basic Sructures and Operations 7

Sets

The set structure is mostly based on sequences but has a totally different purpose. For
example, the user is unable to use sequences for location of the dynamic structure
elements that have links between one another because if some elements have been
removed from the middle of the sequence, other sequence elements are moved to
another location and their addresses and indices change. In thiscase al links have to be
fixed anew. Another aspect of this problem is that removing elements from the middle
of the sequence is slow, with time complexity of Q(n) , where n is the number of
elements in the sequence.

The problem solution lies in making the structure sparse and unordered, that is,
whenever a structure element is removed, other elements must stay where they have
been, while the cell previously occupied by the element is added to the pool of three
cells; when anew element isinserted into the structure, the vacant cell is used to store
this new element. The set operates in thisway (See Example 7-3).

The set looks like alist yet keeps no links between the structure elements. However,
the user is free to make and keep such lists, if needed. The set isimplemented as a
sequence subclass; the set uses sequence elements as cells and organizes a list of free
cells.

7-8

OpenCV Reference Manual Basic Sructures and Operations 7

See Figure 7-3 for an example of a set. For simplicity, the figure does not show
division of the sequence/set into memory blocks and sequence blocks.

Figure 7-3 Set Structure

Existing Set Elements
List of Free Cells P N

Free Cells, Linked Together

The set elements, both existing and free cells, are al sequence elements. A special bit
indicates whether the set element exists or not: in the above diagram the bits marked
by 1 are free cells and the ones marked by 0 are occupied cells. The macro

CV_I' S SET ELEM EXI STS(set _el em ptr) usesthisspecia bit to return a non-zero
valueif the set element specified by the parameter set _el em ptr belongsto the set,
and 0O otherwise. Below follows the definition of the structure CvSet :

Example 7-3 CvSet Structure Definition

#define CV_SET_FI ELDS() \
CV_SEQUENCE_FI ELDS() \
CvMenBl ock* free_el ens;

typedef struct CvSet
CV_SET_FI ELDS()

}

CvSet ;

In other words, a set is a sequence plus alist of free cells.

intel. 79

OpenCV Reference Manual Basic Sructures and Operations 7

There are two modes of working with sets:
1. Usingindicesfor referencing the set elements within a sequence
2. Using pointers for the same purpose.

Whereas at times the first mode is a better option, the pointer mode is faster because it
does not need to find the set elements by their indices, which is done in the same way
as in simple sequences. The decision on which method should be used in each
particular case depends on:

* thetype of operationsto be performed on the set and
* theway the operations on the set should be performed.

The waysin which anew set is created and new elements are added to the existing set
are the same in either mode, the only difference between the two being the way the
elements are removed from the set. The user may even use both methods of access
simultaneously, provided he or she has enough memory available to store both the
index and the pointer to each element.

Likein sequences, the user may create a set with elements of arbitrary type and specify
any size of the header subject to the following restrictions:

* size of the header may not be less than si zeof (CvSet) .
* size of the set elements should be divisible by 4 and not less than 8 bytes.

The reason behind the latter restriction isthe internal set organization: if the set hasa
free cell available, the first 4-byte field of this set element is used as a pointer to the
next free cell, which enables the user to keep track of all free cells. The second 4-byte
field of the cell contains the cell to be returned when the cell becomes occupied.

When the user removes a set element while operating in the index mode, the index of
the removed element is passed and stored in the released cell again. The bit indicating
whether the element belongs to the set is the least significant bit of the first 4-byte
field. Thisisthe reason why all the elements must have their size divisible by 4. Inthis
case they are all aligned with the 4-byte boundary, so that the least significant bits of
their addresses are always 0.

In free cells the corresponding bit is set to 1 and, in order to get the real address of the
next free cell, the functions mask this bit off. On the other hand, if the cell is occupied,
the corresponding bit must be equal to 0, which is the second and last restriction: the

7-10

OpenCV Reference Manual Basic Sructures and Operations 7

least significant bit of the first 4-byte field of the set element must be 0, otherwise the
corresponding cell is considered free. If the set elements comply with this restriction,
e.g., if thefirst field of the set element is a pointer to another set element or to some
aligned structure outside the set, then the only restriction left is a non-zero number of
4- or 8-byte fields after the pointer. If the set elements do not comply with this
restriction, e.qg., if the user wantsto store integers in the set, the user may derive his or
her own structure from the structure CvSet EI emor includeit into hisor her structure as
thefirst field.

Example 7-4 CvSet El emStructure Definition

#def i ne CV_SET_ELEM FI ELDS() \
int* aligned_ptr;
typedef struct _CvSet El em

CV_SET_ELEM FI ELDS()
}
CvSet El em

Thefirst field isadummy field and is not used in the occupied cells, except the least
significant bit, which is 0. With this structure the integer element could be defined as

follows:

typedef struct _IntSetEl em

{
CV_SET_ELEM FI ELDS()
int value;

}

| nt Set El em

Graphs

The structure set described above helpsto build graphs because a graph consists of two
sets, namely, vertices and edges, that refer to each other.

Example 7-5 CvG aph Structure Definition

#define CV_GRAPH_FI ELDS() \
CV_SET_FI ELDS() \
CvSet* edges;

typedef struct _CvGaph

Intelc 7-11

OpenCV Reference Manual Basic Sructures and Operations 7

Example 7-5 CvG aph Structure Definition (continued)

{ CV_GRAPH_FI ELDS()

}
VG aph;

In OOP terms, the graph structure is derived from the set of vertices and includes a set
of edges. Besides, special data types exist for graph vertices and graph edges.

Example 7-6 Definitions of CvGr aphEdge and CvG aphVit x Structures

#def i ne CV_GRAPH EDGE_FI ELDS() \
struct _CvG aphEdge* next[2]; \
struct _CvG aphVertex* vtx[2];

#define CV_GRAPH VERTEX FI ELDS() \
struct _CvG aphEdge* first;

typedef struct _CvG aphEdge
CV_GRAPH_EDGE_FI ELDS()

}C,\/GraphEdge;

typedef struct _CvG aphVertex
CV_GRAPH_VERTEX_FI ELDS()

}Q/Grapthx;

The graph vertex has a single predefined field that assumes the value of 1 when
pointing to the first edge incident to the vertex, or O if the vertex isisolated. The edges
incident to a vertex make up the single linked non-cycle list. The edge structure is
more complex: vt x[0] and vt x[1] arethe starting and ending vertices of the edge,
next [0] and next[1] arethe next edgesintheincident listsfor vt x[0] and vt x[1]

7-12

OpenCV Reference Manual Basic Sructures and Operations 7

respectively. In other words, each edge isincluded in two incident lists since any edge
isincident to both the starting and the ending vertices. For example, consider the
following oriented graph (see below for more information on non-oriented graphs).

Figure 7-4 Sample Graph

()~ @
&)

The structure can be created with the following code:

CvG aph* graph = cvCreateG aph(CV_SEQ Kl ND_GRAPH |
CV_GRAPH_FLAG ORI ENTED,

si zeof (CvGraph),

si zeof (CvG aphVit x) +4,

si zeof (CvGraphEdge) ,

st orage) ;

for(i =0; i <5; i++)

{

cv@ aphAddvt x(graph, 0, 0);/* arguments like in
cvSet Add*/

}

cvG aphAddEdge(graph, 0, 1, 0, 0); /* connect vertices O

Intelc 7-13

OpenCV Reference Manual Basic Sructures and Operations 7

and 1, other two argunments |like in cvSetAdd */
cvG aphAddEdge(graph, 1, 2, 0, 0);
cvG aphAddEdge(graph, 2, 0, 0, 0);
cvG aphAddEdge(graph, 2, 3, 0, 0);

The internal structure comes to be as follows:

Figure 7-5 Internal Structure for Sample Graph Shown in Figure 7-4

Graph Vertices

Graph Edges

Undirected graphs can also be represented by the structure cvG aph. If the
non-oriented edges are substituted for the oriented ones, the internal structure remains
the same. However, the function used to find edges succeeds only when it finds the
edge from 3 to 2, asthe function looks not only for edges from 3 to 2 but also from 2 to
3, and such an edge is present as well. Asfollows from the code, the type of the graph
is specified when the graph is created, and the user can change the behavior of the edge
searching function by specifying or omitting the flag Cv_GRAPH_FLAG_ORI ENTED. TWO
edges connecting the same vertices in undirected graphs may never be created because
the existence of the edge between two verticesis checked before anew edge isinserted

intel@ 7-14

OpenCV Reference Manual Basic Sructures and Operations 7

between them. However, internally the edge can be coded from the first vertex to the
second or vice versa. Likein sets, the user may work with either indices or pointers.
The graph implementation uses only pointersto refer to edges, but the user can choose
indices or pointers for referencing vertices.

Matrix Operations

Besides | pl | mage support, OpenCV introduces specia datatype cviat , instances of
which can be stored as real or complex matrices as well as multi-channel raster data.

Example 7-7 CvMat Structure Definition

typedef struct CvMat {
int type; /* the type of matrix elements */
uni on

int rows; /* nunber of rows in the matrix */
int height; /* synonymfor <rows> */

b
uni on

int cols; /* nunber of colums */
int width; /* synonymfor <col s> */

}s

int step; /* matrix stride */
uni on

float* fl;
doubl e* db;
uchar* ptr;
} data; /* pointer to matrix data */

b

The fist member of the structure t ype contains several bit fields:
* Bits0..3: type of matrix elements (dept h). Can be one of the following:

Ccv_8U=0 8-hit, unsigned (unsi gned char)
cv_8s=1 8-hit, signed (si gned char)
Cv_16S =2 16-hit, signed (short)

Intelc 7-15

OpenCV Reference Manual Basic Sructures and Operations 7

Cv_32s =3 32-bit, signed (i nt)
CV_32F =4 32-hit, single-precision floating point number (f I oat)
CV_64F =5 64-bit, double-precision floating point number (doubl e)

* Bits4..5: number of channels minus 1, that is:

0 — 1 channel

1 — 2 channels
2 — 3 channels
3 — 4 channels

* Bits6-15:; for internal use.

* Bits 16-31: alwaysequal to 4224 heximal — this magic number is a CvMat
signature.

The constants Cv_<dept h>C<nunber _of _channel s> are defined to describe possible
combinations of the matrix depth and number of channels, for example:

Cv_8UCL — unsigned 8-bit single-channel data; can be used for grayscale
image or binary image — mask.
CV_8SC1 — signed 8-bit single-channel data.

CV_32FC1 —single-precision real numbers, or real valued matrices.
CV_64FC2 — double-precision complex numbers.
Cv_8uc3 — unsigned 8-bit, 3 channels; used for color images.

CV_64FC4 — double-precision floating point number quadruples, e.g.,
quaternions.

intel@ 7-16

OpenCV Reference Manual Basic Sructures and Operations 7

Multiple-channel datais stored in interleaved order, that is, different channels of the
same element are stored sequentially, one after another.

CvMat isgeneralization of matricesin usual sense of the word. It can store data of all
most common | pl | rage formats . All the basic matrix and image operations on this
type are supported. They include:

— arithmetics and logics,

— matrix multiplication,

— dot and cross product,

— perspective transform,

— Mahaonobis distance,

— SVD,

— eigen values problem solution, etc.

While some of operations operate only on arrays, that is, images or matrices, afew
operations have both arrays and scalars on input/output. For example, a specific
operation adds the same scalar value to all elements of the input array.

OpenCV introducestype CvScal ar for representing arbitrary scalar value.

Example 7-8 CvScal ar Definition

typedef struct CvScal ar
{
doubl e val [4];
}
CvScal ar;

Inline functionscvScal ar, cvScal ar Al | and cvReal Scal ar can be used to construct
the structure from scalar components.

Operations that operate on arrays and scalars have s suffix in their names. E.g., cvAddS
adds a scalar to array elements.

717

OpenCV Reference Manual Basic Sructures and Operations 7

Interchangability between Iplimage and CvMat.

Most of OpenCV functions that operate on dense arrays accept pointers to both
I pl I mage and Cvvat typesin any combinations. It is done viaintroduction of dummy
type cvAr r, which is defined as follows:

Example 7-9 CvArr Type Definition

typedef void CvArr;

The function analyzesthe first integer field at the beginning of the passed structure and
thus distinguishes between | pl | mage, the first field of which is equal to the size of
I pl I mage structure, and ovMat , the first field of which iso0x4224xxxx.

Drawing Primitives

This section describes simple drawing functions.

The functions described in this chapter are intended mainly to mark out recognized or
tracked features in the image. With tracking or recognition pipeline implemented it is
often necessary to represent results of the processing in theimage. Despite the fact that
most Operating Systems have advanced graphic capabilities, they often require an
image, where one is going to draw, to be created by specia system functions. For
example, under Win32 a graphic context (DC) must be created in order to use GDI
draw functions. Therefore, several simple functions for 2D vector graphic rendering
have been created. All of them are platform-independent and work with | pl | mage
structure. Now supported image formats include byte-depth images with dept h =

| PL_DEPTH 8U oOr dept h = | PL_DEPTH_8S. The images are either

* singlechannel, that is, grayscale or
* three channel, that is RGB or, more exactly, BGR as the blue channel goesfirst.

Severa preliminary notes can be made that are relevant for each drawing function of
thelibrary:

e All of thefunctionstake col or parameter that means brightness for grayscale
images and RGB color for color images. In the latter case avalue, passed to the
function, can be composed via cv_RGB macro that is defined as:

#define CV_RGB(r,g,b) ((((r)&55) << 16)|(((g)&255) << 8)|((b)&255)).

7-18

OpenCV Reference Manual Basic Sructures and Operations 7

Ut

ility

¢ Any function in the group takes one or more points (CvPoi nt structure instance(s))
as input parameters. Point coordinates are counted from top-left ROI corner for
top-origin images and from bottom-left ROI corner for bottom-origin images.

* All thefunctions are divided into two classes - with or without antialiasing. For
several functions there exist antialiased versions that end with AA suffix. The
coordinates, passed to AA-functions, can be specified with sub-pixel accuracy, that
is, they can have several fractional bits, which number is passed viascal e
parameter. For example, if cvGi rcl eAA function is passed cent er =
cvPoi nt (34, 18) and scal e = 2, then the actual center coordinates are
(34/4.,19/4.)==(16.5,4.75).

Simple (that is, non-antialiased) functions havet hi ckness parameter that specifies
thickness of lines afigure is drawn with. For some functions the parameter may take
negative values. It causes the functions to draw afilled figure instead of drawing its
outline. To improve code readability one may use constant CV_FI LLED= -1 asa

t hi ckness valueto draw filled figures.

Utility functions are unclassified OpenCV functions described in Reference.

7-19

Library Technical

Organization and System E

Functions

Error Handling
TBD

Memory Management
TBD

Interaction With Low-Level Optimized Functions
TBD

User DLL Creation
TBD

Motion Analysis and Object

Tracking Reference

Table 9-1 Motion Analysis and Object Tracking Functions and Data Types

Group

Name

Description

Background Subtraction
Functions

Motion Templates Functions

Functions
Acc

Squar eAcc

Mil ti pl yAcc

Runni ngAvg

Updat eMbt i onHi story

Cal cMot i onGr adi ent

Cal cd obal Ori entati on

Adds a new image to
the accumulating sum.

Calculates square of the
source image and adds
it to the destination
image.

Calculates product of
two input images and
adds it to the destination
image.

Calculates weighted
sum of two images.

Updates the motion
history image by moving
the silhouette.

Calculates gradient
orientation of the motion
history image.

Calculates the general
motion direction in the
selected region.

9-1

OpenCV Reference Manual

Motion Analysis and Object Tracking Reference 9

Motion Analysis and Object Tracking Functions and Data Types (continued)

Group

Name

Description

CamShift Functions

Active Contours Function

Optical Flow Functions

Estimators Functions

Segnent Moti on

Canthi ft

MeanShi f t

Snakel mage

Cal cOpti cal Fl owHS

Cal cOpti cal Fl owLK

Cal cOpti cal Fl owBM

Cal cOpti cal Fl owPyr LK

Cr eat eKal man

Rel easeKal man

Kal manUpdat eByTi ne

Segments the whole
motion into separate
moving parts.

Finds an object center
using the MeanShift
algorithm, calculates the
object size and
orientation.

Iterates to find the object
center.

Changes contour
position to minimize its
energy.

Calculates optical flow
for two images
implementing Horn and
Schunk technique.

Calculates optical flow
for two images
implementing Lucas and
Kanade technique.

Calculates optical flow
for two images
implementing the Block
Matching algorithm.

Calculates optical flow
for two images using
iterative Lucas-Kanade
method in pyramids.

Allocates Kalman filter
structure.

Deallocates Kalman
filter structure.

Estimates the
subsequent stochastic
model state.

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

Table 9-1 Motion Analysis and Object Tracking Functions and Data Types (continued)

Group Name Description

Kal manUpdat eByMeasur enent Adjusts the stochastic
model state on the basis
of the true
measurements.

Cr eat eConDensat i on Allocates a
ConDensation filter
structure.

Rel easeConDensat i on Deallocates a
ConDensation filter
structure.

ConDensl ni t Sanpl eSet Initializes a sample set
for condensation
algorithm.

ConDensUpdat eByTi ne Estimates the
subsequent model state
by its current state.

Data Types
Estimators Data Types CvKal man
CvConDensat i on

Background Subtraction Functions

Acc
Adds frame to accumul ator.

void cvAcc (IpllImage* ing, |pllmge* sum |pllnmage* mask=0);

i Ny Input image.
sum Accumulating image.
mask Mask image.

intel. 03

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

Discussion

The function Acc adds anew imagei ng to the accumulating sum sum If mask is not
NULL, it specifies what accumulator pixels are affected.

SquareAcc

Calculates sguare of source image and addsiit to
destination image.

voi d cvSquar eAcc(| pl Il mage* ing, |pllmage* sqSum | pl |l mage* mask=0);

i Ny Input image.

sqSum Accumulating image.
mask Mask image.
Discussion

The function squar eAcc adds the square of the new imagei ng to the accumulating
sum sqSumof the image squares. If mask isnot NULL, it specifies what accumulator
pixels are affected.

MultiplyAcc

Calculates product of two input images and adds
it to destination image.

void cvMul tiplyAcc(|pllmage* ingA |pllnmge* ingB, Ipllmge* acc, |pllnmage*
mask=0) ;

i ngA First input image.
i ngB Second input image.
acc Accumulating image.

intel. 04

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

mask Mask image.

Discussion

The function mul ti pl yAcc multipliesinput i ngA by i ngB and adds the result to the
accumulating sum acc of the image products. If mask isnot NULL, it specifies what
accumulator pixels are affected.

RunningAvg

Calculates weighted sum of two images.

voi d cvRunni ngAvg(I pl 1 rmage* ingY, |pllnmage* ingy, double al pha,
I pl I mage* mask=0);

i ngY Input image.

i ngU Destination image.

al pha Weight of input image.
mask Mask image.
Discussion

The function Runni ngAvg calculates weighted sum of two images. Once a statistical
model is available, slow updating of the value is often required to account for slowly
changing lighting, etc. This can be done by using a simple adaptive filter:

b = ay +(1—o)l; _q,

where u (i ngU) isthe updated value, 0<a <1 isan averaging constant, typically set to
asmall value such as 0.05, andy (i mgY) isanew observation at timet . When the
function is applied to a frame sequence, the result is called the running average of the
sequence.

If mask isnot NULL, it specifies what accumulator pixels are affected.

9-5

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

Motion Templates Functions

UpdateMotionHistory

Updates motion history image by moving
silhouette.

voi d cvUpdat eMoti onH story (Ipllmage* sil houette, Ipllnmage* mhi, double
ti mestanp, doubl e nhiDuration);

si | houette Silhouette image that has non-zero pixels where the motion occurs.
mhi Motion history image, both an input and output parameter.
timestanp Floating point current time in milliseconds.

mhi Duration Maximal duration of motion track in milliseconds.

Discussion

The function Updat eMot i onHi st ory updates the motion history image with a
silhouette, assigning the current t i nest anp value to those mhi pixels that have
corresponding non-zero silhouette pixels. The function also clears mhi pixels older
thanti nest anp — nhi Dur at i on if the corresponding silhouette values are 0.

CalcMotionGradient

Calculates gradient orientation of motion history
image.

voi d cvCal cMbti onG adient (| pllmage* nmhi, Ipllmge* mask, |pllnmge*
orientation, double nmaxTDelta, double m nTDelta, int apertureSi ze=3);

mhi Motion history image.

mask Mask image; marks pixels where motion gradient datais correct.
Output parameter.

intel. o6

OpenCV Reference Manual

Motion Analysis and Object Tracking Reference 9

orientation

apertureSi ze

maxTDel t a

m nTDel t a

Discussion

Motion gradient orientation image; contains angles from 0 to ~360
degrees.

Size of aperture used to calculate derivatives. Value should be odd,
eg., 3,5, ec.

Upper threshold. The function considers the gradient orientation
valid if the difference between the maximum and minimum mhi
values within a pixel neighborhood is lower than this threshold.

Lower threshold. The function considers the gradient orientation
valid if the difference between the maximum and minimum mhi
values within a pixel neighborhood is greater than this threshold.

The function Cal cMt i onG adi ent calculatesthe derivatives Dx and Dy for theimage
mhi and then calculates orientation of the gradient using the formula

¢ = 00 x=0y=o0
arctan(y/x)el se

Finally, the function masks off pixelswith avery small (Iessthan ni nTDel t a) or very
large (greater than maxTDel t a) difference between the minimum and maximum mhi
values in their neighborhood. The neighborhood for determining the minimum and
maximum has the same size as aperture for derivative kernels - apert ur eSi ze x
aper tur eSi ze pixels.

CalcGlobalOrientation

Calculates global motion orientation of some
selected region.

voi d cvCal cd obal Orientation(|Ipllmage* orientation, |Ipllmge* mask, |pllmge*
doubl e currTi nestanp, double mhiDuration);

mi ,

In

tel.

9-7

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

orientation Motion gradient orientation image; calculated by the
function Cal cMbt i onG adi ent .
mask Mask image. It is a conjunction of valid gradient mask,

calculated by the function Cal cMWot i onGr adi ent and mask
of the region, whose direction needs to be calculated.

mhi Motion history image.

cur r Ti mest anp Current time in milliseconds.

mhi Dur ati on Maximal duration of motion track in milliseconds.
Discussion

The function Cal cG obal Ori ent ati on calculates the general motion direction in the
selected region.

At first the function builds the orientation histogram and finds the basic orientation as
acoordinate of the histogram maximum. After that the function cal cul ates the shift
relative to the basic orientation as a weighted sum of all orientation vectors: the more
recent is the motion, the greater is the weight. The resultant angle is <basi ¢
orientation> + <shift>.

SegmentMotion

Segments whole motion into separate moving
parts.

voi d cvSegnment Motion(| pllmage* mhi, |pllmge* segMask, CvMenfst orage* storage,
CvSeq** conponents, double tinestanp, double segThresh);

mhi Motion history image.

segMask Image where the mask found should be stored.

St or age Pointer to the memory storage, where the sequence of components
should be saved.

conponent s Sequence of components found by the function.

ti mest anp Floating point current time in milliseconds.

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

segThr esh Segmentation threshold; recommended to be equal to the interval
between motion history “steps’ or greater.

Discussion

The function Segnent Mot i on finds all the motion segments, starting from
connected componentsin theimage mi that have value of the current timestamp. Each
of the resulting segments is marked with an individual value (1,2 ...).

The function stores information about each resulting motion segment in the structure
CvConnect edConp (See Example 10-1 in Image Analysis Reference). The function
returns a sequence of such structures.

CamShift Functions

CamShift

Finds object center, size, and orientation.

i nt cvCanshift(1pllmge*ingProb, CvRect wi ndow n, CvTernCriteriacriteria,
CvConnect edConmp* out, CvBox2D* box=0);

i ngProb 2D object probability distribution.

wi ndowl n Initial search window.

criteria Criteria applied to determine when the window search should be
finished.

out Resultant structure that contains converged search window
coordinates (r ect field) and sum of al pixelsinside the window
(ar ea field).

box Circumscribed box for the object. If not NULL, contains object size

and orientation.

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

Discussion

The function canshi ft finds an object center using the Mean Shift algorithm and,
after that, calculates the object size and orientation. The function returns number of
iterations made within the Mean Shift algorithm.

MeanShift

Iterates to find object center.

int cvMeanShift(Ipllmge* ingProb, CvRect w ndown, CvTernCriteria
criteria, CvConnectedConp* out);

i ngProb 2D object probability distribution.

wi ndowl n Initial search window.

criteria Criteria applied to determine when the window search should be
finished.

out Resultant structure that contains converged search window
coordinates (r ect field) and sum of al pixelsinside the window
(ar ea field).

Discussion

The function Meanshi ft iterates to find the object center given its 2D color
probability distribution image. The iterations are made until the search window center
moves by less than the given value and/or until the function has done the maximum
number of iterations. The function returns the number of iterations made.

intel@ 9-10

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

Active Contours Function

Snakelmage
Changes contour position to minimize its energy.

voi d cvSnakel mage(|pllmage* i mage, CvPoint* points, int |ength,
float* al pha, float* beta, float* gamm, int coeffUsage, CvSize w n,
CvTernCriteria criteria, int calcGadient=1);

i mge Pointer to the source image.
points Points of the contour.

| ength Number of pointsin the contour.
al pha Weight of continuity energy.

bet a Weight of curvature energy.
gamma Weight of image energy.

coef f Usage Variant of usage of the previous three parameters:

®* CV_VALLE indicatesthat each of al pha, bet a, gamma iS a pointer
to asingle value to be used for all points;

®* CV_ARRAY indicates that each of al pha, bet a, ganma iS a pointer
to an array of coefficientsdifferent for all the points of the snake.
All the arrays must have the size equal to the snake size.

wi n Size of neighborhood of every point used to search the minimum;
must be odd.
criteria Termination criteria.

cal cGadient Gradient flag. If not O, the function counts source image gradient
magnitude as external energy, otherwise the image intensity is
considered.

Discussion

The function Snakel mage usesimage intensity asimage energy.

InteL 9-11

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

The parameter cri teri a. epsi | on isused to define the minimal number of points that
must be moved during any iteration to keep the iteration process running.

If the number of moved pointsislessthancriteria. epsilon orthefunction
performed cri teri a. maxl ter iterations, the function terminates.

Optical Flow Functions

CalcOpticalFlowHS

Calculates optical flow for two images.

voi d cvCal cOpti cal Fl owHS(| pl I mage* i ngA, |pllnmage* ingB, int usePrevious,
I pl I mage* vel x, |pllnmge* vely, double |anbda, CvTernCriteria criteria);

i NngA First image.

i ngB Second image.

usePrevious Usesprevious (input) velocity field.

vel x Horizontal component of the optical flow.
vely Vertical component of the optical flow.

| anbda Lagrangian multiplier.

criteria Criteria of termination of velocity computing.
Discussion

The function Cal cOpti cal Fl owHS computes flow for every pixel, thus output images
must have the same size asthe input. Horn & Schunck Technigue isimplemented.

intel@ 9-12

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

CalcOpticalFlowLK

Calculates optical flow for two images.

voi d cvCal cOpti cal Fl owLK(| pllmage* ingA |pllmage* ingB, CvSize winSize,
I pl I mage* vel x, |pllmage* vely);

i NngA First image.

i ngB Second image.

wi nSi ze Size of the averaging window used for grouping pixels.
vel x Horizontal component of the optical flow.

vely Vertical component of the optical flow.

Discussion

The function Cal cOpti cal Fl oK computes flow for every pixel, thus output images
must have the same size asinput. Lucas & Kanade Technique isimplemented.

CalcOpticalFlowBM

Calculates optical flow for two images by block
matching method.

voi d cvCal cOpti cal Fl owBM | pl I mage* i ngA, |pllnmage* ingB, CvSize bl ockSi ze,
CvSize shiftSize, CvSize maxRange, int usePrevious, |pllnmage* velXx,
I pl I mage* vely);

i NngA First image.

i ngB Second image.

bl ockSi ze Size of basic blocks that are compared.

shiftSize Block coordinate increments.

maxRange Size of the scanned neighborhood in pixels around block.

InteL 9-13

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

usePrevious Usesprevious (input) velocity field.

vel x Horizontal component of the optical flow.
vely Vertical component of the optical flow.
Discussion

The function Cal cOpt i cal FI owBM calculates optical flow for two images using the
Block Matching algorithm. Velocity is computed for every block, but not for every
pixel, so velocity image pixels correspond to input image blocks and the velocity
image must have the following size:

i mageSi ze.wi dt h}

vel oci tyFrameSi ze.wi dt h = [bl ockS 2o w dih

i mageSi ze.hei ght}

vel oci t yFrameSi ze.hei ght = [bl ockSi ze.hei ght |

CalcOpticalFlowPyrLK

Calculates optical flow for two images using
iterative Lucas-Kanade method in pyramids.

voi d cvCal cOpti cal Fl owPyr LK(I pl | mage* i ngA, |pllmage* ingB, |pllnmage* pyrA,

I pll

mage* pyrB, CvPoint 2D32f* featuresA, CvPoint2D32f* featuresB, int

count, CvSize winSize, int |level, char* status, float* error,
CvTernCriteria criteria, int flags);

i NngA First frame, at timet .
i B Second frame, at time t +dt .
pyrA Buffer for the pyramid for the first frame. If the pointer is not NULL,

the buffer must have a sufficient size to store the pyramid from
level 1tolevel #<level>;thetota sizeof
(i ngSi ze. wi dt h+8) *i mgSi ze. hei ght/ 3 bytesis sufficient.

pyrB Similar to pyr A, appliesto the second frame.
feat uresA Array of points for which the flow needs to be found.
f eat uresB Array of 2D points containing calculated new positions of input

features in the second image.

9-14

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

count Number of feature points.
wi nSi ze Size of the search window of each pyramid level.
| evel Maximal pyramid level number. If 0, pyramids are not used (single
level), if 1, two levels are used, etc.
stat us Array. Every element of the array is set to 1 if the flow for the
corresponding feature has been found, 0 otherwise.
error Array of double numbers containing difference between patches
around the original and moved points. Optional parameter; can be
NULL.
criteria Specifies when the iteration process of finding the flow for each
point on each pyramid level should be stopped.
flags Miscellaneous flags:
®* CV_LKFLOW PYR A _READY, pyramid for thefirst frameis
precal culated before the call;
®* CV_LKFLOW PYR B_READY, pyramid for the second frame is
precal culated before the call;

® CV_LKFLOWI NI TI AL_GUESSES, array B containsinitial
coordinates of features before the function call.

Discussion

Thefunction Cal cOpt i cal Fl owPyr LK calculates the optical flow between two images
for the given set of points. The function finds the flow with sub-pixel accuracy.

Both parameters pyr A and pyr B comply with the following rules: if the image pointer
is 0, the function allocates the buffer internally, calculates the pyramid, and releases
the buffer after processing. Otherwise, the function calculates the pyramid and storesit
in the buffer unless the flag Cv_LKFLOW PYR_A[B] _READY is set. The image should be
large enough to fit the Gaussian pyramid data. After the function call both pyramids
are calculated and the ready flag for the corresponding image can be set in the next
call.

InteL 9-15

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

Estimators Functions

CreateKalman
Allocates Kalman filter structure.

CvKal man* cvCreat eKal man(i nt DynanParans, int MeasureParans);
DynanPar ans Dimension of the state vector.
Measur ePar ans Dimension of the measurement vector.

Discussion

The function Cr eat eKal man creates CvKal man structure and returns pointer to the
structure.

ReleaseKalman
Deallocates Kalman filter structure.

voi d cvRel easeKal man(CvKal man** Kal man) ;
Kal man Double pointer to the structure to be released.

Discussion

The function Rel easeKal man releases the structure CvKal man (see Example 9-1) and
frees the memory previously allocated for the structure.

intel@ 9-16

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

KalmanUpdateByTime
Estimates subsequent model state.

voi d cvKal manUpdat eByTi ne (CvKal man* Kal man);
Kal man Pointer to the structure to be updated.

Discussion

The function Kal manUpdat eByTi ne estimates the subsequent stochastic model state
by its current state.

KalmanUpdateByMeasurement
Adjusts model state.

voi d cvKal manUpdat eByMeasur enent (CvKal man* Kal man, CvMat * Measur enent) ;
Kal man Pointer to the structure to be updated.
Measur ement Pointer to the structure cvMat containing the measurement vector.

Discussion

The function Kal manUpdat eByMeasur enent adjusts stochastic model state on the
basis of the true measurements of the model state.

CreateConDensation
Allocates ConDensation filter structure.

CvConDensati on* cvCreat eConDensation(int DynanParans, int MeasureParans, int
Sanpl esNunj ;

Intelc 9-17

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

DynanPar ans Dimension of the state vector.
Measur ePar ams Dimension of the measurement vector.
Sanpl esNum Number of samples.

Discussion

The function Cr eat eConDensat i on creates cvConDensat i on (See Example 9-2)
structure and returns pointer to the structure.

ReleaseConDensation
Deallocates ConDensation filter structure.

voi d cvRel easeConDensat i on(CvConDensati on** ConDens);
ConDens Pointer to the pointer to the structure to be released.

Discussion

The function Rel easeConDensat i on releases the structure CvConDensat i on (see
Example 9-2) and frees all memory previously allocated for the structure.

ConDenslInitSampleSet
Initializes sample set for condensation algorithm.

voi d cvConDensl ni t Sanpl eSet (CvConDensat i on* ConDens, CvMat* | ower Bound CviMat *
upper Bound) ;

ConDens Pointer to a structure to be initialized.
| ower Bound Vector of the lower boundary for each dimension.
upper Bound Vector of the upper boundary for each dimension.

intel@ 9-18

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

Discussion

The function ConDensl ni t Sanpl eSet fills the samples arrays in the structure
CvConDensat i on (see Example 9-2) with values within specified ranges.

ConDensUpdateByTime
Estimates subsequent model state.

voi d cvConDensUpdat eByTi me(CvConDensat i on* ConDens);
ConDens Pointer to the structure to be updated.

Discussion
The function ConDensUpdat eBy Ti ne estimates the subsequent stochastic model
state from its current state.

Estimators Data Types

Example 9-1 CvKal man

'Eypedef struct CvKal man

int M [/ Di mensi on of neasurement vector

int DP; // Di nension of state vector

float* PosterState; /'l Vector of State of the Systemin k-th step
float* PriorState; /'l Vector of State of the Systemin (k-1)-th step
floa* Dynamvatr; /1 Matrix of the linear Dynam cs system
floa Measur enment Vat r; /1l Matrix of |inear neasurenent

fl oa MNCovari ance; /] Matrix of neasurenment noice covariance
floa PNCovari ance; /1 Matrix of process noice covariance
floa Kal mGai nMatr ; /] Kalman Gain Matrix

float* PriorErrorCovariance; //Prior Error Covariance nmatrix

float* PosterErrorCovariance;//Poster Error Covariance matriXx

float* Tenpil; /1l Tenporary Matrixes

float* Tenp2;

} CvKal man;

InteL 9-19

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

Example 9-2 CvConDensati on

'Eypedef struct

int M, /1 Di mensi on of measurenent vector

int DP; // Di nension of state vector

float* Dynamvatr; /1 Matrix of the linear Dynam cs system
float* State; // Vector of State

i nt Sanpl esNum /'l Nurmber of the Sanples

float** fl Sanpl es; /1 array of the Sanple Vectors

float** fl NewSanpl es; /'l tenporary array of the Sanple Vectors
float* fl Confidence; /1 Confidence for each Sanple

float* fl Curul ati ve; /1 Cumul ative confidence

float* Tenp; /'l Tenporary vector

fl oat* Randonfanpl e; /1 RandonmVector to update sanple set

CvRandState* RandS; // Array of structures to generate random vectors
} CvConDensat i on;

intel@ 9-20

lmage Analysis Reference

Table 10-1 Image Analysis Reference

Group Name Description
Functions
Contour Retrieving Fi ndCont our s Finds contours in a binary
Functions image.
St art Fi ndCont our s Initializes contour
scanning process.
Fi ndNext Cont our Finds the next contour on
the raster.
Substi t ut eCont our Replaces the retrieved
contour.
EndFi ndCont our s Finishes scanning
process.
Features Functions Lapl ace Calculates convolution of

the input image with
Laplacian operator.

Sobel Calculates convolution of
the input image with Sobel
operator.

Canny Implements Canny
algorithm for edge
detection.

Pr eCor ner Det ect Calculates two constraint
images for corner
detection.

InteL 10-1

OpenCV Reference Manual

Image Analysis Reference 10

Table 10-1 Image Analysis Reference (continued)

Group

Name

Description

Image Statistics

Functions

Cor ner Ei genVal sAndVecs

Cor ner M nEi genVal

Fi ndCor ner SubPi x
GoodFeat ur esToTr ack

HoughLi nes

HoughLi nesSDi v

HoughLi nesP

Count NonZer o
SunPi xel s

Mean

Mean St dDev

M nMaxLoc

Calculates eigenvalues
and eigenvectors of image
blocks for corner
detection.

Calculates minimal
eigenvalues of image
blocks for corner
detection.

Refines corner locations.

Determines strong
corners on the image.

Finds lines in a binary
image, SHT algorithm.

Finds lines in a binary
image, MHT algorithm.

Finds line segments in a
binary image, PPHT
algorithm.

Counts non-zero pixels in
an image.

Summarizes pixel values
in an image.

Calculates mean value in
an image region.

Calculates mean and
standard deviation in an
image region.

Finds global minimum and
maximum in an image
region.

Calculates image norm,
difference norm or relative
difference norm.

10-2

Image Analysis Reference 10

OpenCV Reference Manual
Table 10-1 Image Analysis Reference (continued)
Group Name Description
Monent s Calculates all moments up

Pyramid Functions

Morphology Functions

Get Spati al Monent

Cet Cent r al Monent

Cet Nor mal i zedCent r al Monent

Get HuMbnent s

r Down

PyrUp

Pyr Segnent at i on

Creat eStructuri ngEl enent Ex

Rel easeSt ruct uri ngEl enent

Er ode
Dlate
Mor phol ogyEx

to the third order of the
image plane and fills the
moment state structure.

Retrieves spatial moment
from the moment state
structure.

Retrieves the central
moment from the moment
state structure.

Retrieves the normalized
central moment from the
moment state structure.

Calculates seven Hu
moment invariants from
the moment state
structure.

Downsamples an image.
Upsamples an image.

Implements image
segmentation by
pyramids.

Creates a structuring
element.

Deletes the structuring
element.

Erodes the image by
using an arbitrary
structuring element.

Dilates the image by using
an arbitrary structuring
element.

Performs advanced
morphological
transformations.

10-3

OpenCV Reference Manual

Image Analysis Reference 10

Table 10-1

Image Analysis Reference (continued)

Group

Name

Description

Distance Transform
Function

Threshold Functions

Flood Filling Function

Histogram Functions

Di st Transform

Adapti veThr eshol d

Threshol d
Fl oodFi | |

Cr eat eH st
Rel easeHi st

MakeH st Header For Arr ay

Quer yHi st Val ue_1D

Quer yHi st Val ue_2D

Quer yHi st Val ue_3D

Quer yHi st Val ue_nD

Cet Hi st Val ue 1D

Cet Hi st Val ue 2D

Get Hi st Val ue_3D

Cet Hi st Val ue nD

Calculates distance to the
closest zero pixel for all
non-zero pixels of the
source image.

Provides an adaptive
thresholding binary
image.

Thresholds the binary
image.

Makes flood filling of the
image connected domain.

Creates a histogram.

Releases the histogram
header and the underlying
data.

Initializes the histogram
header.

Queries the value of a 1D
histogram bin.

Queries the value of a 2D
histogram bin

Queries the value of a 3D
histogram bin

Queries the value of an
nD histogram bin

Returns the pointer to 1D
histogram bin.

Returns the pointer to 2D
histogram bin.

Returns the pointer to 3D
histogram bin.

Returns the pointer to nD
histogram bin.

10-4

OpenCV Reference Manual

Image Analysis Reference 10

Table 10-1

Image Analysis Reference (continued)

Group

Name

Description

Pyramid Data Types

Cet M nMaxHi st Val ue

Nor mal i zeHi st
Thr eshHi st

Conpar eHi st

CopyHi st

Set Hi st Bi nRanges

Cal cHi st

Cal cBackPr oj ect

Cal cBackPr oj ect Pat ch

Cal cEMD

Cal cContrast Hi st

Data Types
CvConnect edConp

Finds minimum and
maximum histogram bins.

Normalizes a histogram.
Thresholds a histogram.

Compares two
histograms.

Makes a copy of a
histogram.

Sets bounds of histogram
bins.

Calculates a histogram of
an array of single-channel
images.

Calculates back projection
of a histogram.

Calculates back projection
by comparing histograms
of the source image
patches with the given
histogram.

Computes earth mover
distance and/or a lower
boundary of the distance.

Calculates a histogram of
contrast for the
one-channel image.

Represents an element
for each single connected
components
representation in memory.

Histogram Data Types CvHi st ogram Stores all the types of
histograms (1D, 2D,
nD).

| ntel . 10-5

OpenCV Reference Manual Image Analysis Reference 10

Contour Retrieving Functions

FindContours
Finds contoursin binary image.

int cvFindContours (Ipllnmage* ing, CvMenttorage* storage, CvSeq**
firstContour, int headerSi ze=si zeof (CvContour),
CvCont our Retri eval Mode npde=CV_RETR_LI ST, CvChai nAppr oxMet hod
met hod=CV_CHAI N_APPROX_SI MPLE) ;

i ng Single channel image of | PL_DEPTH_8U type. Non-zero
pixels are treated as 1-pixels. The function modifies the
content of the input parameter.

storage Contour storage location.

firstContour Output parameter. Pointer to the first contour on the highest
level.

header Si ze Size of the sequence header; must be equal to or greater than

si zeof (CvChai n) when the method cv_CHAI N_CODE is
used, and equal to or greater than si zeof (CvCont our)
otherwise.

mode Retrieval mode.

®* CV_RETR_EXTERNAL retrieves only the extreme outer
contours (list);

® CV_RETR_LI ST retrieves all the contours (list);

®* CV_RETR_CCOW retrievesthe two-level hierarchy (list
of connected components);

®* CV_RETR_TREE retrievesthe complete hierarchy (tree).

met hod Approximation method.
® CV_CHAI N_CODE outputs contours in the Freeman chain
code.

intel@ 10-6

OpenCV Reference Manual Image Analysis Reference 10

®* CV_CHAI N_APPROX_NONE trangdlates all the points from
the chain code into points,

® CV_CHAI N_APPROX_SI MPLE compresses horizontal,
vertical, and diagona segments, that is, it leaves only
their ending points;

® CV_CHAI N APPROX_TC89 L1,
CV_CHAI N_APPROX_TC89_KCOS are two versions of the
Teh-Chin approximation algorithm.

Discussion

The function Fi ndCont our s retrieves contours from the binary image and returns the
pointer to the first contour. Accessto other contours may be gained through the h_next
and v_next fields of the returned structure. The function returns total number of
retrieved contours.

StartFindContours
Initializes contour scanning process.

CvCont our Scanner cvStartFi ndContours (Ipllnmage* ing, CvMenSttorage* storage,
int headerSize, CvContourRetrieval Mode node, CvChai nApproxMet hod net hod);

i ng Single channel image of | PL_DEPTH_8U type. Non-zero
pixels are treated as 1-pixels. The function damages the
image.

st or age Contour storage location.

header Si ze Must be equal to or greater than si zeof (CvChai n) when

the method Cv_CHAI N_CODE is used, and equal to or greater
than si zeof (CvCont our) otherwise.

node Retrieval mode.

®* CV_RETR _EXTERNAL retrieves only the extreme outer
contours (list);

Intelc 10-7

OpenCV Reference Manual Image Analysis Reference 10

® CV_RETR_LI ST retrievesall the contours (list);

®* CV_RETR_CCOW retrievesthe two-level hierarchy (list
of connected components);

®* CV_RETR_TREE retrievesthe complete hierarchy (tree).

met hod Approximation method.
® CV_CHAI N_CODE codes the output contoursin the chain
code;

® CV_CHAI N_APPROX_NONE trandlates all the points from
the chain code into points,

® CV_CHAI N_APPROX_SI MPLE substitutes ending points for
horizontal, vertical, and diagona segments;

® CV_CHAIN_APPROX_TC89 L1,
CV_CHAI N_APPROX_TC89_KCOS are two versions of the
Teh-Chin approximation algorithm.

Discussion

The function st ar t Fi ndCont our s initializes the contour scanner and returns the
pointer to it. The structure isinternal and no description is provided.

FindNextContour
Finds next contour on raster.

CvSeq* cvFi ndNext Cont our (CvContour Scanner scanner);
scanner Contour scanner initialized by the function cv St ar t Fi ndCont our s.

Discussion

The function Fi ndNext Cont our returnsthe next contour or 0, if theimage contains no
other contours.

intel@ 10-8

OpenCV Reference Manual Image Analysis Reference 10

SubstituteContour
Replaces retrieved contour.

voi d cvSubstituteContour (CvContourScanner scanner, CvSeq* newContour);

scanner Contour scanner initialized by the function cv St ar t Fi ndCont our s.
newCont our Substituting contour.
Discussion

The function Subst i t ut eCont our replaces the retrieved contour, that was returned
from the preceding call of the function Fi ndNext Cont our and stored inside the
contour scanner state, with the user-specified contour. The contour isinserted into the
resulting structure, list, two-level hierarchy, or tree, depending on the retrieval mode. If
the parameter newCont our is0, the retrieved contour is not included into the resulting
structure, nor al of its children that might be added to this structure later.

EndFindContours
Finishes scanning process.

CvSeq* cvEndFi ndCont ours (CvContour Scanner* scanner);
scanner Pointer to the contour scanner.

Discussion

The function EndFi ndCont our s finishes the scanning process and returns the pointer
to the first contour on the highest level.

InteL 10-9

OpenCV Reference Manual Image Analysis Reference 10

Features Functions

Fixed Filters Functions

For background on fundamentals of Fixed Filters Functions see Fixed Filtersin Image
Analysis Chapter.

Laplace

Calculates convolution of input image with
Laplacian operator.

voi d cvLapl ace (Ipllmage* src, |pllmage* dst, int apertureSize=3);
src Input image.
dst Destination image.
apertureSi ze Size of the Laplacian kernel.

Discussion

The function Lapl ace calculates the convolution of the input image sr ¢ with the
Laplacian kernel of a specified size apert ur eSi ze and stores the result in dst .

Sobel

Calculates convolution of input image with Sobel
operator.

voi d cvSobel (Ipllmage* src, |pllmge* dst, int dx, int dy, int
apertureSi ze=3);

src Input image.
dst Destination image.

I ntel ® 10-10

OpenCV Reference Manual Image Analysis Reference 10

dx Order of the derivative x.

dy Order of the derivativey.

apertureSi ze Size of the extended Sobel kernel. The special value CV_SCHARR,
equal to - 1, corresponds to the Scharr filter 1/ 16[- 3, - 10, - 3; 0,
0, 0; 3, 10, 3]; may be transposed.

Discussion

The function Sobel calculatesthe convolution of the input image sr ¢ with a specified
Sobel operator kernel and stores the result in dst .

Feature Detection Functions

For background on fundamentals of Feature Detection Functions see Feature Detection
in Image Analysis Chapter.

Canny

I mplements Canny algorithm for edge detection.

voi d cvCanny (Ipllmage* ing, |pllmge* edges, double | owThresh, double
hi ghThresh, int apertureSi ze=3);

ing Input image.
edges Image to store the edges found by the function.
| owThr esh Low threshold used for edge searching.

hi ghThr esh High threshold used for edge searching.
apertureSi ze Size of the Sobel operator to be used in the algorithm.

Discussion

The function canny finds the edges on the input image i ng and puts them into the
output image edges using the Canny algorithm described above.

IntGI@ 10-11

OpenCV Reference Manual Image Analysis Reference 10

PreCornerDetect

Calculates two constraint images for corner
detection.

voi d cvPreCornerDetect (Ipllnmage* ing, |pllnmage* corners, Int apertureSize);
i ng Input image.
corners Image to store the results.
apertureSi ze Size of the Sobel operator to be used in the algorithm.

Discussion

The function Pr eCor ner Det ect finds the corners on the input image i ng and stores
them into the output image cor ner s in accordance with Method 1for corner detection.

CornerEigenValsAndVecs

Calculates eigenval ues and eigenvectors of
image blocks for corner detection.

voi d cvCor ner Ei genVal sAndVecs (I pllmage* ing, |pllnmage* eigenvv, int
bl ockSi ze, int apertureSize=3);

i Ny Input image.

ei genvv Image to store the results.

bl ockSi ze Linear size of the square block over which derivatives averaging is
done.

apertureSi ze Derivative operator aperture sizein the case of byte sourceformat. In
the case of floating-point input format this parameter is the number
of the fixed float filter used for differencing.

I ntel € 10-12

OpenCV Reference Manual Image Analysis Reference 10

Discussion

For every raster pixel the function Cor ner Ei genVal sAndVecs takes a block of

bl ockSi ze xbl ockSi ze pixelswith the top-left corner, or top-bottom corner for
bottom-origin images, at the pixel, computes first derivatives b, and B, within the
block and then computes eigenvalues and eigenvectors of the matrix:

2
D D, D, .
C= 25 2 Xzy , Where summations are performed over the block.
>.bby 30
The format of the frame ei genvv isthe following: for every pixel of the input image
the frame contains 6 float values (A1, A2, x1,y1,x2,y2).
A1, A2 areeigenvalues of the above matrix, not sorted by value.
x1,y1 are coordinates of the normalized eigenvector that correspondsto A1.
x2,y2 are coordinates of the normalized eigenvector that correspondsto A2.

In case of asingular matrix or if one of the eigenvalues is much less than another, all
six values are set to 0. The Sobel operator with aperture width aper ur eSi ze isused for
differentiation.

CornerMinEigenVal

Calculates minimal eigenval ues of image blocks
for corner detection.

voi d cvCorner M nEi genVal (IplInmage* ing, |Ipllmage* eigenvv, int blockSize, int
apertureSi ze=3);

i Ny Input image.

ei genvv Image to store the results.

bl ockSi ze Linear size of the square block over which derivatives averaging is
done.

| ntel ¢ 10-13

OpenCV Reference Manual Image Analysis Reference 10

apertureSi ze Derivative operator aperture sizein the case of byte source format. In
the case of floating-point input format this parameter is the number
of the fixed float filter used for differencing.

Discussion

For every raster pixel the function Cor ner M nEi genval takes ablock of

bl ockSi ze xbl ockSi ze pixelswith the top-left corner, or top-bottom corner for
bottom-origin images, at the pixel, computes first derivatives b, and D, within the
block and then computes eigenvalues and eigenvectors of the matrix:

2
D D.D _
C-= 25 X% Xzy , where summations are made over the block.
Dby D

In case of asingular matrix the minimal eigenvalueis set to 0. The Sobel operator
with aperture width aper ur eSi ze is used for differentiation.

FindCornerSubPix

Refines corner locations.

voi d cvFi ndCorner SubPi x (I plImge* inmg, CvPoint2D32f* corners, int count,
CvSi ze win, CvSize zeroZone, CvTernCriteria criteria);

i Ny Input raster image.

corners Initial coordinates of the input corners and refined coordinates on
output.

count Number of corners.

Wi n Half sizes of the search window. For example, if win = (5, 5), then
5(2+1x52+1 = 11x 11 pixel window to be used.

zer oZone Half size of the dead region in the middle of the search zone to avoid

possible singularities of the autocorrelation matrix. The value of
(-1, - 1) indicates that there is no such zone.

10-14

OpenCV Reference Manual Image Analysis Reference 10

criteria Criteriafor termination of the iterative process of corner refinement.
Iterations may specify a stop when either required precision is
achieved or the maximal number of iterations done.

Discussion.

The function Fi ndCor ner SubPi x iterates to find the accurate sub-pixel location of a

corner, or “radia saddle point”, as shown in Figure 10-1.

Figure 10-1 Sub-Pixel Accurate Corner

(red) gradient direction

Sub-pixel accurate corner (radial saddle point) locator is based on the observation that
any vector from q to p is orthogonal to the image gradient.

The core idea of this algorithm is based on the observation that every vector from the
center q to apoint p located within a neighborhood of q is orthogonal to the image
gradient at p subject to image and measurement noise. Thus:

g =0 :)—i da-p;),
where 01 , - istheimage gradient at the one of the points p in aneighborhood of q. The

value of q isto be found such that g; iIsminimized. A system of equations may be set
up with ¢, ‘s set to zero:

| ntel ¢ 10-15

OpenCV Reference Manual

Image Analysis Reference 10

T

[Zm o, Ol

[RESE

T

pi Epij: 0,

where the gradients are summed within a neighborhood (*“ search window”) of q.
Calling the first gradient term G and the second gradient term b gives:

g= G'b.

The agorithm sets the center of the neighborhood window at this new center g and
then iterates until the center keeps within a set threshold.

GoodFeaturesToTrack
Determines strong corners on image.

voi d cvGoodFeat uresToTrack (Ipllmage* image, |pllmge* eiglnage, |pllnmge*
tenpl mage, CvPoi nt 2D32f* corners, int* cornerCount, double qualityLevel,
doubl e m nDi stance);

i mge

ei gl mage

t enpl mage
corners
cor ner Count

qual i tyLevel

m nDi st ance

Source image with byte, signed byte, or floating-point depth, single
channel.

Temporary image for minimal eigenvalues for pixels: floating-point,
single channel.

Another temporary image: floating-point, single channel.
Output parameter. Detected corners.
Output parameter. Number of detected corners.

Multiplier for the maxmin eigenvalue; specifies minimal accepted
quality of image corners.

Limit, specifying minimum possible distance between returned
corners; Euclidian distanceis used.

10-16

OpenCV Reference Manual

Image Analysis Reference 10

Discussion

The function GoodFeat ur esToTr ack finds corners with big eigenvalues in the image.
The function first calculates the minimal eigenvalue for every pixel of the source
image and then performs non-maxima suppression (only local maximain 3x3
neighborhood remain). The next step is rejecting the corners with the minimal
eigenvaluelessthan qual i t yLevel *<max_of _mi n_ei gen_val s>. Finally, thefunction
ensures that all the corners found are distanced enough from one another by getting
two strongest features and checking that the distance between the pointsis satisfactory.
If not, the point is rejected.

Hough Transform Functions

For background on fundamentals of Hough Transform Functions see Hough Transform
in Image Analysis Chapter.

HoughLines

Findslinesin binary image, SHT algorithm.

voi d cvHoughLines (Ipllmage* src, double rho, double theta, int threshold,

float* lines, int

src
rho

t heta

t hreshol d

l'i nes

|l i nesNunber

I i nesNunber) ;

Source image.
Radius resolution.
Angleresolution.
Threshold parameter.

Pointer to the array of output lines parameters. The array should have
2*| i nesNunber elements.

Maximum number of lines.

10-17

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function HoughLi nes implements Standard Hough Transform (SHT) and
demonstrates average performance on arbitrary images. The function returns number
of detected lines. Every lineis characterized by pair (p,8), where p isdistance from
lineto point (0, 0) and 6 isthe angle between the line and horizontal axis.

HoughLinesSDiv

Findslinesin binary image, MHT algorithm.

int cvHoughLinesSDiv (Ipllnmge* src, double rho, int srn, double theta, int
stn, int threshold, float* lines, int |inesNunber);
src Source image.
rho Rough radius resolution.
srn Radius accuracy coefficient, r ho/ srn isaccurate r ho resolution.
theta Rough angle resolution.
stn Angle accuracy coefficient, t het a/ st n is accurate angle resolution.
t hreshol d Threshold parameter.
l'ines Pointer to array of the detected lines parameters. The array should

have 2*1 i nesNunber €ements.
| i nesNunber M aximum number of lines.

Discussion

The function HoughLi nesSDi v implements coarse-to-fine variant of SHT and is
significantly faster than the latter on images without noise and with a small number of
lines. The output of the function has the same format as the output of the function

HoughLi nes.

I ntel ® 10-18

OpenCV Reference Manual Image Analysis Reference 10

HoughLinesP

Finds line segments in binary image, PPHT
algorithm.

i nt cvHoughLi nesP (I pl I mage* src, double rho, double theta, int threshold,
int lineLength, int lineGap, int* lines, int |inesNunber);

src Source image.

rho Rough radius resolution.

theta Rough angle resolution.

t hreshol d Threshold parameter.

I i neLength Minimum accepted line length.

I i neGap Maximum length of accepted line gap.

l'ines Pointer to array of the detected line segments' ending coordinates.

The array should havel i nesNunber * 4 elements.
I i nesNumber Maximum number of line segments.

Discussion

The function HoughLi nesP implements Progressive Probabilistic Standard Hough
Transform. It retrieves no more than | i nesNunber line segments; each of those must
be not shorter than | i neLengt h pixels. The method is significantly faster than SHT on
noisy images, containing several long lines. The function returns number of detected
segments. Every line segment is characterized by the coordinates of its

ends(xy, y1, X2, Y2) -

| ntel ¢ 10-19

OpenCV Reference Manual Image Analysis Reference 10

Image Statistics Functions

CountNonZero
Counts non-zero pixelsin image.

i nt cvCount NonZero (I plImage* inage);
i mge Pointer to the source image.

Discussion

The function Count NonZer o returns the number of non-zero pixelsin the wholeimage
or selected image RO .

SumPixels
Summarizes pixel valuesin image.

doubl e cvSunPi xel s (I plInage* image);
i mage Pointer to the source image.

Discussion

The function sunPi xel s returns sum of pixel values in the whole image or selected
image RO .

I ntel ® 10-20

OpenCV Reference Manual Image Analysis Reference 10

Mean
Calculates mean value in image region.

doubl e cvMean(| pl I mage* image, |pllmage* mask=0);

i mage Pointer to the source image.
mask Mask image.
Discussion

The function Mean cal culates the mean of pixel valuesin the whole image, selected
RO or, if mask isnot NULL, in an image region of arbitrary shape.

Mean_StdDev

Calculates mean and standard deviation in image
region.

voi d cvMean_StdDev (| pl | mage* i mage, doubl e* nmean, doubl e* st ddev,
I pl | mage* mask=0);

i mge Pointer to the source image.

mean Pointer to returned mean.

st ddev Pointer to returned standard deviation.
mask Pointer to the single-channel mask image.
Discussion

The function Mean_St dDev calculates mean and standard deviation of pixel valuesin
the whole image, selected RO or, if mask isnot NULL, in an image region of arbitrary
shape. If the image has more than one channel, the cO must be selected.

I ntGI e 10-21

OpenCV Reference Manual Image Analysis Reference 10

MinMaxLoc

Finds global minimum and maximum inimage
region.

voi d cvM nMaxLoc (I pl | mage* i mage, doubl e* m nVval, doubl e* maxVal ,
CvPoi nt* m nLoc, CvPoint* maxLoc, |pllmge* mask=0);

i mge Pointer to the source image.

m nVval Pointer to returned minimum value.
maxVal Pointer to returned maximum value.

mi nLoc Pointer to returned minimum location.
maxLoc Pointer to returned maximum location.
mask Pointer to the single-channel mask image.
Discussion

The function M nvaxLoc finds minimum and maximum pixel values and their
positions. The extremums are searched over the whole image, selected RO or, if mask
isnot NULL, in an image region of arbitrary shape. If the image has more than one
channel, the ca must be selected.

Norm

Calculates image norm, difference norm or
relative difference norm.

doubl e cvNorm (I pl I mage* ingA, |pllmage* ingB, int nornType, Ipllnage*
mask=0) ;

i NngA Pointer to the first source image.
i NngA Pointer to the second source image if any, NULL otherwise.
nor nType Type of norm.

I ntel € 10-22

OpenCV Reference Manual Image Analysis Reference 10

mask Pointer to the single-channel mask image.

Discussion

The function Nor mcalculates images norms defined below. If i ngB = NULL, the
following three norm types of image A are calculated:

Nor mType = CV_C: |Al¢ = rmx(|Ai]- N,

NN,
> 2 AL

i=1j =1

Nor mType = CV_L1: HAHL1

Nor mType = CV_L2: HAHL2

=1 =1

If i gB= NULL, the difference or relative difference norms are calcul ated:

Nor nType = CV_C: |A-Bl = max(\Ai - B |),

NN

Nornifype = CV_L1: [A-B|_ = Y S |A; =B,
i=1j =1
N, Ny
Normlype = CV_L2: [A-Bl_ = |Y Y (A B)2,
i=1j =1
Nor mifype = CV_RELATI VEC: |A-B|/[Blc = max(A; =B
max (|B; i)
N, Ny
> > A =Bl
Nor nype = CV_RELATI VEL1: |A-B|_/IB| = :”Nley :
> [Bijl
i=1j =1

| ntel ¢ 10-23

OpenCV Reference Manual Image Analysis Reference 10

Nor mype = CV_RELATIVEL2: |A-B|_/|B|_ = \/i

The function Nor m returns the calculated norm.

Moments

Calculates all moments up to third order of image
plane and fills moment state structure.

voi d cvMorents (I pllmage* i mage, CvMonents* nonents, int isBinary=0);

i mge Pointer to the image or to top-left corner of itsrA .
nmonent s Pointer to returned moment state structure.
i sBi nary If the flag is non-zero, all the zero pixel values are treated as zeroes,

al the others are treated as ones.

Discussion

The function Monent s calculates moments up to the third order and writes the result to
the moment state structure. This structure is used then to retrieve a certain spatial,
central, or normalized moment or to calculate Hu moments.

I ntel € 10-24

OpenCV Reference Manual Image Analysis Reference 10

GetSpatialMoment

Retrieves spatial moment from moment state
structure.

doubl e cvGet Spati al Monment (CvMonents* nonments, int x_order, int y_order);

moment s Pointer to the moment state structure.
x_or der Order x of required moment.
y_order Order y of required moment

(0<=x_order,y_order;x_order +y_order <= 3).
Discussion
The function Get Spat i al Monent retrieves the spatial moment, which is defined as:

x_order order
M(_order,y_order = ZI (X, y)x"~ yy_ , Where
X,y

| (x,y) istheintensity of the pixel (x, y) .

GetCentralMoment

Retrieves central moment from moment state
structure.

doubl e cvGet Central Moment (CvMonents* nonments, int x_order, int y_order);

moment s Pointer to the moment state structure.
x_or der Order x of required moment.
y_order Order y of required moment

(0<=x_order,y_order;x_order +y_order <= 3).

| ntel ¢ 10-25

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Get Cent r al Monent retrieves the central moment, which is defined as:

o d o d
Hx_order,y_order = zl (X, y)(x —X)X_Or er(y _y)y_or o , Where
X,y

| (x,y) istheintensity of pixel (x,y), x isthe coordinate x of the mass center, y isthe
coordinatey of the mass center:

GetNormalizedCentralMoment

Retrieves normalized central moment from
moment state structure.

doubl e cvGet Nor mal i zedCent ral Morent (CvMonent s* nmonents, int x_order, int

y_order);
monent s Pointer to the moment state structure.
x_or der Order x of required moment.
y_order Order y of required moment
(0<=x_order,y_order;x_order +y_order <= 3).
Discussion

The function Get Nor mal i zedCent r al Monent retrieves the normalized central
moment, which is defined as:

- I'lx_order,y_or der
nX_OFdEFVY_Ofder M)(x_order +y_order)/2+1) "
,0

I ntel ® 10-26

OpenCV Reference Manual Image Analysis Reference 10

GetHuMoments

Calculates seven moment invariants from moment
state structure.

voi d cvGet HUMonments (CvMonent s* nonents, CvHuMonent s* HuhMoments);

moment s Pointer to the moment state structure.
HuMonent s Pointer to Hu moments structure.
Discussion

The function Get HuMbrrent s calculates seven Hu invariants using the following
formulas:

hy = Nyt Ngys
B 2 2
hy = (N —Nga)™ +4N17 s
2 2
hy = (Ngg—3N12)" + (3N —Ng3) >
2 2
hy = (Ngp+Ng) + Ny +Ng3)” s

2 2.
hg = (N30—3N12)(N3g + N12)[(Ngg + N12)" —3(No1 + Ng3)]
+(3n21_r103)(n21+r|o3)[3(r]3o+nlz)z_(n21+rlo3)2]

he = (r] zo_noz)[(ngo+ nlz)z_(r]21+r|03)2] +4r|11(r]30+ Fllz)(ﬂ21+r103) l

h, = (3n21—n03)(n21+ﬂog)[3(f130+nlg)z—(n21+n03)2]
2 2.
—(N3p=3N12) (N * Nz)[3(N3g + N12)” —(N2g + Np3)]

These values are proved to be invariants to the image scale, rotation, and reflection
except the seventh one, whose sign is changed by reflection.

I ntGI e 10-27

OpenCV Reference Manual Image Analysis Reference 10

Pyramid Functions

PyrDown

Downsamples image.

voi d cvPyrDown (I pllnmage* src, |pllnmage* dst, IplFilter
filter=1PL_GAUSSI AN 5x5);

src Pointer to the source image.
dst Pointer to the destination image.
filter Type of the filter used for convolution; only | PL_GAUSSI AN_5x5 iS

currently supported.

Discussion

The function Pyr Down performs downsampling step of Gaussian pyramid
decomposition. First it convolves source image with the specified filter and then
downsamples the image by rejecting even rows and columns. So the destination image
isfour times smaller than the source image.

PyrUp

Upsamplesimage.

void cvPyrUp (Ipllmage* src, |pllmage* dst, IplFilter
filter=lPL_GAUSSI AN 5x5);

src Pointer to the source image.
dst Pointer to the destination image.
filter Type of the filter used for convolution; only | PL_GAUSSI AN_5x5 iS

currently supported.

I ntel ® 10-28

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Pyr Up performs up-sampling step of Gaussian pyramid decomposition.
First it upsamples the source image by injecting even zero rows and columns and then
convolves result with the specified filter multiplied by 4 for interpolation. So the
destination image is four times larger than the source image.

PyrSegmentation
I mplements image segmentation by pyramids.

voi d cvPyrSegnentation (Ipllnmage* srclmage, |pllnmage* dstlnage, CvMenttorage*
storage, CvSeq** conp, int |level, double thresholdl, double threshol d2);

srcl mage Pointer to the input image data.

dst | mage Pointer to the output segmented data.

st or age Storage; stores the resulting sequence of connected components.
conp Pointer to the output sequence of the segmented components.

| evel Maximum level of the pyramid for the segmentation.

t hreshol d1 Error threshold for establishing the links.
t hr eshol d2 Error threshold for the segments clustering.

Discussion

The function Pyr Segnent at i on implements image segmentation by pyramids. The
pyramid builds up to the level | evel . The links between any pixel a onlevel i andits
candidate father pixel b on the adjacent level are established if

p(c(a),c(b)) <t hreshol d1. After the connected components are defined, they are
joined into several clusters. Any two segments A and B belong to the same cluster, if
p(c(A),c(B)) <t hreshol d2. Theinput image has only one channel, then

p(ct, ¢ = |c*=c?. If theinput image has three channels (red, green and blue), then
p(c’,c?) = 03 e, —c;)+059 ey —cj) +0,11 ey —cp) . There may be more than one
connected component per a cluster.

10-29

OpenCV Reference Manual Image Analysis Reference 10

Input srcl mage and output dst | mage should have the identical | PL_DEPTH_8U depth
and identical number of channels (1 or 3).

Morphology Functions

CreateStructuringElementEx
Creates structuring element.

I pl ConvKernel * cvCreateStructuringEl enent Ex (int nCols, int nRows, int
anchor X, int anchorY, CvEl ement Shape shape, int* val ues);

nCol s Number of columnsin the structuring element.

nRows Number of rows in the structuring element.

anchor X Relative horizontal offset of the anchor point.

anchor Y Relative vertical offset of the anchor point.

shape Shape of the structuring e ement; may have the following values:

®* CV_SHAPE_RECT, arectangular el ement;
®* CV_SHAPE_CROSS, a cross-shaped element;
® CV_SHAPE ELLI PSE, an €lliptic element;

®* CV_SHAPE_cusTOM auser-defined element. In this case the
parameter val ues specifiesthe mask, that is, which neighbors of
the pixel must be considered.

val ues Pointer to the structuring element data, a plane array, representing
row-by-row scanning of the element matrix. Non-zero values
indicate points that belong to the element. If the pointer isNULL, then
all values are considered non-zero, that is, the element is of a
rectangular shape. This parameter is considered only if the shape is
CV_SHAPE_CUSTOM

I ntel € 10-30

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Cr eat eSt r uct ur i ngEl ement Ex allocates and fills the structure
I pl ConvKer nel , which can be used as a structuring element in the morphological
operations.

ReleaseStructuringElement
Deletes structuring element.

voi d cvRel easeStructuringEl enent (I pl ConvKernel ** ppEl emrent);
ppEl enent Pointer to the deleted structuring element.

Discussion

The function Rel easeSt ruct uri ngEl enent releases the structure | pl ConvKer nel
that is no longer needed. If * ppEl enent iSNULL, the function has no effect. The
function returns created structuring element.

Erode

Erodes image by using arbitrary structuring
element.

voi d cvErode (Ipllmage* src, |pllmge* dst, |plConvKernel* B, int iterations);

src Source image.

dst Destination image.

B Structuring element used for erosion. If NULL, a 3x3 rectangular
structuring element is used.

iterations Number of times erosion is applied.

| ntel ¢ 10-31

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Er ode erodes the source image. The function takes the pointer to the
structuring element, consisting of “zeros’ and “minus ones’; the minus ones determine
neighbors of each pixel from which the minimum istaken and put to the corresponding
destination pixel. The function supports the in-place mode when the source and
destination pointers are the same. Erosion can be applied several times (i t er ati ons
parameter). Erosion on a color image means independent transformation of all the
channels.

Dilate

Dilates image by using arbitrary structuring
element.

void cvDilate (Ipllmge* pSrc, |pllmge* pDst, |pl ConvKernel* B, int

iter

ations);

pSrc Source image.

pDst Destination image.

B Structuring element used for dilation. If NULL, a 3x3 rectangular
structuring element is used.

iterations Number of times dilation is applied.

Discussion

The function Di | at e performs dilation of the source image. It takes pointer to the
structuring element that consists of “zeros” and “minus ones’; the minus ones
determine neighbors of each pixel from which the maximum is taken and put to the
corresponding destination pixel. The function supportsin-place mode. Dilation can be
applied several times (i t er at i ons parameter). Dilation of a color image means
independent transformation of al the channels.

10-32

OpenCV Reference Manual Image Analysis Reference 10

MorphologyEx

Performs advanced morphological
transformations.

voi d cvMor phol ogyEx (I plInmage* src, |pllnmage* dst, |pllnage* tenp,
I pl ConvKernel * B, CvMorphQp op, int iterations);

src Source image.

dst Destination image.

tenp Temporary image, required in some cases.
B Structuring element.

op Type of morphological operation:

* CV_MOP_OPEN, Opening;

® CV_MOP_CLGSE, closing;

®* CV_MOP_GRADI ENT, morphological gradient;

* CV_MOP_TOPHAT, top hat;

®* CV_MOP_BLACKHAT, black hat.

(See Morphology for description of these operations).

iterations Number of times erosion and dilation are applied during the complex
operation.

Discussion

The function Mor phol ogyEx performs advanced morphological transformations. The
function uses Er ode and Di | at e to perform more complex operations. The parameter
t enp must be non-NULL and point to the image of the same size and format assr ¢ and
dst when op iS CV_MOP_GRADI ENT, or when op iSCV_MOP_TOPHAT Or op iS
CV_MOP_BLACKHAT and sr ¢ isequal to dst (in-place operation).

| ntel ¢ 10-33

OpenCV Reference Manual Image Analysis Reference 10

Distance Transform Function

DistTransform

Calculates distance to closest zero pixel for all
non-zero pixels of source image.

void cvDi st Transform (I pl I mage* src, |pllmge* dst, CvDi sType di sType,
CvDi sMaskType nmaskType, float* mask);

src Source image.

dst Output image with calculated distances.

di sType Type of distance; canbecv_DI ST L1, CV_DI ST_L2,CV_DI ST_Cor
CV_DI ST_USER.

mask Type Size of distance transform mask; can be Cv_DI ST_MASK_3x3 or
CV_DI ST_MASK_5x5.

mask Pointer to the user-defined mask used with the distance type

CV_DI ST_USER.

I ntel ® 10-34

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Di st Tr ansf or m approximates the actual distance from the closest zero
pixel with asum of fixed distance values. two for 3x3 mask and three for 5x5 mask.
Figure 10-2 shows the result of the distance transform of a 7x 7 image with a zero
central pixel.

Figure 10-2 3x3 Mask

45 | 4 353|354 4.5
4 3 25121253 4
3512515 (1|15|25 |35
3 2 1 01 2 3
3512515 |1|15|25 |35
4 3 25121253 4
45 | 4 353|354 4.5

This example correspondsto a3x3 mask; in case of user-defined distance type the user
sets the distance between two pixels, that share the edge, and the distance between the
pixels, that share the corner only. For this case the valuesare 1 and 1.5
correspondingly. Figure 10-3 shows the distance transform for the same image, but for
a 5x5 mask. For the 5x5 mask the user sets an additional distance that is the distance
between pixels corresponding to the chess knight move. In this example the additional
distanceisequal to 2. For cv_DI ST_L1, CV_DI ST_L2, and CV_DI ST_C the optimal
precal culated distance values are used.

10-35

OpenCV Reference Manual Image Analysis Reference 10

Figure 10-3 5x5 Mask

451353 |33 |35|4
35|13 |2 |22 |3 |35
3 |2 |15(1|15(2 |3
3 (2 |1 (0|1 (2 |3
3 (2 |15(1|15(2 |3
35(3 |2 (2|2 |3 |35
4 (353 |33 |35|4

Threshold Functions

AdaptiveThreshold
Provides adaptive thresholding binary image.

voi d cvAdapti veThreshold (Ipllmage* src, |pllmage* dst, double nax,
CvAdapti veThreshMet hod net hod, CvThreshType type, doubl e* paraneters);

src Source image.
dst Destination image.

I ntel € 10-36

Image Analysis Reference 10

OpenCV Reference Manual
max Max parameter used with the types cv_THRESH_BI NARY and
CV_THRESH_BI NARY_I Nv only.
met hod Method for the adaptive threshold definition; now
CV_STDDEF_ADAPTI VE_THRESH only.
type Thresholding type; must be one of

¢ CV_THRESH BI NARY, val = (val >Thresh?MAX:0);

¢ CV_THRESH BI NARY_I NV, val = (val >Thr esh?0:MAX);
® CV_THRESH TOZERQ, val = (val >Thresh?val :0);

® CV_THRESH TOZERO I NV, val = (val >Thresh?0:val).

par anet ers Pointer to the list of method-specific input parameters. For the
method cv_STDDEF_ADAPTI VE_THRESH the value par amet er s[0] iS
the size of the neighborhood: 1- (3x3), 2- (5x5), or 3- (7x7), and
par aret er s[1] isthe value of the minimum variance.

Discussion

The function Adapt i veThreshol d calculates the adaptive threshold for every input
image pixel and segmentsimage. The algorithm is as follows.

Let {f;;},1<i <I,1<j <J betheinputimage. For every pixel i,j themean m; and

variance v;; are calculated asfollows:

p p p p
My =1200% 3 fiigjes Vi) V203 3 [fiagjw—mjl

s =—pt =—p s =—pt =—p

where p x p isthe neighborhood.

Local threshold for pixel i ,j ist;; =m; +v;; forv;; >v; ,andt;; =t,, , for
Vij SVyin, Wherev; istheminimumvariancevaue. If j = 1,thent;; =t; ,;,
ty =ty Wherev, ; >vand vy <vy, for (i <i) 0@ =i0)0G <io)-

Output segmented image is calculated as in the function Thr eshol d.

10-37

OpenCV Reference Manual Image Analysis Reference 10

Threshold
Thresholds binary image.

void cvThreshold (IplInmge* src, |pllnmge* dst, float thresh, float naxval ue,
CvThreshType type);

src Source image.

dst Destination image; can be the same as the parameter src.
t hresh Threshold parameter.

maxval ue Maximum value; parameter, used with threshold types

CV_THRESH_BI NARY, CV_THRESH_BI NARY_I NV, and
CV_THRESH_TRUNC.

type Thresholding type; must be one of
® CV_THRESH_BI NARY, val = (val >t hresh maxval ue:0);
® CV_THRESH BI NARY_I NV, val = (val >t hresh 0: maxval ue);
® CV_THRESH TRUNC, val = (val >t hresh?t hresh: maxval ue);
® CV_THRESH TOZERG, val = (val >t hresh val :0);
¢ CV_THRESH TOZERO I NV, val = (val >thresh O:val).

Discussion

The function Thr eshol d applies fixed-level thresholding to grayscale image. The
result is either agrayscale image or a bi-level image. The former variant istypically
used to remove noise from the image, while the latter one is used to represent a
grayscale image as composition of connected components and after that build contours
on the components viathe function Fi ndCont our s. Figure 10-4 illustrates meanings of
different threshold types:

I ntel € 10-38

OpenCV Reference Manual

Image Analysis Reference 10

Figure 10-4 Meanings of Threshold Types

Fmm - mm e mm e mm e mm e mmm e m e m

WValue and Threshold Level

Threshold Binary

Threshold Bmary, Inverted

Truncate

Threshold to Zera, Inverted

Threshald to Zera

10-39

OpenCV Reference Manual

Image Analysis Reference 10

Flood Filling Function

FloodFill

Makes flood filling of image connected domain.

voi d cvFl oodFi | |
| oDi ff,

ing
seedPoi nt
newval

| oDi ff

upDi ff

conp

connectivity

Discussion

(Ipl' I mage* ing, CvPoint seedPoint, double newal, double
doubl e upDi ff, CvConnect edConmp* conp, int connectivity=4);

Input image; repainted by the function.
Coordinates of the seed point inside the image ROI.
New value of repainted domain pixels.

Maximal lower difference between the values of pixel belonging to
the repainted domain and one of the neighboring pixelsto identify
the latter as belonging to the same domain.

Maximal upper difference between the values of pixel belonging to
the repainted domain and one of the neighboring pixelsto identify
the latter as belonging to the same domain.

Pointer to structure the function fills with the information about the
repainted domain.

Type of connectivity used within the function. If it isfour, whichis
default value, the function tries out four neighbors of the current
pixel, otherwise the function tries out al the eight neighbors.

The function FI oodFi I I fillsthe seed pixel neighborhoods inside which all pixel
values are close to each other. The pixel is considered to belong to the repainted
domain if its value v meets the following conditions:

Vo—d, <V sv0+dup,

10-40

OpenCV Reference Manual Image Analysis Reference 10

where v, isthe value of at least one of the current pixel neighbors, which already
belongs to the repainted domain. The function checks 4-connected neighborhoods of
each pixdl, that is, its side neighbors.

Histogram Functions

CreateHist
Creates histogram.

CvHi stogrant cvCreateHi st (int cDims, int* di ns, CvHi st Type type,
float** ranges=0, int unifornel);

cDi s Number of histogram dimensions.
di s Array, elements of which are numbers of bins per each dimension.
type Histogram representation format: Cv_H ST_ARRAY means that

histogram data is represented as an array; CV_HI ST_TREE means that
histogram data is represented as a sparse structure, that is, the
balanced tree in this implementation.

ranges 2D array, or more exactly, an array of arrays, of bin ranges for every
histogram dimension. Its meaning depends on the uniform
parameter value.

uni form Uniformity flag; if not 0, the histogram has evenly spaced bins and

every element of r anges array isan array of two numbers: lower and

upper boundaries for the corresponding histogram dimension. If the

parameter is equal to 0, theni th element of ranges array

containsdi ns[i]+1 elements: | (0),u(0) == 1(1),u(1) == 1(2),
u(n-1),where | (i) and u(i) arelower and upper

boundaries for thei th bin, respectively.

I ntGI e 10-41

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Cr eat eHi st creates a histogram of the specified size and returns the
pointer to the created histogram. If the array r anges is 0, the histogram bin ranges
must be specified later viathe function Set Hi st Bi nRanges.

ReleaseHist
Releases histogram header and underlying data.

voi d cvRel easeHi st (CvHi stogrant* hist);

hi st Pointer to the released histogram.

Discussion

The function Rel easeHi st releases the histogram header and underlying data. The
pointer to histogram is cleared by the function. If *hi st pointer is aready NULL, the
function has no effect.

MakeHistHeaderForArray

Initializes histogram header.

voi d cvMakeHi st Header For Array (i nt ¢cDi s, i nt* di ms, CvHi st ogr ant hi st,
float* data, float** ranges=0, int uniformel);

cDi s Histogram dimension number.

di s Dimension size array.

hi st Pointer to the histogram to be created.

dat a Pointer to the source data histogram.

r anges 2D array of bin ranges.

uni form If not O, the histogram has evenly spaced bins.
"Ttel@ 10-42

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function MakeH st Header For Array initializes the histogram header and sets the
data pointer to the given value dat a. The histogram must have the type

CV_H ST_ARRAY. If the array r anges is 0, the histogram bin ranges must be specified
later viathe function Set Hi st Bi nRanges.

QueryHistValue_ 1D

Queries value of histogram bin.

float cvQueryH stValue_1D (CvHi stogrant hist, int idx0);

hi st Pointer to the source histogram.
i dx0 Index of the bin.
Discussion

The function Quer yHi st Val ue_1D returns the value of the specified bin of 1D
histogram. If the histogram representation is a sparse structure and the specified binis
not present, the function return O.

QueryHistValue_ 2D

Queries value of histogram bin.

float cvQueryHi stValue_2D (CvHi stogrant hist, int idx0, int idxl);

hi st Pointer to the source histogram.
i dx0 Index of the binin thefirst dimension.
i dx1 Index of the bin in the second dimension.

| ntel . 10-43

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Quer yHi st Val ue_2D returns the value of the specified bin of 2D
histogram. If the histogram representation is a sparse structure and the specified binis
not present, the function return O.

QueryHistValue_3D

Queries value of histogram bin.

float cvQueryH stValue_3D (CvHi stogrant hist, int idxO, int idx1, int idx2);

hi st Pointer to the source histogram.

i dx0 Index of the bin in the first dimension.

i dx1 Index of the bin in the second dimension.
i dx2 Index of the bin in the third dimension.
Discussion

The function Quer yHi st Val ue_3D returns the value of the specified bin of 3D
histogram. If the histogram representation is a sparse structure and the specified binis
not present, the function return O.

QueryHistValue nD

Queries value of histogram bin.

float cvQueryH stValue_nD (CvHi stogrant hist, int* idx);
hi st Pointer to the source histogram.
i dx Array of binindices, that is, a multi-dimensional index.

I ntel € 10-44

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Quer yHi st Val ue_nD returns the value of the specified bin of nD
histogram. If the histogram representation is a sparse structure and the specified binis
not present, the function return 0. The function is the most general in the family of
Quer yHi st Val ue functions.

GetHistValue_1D

Returns pointer to histogram bin.

float* cvGCet Hi stVal ue_1D (CvHi stogrant hist, int idx0);

hi st Pointer to the source histogram.
i dx0 Index of the bin.
Discussion

The function Get Hi st Val ue_1D returns the pointer to the histogram bin, given its
coordinates. If the bin is not present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

GetHistValue 2D

Returns pointer to histogram bin.

float* cvGet Hi stVal ue_2D (CvHi stogrant hist, int idxO, int idxl);

hi st Pointer to the source histogram.
i dx0 Index of the binin thefirst dimension.
i dx1 Index of the bin in the second dimension.

| ntel . 10-45

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Get Hi st Val ue_2D returnsthe pointer to the histogram bin, given its
coordinates. If the bin is not present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

GetHistValue_3D

Returns pointer to histogram bin.

float* cvGet Hi stVal ue_3D (CvH stogrant hist,int idx0, int idxl, int idx2);

hi st Pointer to the source histogram.

i dx0 Index of the bin in the first dimension.

i dx1 Index of the bin in the second dimension.
i dx2 Index of the bin in the third dimension.
Discussion

The function Get Hi st Val ue_3D returnsthe pointer to the histogram bin, given its
coordinates. If the bin isnot present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

GetHistValue nD

Returns pointer to histogram bin.

float* cvGCet Hi stVal ue_nD (CvH stogrant hist, int* idx);
hi st Pointer to the source histogram.
i dx Array of binindices, that is, a multi-dimensional index.

I ntel ® 10-46

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Get Hi st Val ue_nD returns the pointer to the histogram bin, given its
coordinates. If the bin is not present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

GetMinMaxHistValue

Finds minimum and maximum histogram bins.

voi d cvGet M nMaxHi st Val ue (CvHi stogrant hist, float* minVal, float* naxVal,
int* mnldx=0, int* maxldx=0);

hi st Pointer to the histogram.

m nVal Pointer to the minimum value of the histogram; can be NULL.
maxVal Pointer to the maximum value of the histogram; can be NULL.

m nl dx Pointer to the array of coordinates for minimum. If not NULL, must

have hi st - >c_di ns elements.

max| dx Pointer to the array of coordinates for maximum. If not NULL, must
have hi st - >c_di ns elements.

Discussion

The function Get M nMaxHi st Val ue finds the minimum and maximum histogram bins
and their positions. In case of several maximums or minimums the leftmost ones are
returned.

NormalizeHist
Normalizes histogram.

voi d cvNormal i zeHi st (CvHi stogrant hist, float factor);
hi st Pointer to the histogram.

I ntGI e 10-47

OpenCV Reference Manual Image Analysis Reference 10

f act or Normalization factor.

Discussion

The function Nor mal i zeHi st normalizes the histogram, such that the sum of
histogram bins becomes equal to f act or.

ThreshHist
Thresholds histogram.

voi d cvThreshH st (CvHi stogrant hist, float thresh);

hi st Pointer to the histogram.
t hresh Threshold level.
Discussion

The function Thr eshHi st clears histogram bins that are below the specified level.

CompareHist
Compares two histograms.

doubl e cvConpar eHi st (CvHi stogrant histl, CvHi stogrant hist2, CvConpareMethod

net hod) ;
histl First histogram.
hi st 2 Second histogram.
met hod Comparison method; may be any of those listed below:

* CV_COVP_CORREL:
* CV_COW_CH SQR;
* CV_COVP_| NTERSECT.

I ntel ® 10-48

OpenCV Reference Manual Image Analysis Reference 10

Discussion

The function Conpar eHi st compares two histograms using specified method.

269

_ (q; —v;)2
CV_COW_CH SQRresult = anT
- i i

I

CV_COW_CORREL result =

CV_COVP_I NTERSECT resul t = 3min(q;,V;).

The function returns the comparison resullt.

CopyHist

Copies histogram.

voi d cvCopyHi st (CvH stogrant src, CvHi stogrant* dst);

src Source histogram.
dst Pointer to destination histogram.
Discussion

The function CopyHi st makes acopy of the histogram. If the second histogram pointer
*dst isnull, it isalocated and the pointer is stored at * dst . Otherwise, both
histograms must have equal types and sizes, and the function simply copies the source
histogram bins values to destination histogram.

| ntel . 10-49

OpenCV Reference Manual Image Analysis Reference 10

SetHistBinRanges

Sets bounds of histogram bins.

voi d cvSet Hi st Bi nRanges (CvHi stogrant hist, float** ranges, int unifornel);

hi st Destination histogram.

r anges 2D array of bin ranges.

uni form If not O, the histogram has evenly spaced bins.
Discussion

The function Set Hi st Bi nRanges is astand-alone function for setting bin rangesin the
histogram. For more detailed description of the parametersr anges and uni f or msee
Creat eH st function, that can initialize the ranges as well. Ranges for histogram bins
must be set before the histogram is calculated or backproject of the histogram is
calculated.

CalcHist

Calculates histogram of image(s).

voi d cvCal cHi st (Ipllmage** inmy, CvHi stogrant hist, int doNotC ear=0,
I pl I mage* mask=0);

i ng Source images.
hi st Pointer to the histogram.
doNot Cl ear Clear flag.

mask Mask; determines what pixels of the source images are considered in
process of histogram calculation.

I ntel € 10-50

OpenCV Reference Manual Image Analysis Reference 10

Discussion

Thefunction cal cHi st calculatesthe histogram of the array of single-channel images.
If the parameter doNot A ear is 0, then the histogram is cleared before calculation;
otherwise the histogram is ssmply updated.

CalcBackProject
Calculates back project.

voi d cvCal cBackProject (Ipllnmage** ing, |pllmge* dstlng, CvH stogrant hist);

iy Source images array.
dstlng Destination image.
hi st Source histogram.
Discussion

The function cal cBackPr oj ect calculates the back project of the histogram. For each
group of pixels taken from the same position from all input single-channel images the
function puts the histogram bin value to the destination image, where the coordinates
of the bin are determined by the values of pixelsin thisinput group. In terms of
statistics, the value of each output image pixel characterizes probability that the
corresponding input pixel group belongs to the object whose histogram is used.

For example, to find ared object in the picture, the procedure is as follows:

1. Cadculate ahue histogram for the red object assuming the image contains only
this object. The histogram is likely to have a strong maximum, corresponding
tored color.

2. Calculate back project using the histogram and get the picture, where bright
pixels correspond to typical colors (e.g., red) in the searched object.

3. Find connected componentsin the resulting picture and choose the right
component using some additional criteria, for example, the largest connected
component.

10-51

OpenCV Reference Manual Image Analysis Reference 10

CalcBackProjectPatch
Calculates back project patch of histogram.

voi d cvCal cBackProj ect Pat ch (I pl I mage** i ng, |pllmage* dst, CvSi ze pat chSi ze,

CvHi

stogramt hi st, CvConpareMethod nethod, float nornfFactor);
i ng Source images array.

dst Destination image.

pat chSi ze Size of patch slid though the source image.

hi st Probabilistic model.

met hod Method of comparison.

nor nFact or Normalization factor.

Discussion

The function Cal cBackPr oj ect Pat ch calculates back projection by comparing
histograms of the source image patches with the given histogram. Taking measurement
results from some image at each location over ROI creates an array i mg. These results
might be one or more of hue, x derivative, y derivative, Laplacian filter, oriented
Gabor filter, etc. Each measurement output is collected into its own separate image.
Thei mg image array is acollection of these measurement images. A
multi-dimensional histogram hi st is constructed by sampling from thei ng image
array. Thefinal histogramis normalized. The hi st histogram has as many dimensions
as the number of elementsini g array.

Each new image is measured and then converted into an i ng image array over achosen
ROI. Histograms are taken from thisi ng image in an area covered by a*“ patch” with
anchor at center as shown in Figure 10-5. The histogram is normalized using the
parameter nor m f act or S0 that it may be compared with hi st . The calculated
histogram is compared to the model histogram; hi st usesthe function cvConpar eHi st
(the parameter met hod). The resulting output is placed at the location corresponding to
the patch anchor in the probability image dst . This processis repeated as the patch is
dlid over the ROI. Subtracting trailing pixels covered by the patch and adding newly
covered pixels to the histogram can save alot of operations.

10-52

OpenCV Reference Manual Image Analysis Reference 10

Figure 10-5 Back Project Calculation by Patches

img
Patch images

ROI

Each image of theimage array i mg shown in the figure stores the corresponding
element of a multi-dimensional measurement vector. Histogram measurements are
drawn from measurement vectors over a patch with anchor at the center. A
multi-dimensional histogram hi st isused viathe function Conpar eHi st to calculate
the output at the patch anchor. The patch is dlid around until the values are calcul ated
over the whole ROI.

| ntel ¢ 10-53

OpenCV Reference Manual Image Analysis Reference 10

CalceEMD

Computes earth mover distance.

voi d cvCal cEMD (fl oat* signaturel, int sizel, float* signature2, int size2, int
di ns, CvDi sType distType, float *distFunc (float* f1, float* f2, void*
userParam, float* end, float* |owerBound, void* userParanj;

signat urel First signature, array of si zel * (dinms + 1) elements.

si zel Number of elementsin the first compared signature.

si gnat ur e2 Second signature, array of size2 * (dins + 1) elements.

si ze2 Number of elementsin the second compared signature.

di ms Number of dimensions in feature space.

di st Type Metricsused; cv_DI ST_L1, CV_DI ST_L2, and ¢V_DI ST_C stand for

one of the standard metrics. cv_DI ST_USER means that a user-defined
function is used as the metric. The function takes two coordinate
vectors and user parameter and returns the distance between two

VEectors.

di st Func Pointer to the user-defined ground distance function if di st Type is
CV_DI ST_USER.

end Pointer to the calculated end distance.

| ower Bound Pointer to the calculated lower boundary.

user Par am Pointer to optional datathat is passed into the distance function.

Discussion

The function Cal cEMD computes earth mover distance and/or alower boundary of the
distance. The lower boundary can be calculated only if di ms > 0, and it has sense only
if the metric used satisfies al metric axioms. The lower boundary is calculated very
fast and can be used to determine roughly whether the two signatures are far enough so
that they cannot relate to the same object. If the parameter di ms is equal to O, then

si gnat ur el and si gnat ur e2 are considered simple 1D histograms. Otherwise, both
signatures must look as follows:

I ntel ® 10-54

OpenCV Reference Manual Image Analysis Reference 10

(weight _i0,x0_i0,x1_i0,...,x(dinms-1)_iO0,
weight _i1,x0_i1,x1_i1,...,x(dinms-1)_il,
wei ght _(sizel-1),x0_(sizel-1),x1_(sizel-1, ...,x(dinms-1) (sizel-1)),

wherewei ght _i k istheweight of i k cl uster, while x0_i k,..., x(di ms-1) _i k are
coordinates of the cluster i k.

If the parameter | ower _bound isequal to 0, only emd is calculated. If the calculated
lower boundary is greater than or equal to the value stored at this pointer, then the true
erd is not calculated, but is set to that | ower _bound.

CalcContrastHist
Calculates histogram of contrast.

voi d cvCal cContrastHi st (Ipllnmage **src, CvHi stogrant hist, int dontd ear,

I pll

mage* mask) ;

src Pointer to the source images, (now only src[0] isused).
hi st Destination histogram.

dont d ear Clear flag.

mask Mask image.

Discussion

The function Cal cCont rast Hi st calculates a histogram of contrast for the
one-channel image. If dont _cl ear parameter is 0 then the histogram is cleared before
calculation, otherwise it is simply updated. The algorithm works asfollows. Let s bea
set of pairs(x;, x,) of neighbor pixelsintheimagef (x) and

S(t) = {(xxx) OS, T (xg) st <f(x,) Of (x,) <t <f(x3)} .

Let’s denote
{G} as the destination histogram,

10-55

OpenCV Reference Manual Image Analysis Reference 10

E; as the summary contrast corresponding to the threshold t,
N; as the counter of the edges detected by the threshold t.
Then
No=ISMILE = Y Clxpxpt),

(XX O S(t)

where C(x,.x,t) = m n{|f (x;)-t|,[f (x,) -t } and the resulting histogram is calculated
as

_[B/Ne N #0,
_{ ON, =0.

If pointer to the mask is NULL, the histogram is calculated for the all image pixels.
Otherwise only those pixels are considered that have non-zero value in the mask in the
corresponding position.

Pyramid Data Types

The pyramid functions use the data structure | pl | rage for image representation and
the data structure CvSeq for the sequence of the connected components representation.
Every element of this sequence is the data structure cvConnect edConp for the single
connected component representation in memory.

The C language definition for the CvConnect edConp Structure is given below.

Example 10-1 CvConnect edConp

typedef struct CvConnect edConp

doubl e area; /* area of the segnented
conmponent */

fl oat val ue; /* gray scale value of the
segnment ed conponent */

CvRect rect; /* RO of the segnented conponent

*/
} CvConnect edConp;

I ntel € 10-56

OpenCV Reference Manual Image Analysis Reference 10

Histogram Data Types

Example 10-2 CvHi st ogram

typedef struct CvH stogram
{

int header _size; /* header's size */
CvHi st Type type; /* type of histogram */
i nt fl ags; /* histogram s flags */
i nt c_di ns; /* histogram s di nmension */
i nt di ms[CV_HI ST_MAX DI M ;
/* every dinmension size */
i nt ndi ms[CV_HI ST_MAX DI M ;
/* coefficients for fast
access to el ement */

/* &a,b,c] = m+ a*ndinms[0] +
b*ndi ns[1] + c*ndins[2] */
float* thresh[CV_H ST_MAX DI M;
/* bin boundaries arrays for every
di mensi on */
float* array; /* all the histogramdata, expanded into
the single row */
struct CvNode* root; /* tree — histogramdata */
CvSet * set; /* pointer to nmenory storage
(for tree data) */
int* chdinms[CV_H ST_MAX_DIM;
/* cache data for fast calculating */
} CvHi st ogram

| ntel ¢ 10-57

Sructural Analysis
Reference

Table 11-1 Structural Analysis Functions

Group Name Description
Functions

Contour Processing Appr oxChai ns Approximates Freeman

Functions chain(s) with a

St ar t ReadChai nPoi nt s

ReadChai nPoi nt

Appr oxPol y

Dr awCont our s

Cont our Boundi ngRect

Cont our shbnent s

Cont our Ar ea

polygonal curve.

Initializes the chain
reader.

Returns the current
chain point and moves
to the next point.

Approximates one or
more contours with
desired precision.

Draws contour outlines
in the image.

Calculates the bounding
box of the contour.

Calculates
unnormalized spatial
and central moments of
the contour up to order
3.

Calculates the region
area within the contour
or contour section.

InteL 11-1

OpenCV Reference Manual Sructural Analysis Reference 11

Table 11-1 Structural Analysis Functions (continued)

Group Name Description

Mat chCont our s Calculates one of the
three similarity
measures between two
contours.

Cr eat eCont our Tr ee Creates binary tree
representation for the
input contour and
returns the pointer to its
root.

Cont our Fr onCont our Tr ee Restores the contour
from its binary tree
representation.

Mat chCont our Tr ees Calculates the value of
the matching measure
for two contour trees.

Geometry Functions FitEllipse Fits an ellipse to a set of
2D points.
Fi tLi ne2D Fits a 2D line to a set of
points on the plane.
FitLi ne3D Fits a 3D line to a set of

points on the plane.

Proj ect 3D Provides a general way
of projecting a set of 3D
points to a 2D plane.

ConvexHul | Finds the convex hull of
a set of points.

Cont our ConvexHul | Finds the convex hull of
a set of points returning
cvSeq.

ConvexHul | Appr ox Finds approximate
convex hull of a set of
points.

Cont our ConvexHul | Appr ox Finds approximate
convex hull of a set of
points returning
cvSeq.

intel@ 11-2

OpenCV Reference Manual Sructural Analysis Reference 11

Table 11-1 Structural Analysis Functions (continued)

Group Name Description

CheckCont our Convexity Tests whether the input
is a contour convex or
not.

ConvexityDef ects Finds all convexity
defects of the input
contour.

M nAr eaRect Finds a circumscribed

rectangle of the minimal
area for a given convex
contour.

Cal cPGH Calculates a pair-wise
geometrical histogram
for the contour.

M nEncl osingCircle Finds the minimal
enclosing circle for the
planar point set.

Data Types
Contour Processing Data CvCont our Tr ee Represents the contour
Types binary tree in memory.
Geometry Data Types CvConvexi t yDef ect Represents the

convexity defect.

Contour Processing Functions

ApproxChains

Approximates Freeman chain(s) with polygonal
curve.

CvSeq* cvApproxChai ns(CvSeq* srcSeq, CvMentt orage* storage,
CvChai nAppr oxMet hod nmet hod=CV_CHAI N_APPROX_SI MPLE,
float paraneter=0,int mninmalPerinmeter=0,
int recursive=0);

intel. 13

OpenCV Reference Manual Sructural Analysis Reference 11

srcSeq Pointer to the chain that can refer to other chains.

storage Storage location for the resulting polylines.

met hod Approximation method (see the description of the function
Fi ndCont our s).

par anet er Method parameter (not used now).

m ni mal Peri met er Approximates only those contours whose perimeters are not

less than ni ni mal Peri net er. Other chains are removed
from the resulting structure.

recursive If not O, the function approximates all chains
that access can be obtained to from sr cSeq by h_next or
v_next links. If O, the single chain is approximated.

Discussion

Thisis a stand-alone approximation routine. The function Appr oxChai ns works
exactly in the same way as the functions Fi ndCont our s / Fi ndNext Cont our with the
corresponding approximation flag. The function returns pointer to the first

resultant contour. Other contours, if any, can be accessed viav_next or h_next fields
of the returned structure.

StartReadChainPoints
Initializes chain reader.

voi d cvStart ReadChai nPoi nt s(CvChai n* chai n, CvChai nPt Reader* reader);

chain Pointer to chain.
r eader Chain reader state.
Discussion

The function st ar t ReadChai nPoi nt s initializes a special reader (see Dynamic Data
Structures for more information on sets and sequences).

11-4

OpenCV Reference Manual

Sructural Analysis Reference 11

ReadChainPoint
Gets next chain point.

CvPoi nt cvReadChai nPoi nt (CvChai nPt Reader * reader);

reader

Discussion

Chain reader state.

The function ReadChai nPoi nt returns the current chain point and moves to the next

point.

ApproxPoly

Approximates polygonal contour(s) with desired

precision.

CvSeq* cvAppr oxPol y(CvSeq* srcSeq, i nt header Si ze, CvMentt or age* st or age,
CvPol yAppr oxMet hod et hod, float paraneter,int recursive=0);

srcSeq
header Si ze
st orage

met hod

par anet er

recursive

Pointer to the contour that can refer to other chains.
Size of the header for resulting sequences.
Resulting contour storage location.

Approximation method; only Cv_POLY_APPROX_DP issupported, that
corresponds to Douglas-Peucker method.

M ethod-specific parameter; adesired precision for
CV_POLY_APPROX_DP.
If not O, the function approximates al contours that can be accessed

fromsrcSeq by h_next or v_next links. If O, the single contour is
approximated.

11-5

OpenCV Reference Manual Sructural Analysis Reference 11

Discussion

The function Appr oxPol y approximates one or more contours and returns
pointer to thefirst resultant contour. Other contours, if any, can be accessed viav_next
or h_next fields of the returned structure.

DrawContours
Draws contoursin image.

voi d cvDrawCont ours(Ipllmge *inmg, CvSeq* contour, int external Color, int

hol eCol or, int maxLevel, int thickness=1);
i ng Image where the contours are to be drawn. Like in any other
drawing function, every output is clipped with the ROI.
cont our Pointer to the first contour.
ext er nal Col or Color to draw external contours with.
hol eCol or Color to draw holes with.
maxLevel Maximal level for drawn contours. If O, only the contour is

drawn. If 1, the contour and all contours after it on the same
level are drawn. If 2, all contours after and all contours one
level below the contours are drawn, etc.

t hi ckness Thickness of lines the contours are drawn with.

Discussion

The function Dr awCont our s draws contour outlinesin theimage if the thickness
is positive or zero or fills area bounded by the contours if thicknessis negative, for
example, if t hi ckness==CV_FI LLED.

intgl. 116

OpenCV Reference Manual Sructural Analysis Reference 11

ContourBoundingRect
Calculates bounding box of contour.

CvRect* rect cvContourBoundi ngRect (CvSeq* contour, int update);

cont our Pointer to the source contour.
updat e Attribute of the bounding rectangle updating.
Discussion

The function Cont our Boundi ngRect returns the bounding box parameters, that is,
co-ordinates of the top-left corner, width, and height, of the source contour as
Figure 11-1 shows. If the parameter updat e is not equal to O, the parameters of the
bounding box are updated.

Figure 11-1 Bounding Box Parameters

(X,y)

Height

/
N)

Width

v

OpenCV Reference Manual Sructural Analysis Reference 11

ContoursMoments
Calculates contour moments up to order 3.

voi d cvCont our shMbrrent s(CvSeq* contour, CvMonents* nonents);

cont our Pointer to the input contour header.

moment s Pointer to the output structure of contour moments; must be allocated
by the caller.

Discussion

The function Cont our sMonent s calculates unnormalized spatial and central moments
of the contour up to order 3.

ContourArea

Calculates region area inside contour or contour
section.

doubl e cvCont our SecArea(CvSeq* contour, CvSlice slice=CV_VWHOLE_SEQ(seq));

cont our Pointer to the input contour header.
slice Starting and ending points of the contour section of interest.
Discussion

Thefunction Cont our SecAr ea calculatesthe region areawithin the contour consisting
of n pointsp, = (x;,y;), 0<i <n, p, = p,,, @ aspatial moment:

n
Qoo = /2% Xi _1¥i =% ¥i _1-
i=1

intgl. 11

OpenCV Reference Manual Sructural Analysis Reference 11

If apart of the contour is selected and the chord, connecting ending points,
intersects the contour in several places, then the sum of all subsection areasis
calculated. If the input contour has points of self-intersection, the region areawithin
the contour may be calculated incorrectly.

MatchContours
Matches two contours.

doubl e cvMat chContours (CvSeq *contourl, CvSeqg* contour?2,int method, |ong
paraneter=0);

cont our 1 Pointer to the first input contour header.

cont our 2 Pointer to the second input contour header.

par anet er M ethod-specific parameter, currently ignored.

met hod Method for the similarity measure cal culation; must be any of

* CV_CONTOURS MATCH | 1;
* CV_CONTOURS MATCH | 2;
* CV_CONTOURS MATCH | 3.

Discussion

The function Mat chCont our s calculates one of the three similarity measures between
two contours.

L et two closed contours A and B have n and mpoints respectively:

A={(x;,y;),1<i <n} B ={(u;,v;),1<i =<m} . Normalized central moments of a
contour may be denoted as n,,, 0<p +q <3. M. Hu has shown that a set of the next
seven features derived from the second and third moments of contoursis an invariant
to translation, rotation, and scale change [Hu62].

hy = Nyp+ Ny s

2 2
= (Map—Ngp) +4n1,

>
N
|

intel. 119

OpenCV Reference Manual Sructural Analysis Reference 11

2 2
hay = (N3p—3N1) + (3N —Ng3) " >
h, = (rl30+r]12)2+(r]21+n03)27

hs = (N3p—3N1)(Ngg+ N12)[(N3p + rl12)2 —3(Nyy + r]os)z]
+(3N21 —Ngz3) (N1 + Noa)[3(N3 + nlz)z_(r]21 + rlos)z]:

2 2
hg = (Nyp—Ng2)[(Ngg+N12) =Ny ¥ Ng3) 1 +4N11(N3p+ N12) (N + Ng3) »

h, = (3ny —Ngg)(N a0t N)[(Ngo + rl12)2 =3(Ny + r]og)z]

+—(Ngg—3N12)(Nyy + nog)[‘?’(ngo + nlz)z_(nzl + nos)z]-
From these seven invariant features the three similarity measures| 4, 1 ,, and 1 ; may be
calculated: |

11(A.B) = 3 [-/nf+ 1/nf
i=1
7

|,(AB) = 3 |-nf'+nf

i=1

I 5(A, B) = rr?x‘(mA—mB)/rqA

where nf* = son(h{)log|nf] . nf = son(hPloglnfl .

CreateContourTree

Creates binary tree representation for input
contour.

CvCont our Tree* cvCreat eCont our Tree(CvSeq *contour, CvMenttorage* storage,
doubl e threshol d);

cont our Pointer to the input contour header.
st or age Pointer to the storage block.
t hreshol d Vaue of the threshold.

"Ttel@ 11-10

OpenCV Reference Manual Sructural Analysis Reference 11

Discussion

The function Cr eat eCont our Tr ee creates binary tree representation for the input
contour cont our and returns the pointer to itsroot. If the parameter t hr eshol d isless
than or equal to 0, the function createsfull binary tree representation. If thethresholdis
more than 0, the function creates representation with the precisiont hr eshol d: if the
vertices with the interceptive area of its base line arelessthan t hr eshol d, the tree
should not be built any further. The function returns created tree.

ContourFromContourTree
Restores contour from binary tree representation.

CvSeq* cvCont our FronmCont our Tree (CvContour Tree *tree, CvMenStorage* storage,
CvTernCriteria criteria);

tree Pointer to the input tree.
storage Pointer to the storage block.
criteria Criteriafor the definition of the threshold value

for contour reconstruction (level of precision).

Discussion

The function Cont our Fr onCont our Tr ee restores the contour from its binary tree
representation. The parameter cri t eri on defines the threshold, that is, level of
precision for the contour restoring. If criterion. type = CV_TERMCRI T_I TER, the
function restorescriterion. maxlter treelevels. Ifcriterion.type =
CV_TERMCRI T_EPS, the function restores the contour aslong astri _area >
criterion. epsilon *contour_area, wherecont our _ar ea isthe magnitude of the
contour areaand t ri _ar ea isthe magnitude of the current triangle area. If
criterion.type = CV_TERMCRI T_EPS + CV_TERMCRI T_I TER, the function restores
the contour as long as one of these conditionsistrue. The function returns
reconstructed contour.

11-11

OpenCV Reference Manual Sructural Analysis Reference 11

MatchContourTrees
Compares two binary tree representations.

doubl e cvMat chCont our Trees (CvContour Tree *treel, CvContourTree *tree2,
CvTr eeMat chMet hod met hod, doubl e threshol d);

treel Pointer to the first input tree.

tree2 Pointer to the second input tree.

met hod Method for calculation of the similarity measure; now must be only
CV_CONTOUR_TREES_MATCH | 1.

t hreshol d Va ue of the compared threshold.

Discussion

The function Mat chCont our Trees calculates the value of the matching measure for
two contour trees. The similarity measure is calculated level by level from the binary
treeroots. If the total calculating value of the similarity for levels from O to the
specified one is more than the parameter t hr eshol d, the function stops calculations
and value of the total similarity measureisreturned asresul t . If the total calculating
value of the similarity for levels from O to the specified one is less than or equal to

t hr eshol d, the function continues cal culation on the next tree level and returns the
value of the total similarity measure for the binary trees.

Geometry Functions

FitEllipse
Fits ellipse to set of 2D points.

void cvFitEllipse (CvPoint32f* points, int n, CvBox2D* box);
poi nt's Pointer to the set of 2D points.

intel. 112

OpenCV Reference Manual

Sructural Analysis Reference 11

n

box

Discussion

Number of points; must be more than or equal to 6.
Pointer to the structure for representation of the output ellipse.

Thefunction Fi t El 1 i pse fillsthe output structure in the following way:

box —cent er
box —si ze

box —angl e

Point of the center of the ellipse;
Sizes of two ellipse axes;

Angle between the horizontal axisand the ellipse axis with the length
of box- >si ze. wi dt h.

The output lipse has the property of box —si ze. wi dth > box —si ze. hei ght .

FitLine2D
Fits 2D line to set of points on the plane.

voi d cvFi tLi ne2D(CvPoi nt 2D32f * points, int count, CvDi sType di sType, voi d*

param float reps,

poi nts
count
di sType

par am

reps, aeps

l'ine

float aeps, float* line);

Array of 2D points.

Number of points.

Type of the distance used to fit the datato aline.

Pointer to a user-defined function that calculates the weights for the
type CV_DI ST_USER, or the pointer to a float user-defined metric
parameter ¢ for the Fair and Welsch distance types.

Used for iteration stop criteria. If zero, the default value of 0.01is
used.

Pointer to the array of four floats. When the function exits, the first
two elements contain the direction vector of the line normalized to 1,
the other two contain coordinates of a point that belongs to the line.

11-13

OpenCV Reference Manual Sructural Analysis Reference 11

Discussion

ThefunctionFi t Li ne2D fitsa2D lineto a set of points on the plane. Possible distance
type values are listed bel ow.

CV_DI ST L2 Standard least squares p(x) = x°.

CV_DIST_L1

CV_DIST_L12

CV_DI ST_FAIR c :1.39928.

CV_DI ST VELSCH o(x) = %[l—exp(—()é)zﬂ | ¢ = 2.9846.

CV_DI ST_USER Uses a user-defined function to calculate the weight. The

parameter par amshould point to the function.

The line equation iS[Vx(P-rg] =0,whereV = (1ine[0],1ine[1],line[2]), V=1
and ro=(«ine[3],line[4],1ine[5]).

In this algorithm ﬁ) is the mean of the input vectors with weights, that is,

WA)
ﬁ) i

SWA(r))

The parametersr eps and aeps areiteration thresholds. If the distance of the type
Cv_DI ST_C between two values of 70 calculated from two iterationsis less than the
value of the parameter r eps and the angle in radians between two vectors V isless
than the parameter aeps, then the iteration is stopped.

The specification for the user-defined weight functionis
void userWeight (float* dist, int count, float* w);

di st Pointer to the array of distance values.
count Number of elements.
w Pointer to the output array of weights.

The function should fill the weights array with values of weights calculated from the
distance values wii] = f (d[i]). Thefunction f (x) =)%3—5 has to be monotone
decreasing.

11-14

OpenCV Reference Manual

Sructural Analysis Reference 11

FitLine3D
Fits 3D lineto set of pointsin 3D space.

voi d cvFitLine3D (CvPoint3D32f* points, int count, CvDisType disType, void*
param float reps,

poi nts
count

di sType
par am

reps, aeps

l'i ne

Discussion

float aeps, float* line);

Array of 3D points.

Number of points.

Type of the distance used to fit the datato aline.

Pointer to a user-defined function that calculates the weights for the
type Cv_DI ST_USER or the pointer to afloat user-defined metric
parameter ¢ for the Fair and Welsch distance types.

Used for iteration stop criteria. If zero, the default value of 0.01 is
used.

Pointer to the array of 6 floats. When the function exits, the first
three elements contain the direction vector of the line normalized to
1, the other three contain coordinates of a point that belongsto the
line.

ThefunctionFi t Li ne3D fitsa3D lineto a set of points on the plane. Possible distance
type values are listed bel ow.

CV_DI ST L2
CV_DI ST L1
CV_DI ST _L12
CV_DI ST FAIR
CV_DI ST_WELSCH
CV_DI ST_USER

Standard least squares p(x) = x°.

c =1.3998.

2
_c X _
px) = S[1- exp(—(e)zﬂ ¢ = 2.9846.
Uses a user-defined function to calculate the weight. The
parameter par amshould point to the function.

11-15

OpenCV Reference Manual Sructural Analysis Reference 11

Theline equation is [Vx (7 —r)] = 0, where V = (1 i ne[0], 1 i ne[1],1i ne[2]), V = 1
and = (1 i ne[3],1ine[4],line[.

In this algorithm ﬁ) isthe mean of the input vectors with weights, that is,

WA)T,
ﬁ) _

W)

The parametersr eps and aeps areiteration thresholds. If the distance between two
values of rT) calculated from two iterationsis|essthan the value of the parameter r eps,
(the distance type cv_Di ST_C isused in this case) and the angle in radians between
two vectors V is less than the parameter aeps, then the iteration is stopped.

The specification for the user-defined weight functionis

voi d userWeight (float* dist, int count, float* w);

di st Pointer to the array of distance values.
count Number of elements.
W Pointer to the output array of weights.

The function should fill the weights array with values of weights calculated from
distance values wii] = f (d[i]). The function f (x) =)%E:—)‘: has to be monotone
decreasing.

Project3D

Projects array of 3D points to coordinate axis.

voi d cvProject3D (CvPoi nt 3D32f* poi nts3D, int count, CvPoint2D32f* points2D,
int xindx, int yindx);

poi nt s3D Source array of 3D points.
count Number of points.
poi nt s2D Target array of 2D points.

"Ttel@ 11-16

OpenCV Reference Manual Sructural Analysis Reference 11

xi ndx Index of the 3D coordinate from O to 2 that is to be used as
x-coordinate.

yi ndx Index of the 3D coordinate from 0 to 2 that isto be used as
y-coordinate.

Discussion

The function Pr oj ect 3D used with the function Per spect i veTr ansf or mis intended
to provide ageneral way of projecting a set of 3D pointsto a 2D plane. The function
copies two of the three coordinates specified by the parameters xi ndx and yi ndx of
each 3D point to a2D points array.

ConvexHull
Finds convex hull of points set.

voi d cvConvexHul | (CvPoint* points, int numPoints, CvRect* boundRect, int

orientation, int* hull, int* hullsize);
poi nt's Pointer to the set of 2D points.
nunPoi nt s Number of points.
boundRect Pointer to the bounding rectangle of points set; not used.

orientation Output order of the convex hull vertices cv_CLOCKW SE or
CV_COUNTER_CLOCKW SE.

hul | Indices of convex hull verticesin the input array.
hul | si ze Number of verticesin convex hull; output parameter.
Discussion

The function ConvexHul | takes an array of points and puts out indices of points that
are convex hull vertices. The function uses Quicksort algorithm for points sorting.

The standard, that is, bottom-left Xy coordinate system, is used to define the order in
which the vertices appear in the output array.

IntGI@ 11-17

OpenCV Reference Manual Sructural Analysis Reference 11

ContourConvexHull
Finds convex hull of points set.

CvSeq* cvCont our ConvexHul | (CvSeq* contour, int orientation,
CvMentt or age* storage);

cont our Sequence of 2D points.

orientation Output order of the convex hull vertices Cv_CLOCKW SE or
CV_COUNTER_CLOCKW SE.

st or age Memory storage where the convex hull must be allocated.

Discussion

The function Cont our ConvexHul | takes an array of points and puts out indices of
points that are convex hull vertices. The function uses Quicksort agorithm for points
sorting.

The standard, that is, bottom-left XY coordinate system, defines the order in which the
vertices appear in the output array.

The function returns cvSeq that isfilled with pointers to those points of the source
contour that belong to the convex hull.

ConvexHullApprox
Finds approximate convex hull of points set.

voi d cvConvexHul | Approx(CvPoint* points, int nunmPoints, CvRect* boundRect,

int bandWdth,int orientation, int* hull, int* hullsize);
poi nt's Pointer to the set of 2D points.
nunPoi nt s Number of points.
boundRect Pointer to the bounding rectangle of points set; not used.

bandW dt h Width of band used by the algorithm.

"Ttel@ 11-18

OpenCV Reference Manual Sructural Analysis Reference 11

orientation Output order of the convex hull vertices cv_CLOCKW SE or

CV_COUNTER_CLOCKW SE.

hul | Indices of convex hull verticesin the input array.
hul | si ze Number of verticesin the convex hull; output parameter.
Discussion

The function ConvexHul | Appr ox finds approximate convex hull of points set. The
following algorithm is used:

1

Divide the plane into vertical bands of specified width, starting from the
extreme left point of the input set.

Find points with maximal and minimal vertical coordinates within each band.
Exclude all the other points.
Find the exact convex hull of al the remaining points (see Figure 11-2).

Figure 11-2 Finding Approximate Convex Hull

The agorithm can be used to find the exact convex hull; the value of the parameter
bandwi dt h must then be equal to 1.

intel.

11-19

OpenCV Reference Manual Sructural Analysis Reference 11

ContourConvexHullApprox
Finds approximate convex hull of points set.

CvSeq* cvCont our ConvexHul | Approx(CvSeq* contour, int bandw dth, int
orientation, CvMenStorage* storage);

cont our Sequence of 2D points.
bandwi dt h Bandwidth used by the algorithm.

orientation Output order of the convex hull vertices Cv_CLOCKW SE or
CV_COUNTER_CLOCKW SE.

storage Memory storage where the convex hull must be allocated.

Discussion

The function Cont our ConvexHul | Appr ox finds approximate convex hull of points set.
The following algorithm is used:

1. Dividethe planeinto vertical bands of specified width, starting from the
extreme left point of the input set.

2. Find points with maximal and minimal vertical coordinates within each band.
3. Exclude dl the other points.
4. Find the exact convex hull of all the remaining points (see Figure 11-2)

In case of points with integer coordinates, the agorithm can be used to find the exact
convex hull; the value of the parameter bandwi dt h must then be equal to 1.

The function Cont our ConvexHul | Appr ox returns CvSeq that is filled with pointersto
those points of the source contour that belong to the approximate convex hull.

I ntel e 11-20

OpenCV Reference Manual Sructural Analysis Reference 11

CheckContourConvexity
Tests contour convex.

i nt cvCheckCont our Convexity(CvSeq* contour);
cont our Tested contour.

Discussion

The function CheckCont our Convexi t y tests whether the input is a contour convex or
not. The function returns 1 if the contour is convex, 0 otherwise.

ConvexityDefects
Finds defects of convexity of contour.

CvSeq* cvConvexityDefects(CvSeqg* contour, CvSeq* convexhull, CvMenttorage*

storage);
cont our Input contour, represented by a sequence of CvPoi nt structures.
convexhul | Exact convex hull of the input contour; must be computed by the
function cvCont our ConvexHul | .
storage Memory storage where the sequence of convexity defects must be
allocated.
Discussion

The function Convexi t yDef ect s finds al convexity defects of the input contour and
returns a sequence of the CvConvexi t yDef ect structures.

IntGI@ 11-21

OpenCV Reference Manual Sructural Analysis Reference 11

MinAreaRect

Finds circumscribed rectangle of minimal area
for given convex contour.

voi d cvM nAreaRect (CvPoint* points, int n, int left, int bottom int right,
int top, CvPoint2D32f* anchor, CvPoi nt2D32f* vectl, CvPoint2D32f* vect2);

poi nt's Sequence of convex polygon points.

n Number of input points.

| eft Index of the extreme left point.

bott om Index of the extreme bottom point.

right Index of the extreme right point.

top Index of the extreme top point.

anchor Pointer to one of the output rectangle corners.

vect 1 Pointer to the vector that represents one side of the output rectangle.

vect 2 Pointer to the vector that represents another side of the output
rectangle.

intel. 122

OpenCV Reference Manual Sructural Analysis Reference 11

Discussion

The function M nAr eaRect returns a circumscribed rectangle of the minimal area. The
output parameters of this function are the corner of the rectangle and two incident

edges of the rectangle (see Figure 11-3).

Figure 11-3 Minimal Area Bounding Rectangle

anckoi

CalcPGH

Calculates pair-wise geometrical histogram for
contour.

voi d cvCal cPGH(CvSeq* contour, CvH stogrant hist);

cont our Input contour.
hi st Calculated histogram; must be two-dimensional.
Discussion

The function Cal cPGH calculates a pair-wise geometrical histogram for the contour.
The algorithm considers every pair of the contour edges. The angle between the edges
and the minimum/maximum distances are determined for every pair. To do this each of
the edgesin turn is taken as the base, while the function loops through all the other
edges. When the base edge and any other edge are considered, the minimum and

I ntGI e 11-23

OpenCV Reference Manual Sructural Analysis Reference 11

maximum distances from the points on the non-base edge and line of the base edge are
selected. The angle between the edges defines the row of the histogram in which all the
bins that correspond to the distance between the calculated minimum and maximum
distances are incremented. The histogram can be used for contour matching.

MinEnclosingCircle
Finds minimal enclosing circle for 2D-point set.

voi d cvFi ndM nEncl osingCircle (CvSeq* seq, CvPoint2D32f* center, float*

radi us);
seq Sequence that contains the input point set. Only points with integer
coordinates (CvPoi nt) are supported.
center Output parameter. The center of the enclosing circle.
radi us Output parameter. The radius of the enclosing circle.
Discussion

The function Fi ndM nEncl osi ngGi r cl e finds the minimal enclosing circle for the
planar point set. Enclosing meansthat all the points from the set are either inside or on
the boundary of the circle. Minimal means that thereis no enclosing circle of asmaller
radius.

Contour Processing Data Types

The OpenCV Library functions use special data structures to represent the contours
and contour binary tree in memory, namely the structures cvSeq and CvCont our Tr ee.
Below follows the definition of the structure CvCont our Tr ee in the C language.

Example 11-1 CvCont our Tr ee

typedef struct CvContourTree
{ CV_SEQUENCE_FI ELDS()

CvPoi nt pil; /*the start point of the binary tree
root */
CvPoi nt p2; /*the end point of the binary tree

intel. 1124

OpenCV Reference Manual Sructural Analysis Reference 11

Example 11-1 CvCont our Tree (continued)

r oot */
} CvCont our Tree;

Geometry Data Types

Example 11-2 CvConvexi t yDef ect

typedef struct
{

CvPoint* start; /lstart point of defect
CvPoi nt* end; /1 end point of defect
CvPoi nt* depth_point; //fathernmost point
fl oat dept h; /[depth of defect

} CvConvexityDefect;

I ntGI e 11-25

Object Recognition

Re

‘erence

Table 12-1

Image Recognition Functions and Data Types

Group

Function Name

Description

Eigen Objects Functions

Functions
Cal cCovar Mat r i XEx

Cal cEi genoj ect s

Cal cDeconpCoef f

Ei genDeconposite

Ei genProj ecti on

Calculates a covariance
matrix of the input
objects group using
previously calculated
averaged object.

Calculates orthonormal
eigen basis and the
averaged object for a
group of the input
objects.

Calculates one
decomposition
coefficient of the input
object using the
previously calculated
eigen object and the
averaged object.

Calculates all
decomposition
coefficients for the input
object.

Calculates an object
projection to the eigen
sub-space.

12-1

OpenCV Reference Manual

Object Recognition Reference 12

Table 12-1 Image Recognition Functions and Data Types (continued)

Group Function Name Description
Embedded Hidden Markov Cr eat e2DHW Creates a 2D embedded
Models Functions HMM.
Rel ease2DHVWM Frees all the memory
used by HMM.

Creat ebsl nfo

Rel easeObsl| nf o

| ngToObs_DCT

Uni f or M ngSegm

| nitM xSegm

Esti mat eHVVSt at ePar ans

Esti mat eTr ansPr ob

Esti mat eQosProb

Creates new structures
to store image
observation vectors.

Frees all memory used
by observations and
clears pointer to the
structure

Cvl ngGbsl nf o.

Extracts observation
vectors from the image.

Performs uniform
segmentation of image
observations by HMM
states.

Segments all
observations within
every internal state
of HMM by state mixture
components.

Estimates all
parameters of every
HMM state.

Computes transition
probability matrices for
embedded HMM.

Computes probability of
every observation of
several images.

EViterbi Executes Viterbi
algorithm for embedded
HMM.
intel. 122

OpenCV Reference Manual

Object Recognition Reference 12

Table 12-1 Image Recognition Functions and Data Types (continued)

Group

Function Name

Description

Use of Eigen Object

Eunctions

HMM Structures

M xSegmni2

Data Types
Use of Function

cvCal cEi genObj ect s_in Direct

Access Mode

User Data Structure, I/O Callback

Functions, and Use of Function
cvCal cEi genQhj ect s_in.
Callback Mode

Embedded HMM Structure

Image Observation Structure

Segments observations
from all training images
by mixture components
of newly Viterbi
algorithm-assigned
states.

Shows the use of the
function when the size
of free RAM is sufficient
for all input and eigen
objects allocation.

Shows the use of the
function when all objects
and/or eigen objects
cannot be allocated in
free RAM.

Represents 1D HMM
and 2D embedded HMM
models.

Represents image
observations.

Eigen Objects Functions

CalcCovarMatrixEx

Calculates covariance matrix for group of input

objects.

voi d cvCal cCovar Mat ri xEx(
i oBuf Si ze, uchar* buffer,

covarMatrix);

int nObjects, void* input, int
voi d* userData, |pllmage* avg,

i oFl ags, int

float*

intel.

12-3

Object Recognition Reference 12

OpenCV Reference Manual

noj ect s Number of source objects.

i nput Pointer either to the array of | pl | mage input objects or to the read
callback function according to the value of the parameter i oFl ags.

i oFl ags Input/output flags.

i oBuf Si ze Input/output buffer size.

buf f er Pointer to the input/output buffer.

user Dat a Pointer to the structure that contains all necessary data for the
callback functions.

avg Averaged object.

covarMatri x

Discussion

Covariance matrix. An output parameter; must be allocated before
the call.

The function Cal cCovar Mat ri xEx calculates a covariance matrix of the input objects
group using previously calculated averaged object. Depending oni oFl ags parameter
it may be used either in direct access or callback mode. If i oFl ags isnot

CV_EI GOBJ_NO_CALLBACK, buffer must be allocated before calling the function.

CalcEigenObjects

Calculates orthonormal eigen basis and
averaged object for group of input objects.

voi d cvCal cEi genhjects (int nCbjects, void* input, void* output, int ioFlags,
int ioBufSize, void* userData, CvTernCriteria* calcLimt, |pllmage* avg,

float* eigVvals);
nChj ect's

i nput

out put

Number of source objects.

Pointer either to the array of 1 pl | mage input objects or to the read
callback function according to the value of the parameter i oFl ags.

Pointer either to the array of eigen objects or to the write callback
function according to the value of the parameter i oFl ags.

intel.

12-4

OpenCV Reference Manual

Object Recognition Reference 12

i oFl ags
i oBuf Si ze

user Dat a

calcLimt
avg

eigVal s

Discussion

Input/output flags.
Input/output buffer size in bytes. The sizeis zero, if unknown.

Pointer to the structure that contains all necessary data for the
callback functions.

Criteria that determine when to stop calculation of eigen objects.
Averaged object.

Pointer to the eigenvalues array in the descending order; may be
NULL.

The function Cal cEi genObj ect s calculates orthonormal eigen basis and the averaged
object for agroup of the input objects. Depending oni oFl ags parameter it may be
used either in direct access or callback mode. Depending on the parameter cal cLimit,
calculations are finished either after first cal cLi ni t. max! t er s dominating eigen
objects are retrieved or if the ratio of the current eigenvalue to the largest eigenvalue
comes downto cal cLi mi t. epsi | on threshold. The valuecal cLi ni t - >t ype must be
CV_TERMCRI T_NUMB, CV_TERMCRI T_EPS, Or CV_TERMCRI T_NUMB | CV_TERMCRI T_EPS.
The function returns the real valuescal cLi mit - >max| t er and cal cLi mi t - >epsi | on.

The function aso calculates the averaged object, which must be created previously.
Calculated eigen objects are arranged according to the corresponding eigenvaluesin
the descending order.

The parameter ei gval s may be equal to NULL, if eigenvalues are not needed.

The function Cal cEi genbj ect s uses the functionCal cCovar Mat ri xEx.

CalcDecompCoeff

Calculates decomposition coefficient of input
object.

doubl e cvCal cDeconpCoef f(| pl I mage* obj, Ipllnmage* eiglj, Ipllmge* avg);

In

tel.

12-5

OpenCV Reference Manual Object Recognition Reference 12

obj Input object.

ei goj Eigen object.
avg Averaged object.
Discussion

The function Cal cDeconpCoef f calculates one decomposition coefficient of the input
object using the previously calculated eigen object and the averaged object.

EigenDecomposite

Calculates all decomposition coefficients for
input object.

voi d cvEi genDeconposite(|pllmge* obj, int nEi gljs, void* eiglnput, int
i oFl ags, void* userData, |pllmage* avg, float* coeffs);

obj Input object.

nEi gbj s Number of eigen objects.

ei gl nput Pointer either to the array of 1 pl | mage input objects or to the read
callback function according to the value of the parameter i oFl ags.

i oFl ags Input/output flags.

user Dat a Pointer to the structure that contains all necessary data for the
callback functions.

avg Averaged object.

coeffs Calculated coefficients; an output parameter.

Discussion

The function Ei genDeconposi t e calculates all decomposition coefficients for the
input object using the previously calculated eigen objects basis and the averaged
object. Depending oni oFl ags parameter it may be used either in direct access or
callback mode.

intgl. 126

OpenCV Reference Manual Object Recognition Reference 12

EigenProjection

Calculates object projection to the eigen
sub-space.

voi d cvEi genProjection (int nEi gCbjs, void* eiglnput, int ioFlags, void*
userData, float* coeffs, |pllmage* avg, |pllmage* proj);

nEi gbj s Number of eigen objects.

ei gl nput Pointer either to the array of | pl | mage input objects or to the read
callback function according to the value of the parameter i oFl ags.

i OFl ags Input/output flags.

user Dat a Pointer to the structure that contains all necessary data for the
callback functions.

coeffs Previously calculated decomposition coefficients.

avg Averaged object.

pr oj Decomposed object projection to the eigen sub-space.

Discussion

The function Ei genPr oj ecti on calculates an object projection to the eigen sub-space
or, in other words, restores an object using previously calculated eigen objects basis,
averaged object, and decomposition coefficients of the restored object. Depending on
i oFl ags parameter it may be used either in direct access or callback mode.

Use of Eigen Object Functions

The functions of the eigen objects group have been developed to be used for any
number of objects, evenif their total size exceedsfree RAM size. So the functions may
be used in two main modes.

Direct access mode is the best choice if the size of free RAM is sufficient for all input
and eigen objects allocation. Thismode is set if the parameter i oFl ags is equal to
CV_EI GOBJ_NO_CALLBACK. Inthiscasei nput and out put parameters are pointers to

12-7

OpenCV Reference Manual Object Recognition Reference 12

arrays of input/output objects of | pl | mage* type. The parametersi oBuf Si ze and
user Dat a are not used. An example of the function Cal cEi genObj ect s used in direct
access mode is given below.

Example 12-1 Use of Function cvCal cEi genObj ect s in Direct Access Mode

pl | mage** obj ects;

pl | mage** ei genObj ect s;
p! | mage* avg;

I

oat * ei gval s;
CvSi ze size = cvSize(nx, ny);
if(!'(eigvals = (float*) cvAl loc(nObjects*sizeof(float))))
__ERROR EXIT__;
if(!'(avg = cvCreatel mage(size, IPL_DEPTH 32F, 1)))
ERROR EXIT__;

for("1=0; i< nObjects; i++)

obj ects[i] = cvCreatel nmage(size, |IPL_DEPTH 8U, 1);
ei genObj ects[i] = cvCreatel mage(size, |PL_DEPTH 32F, 1);
if(!'(objects[i] & eigenojects[i]))

__ERROR EXIT__;

}
cvCal cEi genObj ects (nObjects,
(voi d*) obj ect s,
(voi d*) ei genObj ect s,
CV_EI GOBJ_NO_CALLBACK,
0,
NULL,
calcLimt,
avg,
eigVals);

The callback mode is the right choice in case when the number and the size of objects
are large, which happens when all objects and/or eigen objects cannot be allocated in
free RAM. In this case input/output information may be read/written and developed by
portions. Such regimeis called callback mode and is set by the parameter i oFl ags.
Three kinds of the callback mode may be set:

| oFl ag = CV_EI GOBJ_| NPUT_CALLBACK, only input objects are read by portions;

| oFl ag = CV_EI GOBJ_OUTPUT_CALLBACK, only eigen objects are calculated and
written by portions;

12-8

OpenCV Reference Manual Object Recognition Reference 12

| oFl ag = CV_EI GOBJ_BOTH_CALLBACK, Or | oFl ag = CV_EI GOBJ_| NPUT_CALLBACK |
CV_EI GOBJ_QUTPUT_CALLBACK, both processestake place. If one of the above modesis
realized, the parametersi nput and out put , both or either of them, are pointersto
read/write callback functions. These functions must be written by the user; their
prototypes are the same:

CvStatus call back_read (int ind, void* buffer, void* userData);
CvStatus call back_write(int ind, void* buffer, void* userData);

i nd Index of the read or written object.

buf f er Pointer to the start memory address where the object will be
allocated.

user Dat a Pointer to the structure that contains all necessary data for the

callback functions.

The user must define the user data structure which may carry all information necessary
to read/write procedure, such as the start address or file name of the first object on the
HDD or any other device, row length and full object length, etc.

Ifi oFl ag isnot equal to CV_ElI GOBJ_NO CALLBACK, thefunction Cal cEi genoj ect's
allocates a buffer in RAM for objects/eigen objects portion storage. The size of the
buffer may be defined either by the user or automatically. If the parameter i oBuf Si ze
isequal to 0, or too large, the function will define the buffer size. The read data must
be located in the buffer compactly, that is, row after row, without alignment and gaps.

An example of the user data structure, i/o callback functions, and the use of the
function Cal cEi genObj ect s in the callback mode is shown below.

Example 12-2 User Data Structure, I/O Callback Functions, and Use of Function
cvCal cEi genhj ect s in Callback Mode

/1l User data structure
typedef struct _UserData

i nt objLength; /* Obj. length (in elements, not in bytes !) */
i nt st ep; /* bj. step (in elenments, not in bytes !) */
CvSi ze size; /* RO or full size */
CvPoi nt roil ndent;
char* read_nane;
char* write_nane;

} UserDat a;

intel. 129

OpenCV Reference Manual Object Recognition Reference 12

Example 12-2 User Data Structure, I/O Callback Functions, and Use of Function
cvCal cEi genhj ect s in Callback Mode (continued)

/1 Read cal | back function
CvStatus cal |l back_read_8u (int ind, void* buffer, void* userData)
{

int i, j, k=0, m

User Dat a* data = (User Dat a*) user Dat a;

uchar* buff = (uchar*)buf;

char nane[32];

FILE *f;

f(ind<O0) return CV_StsBadArg;
f(buf==NULL || userData==NULL) CV_StsNullPtr;

for(i=0; i<28; i++)
{

nane[i] = data->read_nane[i];
if(nane[i]=="." || nanme[i]==" ")) break;

name[i] 48 + ind/ 100;

nane[i +1] 48 + (i nd%d00)/10;

name[i +2] = 48 + ind%0;

if((f=fopen(nanme, "r"))==NULL) return CV_BadCal | Back;
m = dat a->roi | ndent.y*step + data->roilndent. x;

for(i=0; i<data->size.height; i++ mt=data->step)

fseek(f, m, SEEK SET);
for(j=0; j<data->size.width; j++ k++)
fread(buff+k, 1, 1, f);
}

fclose(f);
return CV_StsCK;

/1 Wite callback function
cvStatus cal l back_wite_32f (int ind, void* buffer, void* userData)

{
int i, j, k = 0,
User Dat a* data :(erData*)userData;
fl oat* buff = (float*)buf;
char nane[32];
FILE *f;

if(ind<O) return CV_StsBadArg;
i f(buf==NULL || userData==NULL) CV_StsNul | Ptr;

for(i=0; i<28; i++)

{

I ntel e 12-10

OpenCV Reference Manual Object Recognition Reference 12

Example 12-2 User Data Structure, I/O Callback Functions, and Use of Function
cvCal cEi genhj ect s in Callback Mode (continued)

nane[i] = data->read_nane[i];

if(nane[i]=="." || nane[i]==" ")) break;
}
if((f=fopen(nanme, "w'))==NULL) return CV_BadCal | Back;
m= 4 * (ind*data->o0bjLength + data->roilndent.y*step

+ data->roilndent.x);
for(i=0; i<data->size.height; i++ mt=4*data->step)

fseek(f, m, SEEK SET);
for(j=0; j<data->size.width; j++, Kk++)
fwite(buff+k, 4, 1, f);
}

fclose(f);
return CV_StsCK;

/1 fragnments of the mmin function

int bufSize = 32¥*1024*1024; [//32 MB RAMfor i/0o buffer
float* avg;
cv User Data dat a;
cvStatus r;
cvStatus (*read_call back)(int ind, void* buf, void* userData)=
read_cal | back 8u;
cvStatus (*write_callback)(int ind, void* buf, void* userData)=
write_call back_32f;
cvlinput* u_r = (cvlnput*)& ead_cal |l back;
cvlnput* u_w = (cvlnput*)&wite_call back;
voi d* read_ (u_r)->data;

void* wite_ (u_w) - >dat a;
dai a'- >r e'ad'_n'arr'e = n'pu't o
data->wite_nane = "eigens”;

avg = (float*)cvAlloc(sizeof (float) * obj _w dth * obj_height);

cvCal cEi genObj ect s(obj _nunber,
read._,
wite_,
CV_EI GOBJ_BOTH_CALLBACK,
buf Si ze,
(voi d*) &dat a,
&imt,
avg,

IntGI@ 12-11

OpenCV Reference Manual Object Recognition Reference 12

Example 12-2 User Data Structure, I/O Callback Functions, and Use of Function
cvCal cEi genhj ect s in Callback Mode (continued)

eigval);

Embedded Hidden Markov Models Functions

Create2DHMM
Creates 2D embedded HMM.

CVEHMWF cvCreat e2DHMWM int* stateNunmber, int* nunM x, int obsSize);

stat eNunber Array, the first element of the which specifies the number of
superstates in the HMM. All subsequent elements specify the
number of statesin every embedded HMM, corresponding to each
superstate. So, the length of the array isst at eNunber [0] +1.

numvl x Array with numbers of Gaussian mixture components per each
internal state. The number of elementsin the array is equal to
number of internal statesin the HMM, that is, superstates are not
counted here.

obsSi ze Size of observation vectors to be used with created HMM.

Discussion

The function Cr eat e2DHWM returns the created structure of the type cvEHMMWIth
specified parameters.

intel. 1212

OpenCV Reference Manual Object Recognition Reference 12

Release2DHMM
Releases 2D embedded HMM.

voi d cvRel ease2DHM CvEHMMF* hrmm) ;
hnm Address of pointer to HMM to be released.

Discussion

The function Rel ease2DHW frees all the memory used by HMM and clears the
pointer to HMM.

CreateObsInfo

Creates structure to store image observation
vectors.

Cvl mgQobsl nf o* cvCreat ebsl nfo(CvSi ze nunCbs, int obsSize);

nunbs Numbers of observationsin the horizontal and vertical directions.
For the given image and scheme of extracting observations the
parameter can be computed via the macro cv_COUNT_0BS(roi,
dct Size, delta, numbs),whereroi, dctSi ze, del t a, nuntbs
are the pointersto structures of the type cvSi ze. The pointer r oi
means size of r oi of image observed, nuntbs is the output
parameter of the macro.

obsSi ze Size of observation vectors to be stored in the structure.

Discussion

The function Cr eat eCbsl nf o creates new structures to store image observation
vectors. For definitions of the parametersroi , dct Si ze, and del t a see the
specification of the function | mngToCbs_DCT.

I ntGI e 12-13

OpenCV Reference Manual Object Recognition Reference 12

ReleaseObsInfo
Rel eases observation vectors structure.

voi d cvRel easebsl| nfo(Cvl mgQbsl nf o** obslnfo);
obsl nfo Address of the pointer to the structure CvI mgQbs| nf o.

Discussion

The function Rel easeos| nf o freesall memory used by observations and clears
pointer to the structure cvi ngQosl nf o.

ImgToObs_DCT

Extracts observation vectors from image.

voi d cvlngToCbs_DCT(| pllInmage* i mage, float* obs, CvSize dctSize, CvSize
obsSi ze, CvSize delta);

i mge Input image.

obs Pointer to consequently stored observation vectors.

dct Si ze Size of image blocks for which DCT (Discrete Cosine Transform)
coefficients are to be computed.

obsSi ze Number of the lowest DCT coefficientsin the horizontal and vertical
directions to be put into the observation vector.

delta Shift in pixels between two consecutive image blocksin the

horizontal and vertical directions.

intel. 1214

OpenCV Reference Manual Object Recognition Reference 12

Discussion

The function | ngToObs_DCT extracts observation vectors, that is, DCT coefficients,
from the image. The user must pass obs| nf 0. obs as the parameter obs to usethis
function with other HMM functions and use the structure obs| nf o of the

Cvl ngQbsl nfo type.

Example 12-3 Calculating Observations for HMM

Cvl mgQbsl nf o* obs_i nf o;

cvl nmgToCbs_DCT(i nage, obs_i nfo->obs, //!!!
dct Si ze, obsSize, delta);

UniformimgSegm

Performs uniform segmentation of image
observations by HMM states.

voi d cvUni form ngSegm(Cvl ngQbsl nf o* obsl nfo, CvEHMW hnmm) ;
obsl nfo Observations structure.
hmm HMM structure.

I ntGI e 12-15

OpenCV Reference Manual Object Recognition Reference 12

Discussion

The function Uni f or M ngSegm segments image observations by HMM states
uniformly (see Figure 12-1 for 2D embedded HMM with 5 superstates and 3, 6, 6, 6, 3
internal states of every corresponding superstate).

Figure 12-1 Initial Segmentation for 2D Embedded HMM

L
My
gl

|

ke IF=
-

Ll |
1

InitMixSegm

Segmentsall observationswithin every internal
state of HMM by state mixture components.

void cvlnitM xSegnm(Cvl ngObsl nfo** obsl nfoArray, int num ng, CvVEHMW hm);

obsl! nf oAr r ay Array of pointers to the observation structures.
num ny Length of above array.

hmm HMM.

Discussion

Thefunction | ni t M xSegm takes agroup of observations from several training images
already segmented by states and splits a set of observation vectors within every
internal HMM state into as many clusters as the number of mixture componentsin the
state.

12-16

OpenCV Reference Manual Object Recognition Reference 12

EstimateHMMStateParams
Estimates all parameters of every HMM state.

voi d cvEsti mat eHWVSt at ePar ans(Cvl ngQbs| nf o** obsl nfoArray, int num ng,

QVEHWF hnm) ;
obsl nf oAr r ay Array of pointers to the observation structures.
num ng Length of the array.
hnmm HMM.
Discussion

The function Est i mat eHWVSt at ePar ams computes all inner parameters of every
HMM state, including Gaussian means, variances, €etc.

EstimateTransProb

Computes transition probability matrices for
embedded HMM.

voi d cvEsti mat eTransProb(CvlngQObsl nfo** obslnfoArray, int num ng, CvEHMW
hmm) ;

obsl nf oAr r ay Array of pointersto the observation structures.
num ny Length of the above array.

hrm HMM.

Discussion

Thefunction Est i mat eTr ansPr ob USeS current segmentation of image observationsto
compute transition probability matrices for al embedded and external HMMs.

I ntGI e 12-17

OpenCV Reference Manual Object Recognition Reference 12

EstimateObsProb

Computes probability of every observation of
several images.

voi d cvEsti mat eCbsProb(Cvl ngQbsl nf o* obsl nfo, CvEHMW hnm;

obslI nfo Observation structure.
hmm HMM structure.
Discussion

The function Est i mat eCbsPr ob computes Gaussian probabilities of each observation
to occur in each of the internal HMM states.

EViterbi
Executes Viterbi algorithm for embedded HMM.

Fl oat cvEViterbi(CvlngCbsl nfo* obslnfo, CvEHMMF hmm;

obsl nfo Observation structure.
hmm HMM structure.
Discussion

Thefunction EVi t er bi executes Viterbi algorithm for embedded HMM. Viterbi
algorithm evaluates the likelihood of the best match between the given image
observations and the given HMM and performs segmentation of image observations
by HMM states. The segmentation is done on the basis of the match found.

I ntel e 12-18

OpenCV Reference Manual Object Recognition Reference 12

MixSegmL2

Segments observations from all training images
by mixture components of newly assigned states.

voi d cvM xSegnlL2(Cvl ngQosl nfo** obsl nfoArray, int num ng, CVEHMW hnmmj;

obsl nf oAr r ay Array of pointersto the observation structures.
num ny Length of the array.

hmm HMM.

Discussion

The function M xSegni.2 segments observations from all training images by mixture
components of newly Viterbi algorithm-assigned states. The function uses Euclidean
distance to group vectors around the existing mixtures centers.

HMM Structures

In order to support embedded models the user must define structures to represent 1D
HMM and 2D embedded HMM model.

Example 12-4 Embedded HMM Structure
typedef struct _CvEHW

int |evel;

int num states;
float* transP;
float** obsProb;
uni on

CvVEHMVEL at e* st at e;
struct _CvEHMW ehmm

P
} CVEHWM

Below isthe description of the cvEHW fields:

I ntGI e 12-19

OpenCV Reference Manual Object Recognition Reference 12

| evel Level of embedded HMM. If | evel ==0, HMM is most external. In
2D HMM there are two types of HMM: 1 external and several
embedded. Externa HMM has| evel ==1, embedded HMMs have

| evel ==0.

num st at es Number of statesin 1D HMM.

transP State-to-state transition probability, square matrix
(numstate xnumstate).

obsProb Observation probability matrix.

state Array of HMM states. For the last-level HMM, that is, an HMM
without embedded HMMs, HMM states are real.

ehnm Array of embedded HMMs. If HMM is not last-level, then HMM

states are not real and they are HMMs.
For representation of observations the following structure is defined:

Example 12-5 Image Observation Structure

typedef struct CvlnmgQbslnfo
{

i nt obs_x;

int obs_y;

i nt obs_si ze;

fl oat** obs;
int* state;
int* mx

} Cvl ngQbsl nf o;

This structure is used for storing observation vectors extracted from 2D image.

obs_x Number of observationsin the horizontal direction.

obs_y Number of observationsin the vertical direction.

obs_si ze Length of every observation vector.

obs Pointer to observation vectors stored consequently. Number of
VECtorsisobs_x*obs_y.

state Array of indices of states, assigned to every observation vector.

m x Index of mixture component, corresponding to the observation

vector within an assigned state.

12-20

3D Reconstruction
Reference

Table 13-1 3D Reconstruction Functions

Group Function Name Description
Camera Calibration Cal i br at eCaner a Calibrates the camera
Functions with single precision.

Cal i br at eCanera 64d

Fi ndExt ri nsi cCanmer aPar ans

Fi ndExt ri nsi cCanmer aPar ans_64d

Rodr i gues

Rodr i gues_64d

UnDi st ort Once

UnDistortlnit

Calibrates camera with
double precision.

Finds the extrinsic
camera parameters for
the pattern.

Finds extrinsic camera
parameters for the
pattern with double
precision.

Converts the rotation
matrix to the rotation
vector and vice versa
with single precision.

Converts the rotation
matrix to the rotation
vector or vice versa with
double precision.

Corrects camera lens
distortion in the case of a
single image.

Calculates arrays of
distorted points indices
and interpolation
coefficients.

tel@ 13-1

OpenCV Reference Manual 3D Reconstruction Reference 13

Table 13-1 3D Reconstruction Functions (continued)

Group Function Name Description

UnDi st ort Corrects camera lens
distortion using
previously calculated
arrays of distorted points
indices and undistortion
coefficients.

Fi ndChessBoar dCor ner Guesses Finds approximate
positions of internal
corners of the

chessboard.
View Morphing Fi ndFundanent al Matri x Calculates the
Functions fundamental matrix from

several pairs of
correspondent points in
images from two
cameras.

MakeScanl i nes Calculates scanlines
coordinates for two
cameras by fundamental
matrix.

Pr eVar pl mage Rectifies the image so
that the scanlines in the

rectified image are
horizontal.

Fi ndRuns Retrieves scanlines from
the rectified image and
breaks each scanline
down into several runs.

Dynami cCor r espondMul ti Finds correspondence
between two sets of runs
of two warped images.

MakeAl phaScanl i nes Finds coordinates of
scanlines for the virtual
camera with the given
camera position.

intel@ 13-2

OpenCV Reference Manual

3D Reconstruction Reference 13

Table 13-1 3D Reconstruction Functions (continued)

Group

Function Name

Description

POSIT Functions

Gesture Recognition

Mor phEpi | i nesMul ti

Post War pl nage

Del eteMbire

Cr eat ePOSI TObj ect

PCSI T

Rel easePOSI TOhj ect

Functions

Fi ndHandRegi on

Fi ndHandRegi onA

Cr eat eHandMask

Cal cl mageHonogr aphy

Cal cProbDensity

MaxRect

Morphs two pre-warped
images using
information about stereo
correspondence.

Warps the rectified
morphed image back.

Deletes moire from the
given image.

Allocates memory for the
object structure and
computes the object
inverse matrix.

Implements POSIT
algorithm.

Deallocates the 3D
object structure.

Finds an arm region in
the 3D range image
data.

Finds an arm region in
the 3D range image data
and defines the arm
orientation.

Creates an arm mask on
the image plane.

Calculates the
homograph matrix for
the initial image
transformation.

Calculates the arm mask
probability density from
the two 2D histograms.

Calculates the maximum
rectangle for two input
rectangles.

13-3

OpenCV Reference Manual 3D Reconstruction Reference 13

Camera Calibration Functions

CalibrateCamera
Calibrates camera with single precision.

voi d cvCalibrateCamera(int num mages, int* nunPoints, CvSize inmageSize,
CvPoi nt 2D32f * i magePoi nt s32f, CvPoi nt 3D32f * obj ect Poi nt s32f, CvVect 32f
di stortion32f, CvMatr32f caneralatri x32f, CvVect32f transVects32f,
CvMatr 32f rotMatrs32f, int uselntrinsicGuess);

num mages Number of the images.

nunPoi nt s Array of the number of pointsin each image.

i mgeSi ze Size of the image.

i mgePoi nt s32f Pointer to the images.

obj ect Poi nt s32f Pointer to the pattern.

di stortion32f Array of four distortion coefficients found.

camer aMat r i x32f Camera matrix found.

transVect s32f Array of translate vectors for each pattern position in the
image.

r ot Mat r s32f Array of the rotation matrix for each pattern position in the
image.

usel ntrinsi cQuess Intrinsic guess. If equal to 1, intrinsic guess is needed.

Discussion

The function Cal i br at eCaner a calculates the camera parameters using information
points on the pattern object and pattern object images.

i ntel ¢ 13-4

OpenCV Reference Manual 3D Reconstruction Reference 13

CalibrateCamera_64d
Calibrates camera with double precision.

voi d cvCali brat eCanmera_64d(int num mages, int* nunPoints, CvSize inmageSi ze,
CvPoi nt 2D64d* i magePoi nts, CvPoi nt 3D64d* obj ect Poi nts, CvVect 64d
distortion, CvMatr64d camerahMatrix, CvVect64d transVects, CvMatr64d
rotMatrs, int uselntrinsicCuess);

nunm mages Number of the images.

nunPoi nt s Array of the number of pointsin each image.

i mgeSi ze Size of the image.

i mgePoi nt s Pointer to the images.

obj ect Poi nt s Pointer to the pattern.

distortion Distortion coefficients found.

caner aMat ri x Camera matrix found.

transVects Array of the translate vectors for each pattern position on
the image.

rotMatrs Array of the rotation matrix for each pattern position on the
image.

usel ntrinsi cQuess Intrinsic guess. If equal to 1, intrinsic guess is needed.

Discussion

The function Cal i br at eCaner a_64d isbasically the same as the function
Cal i br at eCamrer a, but uses double precision.

InteL 13-5

OpenCV Reference Manual 3D Reconstruction Reference 13

FindExtrinsicCameraParams
Finds extrinsic camera parameters for pattern.

voi d cvFi ndExtri nsi cCaneraParans(int nunPoints, CvSize inmageSi ze,
CvPoi nt 2D32f * i magePoi nt s32f, CvPoi nt 3D32f * obj ect Poi nt s32f, CvVect 32f
focal Lengt h32f, CvPoi nt 2D32f pri nci pal Poi nt 32f, CvVect 32f distortion32f,
CvVect 32f rot Vect 32f, CvVect 32f transVect 32f);

nunPoi nt s Number of the points.
| mageSi ze Size of the image.

i mgePoi nt s32f Pointer to the image.
obj ect Poi nt s32f Pointer to the pattern.
f ocal Lengt h32f Focal length.

pri nci pal Poi nt 32f Principal point.

di st orti on32f Distortion.

r ot Vect 32f Rotation vector.

t ransVect 32f Translate vector.
Discussion

The function Fi ndExt ri nsi cCaner aPar ans finds the extrinsic parameters for the
pattern.

intel@ 13-6

OpenCV Reference Manual 3D Reconstruction Reference 13

FindExtrinsicCameraParams_64d

Finds extrinsic camera parameters for pattern
with double precision.

voi d cvFi ndExtri nsi cCaneraParanms_64d(i nt nunmPoints, CvSize inageSi ze,
CvPoi nt 2D64d* i magePoi nts, CvPoi nt 3D64d* obj ect Poi nts, CvVect 64d
focal Length, CvPoi nt 2D64d pri nci pal Poi nt, CvVect64d distortion, CvVect64d
rot Vect, CvVect64d transVect);

nunPoi nt s Number of the points.
| mageSi ze Size of the image.

i mgePoi nt s Pointer to the image.
obj ect Poi nt s Pointer to the pattern.
focal Lengt h Focal length.

princi pal Poi nt Principal point.
distortion Distortion.

r ot Vect Rotation vector.

t ransVect Translate vector.
Discussion

The function Fi ndExt ri nsi cCamer aPar ans_64d finds the extrinsic parameters for
the pattern with double precision.

Rodrigues

Converts rotation matrix to rotation vector and
vice versa with single precision.

voi d cvRodri gues(CvMatr32f rotMatr32f, CvVect32f rotVect32f, CvMatr32f
Jacobi an32f, CvRodri guesType convType);

Intelc 137

OpenCV Reference Manual

3D Reconstruction Reference 13

r ot Mat r 32f
r ot Vect 32f
Jacobi an32f

convType

Discussion

Rotation matrix.
Rotation vector.
Jacobian matrix 3 X 9.

Type of conversion; must be Cv_RODRI GUES_MV for converting the
matrix to the vector or cv_RODRI GUES_V2Mfor converting the vector

to the matrix.

The function Rodr i gues converts the rotation matrix to the rotation vector or vice

versa

Rodrigues_64d

Converts rotation matrix to rotation vector and
vice versa with double precision.

voi d cvRodri gues_64d(CvMatr64d rotMatr, CvVect64d rotVect, CvMatr64d

Jacobi an,

rot Matr
r ot Vect
Jacobi an

convType

Discussion

CvRodri guesType convType);

Rotation matrix.
Rotation vector.
Jacobian matrix 3 X 9.

Type of conversion; must be Cv_RODRI GUES_MV for converting the
matrix to the vector or cv_RODRI GUES_V2Mfor converting the vector
to the matrix.

The function Rodr i gues_64d converts the rotation matrix to the rotation vector or
vice versawith double precision.

13-8

OpenCV Reference Manual 3D Reconstruction Reference 13

UnDistortOnce
Corrects camera lens distortion.

void cvUnDi stortOnce (|pllmage* srclmage, |pllmge* dstlmage, float*
intrvatrix, float* distCoeffs, int interpolate=1);

srcl mage Source (distorted) image.
dst | mage Destination (corrected) image.
intrMatrix Matrix of the cameraintrinsic parameters.

di st Coeffs Vector of the four distortion coefficientsk,, k,, p; andp, .
interpolate Interpolation toggle (optional).

Discussion

Thefunction UnDi st ort Once corrects cameralensdistortion in case of asingleimage.
Matrix of the cameraintrinsic parameters and distortion coefficientsk,, k,, p; and
p, must be preliminarily calculated by the function Cal i br at eCaner a.

If i nterpol at e = 0, inter-pixel interpolation is disabled; otherwise, default bilinear
interpolation is used.

UnDistortlnit

Calculates arrays of distorted pointsindices and
inter polation coefficients.

void cvUnDistortlinit (Ipllmage* srclmage, float* IntrMatrix, float*
di st Coeffs, int* data, int interpolate=1);

srcl mage Source (distorted) image.
intrMatrix Matrix of the cameraintrinsic parameters.
di st Coeffs Vector of the 4 distortion coefficientsk,, k,, p;andp,.

InteL 13-9

OpenCV Reference Manual 3D Reconstruction Reference 13

dat a Distortion data array.
interpolate Interpolation toggle (optional).

Discussion

The function UnDi st ort I ni t calculates arrays of distorted points indices and
interpolation coefficients using known matrix of the cameraintrinsic parameters and
distortion coefficients. It must be used before calling the function UnDi st ort .

Matrix of the cameraintrinsic parameters and distortion coefficientsky, k,, p; and
p, must be preliminarily calculated by the function Cal i br at eCaner a.

The dat a array must be allocated in the main function before use of the function
UnDi stortlinit.Ifinterpolate =0, itslength must besi ze. wi dt h*si ze. hei ght
elements; otherwise 3*si ze. wi dt h*si ze. hei ght elements.

If i nt er pol at e = 0, inter-pixel interpolation is disabled; otherwise default bilinear
interpolation is used.

UnDistort

Corrects camera lens distortion.

void cvUnDistort (Ipllnmage* srclnage, |pllnage* dstlnmage, int* data, int
i nterpolate=1);

srcl mage Source (distorted) image.
dst | mage Destination (corrected) image.
dat a Distortion data array.

interpolate Interpolation toggle (optional).

Discussion

The function UnDi st ort corrects camera lens distortion using previously calculated
arrays of distorted points indices and undistortion coefficients. It is used if a sequence
of frames must be corrected.

13-10

OpenCV Reference Manual 3D Reconstruction Reference 13

Preliminarily, the function UnDi st ort I ni t calculates the array dat a.

If i nterpol ate = 0, then inter-pixel interpolation is disabled; otherwise bilinear
interpolation is used. In the latter case the function acts slower, but quality of the
corrected image increases.

FindChessBoardCornerGuesses

Finds approximate positions of internal corners
of the chessboard.

i nt cvFi ndChessBoar dCor ner Guesses (1 pl I mage* ing, |pllmage* thresh, CvSi ze

et al

onSi ze, CvPoi nt 2D32f* corners, int* cornerCount);

iy Source chessboard view; must have the depth of | PL_DEPTH_8U.
t hresh Temporary image of the same size and format as the source image.
etal onSi ze Number of inner corners per chessboard row and column. The width

(the number of columns) must be less or equal to the height (the
number of rows). For chessboard see Figure 6-1.

corners Pointer to the corner array found.

cor ner Count Signed value whose absol ute value is the number of cornersfound. A
positive number means that awhole chessboard has been found and a
negative number means that not all the corners have been found.

Discussion

The function Fi ndChessBoar dCor ner Guesses attempts to determine whether the
input image is aview of the chessboard pattern and locate internal chessboard corners.
The function returns non-zero value if al the corners have been found and they have
been placed in a certain order (row by row, left to right in every row), otherwise, if the
function failsto find all the corners or reorder them, the function returns 0. For
example, asimple chessboard has 8x8 squares and 7x 7 internal corners, that is, points,
where the squares are tangent. The word “approximate” in the above description

13-11

OpenCV Reference Manual 3D Reconstruction Reference 13

means that the corner coordinates found may differ from the actual coordinates by a
couple of pixels. To get more precise coordinates, the user may use the function
Fi ndCor ner SubPi x.

View Morphing Functions

FindFundamentalMatrix

Calculates fundamental matrix fromseveral pairs
of correspondent points in images from two
cameras.

voi d cvFi ndFundarmental Matrix (int* pointsl, int* points2, int nunpoints, int
met hod, CvMatri x3* matrix);

poi ntsl Pointer to the array of correspondence pointsin the first image.

poi nt s2 Pointer to the array of correspondence points in the second image.

nunpoi nt s Number of the point pairs.

met hod Method for finding the fundamental matrix; currently not used, must
be zero.

mat ri x Resulting fundamental matrix.

Discussion

The function Fi ndFundanent al Mat ri x finds the fundamental matrix for two cameras
from several pairs of correspondent points in images from the cameras. If the number
of pairsislessthan 8 or the points lie very close to each other or on the same planar
surface, the matrix is calculated incorrectly.

I ntel € 13-12

OpenCV Reference Manual 3D Reconstruction Reference 13

MakeScanlines

Calculates scanlines coordinates for two cameras
by fundamental matrix.

voi d cvMakeScanl i nes (CvMatri x3* matrix, CvSize ingSize, int* scanlinesl, int*
scanlines2, int* lensl, int* lens2, int* numines);

matrix Fundamental matrix.

i nySi ze Size of the image.

scanl i nesl Pointer to the array of calculated scanlines of the first image.

scanl i nes2 Pointer to the array of calculated scanlines of the second image.

| ensl Pointer to the array of calculated lengths (in pixels) of thefirst image
scanlines.

| ens2 Pointer to the array of calculated lengths (in pixels) of the second
image scanlines.

nuni i nes Pointer to the variable that stores the number of scanlines.

Discussion

The function MakeScanl i nes finds coordinates of scanlines for two images.

This function returns the number of scanlines. The function does nothing except
calculating the number of scanlinesif the pointersscanl i nes1 or scanl i nes2 are
equal to zero.

PreWarplmage

Rectifiesimage.

voi d cvPreVarpl mage (int nuniines, Ipllnmage* ing, uchar* dst, int* dstNums,
int* scanlines);

nunli nes Number of scanlines for the image.

| ntel ¢ 13-13

3D Reconstruction Reference 13

OpenCV Reference Manual
i mg Image to prewarp.
dst Datato store for the prewarp image.
dst Nuns Pointer to the array of lengths of scanlines.
scanl i nes Pointer to the array of coordinates of scanlines.
Discussion

The function Pr evar pl mage rectifies theimage so that the scanlinesin the rectified
image are horizontal. The output buffer of size max(wi dt h, hei ght) *nunscanl i nes*3
must be allocated before calling the function.

FindRuns

Retrieves scanlines from rectified image and
breaks them down into runs.

void cvFindRuns (int nunlines, uchar* prewarp_1, uchar* prewarp_2, int*

lineLens_1,
int* numRuns_2);

numLi nes
prewarp_1
prewar p_2
lineLens_1
|l ineLens_2
runs_1
runs_2
nunmRuns_1

nunmRuns_2

int* lineLens_2, int* runs_1, int* runs_2, int* nunRuns_1,

Number of the scanlines.

Prewarp data of the first image.

Prewarp data of the second image.

Array of lengths of scanlinesin the first image.

Array of lengths of scanlinesin the second image.

Array of runsin each scanlinein the first image.

Array of runsin each scanline in the second image.

Array of numbers of runsin each scanline in the first image.
Array of numbers of runsin each scanline in the second image.

13-14

OpenCV Reference Manual 3D Reconstruction Reference 13

Discussion

The function Fi ndRuns retrieves scanlines from the rectified image and breaks each
scanline down into several runs, that is, series of pixels of almost the same brightness.

DynamicCorrespondMulti

Finds cor respondence between two sets of runs of
two warped images.

voi d cvDynami cCorrespondMulti (int lines, int* first, int* firstRuns, int*
second, int* secondRuns, int* firstCorr, int* secondCorr);

l'ines Number of scanlines.

first Array of runs of thefirst image.

firstRuns Array of numbers of runsin each scanline of the first image.

second Array of runs of the second image.

secondRuns Array of numbers of runsin each scanline of the second image.

firstCorr Pointer to the array of correspondence information found for the first
runs.

secondCor r Pointer to the array of correspondence information found for the
second runs.

Discussion

The function Dynami cCor respondMul ti finds correspondence between two sets of
runs of two images. Memory must be allocated before calling this function. Memory
size for one array of correspondence information is

max(w dt h, hei ght) *nunmscanl i nes*3*si zeof (i nt).

| ntel ¢ 13-15

OpenCV Reference Manual 3D Reconstruction Reference 13

MakeAlphaScanlines

Calculates coordinates of scanlines of image from
virtual camera.

voi d cvMakeAl phaScanlines (int* scanlines_1, int* scanlines_2, int*
scanlinesA int* lens, int nunines, float alpha);

scanlines_1 Pointer to the array of the first scanlines.
scanlines_2 Pointer to the array of the second scanlines.
scanl i nesA Pointer to the array of the scanlines found in the virtua image.

| ens Pointer to the array of lengths of the scanlines found in the virtual
image.

nuni i nes Number of scanlines.

al pha Position of virtual camera(0.0 - 1.0).

Discussion

The function MakeAl phaScanl i nes finds coordinates of scanlines for the virtual
camera with the given camera position.

Memory must be allocated before calling this function. Memory size for the array of
correspondence runsisnumscanl i nes* 2*4*si zeof (i nt)). Memory sizefor the array
of the scanline lengthsisnumscanl i nes* 2* 4*si zeof (i nt).

MorphEpilinesMulti

Mor phs two pre-warped images using
information about stereo correspondence.

voi d cvMor phEpilinesMulti (int lines, uchar* firstPix, int* firstNum uchar*
secondPi x, int* secondNum uchar* dstPix, int* dstNum float al pha, int*
first, int* firstRuns, int* second, int* secondRuns, int* firstCorr, int*
secondCorr);

I ntel ® 13-16

3D Reconstruction Reference 13

secondCorr

Discussion

OpenCV Reference Manual

l'ines Number of scanlinesin the prewarp image.

firstPix Pointer to the first prewarp image.

firstNum Pointer to the array of numbers of pointsin each scanline in the first
image.

secondPi x Pointer to the second prewarp image.

secondNum Pointer to the array of numbers of pointsin each scanlinein the
second image.

dst Pi x Pointer to the resulting morphed warped image.

dst Num Pointer to the array of numbers of pointsin each line.

al pha Virtual camera position (0.0 - 1.0).

first First sequence of runs.

firstRuns Pointer to the number of runsin each scanline in the first image.

second Second sequence of runs.

secondRuns Pointer to the number of runsin each scanline in the second image.

firstCorr Pointer to the array of correspondence information found for the first

runs.

Pointer to the array of correspondence information found for the
second runs.

Thefunction Mor phEpi | i nesMul ti morphstwo pre-warped images using information
about correspondence between the scanlines of two images.

PostWarpimage
War ps rectified morphed image back.

voi d cvPost Warpl nage (int nunlines, uchar* src, int* srcNuns, |pllnmage* ing,
int* scanlines);

nunLi nes Number of the scanlines.

intel.

13-17

OpenCV Reference Manual 3D Reconstruction Reference 13

src Pointer to the prewarp image virtual image.
srcNuns Number of the scanlinesin the image.

i ng Resulting unwarp image.

scanl i nes Pointer to the array of scanlines data.
Discussion

The function Post War pl mage warps the resultant image from the virtual camera by
storing its rows across the scanlines whose coordinates are cal culated by
MakeAl phaScanl i nes function.

DeleteMoire
Deletes moire in given image.

void cvDel eteMdire (Ipllmage* ing);
i my Image.

Discussion

The function Del et eMbi re deletes moire from the given image. The post-warped
image may have black (un-covered) points because of possible holes between
neighboring scanlines. The function deletes moire (black pixels) from the image by
substituting neighboring pixels for black pixels. If al the scanlines are horizontal, the
function may be omitted.

I ntel ® 13-18

OpenCV Reference Manual 3D Reconstruction Reference 13

POSIT Functions

CreatePOSITObject

Initializes structure containing object
information.

CvPCSI TObj ect* cvCr eat ePOSI TOhj ect (CvPoi nt 3D32f * points, int numPoints);

poi nt's Pointer to the points of the 3D object model.
nunPoi nt s Number of object points.
Discussion

The function Cr eat ePOSI Tbj ect allocates memory for the object structure and
computes the object inverse matrix.

The preprocessed object datais stored in the structure cvPCsI TQbj ect , internal for
OpenCV, which means that the user cannot directly access the structure data. The user
may only create this structure and pass its pointer to the function.

Object is defined as a set of points given in a coordinate system. The function PosI T
computes a vector that begins at a camera-related coordinate system center and ends at
the poi nt s[0] of the object.

Once thework with agiven object isfinished, the function Rel easePOSI TObj ect must
be called to free memory.

POSIT
Implements POSI T algorithm.

voi d cvPOSI T (CvPoi nt 2D32f * i magePoi nts, CvPOSI TChj ect * pChj ect, double
focal Length, CvTernCriteria criteria, CvMatrix3* rotation, CvPoint3D32f*
transl ati on);

| ntel ¢ 13-19

OpenCV Reference Manual

3D Reconstruction Reference 13

i mgePoi nt's
phj ect
focal Length
criteria
rotation

transl ation

Discussion

Pointer to the object points projections on the 2D image plane.
Pointer to the object structure.

Focal length of the camera used.

Termination criteria of the iterative POSIT algorithm.

Matrix of rotations.

Tranglation vector.

The function Posi T implements POSIT a gorithm. Image coordinates are given in a
camera-related coordinate system. The focal length may be retrieved using camera
calibration functions. At every iteration of the algorithm new perspective projection of
estimated pose is computed.

Difference norm between two projections is the maximal distance between
corresponding points. The parameter cri teri a. epsi | on servesto stop the algorithm
if the differenceis small.

ReleasePOSITODbject

Deallocates 3D object structure.

voi d cvRel easePOSI TObj ect (CvPCSI TOoj ect ** ppCbj ect) ;

ppQbj ect

Discussion

Address of the pointer to the object structure.

The function Rel easePOSI TObj ect releases memory previously allocated by the
function Cr eat ePOSI TOhj ect .

13-20

OpenCV Reference Manual 3D Reconstruction Reference 13

Gesture Recognition Functions

FindHandRegion

Finds armregion in 3D range image data.

voi d cvFi ndHandRegi on (CvPoi nt 3D32f* points, int count, CvSeq* indexs, float*
line, CvSize2D32f size, int flag, CvPoint3D32f* center, CvMenStorage*
storage, CvSeq** nunbers);

poi nt's Pointer to the input 3D point data.

count Numbers of the input points.

i ndexs Sequence of the input pointsindicesin theinitial image.
l'ine Pointer to the input points approximation line.

si ze Size of the initial image.

flag Flag of the arm orientation.

center Pointer to the output arm center.

storage Pointer to the memory storage.

number s Pointer to the output sequence of the points indices.
Discussion

The function Fi ndHandRegi on findsthe arm region in 3D range image data. The
coordinates of the points must be defined in the world coordinates system. Each input
point has user-defined transform indicesi ndexs intheinitial image. The function
finds the arm region aong the approximation line from the left, if f 1 ag = 0, or from
theright, if fl ag = 1, in the points maximum accumulation by the points projection
histogram cal culation. Also the function calcul ates the center of the arm region and the
indices of the points that lie near the arm center. The function Fi ndHandRegi on
assumes that the arm length is equal to about 0.25m in the world coordinate system.

I ntGI e 13-21

OpenCV Reference Manual 3D Reconstruction Reference 13

FindHandRegionA

Finds armregion in 3D range image data and
defines arm orientation.

voi d cvFi ndHandRegi onA (CvPoi nt 3D32f * points, int count, CvSeq* indexs, float*
line, CvSize2D32f size, int jCenter, CvPoint3D32f* center, CvMenttorage*
storage, CvSeq** nunbers);

poi nt's Pointer to the input 3D point data.

count Number of the input points.

i ndexs Sequence of the input pointsindicesin theinitial image.
l'ine Pointer to the input points approximation line.

si ze Size of the initial image.

j Cent er Input j -index of the initial image center.

center Pointer to the output arm center.

st or age Pointer to the memory storage.

nunber s Pointer to the output sequence of the pointsindices.
Discussion

The function Fi ndHandRegi onA finds the arm region in the 3D range image data and
defines the arm orientation (left or right). The coordinates of the points must be
defined in the world coordinates system. The input parameter j Cent er isthe index j
of theinitial image center in pixels (wi dt h/ 2). Each input point has user-defined
transform indices on the initial image (i ndexs). The function finds the arm region
along approximation line from the left or from the right in the points maximum
accumulation by the points projection histogram calculation. Also the function
calculates the center of the arm region and the indices of points that lie near the arm
center. The function Fi ndHandRegi onA assumes that the arm length is equal to about
0.25m in the world coordinate system.

I ntel € 13-22

OpenCV Reference Manual 3D Reconstruction Reference 13

CreateHandMask
Creates arm mask on image plane.

voi d cvCreat eHandMask(CvSeq* nunbers, |pllnmage *i ngMask, CvRect *roi);

nunber s Sequence of the input pointsindicesin theinitial image.
i ngMask Pointer to the output image mask.

r oi Pointer to the output arm ROI.

Discussion

The function Cr eat eHandMask creates an arm mask on the image plane. The pixels of
the resulting mask associated with the set of the initial imageindicesi ndexs
associated with hand region have the maximum unsigned char value (255). All
remaining pixels have the minimum unsigned char value (0). The output image mask
i mgMask hasto have the | PL_DEPTH_8U type and the number of channelsis 1.

CalclmageHomography
Calculates homography matrix.

voi d cvCal cl mageHonogr aphy(float* |ine, CvPoint3D32f* center, fl oat
intrinsic[3][3], float homography[3][3]);

line Pointer to the input 3D line.
center Pointer to the input arm center.
intrinsic Matrix of the intrinsic camera parameters.

honogr aphy Output homography matrix.

| ntel ¢ 13-23

OpenCV Reference Manual 3D Reconstruction Reference 13

Discussion

The function Cal cl mageHormogr aphy calculates the homograph matrix for theinitial
image transformation from image plane to the plane, defined by 3D arm line (See
Figure 6-10 in Programmer Guide 3D Reconstruction Chapter). If n,=(nx, ny) and
n,=(nx, nz) are coordinates of the normals of the 3D line projection of planes Xy and
Xz, then the resulting image homography matrix is calculated as
H= AR, + (I 3x5—Ry) (X, [10,0,1]) A", where R, isthe 3x3 matrix R, = R, [R,, and

T T _Th Ty 77
R, = [nyxu,,ny,u,]l,R, = [uy><n2,uy,n2],uZ =[0,0,1] Uy = [0,1,0] ,xy, = 'I—'; = [——,——,1}

where (T,, T, T,) isthearm center coordinatesin the world coordinate system, and Ais
the intrinsic camera parameters matrix

f, 0c
A=lo0f
0

X

y Cy|”
0 1

The diagonal entries f, and f, are the camerafocal length in units of horizontal and
vertical pixels and the two remaining entries c,, ¢, are the principal point image
coordinates.

CalcProbDensity

Calculates arm mask probability density on
image plane.

voi d cvCal cProbDensity (CvHi stogrant hist, CvHi stogranm® histMask, CvHi stogrant

hi st Dens) ;
hi st Input image histogram.
hi st Mask Input image mask histogram.
hi st Dens Resulting probability density histogram.

I ntel € 13-24

OpenCV Reference Manual 3D Reconstruction Reference 13

Discussion

The function Cal cPr obDensi ty calculates the arm mask probability density from the
two 2D histograms. The input histograms have to be calculated in two channels on the
initial image. If {h;;} and {hm} ,1<i <B;,1<j <B; areinput histogram and mask
histogram respectively, then the resulting probability density histogram p; ; is

caculated as
M pss, i f hi; #0,
_ M
Pij =V0if h. =0

i
255,i f m; >h;

So the values of the p; ; are between 0 and 255.

MaxRect
Calculates the maximum rectangle.

voi d cvMaxRect (CvRect* rectl, CvRect* rect2, CvRect* maxRect);

rectl First input rectangle.
rect2 Second input rectangle.
maxRect Resulting maximum rectangle.

| ntel ¢ 13-25

OpenCV Reference Manual 3D Reconstruction Reference 13

Discussion

The function MaxRect calculates the maximum rectangle for two input rectangles
(Figure 13-1).

Figure 13-1 Maximum Rectangle for Two Input Rectangles

Maximum
Rectangle

I ntel ® 13-26

Basic Sructures and
Operations Reference

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types

Name

Description

Image Functions
Cr eat el mrageHeader

Creat el rage
Rel easel mageHeader

Rel easel nage
Cr eat el nageDat a

Rel easel mageDat a
Set | nageDat a

Set | mageCO
Set | nrageRO

Cet | rageRawDat a
I ni tl mageHeader

Copyl mage

Dynamic Data Structures

Functions
Cr eat eMentSt or age

Cr eat eChi | dMentst or age

Functions

Allocates, initializes, and returns structure | pl | mage.
Creates the header and allocates data.

Releases the header.

Releases the header and the image data.

Allocates the image data.

Releases the image data.

Sets the pointer to dat a and st ep parameters to given
values.

Sets the channel of interest to a given value.
Sets the image ROI to a given rectangle.
Fills output variables with the image parameters.

Initializes the image header structure without memory
allocation.

Copies the entire image to another without considering
ROI.

Creates a memory storage and returns the pointer to it.

Creates a child memory storage.

14-1

OpenCV Reference Manual

Basic Sructures and Operations Reference 14

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name

Description

Rel easeMentst or age

Cl ear Mentt or age
SaveMentt or agePos

Rest or eMentst or agePos

Creat eSeq
Set SeqBl ockSi ze
SeqPush
SeqPop
SeqPushFr ont
SeqPopFr ont
SeqPushMul ti
SeqPopMul ti
Seql nsert
SegRenove

Cl ear Seq

Get SegEl em

SeqEl em dx
Cvt SeqToArr ay

MakeSeqHeader For Arr ay

St art AppendToSeq
Start Wi teSeq

EndWi t eSeq
Fl ushSegWiter

Get SeqReader Pos

Set SeqReader Pos

De-allocates all storage memory blocks or returns them to
the parent, if any.

Clears the memory storage.

Saves the current position of the storage top.

Restores the position of the storage top.

Creates a sequence and returns the pointer to it.

Sets up the sequence block size.

Adds an element to the end of the sequence.

Removes an element from the sequence.

Adds an element to the beginning of the sequence.
Removes an element from the beginning of the sequence.
Adds several elements to the end of the sequence.
Removes several elements from the end of the sequence.
Inserts an element in the middle of the sequence.
Removes elements with the given index from the sequence.
Empties the sequence.

Finds the element with the given index in the sequence and
returns the pointer to it.

Returns index of concrete sequence element.

Copies the sequence to a continuous block of memory.
Builds a sequence from an array.

Initializes the writer to write to the sequence.

Is the exact sum of the functions Cr eat eSeq and
St art AppendToSeq.

Finishes the process of writing.

Updates sequence headers using the writer state.

Returns the index of the element in which the reader is
currently located.

Moves the read position to the absolute or relative position.

14-2

OpenCV Reference Manual

Basic Sructures and Operations Reference 14

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name Description

Cr eat eSet Creates an empty set with a specified header size.
Set Add Adds an element to the set.

Set Renove Removes an element from the set.

Get Set El em Finds a set element by index.

Cl ear Set Empties the set.

Creat eG aph Creates an empty graph.

G aphAddVt x
G aphRenoveVt x

G aphRenpveVt xByPt r

G aphAddEdge
G aphAddEdgeByPt r

G aphRenoveEdge

G aphRenoveEdgeByPt r

Fi ndG aphEdge

Fi ndGr aphEdgeByPt r
G aphVt xDegr ee

G aphVt xDegr eeByPt r

Cl ear G aph
Get G aphVt x
G aphVit xI dx

G aphEdgel dx
Matrix Operations Functions

Cr eat eMat
Cr eat eMat Header
Rel easelat

Adds a vertex to the graph.
Removes a vertex from the graph.

Removes a vertex from the graph together with all the
edges incident to it.

Adds an edge to the graph.

Adds an edge to the graph given the starting and the ending
vertices.

Removes an edge from the graph.

Removes an edge from the graph that connects given
vertices.

Finds the graph edge that connects given vertices.
Finds the graph edge that connects given vertices.
Finds an edge in the graph.

Counts the edges incident to the graph vertex, both
incoming and outcoming, and returns the result.

Removes all the vertices and edges from the graph.
Finds the graph vertex by index.

Returns the index of the graph vertex.

Returns the index of the graph edge.

Creates a new matrix.
Creates a new matrix header.

Deallocates the matrix.

14-3

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name Description

Rel easeMat Header Deallocates the matrix header.

I ni t Mat Header

Initializes a matrix header.

Cl onelvat Creates a copy of the matrix.

Set Dat a Attaches data to the matrix header.

Get Mat Initializes a matrix header for an arbitrary array.
Get At Returns value of the specified array element.
Set At Changes value of the specified array element.
Cet AtPtr Returns pointer of the specified array element.
Get SubArr Returns a rectangular sub-array of the given array.
Get Row Returns an array row.

Get Col Returns an array column.

Get Di ag Returns an array diagonal.

Get RawDat a Returns low level information on the array.

Get Si ze Returns width and height of the array.

Cr eat eDat a Allocates memory for the array data.

Al | ocArray Allocates memory for the array data.

Rel easeDat a Frees memory allocated for the array data.
FreeArray Frees memory allocated for the array data.
Copy Copies one array to another.

Set. Sets every element of array to given value.
Add Computes sum of two arrays.

AddS Computes sum of array and scalar.

Sub Computes difference of two arrays.

SubS Computes difference of array and scalar.
SubRS Computes difference of scalar and array.

Ml Calculates per-element product of two arrays.
And Calculates logical conjunction of two arrays.
AndS Calculates logical conjunction of an array and a scalar.

14-4

OpenCV Reference Manual

Basic Sructures and Operations Reference 14

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name Description

O Calculates logical disjunction of two arrays.

a S Calculates logical disjunction of an array and a scalar.

Xor. Calculates logical “exclusive or” operation on two arrays.

Xor S Calculates logical “exclusive or” operation on an array and
a scalar.

Dot Pr oduct Calculates dot product of two arrays in Euclidian metrics.

Cr ossProduct Calculates the cross product of two 3D vectors.

Scal eAdd Calculates sum of a scaled array and another array.

Vat Mul Add Calculates a shifted matrix product.

Vat Mul AddS Performs matrix transform on every element of an array.

Mul Tr ansposed Calculates product of an array and the transposed array.

I nvert Inverts an array.

Trace Returns the trace of an array.

Det. Returns the determinant of an array.

I nvert Inverts an array.

Mahal onobi s Calculates the weighted distance between two vectors.

Transpose Transposes an array

Flip Reflects an array around horizontal or vertical axis, or both.

Reshape Changes dimensions and/or number of channels in a
matrix.

Set Zer o Sets the array to zero.

Setldentity Sets the array to identity.

SVD Performs singular value decomposition of a matrix.

Pseudol nv Finds pseudo inverse of a matrix.

Ei genwW Computes eigenvalues and eigenvectors of a symmetric

Per spectiveTransform

Drawing Primitives Functions

Li ne

array.
Implements general transform of a 3D vector array.

Draws a simple or thick line segment.

tel.

14-5

OpenCV Reference Manual

Basic Sructures and Operations Reference 14

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name Description

Li neAA Draws an antialiased line segment.

Rect angl e Draws a simple, thick or filled rectangle.

Crcle Draws a simple, thick or filled circle.

Ellipse Draws a simple or thick elliptic arc or fills an ellipse sector.
El [i pseAA Draws an antialiased elliptic arc.

Fill Poly Fills an area bounded by several polygonal contours.

Fi | | ConvexPol y Fills convex polygon interior.

Pol yLi ne Draws a set of simple or thick polylines.

Pol yLi neAA Draws a set of antialiased polylines.

I ni t Font Initializes the font structure.

Put Text Draws a text string.

Get Text Si ze Retrieves width and height of the text string.

Utility Functions

AbsDi f f Calculates absolute difference between two images.
AbsDi ffS Calculates absolute difference between an image and a

Mat chTenpl at e
Cvt Pi XxToPI ane
Cvt Pl aneToPi x
Convert Scal e
LUT
InitLinelterator

Sanpl eLi ne
Cet Rect SubPi x

bFast Arct an

Sqrt

scalar.

Fills a specific image for a given image and template.
Divides a color image into separate planes.

Composes a color image from separate planes.

Converts one image to another with linear transformation.
Performs look-up table transformation on an image.

Initializes the line iterator and returns the number of pixels
between two end points.

Reads a raster line to buffer.

Retrieves a raster rectangle from the image with sub-pixel
accuracy.

Calculates fast arctangent approximation for arrays of
abscissas and ordinates.

Calculates square root of a single argument.

14-6

OpenCV Reference Manual

Basic Sructures and Operations Reference 14

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name Description

bSqgrt Calculates the square root of an array of floats.

I nvSqgrt Calculates the inverse square root of a single float.

bl nvSgrt Calculates the inverse square root of an array of floats.
bReci procal Calculates the inverse of an array of floats.

bCar t ToPol ar

bFast Exp

bFast Log

Randl ni t
bRand

Rand

Filllnmage
RandSet Range

KMeans

Memory Storage

CvMentft or age_Structure
Definition

CvMenBl ock_Structure Definition

CvMentst or agePos_Structure
Definition

Sequence Data
CvSequence_Structure Definition

Standard Types of Sequence
Elements

Standard Kinds of Sequences

Calculates the magnitude and the angle for an array of
abscissas and ordinates.

Calculates fast exponent approximation for each element of
the input array of floats.

Calculates fast logarithm approximation for each element of
the input array.

Initializes state of the random number generator.

Fills the array with random numbers and updates generator
state.

Fills the array with uniformly distributed random numbers.
Fills the image with a constant value.

Changes the range of generated random numbers without
reinitializing RNG state.

Splits a set of vectors into a given number of clusters.

Data Types

Simplifies the extension of the structure CvSeq with
additional parameters.

Provides definitions of standard sequence elements.

Specifies the kind of the sequence.

14-7

OpenCV Reference Manual

Basic Sructures and Operations Reference 14

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name

Description

CvSeqBl ock_Structure Definition

Set Data Structures
CvSet Structure Definition
CvSet El emStructure Definition

Graphs Data Structures

CvG aph_Structure Definition

Definitions of CvG aphEdge and
CvG aphVit x_Structures

Matrix Operations
CvMat Structure Definition
CvMat Ar r ay_Structure Definition

Pixel Access

CvPi xel Posi ti on_Structures
Definition

CV_INIT_PIXEL_POS
CV_MOVE_TO
CV_MOVE
CV_MOVE_WRAP

CV_MOVE_PARAM
CV_MOVE_PARAM_WRAP

Defines the building block of sequences.

Stores real single-precision or double-precision arrays.
Stores arrays of matrices to reduce time call overhead.

Pixel Access Macros

Initializes one of CvPi xel Posi ti on structures.
Moves to a specified absolute position.

Moves by one pixel relative to the current position.

Moves by one pixel relative to the current position and
wraps when the position reaches the image boundary.

Moves by one pixel in a specified direction.

Moves by one pixel in a specified direction with wrapping.

14-8

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Image Functions Reference

CreatelmageHeader

Allocates, initializes, and returns structure
Ipllmage.

I pl I mage* cvCreat el mageHeader (CvSize size, int depth, int channels);

si ze Image width and height.
dept h Image depth.

channel s Number of channels.
Discussion

The function Cr eat el mageHeader alocates, initializes, and returns the structure
I pl I mage. Thiscall is ashortened form of

i pl Creat el mageHeader (channels, 0, depth,
channels == 1 ? "GRAY" : "R&®R",
channels == 1 ? "GRAY" : channels == 3 ? "BGR" : "BGRA",
| PL_DATA ORDER PI XEL, |PL_ORIGI N TL, 4,
size.wi dth, size. height,
0,0,0,0);

Createlmage
Creates header and allocates data.

I pl I mage* cvCreatel mage (CvSize size, int depth, int channels);
si ze Image width and height.
dept h Image depth.

Intelc 14-9

OpenCV Reference Manual Basic Sructures and Operations Reference 14

channel s Number of channels.

Discussion

The function Cr eat el mage creates the header and allocates data. Thiscall isa
shortened form of

header = cvCreat el nageHeader (si ze, dept h, channel s);

cvCreat el rageDat a(header) ;

ReleaselmageHeader
Releases header.

voi d cvRel easel mageHeader (I pllnmage** image);

i mage Double pointer to the deall ocated header.

Discussion
The function Rel easel mageHeader releases the header. Thiscall is a shortened form
of
if(imge)
{
i pl Deal | ocate(*i nmage,
| PL_I MAGE_HEADER | | PL_I MAGE_ RO);

*i mage = O;

Releaselmage
Releases header and image data.

voi d cvRel easel mage (I plInmage** image)

In

tal.

14-10

OpenCV Reference Manual Basic Sructures and Operations Reference 14

i mge Double pointer to the header of the deallocated image.

Discussion
The function Rel easel mage releases the header and the image data. Thiscall isa
shortened form of
i f(imge)
{
i pl Deal | ocate(*inmage, |PL_I MAGE ALL);

*i mage = O;

CreatelmageData
Allocates image data.

voi d cvCreat el magebData (Ipl | nage* inmage);

i mage Image header.

Discussion
Thefunction Cr eat el nageDat a allocates theimage data. Thiscall isashortened form
of
i f(imge->depth == | PL_DEPTH 32F)
{
i pl Al'l ocat el mageFP(i mage, 0, 0);
}

el se

{
i pl Al'l ocatel mage(inmage, 0, 0);

14-11

OpenCV Reference Manual Basic Sructures and Operations Reference 14

ReleaselmageData
Releases image data.

voi d cvRel easel mageData (I pl I mage* image);
i mge Image header.

Discussion

The function Rel easel nageDat a releases the image data. This call is a shortened
form of

i pl Deal | ocate(inmage, |PL_I MAGE _DATA);

SetlmageData

Sets pointer to data and step parametersto given
values.

voi d cvSet |l mageData (Ipllnmge* image, void* data, int step);

i mge Image header.

data User data.

step Distance between the raster linesin bytes.
Discussion

The function Set | mageDat a Sets the pointer to dat a and st ep parameters to given
values.

intel. 1412

OpenCV Reference Manual Basic Sructures and Operations Reference 14

SetimageCOl

Sets channel of interest to given value.

voi d cvSetl mageCO (I pllrmage* inmage, int coi);

i mge Image header.
COi Channel of interest.
Discussion

Thefunction Set | mageCO setsthe channel of interest to agiven value. If ROl iSNULL
andcoi != 0, ROI isallocated.

SetimageROI

Setsimage ROI to given rectangle.

voi d cvSet | mageRO (I pl | mage* imge, CvRect rect);

i mge Image header.
rect ROI rectangle.
Discussion

The function Set | mageRO sets the image ROI to a given rectangle. If ROI is NULL
and the value of the parameter r ect is not equal to the whole image, ROI is allocated.

14-13

OpenCV Reference Manual Basic Sructures and Operations Reference 14

GetlmageRawData
Fills output variables with image parameters.

voi d cvGet |l mageRawbDat a (const | pllnage* image, uchar** data, int* step,
CvSi ze* roi Si ze);

i mge Image header.

dat a Pointer to the top-left corner of ROI.

step Full width of the raster line, equalsto i mage- >wi dt hSt ep.
roi Si ze ROI width and height.

Discussion

The function Get | mageRawbat a fills output variables with the image parameters. All
output parameters are optional and could be set to NULL.

InitimageHeader

Initializes image header structure without
memory allocation.

voi d cvlnitl mageHeader (Ipllnmage* i mage, CvSize size, int depth, int channels,
int origin, int align, int clear);

i mge Image header.

si ze Image width and height.

depth Image depth.

channel s Number of channels.

origin IPL_ORIG N_TLOrIPL_ORI G N BL.
align Alignment for the raster lines.

intel. 1414

OpenCV Reference Manual Basic Sructures and Operations Reference 14

cl ear If the parameter value equals 1, the header is cleared before
initialization.
Discussion

The function I ni t | mageHeader initializes the image header structure without
memory allocation.

Copylmage

Copies entire image to another without
considering ROI.

voi d cvCopyl mage (I pl I nmage* src, |pllnmage* dst);

src Source image.
dst Destination image.
Discussion

The function Copy! mage copies the entire image to another without considering ROI.
If the destination image is smaller, the destination image data is reallocated.

Pixel Access Macros

This section describes macros that are useful for fast and flexible access to image
pixels. The basic ideas behind these macros are as follows:

1. Some structures of CvPi xel Access type areintroduced. These structures
contain all information about ROI and its current position. The only difference
across all these structures is the data type, not the number of channels.

2. Thereexist fast versions for moving in a specific direction, e.g.,
CV_MOVE_LEFT, wrap and non-wrap versions. More complicated and slower
macros are used for moving in an arbitrary direction that is passed as a
parameter.

14-15

OpenCV Reference Manual Basic Sructures and Operations Reference 14

3. Most of the macros require the parameter cs that specifies the number of the
image channels to enable the compiler to remove superfluous multiplications
in case the image has a single channel, and substitute faster machine
instructions for them in case of three and four channels.

Example 14-1 CvPi xel Posi ti on Structures Definition

typedef struct _CvPixel Position8u
{

unsi gned char* currline;
/* pointer to the start of the current
pi xel line */
unsi gned char* topline;
/* pointer to the start of the top pixel
line */
unsi gned char* botton i ne;
/* pointer to the start of the first
line which is below the inmage */

i nt X; /* current x coordinate (in pixels) */
i nt width; /* width of the image (in pixels)*/
i nt height; /* height of the image (in pixels)*/
i nt step; [/* distance between lines (in
el ements of single plane) */

i nt step_arr[3]; /* array: (O, -step, step).

It is used for vertical

novi ng */

} CvPi xel Posi ti on8u;

/*this structure differs fromthe above only in data type*/
typedef struct _CvPixel Position8s

char* currline;
char* topli ne;
char* bottonl i ne;

int X;

int wi dt h;

int hei ght ;

int step;

i nt step_arr[3];

} CvPi xel Posi ti on8s;

/* this structure differs fromthe CvPi xel Position8u only in data type
*/

typedef struct _CvPixel Position32f

{

float* currline;
float* topline;
float* bottonline;
int X;

I ntel e 14-16

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Example 14-1 CvPi xel Posi ti on Structures Definition (continued)

i nt w dt h;

int hei ght ;

i nt step;

i nt step_arr[3];

} CvPi xel Posi ti on32f;

CV_INIT_PIXEL_POS

Initializes one of CvPixel Position structures.

#define CV_IN T_PI XEL_POS(pos, origin, step, roi, X, y, orientation)

pos Initialization of structure.

origin Pointer to the left-top corner of ROI.
step Width of the whole image in bytes.
roi Width and height of ROI.

X, Y Initial position.

orientation Image orientation; could be either
CV_ORI G N_TL - top/left orientation, or
CV_ORI G N_BL - bottom/I€eft orientation.

CV_MOVE_TO

Moves to specified absolute position.

#define CV_MOVE_TQ(pos, X, y, CS)

pos Position structure.
X, Yy Coordinates of the new position.
cs Number of the image channels.

I ntGI e 14-17

OpenCV Reference Manual Basic Sructures and Operations Reference 14

CV_MOVE

Moves by one pixel relative to current position.

#defi ne CV_MOVE LEFT(pos, cs)
#defi ne CV_MOVE_RI GHT(pos, cs)
#define CV_MOVE_UP(pos, cs)
#defi ne CV_MOVE_DOMN(pos, cs)
#define CV_MOVE LU pos, cs)
#define CV_MOVE _RU(pos, cs)
#define CV_MOVE LD pos, cs)
#define CV_MOVE_RD(pos, cs)
pos Position structure.
cs Number of the image channels.

CV_MOVE_WRAP

Moves by one pixel relative to current position
and wraps when position reaches image
boundary.

#define CV_MOVE _LEFT_WRAP(pos, cs)
#defi ne CV_MOVE_RI GHT_WRAP(pos, cs)
#defi ne CV_MOVE_UP_WRAP(pos, cs)
#defi ne CV_MOVE_DOMN_WRAP(pos, cs)
#defi ne CV_MOVE_LU WRAP(pos, cs)
#defi ne CV_MOVE_RU WRAP(pos, cs)
#defi ne CV_MOVE_LD WRAP(pos, cs)
#defi ne CV_MOVE_RD WRAP(pos, cs)
pos Position structure.

I ntel e 14-18

OpenCV Reference Manual Basic Sructures and Operations Reference 14

cs Number of the image channels.

CV_MOVE_PARAM

Moves by one pixel in specified direction.

#defi ne CV_MOVE_PARAM pos, shift, cs)

pos Position structure.
cs Number of the image channels.
shift Direction; could be any of the following:

CV_SHI FT_NONE,
CV_SHI FT_LEFT,
CV_SHI FT_RI GHT,
CV_SH FT_UP,
CV_SH FT_DOWN,
CV_SH FT_UL,
CV_SH FT_UR,
CV_SH FT_DL.

CV_MOVE_PARAM_WRAP
Moves by one pixel in specified direction with
wrapping.

#defi ne CV_MOVE_PARAM WRAP(pos, shift, cs)

pos Position structure.
cs Number of the image channels.
shift Direction; could be any of the following:

I ntGI e 14-19

OpenCV Reference Manual Basic Sructures and Operations Reference 14

CV_SH FT_NONE,
CV_SHI FT_LEFT,
CV_SH FT_RI GHT,
CV_SH FT_UP,
CV_SH FT_DOWN,
CV_SHI FT_UL,
CV_SHI FT_UR,
CV_SHI FT_DL.

I ntel e 14-20

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Dynamic Data Structures Reference

Memory Storage Reference

Example 14-2 CvMentt or age Structure Definition

typedef struct CvMenStorage
{

CvMenBl ock* bottom/* first allocated bl ock */
CvMenBl ock* top; /*current nenory block - top of the stack */
struct CvMenttorage* parent; /* borrows new bl ocks from */
i nt bl ock_size; /* block size */
i nt free_space; /* free space in the current block */
} CvMentt or age;

Example 14-3 CvMenBl ock Structure Definition

typedef struct CvMenBl ock
{

struct CvMenBl ock* prev;
struct CvMenBl ock* next;
} CvMenBI ock;

Actual data of the memory blocks follows the header, that is, thei th byte of the
memory block can be retrieved with the expression ((char O)(mem bl ock_ptr +1))[i] .
However, the occasions on which the need for direct access to the memory blocks
arises are quite rare. The structure described below stores the position of the stack top
that can be saved/restored:

Example 14-4 CvMenSt or agePos Structure Definition

typedef struct CvMenStor agePos

CvMenBl ock* top;
int free_space;

}
CvMentt or agePos;

I ntGI e 14-21

OpenCV Reference Manual Basic Sructures and Operations Reference 14

CreateMemStorage
Creates memory storage.

CvMentt or age* cvCreat eMentSt orage (int bl ockSi ze=0);
bl ockSi ze Size of the memory blocks in the storage; bytes.

Discussion

The function Cr eat eMenst or age creates a memory storage and returns the pointer to
it. Initialy the storage is empty. All fields of the header are set to 0. The parameter

bl ockSi ze must be positive or zero; if the parameter equals O, the block sizeis set to
the default value, currently 64K.

CreateChildMemStorage

Creates child memory storage.

CvMentst or age* cvCreat eChi | dMentSt or age (CvMentt or age* parent);
par ent Parent memory storage.

Discussion

The function Cr eat eChi | dMenSt or age creates a child memory storage similar to the
simple memory storage except for the differences in the memory
allocation/de-allocation mechanism. When a child storage needs a new block to add to
the block list, it tries to get this block from the parent. The first unoccupied parent
block available is taken and excluded from the parent block list. If no blocks are
available, the parent either allocates ablock or borrows one from its own parent, if any.
In other words, the chain, or a more complex structure, of memory storages where
every storageis a child/parent of another is possible. When a child storage is released
or even cleared, it returns all blocks to the parent. Note again, that in other aspects, the
child storage is the same as the simple storage.

intel. 1422

OpenCV Reference Manual Basic Sructures and Operations Reference 14

ReleaseMemStorage
Releases memory storage.

voi d cvRel easeMentst or age (CvMentt or age** st orage);
storage Pointer to the released storage.

Discussion

The function Rel easeMenst or age de-allocates all storage memory blocks or returns
them to the parent, if any. Then it de-allocates the storage header and clears the pointer
to the storage. All children of the storage must be released before the parent is

rel eased.

ClearMemStorage
Clears memory storage.

voi d cvCl ear Mentt or age (CvMenft or age* storage);
st orage Memory storage.

Discussion

The function d ear Menst or age resets the top (free space boundary) of the storage to
the very beginning. Thisfunction does not de-allocate any memory. If the storage hasa
parent, the function returns all blocks to the parent.

I ntGI e 14-23

OpenCV Reference Manual Basic Sructures and Operations Reference 14

SaveMemStoragePos
Saves memory storage position.

voi d cvSaveMentst or agePos (CvMentt or age* st orage, CvMenttor agePos* pos);

st orage Memory storage.
pos Currently retrieved position of the in-memory storage top.
Discussion

The function SaveMenst or agePos saves the current position of the storage top to the
parameter pos. The function Rest or eMentt or agePos can further retrieve this
position.

RestoreMemStoragePos
Restores memory storage position.

voi d cvRest oreMentst or agePos (CvMentt or age* st orage, CvMenStoragePos* pos);

st or age Memory storage.
pos New storage top position.
Discussion

The function Rest or eMenst or agePos restores the position of the storage top from the
parameter pos. Thisfunction and the function d ear Menst or age are the only methods
to release memory occupied in memory blocks.

In other words, the occupied space and free space in the storage are continuous. If the
user needs to process data and put the result to the storage, there arises a need for the
storage space to be allocated for temporary results. In this case the user may simply
write all thetemporary datato that single storage. However, as aresult garbage appears
in the middle of the occupied part. See Figure 14-1.

intel. 1424

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Figure 14-1 Storage Allocation for Temporary Results

I nput/Output Storage

Input (Ocipied) Data

Input/Output Storage

psssssssssssy
et tate et tatettett |
ettt rte e tate et |
et tate et tate et
ettt ttetitatettelt |
et tate et tatettett |
et tate et tatettett |
et tate et tatettett |
et tate et tatettett |
et tate et tatettett |
pasaay]
R

RS sss]
s
Doteeloteteatotetotelototeole

TempoMa (Garbage) Output'Data

Saving/Restoring does not work in this case. Creating a child memory storage,
however, can resolve this problem. The algorithm writes to both storages
simultaneously, and, once done, releases the temporary storage. See Figure 14-2.

I ntGI e 14-25

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Figure 14-2 Release of Temporary Storage

I nput/Output Storage

B
kRssss
s
s
58S
3
XK
5

[
s
s
frscess

Sequence Reference

Example 14-5 CvSequence Structure Definition

#def i ne CV_SEQUENCE_FI ELDS() \
i nt header _si ze; /* size of sequence header */ \
struct CvSeq* h_prev; /* previous sequence */ \
struct CvSeq* h_next; /* next sequence */ \
struct CvSeq* v_prev; /* 2nd previ ous sequence */ \
struct CvSeq* v_next; /* 2nd next sequence */ \
i nt flags; /* mcsellaneous flags */ \
int total; /* total nunber of elenents */ \
i nt elem size;/* size of sequence element in bytes */ \
char* bl ock_max;/* maxi mal bound of the l|ast block */ \
char* ptr; [* current wite pointer */ \
i nt delta_elenms; /* how many el enments all ocated when the seq

grows */ \

CvMentt orage* storage; [/* where the seq is stored */ \
CvSeqBl ock* free_blocks; /* free blocks list */ \

CvSeqBl ock* first; /* pointer to the first sequence bl ock */
typedef struct CvSeq

CV_SEQUENCE_FI ELDS()
} CvSeq;

I ntel e 14-26

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Such an unusual definition simplifies the extension of the structure cvSeq with
additional parameters. To extend CvSeq the user may define a new structure and put
user-defined fields after all cvSeq fields that are included viathe macro
CV_SEQUENCE_FI ELDS() . Thefield header _si ze contains the actual size of the
sequence header and must be more than or equal to si zeof (CvSeq) . Thefields
h_prev, h_next,v_prev,v_next can be used to create hierarchical structuresfrom
separate sequences. Thefieldsh_prev and h_next point to the previous and the next
sequences on the same hierarchical level whilethe fieldsv_prev and v_next point to
the previous and the next sequence in the vertical direction, that is, parent and its first
child. But these are just names and the pointers can be used in a different way. The
fieldfirst pointsto the first sequence block, whose structure is described below. The
field flags contain miscellaneous information on the type of the sequence and should
be discussed in greater detail. By convention, the lowest Cv_SEQ ELTYPE_BI TS bits
contain the ID of the element type. The current version has cv_SEQ ELTYPE BI TS
equal to 5, that is, it supports up to 32 non-overlapping element types now. Thefile
CVTypes. h declaresthe predefined types.

Example 14-6 Standard Types of Sequence Elements

#define CV_SEQ ELTYPE PO NT 1/* (x,y) */

#defi ne CV_SEQ ELTYPE_CODE 2 /* freeman code: 0..7 */
#define CV_SEQ ELTYPE PPO NT 3 /% &(x,y) */

#define CV_SEQ ELTYPE_I NDEX 4 [* #(x,y) */

#define CV_SEQ ELTYPE GRAPH EDGE 5 /* &next o, &ext _d, &t x_o,
&vtx_d */

#define CV_SEQ ELTYPE GRAPH VERTEX 6 /* first_edge, &(x,y) */
#define CV_SEQ ELTYPE_TRI AN _ATR 7 /* vertex of the binary tree

*/
#defi ne CV_SEQ ELTYPE_CONNECTED COWP 8 /* connected conmponent */
#defi ne CV_SEQ ELTYPE_PQ NT3D 9 /* (x,y,z2) */

The next Cv_SEQ KI ND_BI TS hits, also 5 in number, specify the kind of the sequence.
Again, predefined kinds of sequences are declared in the file CvTypes. h.

Example 14-7 Standard Kinds of Sequences

#defi ne CV_SEQ KI ND_SET
#define CV_SEQ KI ND_CURVE
#defi ne CV_SEQ KI ND_BI N_TREE
#define CV_SEQ KI ND_GRAPH

<< CV_SEQ ELTYPE_BI TS)
<< CV_SEQ ELTYPE_BI TS)
<< CV_SEQ ELTYPE_BI TS)
<< CV_SEQ ELTYPE BI TS)

A~~~
WN RO

14-27

OpenCV Reference Manual Basic Sructures and Operations Reference 14

The remaining bits are used to identify different features specific to certain sequence
kinds and element types. For example, curves made of points

(CV_SEQ KI ND_CURVE| CV_SEQ ELTYPE_PQ NT), together with the flag
CV_SEQ FLAG CLGOSED belong to the type cv_SEQ POLYGON or, if other flags are used,
its subtype. Many contour processing functions check the type of the input sequence
and report an error if they do not support thistype. The file CvTypes. h stores the
completelist of all supported predefined sequence types and hel per macros designed to
get the sequence type of other properties.

Below follows the definition of the building block of sequences.

Example 14-8 CvSeqBl ock Structure Definition

typedef struct CvSeqBl ock
{

struct CvSeqBl ock* prev; /* previous sequence block */
struct CvSeqBl ock* next; /* next sequence block */

int start_index; /* index of the first elenent in the bl ock +
sequence->first->start_index */
int count; /* nunber of elenents in the block */

char* data; /* pointer to the first elenent of the block */
} CvSeqBl ock;

Sequence blocks make up a circular double-linked list, so the pointers pr ev and next
are never NULL and point to the previous and the next sequence blocks within the
sequence. It meansthat next of the last block isthe first block and pr ev of the first
block isthe last block. Thefieldsst art _i ndex and count help to track the block
location within the sequence. For example, if the sequence consists of 10 elements and
splitsinto three blocks of 3, 5, and 2 elements, and the first block has the parameter
start_index = 2,thenpairs<start_i ndex, count > for the sequence blocks are

<2, 3>, <5, 5>, and <10, 2> correspondingly. The parameter st art _i ndex of the first
block is usually 0 unless some elements have been inserted at the beginning of the
sequence.

14-28

OpenCV Reference Manual

Basic Sructures and Operations Reference 14

CreateSeq

Creates sequence.

CvSeq* cvCreateSeq (int seqFlags, int headerSize, int el enSize, CvMenttorage*
st or age) ;

seqgFl ags

header Si ze

el entSi ze

st orage

Discussion

Flags of the created sequence. If the sequence is not passed to any
function working with a specific type of sequences, the sequence
value may be equal to 0, otherwise the appropriate type must be
selected from the list of predefined sequence types.

Size of the sequence header; must be more than or equal to
si zeof (CvSeq) . If aspecific type or its extension isindicated, this
type must fit the base type header.

Size of the sequence elementsin bytes. The size must be consistent
with the sequence type. For example, for a sequence of pointsto be
created, the element type Ccv_SEQ ELTYPE_PO NT should be specified
and the parameter el eni ze must be equal to si zeof (CvPoi nt) .

Seguence location.

The function Cr eat eSeq creates a sequence and returns the pointer to it. The function
allocates the sequence header in the storage block as one continuous chunk and fills
the parameter el ensi ze, flags header Si ze, and st or age with passed values, sets the
parameter del t aEl ens (Seethe function Set SeqBI ockSi ze) to the default value, and
clears other fields, including the space behind si zeof (CvSeq) .

=

NOTE. All headersin the memory storage, including sequence
headers and sequence block headers, are aligned with the 4-byte
boundary.

14-29

OpenCV Reference Manual Basic Sructures and Operations Reference 14

SetSeqBlockSize

Sets up sequence block size.

voi d cvSet SeqBl ockSi ze (CvSeq* seq, int blockSize);

seq Sequence.
bl ockSi ze Desirable block size.
Discussion

The function Set SeqBl ockSi ze affects the memory allocation granularity. When the
free space in the internal sequence buffers has run out, the function allocates

bl ockSi ze bytesin the storage. If this block immediately follows the one previously
allocated, the two blocks are concatenated, otherwise, a new sequence block is created.
Therefore, the bigger the parameter, the lower the sequence fragmentation probability,
but the more space in the storage is wasted. When the sequence is created, the
parameter bl ockSi ze is set to the default value ~1K. The function can be called any
time after the sequence is created and affects future allocations. The final block size
can be different from the one desired, e.g., if it islarger than the storage block size, or
smaller than the sequence header size plus the sequence element size.

The next four functions SeqPush, SeqPop, SeqPushFr ont , SeqPopFr ont add or
remove elementsto/from one of the sequence ends. Their time complexity isQ(1) , that
is, al these operations do not shift existing sequence elements.

SegPush

Adds element to sequence end.

voi d cvSeqPush (CvSeq* seq, void* elenent);

seq Sequence.
el ement Added element.

14-30

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function SeqPush adds an element to the end of the sequence. Although this
function can be used to create a sequence element by element, there is a faster method
(refer to Writing and Reading Sequences).

SeqPop

Removes element from sequence end.

voi d cvSeqPop (CvSeq* seq, void* element);

seq Sequence.
el ement Optional parameter. If the pointer is not zero, the function copies the
removed element to this location.

Discussion

The function SeqPop removes an element from the sequence. The function reports an
error if the sequence is already empty.

SeqPushFront
Adds element to sequence beginning.

voi d cvSeqPushFront (CvSeq* seq, void* el enent);

seq Sequence.
el ement Added element.
Discussion

The function SeqPushFront adds an element to the beginning of the sequence.

I ntGI e 14-31

OpenCV Reference Manual Basic Sructures and Operations Reference 14

SegPopFront

Removes element from sequence beginning.

voi d cvSeqPopFront (CvSeq* seq, void* elenent);

seq Sequence.
el ement Optional parameter. If the pointer is not zero, the function copies the
removed element to this location.

Discussion

The function SeqPopFr ont removes an element from the beginning of the sequence.
The function reports an error if the sequenceis already empty.

Next two functions SeqPushMul ti , SeqPopMil ti are batch versions of the
PUSH/POP operations.

SeqgPushMulti

Pushes several el ements to sequence end.

voi d cvSeqPushMulti (CvSeq* seq, void* elenents, int count);

seq Sequence.

el ement s Added elements.

count Number of elementsto push.
Discussion

The function seqPushMul ti adds several elements to the end of the sequence. The
elements are added to the sequence in the same order as they are arranged in the input
array but they can fall into different sequence blocks.

14-32

OpenCV Reference Manual Basic Sructures and Operations Reference 14

SeqgPopMulti

Removes several elements from sequence end.

voi d cvSeqPopMilti (CvSeq* seq, void* elements, int count);

seq Sequence.

el enent s Removed elements.

count Number of elements to pop.
Discussion

The function SeqPopMul ti removes several elements from the end of the sequence. If
the number of the elements to be removed exceeds the total number of elementsin the
sequence, the function removes as many el ements as possible.

Seqglinsert
Inserts element in sequence middle.

voi d cvSeql nsert (CvSeq* seq, int beforelndex, void* elenent);

seq Sequence.

beforel ndex Index before which the element isinserted. Inserting before O is
equal to cvSeqPushFront and inserting beforeseq- >t ot al isequal
to cvSegPush. Theindex valuesin these two examples are
boundaries for allowed parameter values.

el ement Inserted €l ement.

Discussion

Thefunction Seql nsert shifts the sequence elements from the inserted position to the
nearest end of the sequence before it copies an element there, therefore, the algorithm
time complexity isQ(n/ 2) .

14-33

OpenCV Reference Manual Basic Sructures and Operations Reference 14

SegRemove
Removes element from sequence middle.

voi d cvSeqRenove (CvSeq* seq, int index);

seq Sequence.
i ndex Index of removed el ement.
Discussion

The function SeqRenove removes elements with the given index. If theindex is
negative or greater than the total number of elements less 1, the function reports an
error. An attempt to remove an element from an empty sequence is a specific case of
this situation. The function removes an element by shifting the sequence elements
from the nearest end of the sequencei ndex.

ClearSeq

Clears sequence.

voi d cvCl ear Seq (CvSeq* seq);
seq Sequence.

Discussion

The function d ear Seq empties the sequence. The function does not return the
memory to the storage, but this memory is used again when new elements are added to
the sequence. This function time complexity isQ(1) .

I ntel e 14-34

OpenCV Reference Manual Basic Sructures and Operations Reference 14

GetSeqElem

Returns n-th element of sequence.

char* cvGet SeqEl em (CvSeqg* seq, int index, CvSeqBl ock** bl ock=0);

seq Sequence.
i ndex Index of element.
bl ock Optional argument. If the pointer is not NULL, the address of the

sequence block that contains the element is stored in this location.

Discussion

The function Get SeqEl em finds the element with the given index in the sequence and
returns the pointer to it. In addition, the function can return the pointer to the sequence
block that contains the element. If the element is not found, the function returns 0. The
function supports negative indices, where -1 stands for the last sequence element, -2
stands for the one before last, etc. If the sequence is most likely to consist of asingle
sequence block or the desired element is likely to be located in thefirst block, then the
macro CV_GET_SEQ ELEM(el enffype, seq, i ndex) should be used, where the
parameter el eniType is the type of sequence elements (CvPoi nt for example), the
parameter seq is a sequence, and the parameter i ndex isthe index of the desired
element. The macro checks first whether the desired element belongs to the first block
of the sequence and, if so, returns the element, otherwise the macro calls the main
function Get SeqEl em Negative indices always cause the cvGet SeqEl emcall.

SeqElemldx

Returns index of concrete sequence element.

int cvSeqEl em dx (CvSeqg* seq, void* elenent, CvSeqBl ock** bl ock=0);

seq Sequence.
el enent Pointer to the element within the sequence.

| ntel . 14-35

OpenCV Reference Manual Basic Sructures and Operations Reference 14

bl ock Optional argument. If the pointer is not NULL, the address of the
sequence block that contains the element is stored in this location.

Discussion

The function SeqEl em dx returns the index of a sequence element or a negative
number if the element is not found.

CvtSeqToArray

Copies sequence to one continuous block of
memory.

voi d* cvCvt SeqToArray (CvSeq* seq, void* array, CvSlice
slice=CV_VWHOLE_SEQseq));

seq Sequence.

array Pointer to the destination array that must fit all the sequence
elements.

slice Start and end indices within the sequence so that the

corresponding subsequence is copied.

Discussion

The function Cvt SeqToAr ray copies the entire sequence or subsequence to the
specified buffer and returns the pointer to the buffer.

MakeSeqHeaderForArray

Constructs sequence from array.

voi d cvMakeSegHeader For Array (int seqType, int headerSize, int el enfSize, void*
array, int total, CvSeq* sequence, CvSeqgBl ock* bl ock);

I ntel € 14-36

OpenCV Reference Manual

Basic Sructures and Operations Reference 14

seqType

header Si ze

el enSi ze
array

t ot al

sequence

bl ock

Discussion

Type of the created sequence.

Size of the header of the sequence. Parameter sequence must point to
the structure of that size or greater size.

Size of the sequence element.
Pointer to the array that makes up the sequence.

Total number of elements in the sequence. The number of array
elements must be equal to the value of this parameter.

Pointer to the local variable that is used as the sequence header.

Pointer to the local variable that is the header of the single sequence
block.

The function MakeSeqHeader For Ar r ay, the exact opposite of the function
Cvt SeqToAr r ay, builds a sequence from an array. The sequence always consists of a

single sequence block, and the total number of elements may not be greater than the
value of the parameter t ot al , though the user may remove elements from the
sequence, then add other elements to it with the above restriction.

Writing and Reading Sequences Reference

StartAppendToSeq

Initializes process of writing to sequence.

voi d cvStart AppendToSeq (CvSeq* seq, CvSegqWiter* witer);

seq

writer

Pointer to the sequence.

Pointer to the working structure that contains the current status of the
writing process.

14-37

OpenCV Reference Manual

Basic Sructures and Operations Reference 14

Discussion

The function st ar t AppendToSeq initializes the writer to write to the sequence.
Written elements are added to the end of the sequence. Note that during the writing
process other operations on the sequence may yield incorrect result or even corrupt the
sequence (see Discussion of the function Fl ushSeqw i t er).

StartWriteSeq

Creates new sequence and initializes writer for it.

void cvStart WiteSeq (int seqFlags, int headerSize, int el enfize,
CvMentt or age* storage, CvSeqWiter* witer);

seqgFl ags

header Si ze

el entSi ze

st orage

witer

Discussion

Flags of the created sequence. If the sequence is not passed to any
function working with a specific type of sequences, the sequence
value may be equal to 0, otherwise the appropriate type must be
selected from the list of predefined sequence types.

Size of the sequence header. The parameter value may not be less
than si zeof (CvSeq) . If acertain type or extension is specified, it
must fit the base type header.

Size of the sequence elements in bytes; must be consistent with the
sequence type. For example, if the sequence of pointsis created
(element type Cv_SEQ ELTYPE_PQ NT), then the parameter el ensi ze
must be equal to si zeof (CvPoi nt).

Seguence location.
Pointer to the writer status.

The function st art Wi t eSeq isthe exact sum of the functions Cr eat eSeq and
St art AppendToSeq.

14-38

OpenCV Reference Manual Basic Sructures and Operations Reference 14

EndWriteSeq

Finishes process of writing.

CvSeq* cvEndWiteSeq (CvSeqWiter* witer);
writer Pointer to the writer status.

Discussion

The function EndW i t eSeq finishes the writing process and returns the pointer to the
resulting sequence. The function also truncates the last sequence block to return the
whole of unfilled space to the memory storage. After that the user may read freely
from the sequence and modify it.

FlushSeqWriter

Updates sequence headers using writer state.

voi d cvFlushSegWiter (CvSegWiter* witer);
writer Pointer to the writer status.

Discussion

The function Fl ushSeqw i t er isintended to enable the user to read sequence
elements, whenever required, during the writing process, e.g., in order to check
specific conditions. The function updates the sequence headers to make reading from
the sequence possible. The writer is not closed, however, so that the writing process
can be continued any time. Frequent flushes are not recommended, the function

SeqPush is preferred.

| ntel . 14-39

OpenCV Reference Manual Basic Sructures and Operations Reference 14

StartReadSeq

Initializes process of sequential reading from

sequence.

voi d cvStart ReadSeq(CvSeq* seq, CvSeqReader* reader, int reverse=0);

seq Sequence.
r eader Pointer to the reader status.
reverse Whenever the parameter value equals O, the reading processis going

in the forward direction, that is, from the beginning to the end,
otherwise the reading process direction is reverse, from the end to
the beginning.

Discussion

The function St ar t ReadSeq initializes the reader structure. After that all the sequence
elements from the first down to the last one can be read by subsequent calls of the
macro CV_READ SEQ ELEM(el em r eader) that issimilar to CV_WRI TE_SEQ ELEM The
function puts the reading pointer to the last sequence element if the parameter r ever se
does not equal zero. After that the macro CvV_REV_READ_SEQ ELEM(el em r eader) can
be used to get sequence elements from the last to the first. Both macros put the
sequence element to el emand move the reading pointer forward (Cv_READ_SEQ ELEM)
or backward (Cv_REV_READ SEQ ELEM). A circular structure of sequence blocksis
used for the reading process, that is, after the last element has been read by the macro
CV_READ SEQ ELEM thefirst element isread when the macro is called again. The same
appliesto cv_REV_READ_SEQ ELEM Neither function ends reading since the reading
process does not modify the sequence, nor requires any temporary buffers. The reader
field pt r pointsto the current element of the sequence that is to be read first.

14-40

OpenCV Reference Manual Basic Sructures and Operations Reference 14

GetSeqReaderPos

Returns index of element to read position.

i nt cvGet SeqReader Pos (CvSeqReader* reader);
r eader Pointer to the reader status.

Discussion

Thefunction Get SeqReader Pos returnstheindex of the element in which thereader is
currently located.

SetSeqReaderPos

Moves read position to specified index.

voi d cvSet SeqReader Pos (CvSeqReader* reader, int index, int is_relative=0);
r eader Pointer to the reader status.
i ndex Position where the reader must be moved.

is_relative If theparameter valueis not equal to zero, the index means an offset
relative to the current position.

Discussion

The function Set SeqReader Pos moves the read position to the absolute or relative
position. Thisfunction allows for cycle character of the sequence.

intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Sets Reference

CreateSet
Creates empty set.

CvSet* cvCreateSet (int setFlags, int headerSize, int el enfSize, CvMenttorage*

st orage) ;
set Fl ags Type of the created set.
header Si ze Set header size; may not be lessthan si zeof (CvSeq) .
el ensi ze Set element size; may not be less than 8 bytes, must be divisible by 4.
st orage Future set location.
Discussion

Thefunction Cr eat eSet creates an empty set with a specified header size and returns
the pointer to the set. The function simply redirects the call to the function Cr eat eSeq.

SetAdd
Adds element to set.

int cvSet Add (CvSet* set, CvSet* elem CvSet** insertedEl em=0);
set Set.

el em Optional input argument, inserted element. If not NULL, the function
copies the datato the allocated cell omitting the first 4-byte field.

i nsertedEl em Optional output argument; points to the alocated cell.

intel. 1442

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function Set Add allocates a new cell, optionally copies input element datato it,
and returns the pointer and the index to the cell. Theindex valueistaken from the
second 4-byte field of the cell. In case the cell was previously deleted and awrong
index was specified, the function returns this wrong index. However, if the user works
in the pointer mode, no problem occurs and the pointer stored at the parameter

i nsert edEl emmay be used to get access to the added set element.

SetRemove
Removes element from set.

voi d cvSet Renove (CvSet* set, int index);

set Set.
i ndex Index of the removed e ement.
Discussion

The function Set Remove removes an element with a specified index from the set. The
function is typically used when set elements are accessed by their indices. If pointers
are used, the macro Cv_REMOVE_SET_ELEM set, index, elem), whereel emisa
pointer to the removed element and i ndex iS any non-negative value, may be used to
remove the element. Alternative way to remove an element by its pointer isto calculate
index of the element viathe function SeqEl em dx after which the function Set Renove
may be called, but this method is much slower than the macro.

GetSetElem
Finds set element by index.

CvSet El ent cvCet Set El em (CvSet * set, int index);

In

tel.

14-43

OpenCV Reference Manual Basic Sructures and Operations Reference 14

set Set.
i ndex Index of the set element within a sequence.
Discussion

The function Get Set EI em finds a set element by index. The function returns the
pointer to it or O if the index isinvalid or the corresponding cell is free. The function
supports negative indices through calling the function Get SeqEl em

E NOTE. The user can check whether the element belongs to the set
= with the help of themacrocv_I S_SET_ELEM EXI STS(el en) oncethe
pointer is set to a set element.

ClearSet
Clears set.

voi d cvCl earSet (CvSet* set);
set Cleared set.

Discussion

The function d ear Set empties the set by calling the function C ear Seq and setting
the pointer to the list of free cells. The function takes o(1) time.

intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Sets Data Structures

Example 14-9 CvSet Structure Definition

#define CV_SET_FI ELDS() \
CV_SEQUENCE_FI ELDS() \
CvMenBl ock* free_el ens;

typedef struct CvSet
CV_SET_FI ELDS()

}

CvSet ;

Example 14-10 CvSet El emStructure Definition

#defi ne CV_SET_ELEM FI ELDS() \
int* aligned_ptr;
typedef struct _CvSetEl em

CV_SET_ELEM FI ELDS()
}
CvSet El em

Thefirst field isadummy field and is not used in the occupied cells, except the least
significant bit, which is 0. With this structure the integer element could be defined as

follows:
typedef struct _IntSetEl em
{
CV_SET_ELEM FI ELDS()
int val ue;
}
| nt Set El em

intel. 1445

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Graphs Reference

CreateGraph
Creates empty graph.

CvG aph* cvCreateG aph (int graphFlags, int headerSize, int vertexSize, int
edgeSi ze, CvStorage* storage);
gr aphFl ags Type of the created graph. The kind of the sequence must be graph
(CV_SEQ KI ND_GRAPH) and flag Cv_GRAPH_FLAG ORI ENTED allows
the oriented graph to be created. User may choose other flags, aswell
as types of graph vertices and edges.

header Si ze Graph header size; may not be less than si zeof (CvG aph) .

vertexSi ze Graph vertex size; must be greater than
si zeof (OvG aphVert ex) and meet al restrictions on the set

element.

edgeSi ze Graph edge size; may not be less than si zeof (CvGr aphEdge) and
must be divisible by 4.

storage Future location of the graph.

Discussion

The function Cr eat eG aph creates an empty graph, that is, two empty sets, a set of
vertices and a set of edges, and returnsiit.

GraphAddVix
Adds vertex to graph.

int cvG aphAddvtx (CvG aph* graph, CvG aphVtx* vtx, CvG aphVtx**
i nsertedVvt x=0);

I ntel e 14-46

OpenCV Reference Manual Basic Sructures and Operations Reference 14

graph Graph.

vt X Optional input argument. Similar to the parameter el em of the
function Set Add, the parameter vt x could be used to initialize new
vertices with concrete values. If vt x is not NULL, the function copies
it to anew vertex, except the first 4-byte field.

insertedvtx Optional output argument. If not NULL, the address of the new vertex
iswritten there.

Discussion
The function G aphAddVt x adds a vertex to the graph and returns the vertex index.

GraphRemoveVitx
Removes vertex from graph.

voi d cvGraphRenmbveAddVt x (CvG aph* graph, int vtxldx);

graph Graph.
vt x| dx Index of the removed vertex.
Discussion

The function G aphRermoveAddVt x removes a vertex from the graph together with all
the edges incident to it. The function reports an error, if input vertices do not belong to
the graph, that makes it safer than G aphRenoveVt xByPt r, but less efficient.

GraphRemoveVixByPtr

Removes vertex from graph.

voi d cvG aphRenoveVt xByPtr (CvG aph* graph, CvG aphVtx* vtx);
graph Graph.

intel.

OpenCV Reference Manual Basic Sructures and Operations Reference 14

vt X Pointer to the removed vertex.

Discussion

The function G aphRermoveVt xByPt r removes a vertex from the graph together with
all the edges incident to it. The function is more efficient than G- aphRenoveVt x but
less safe, because it does not check whether the input vertices belong to the graph.

GraphAddEdge
Adds edgeto graph.

int cvG aphAddEdge (CvG aph* graph, int startldx, int endldx, CvG aphEdge*
edge, CvG aphEdge** insertedEdge=0);

graph Graph.

startldx Index of the starting vertex of the edge.

end| dx Index of the ending vertex of the edge.

edge Optional input parameter, initialization datafor the edge. If not NULL,

the parameter is copied starting from the 5th 4-byte field.

i nsertedEdge Optional output parameter to contain the address of the inserted edge
within the edge set.

Discussion

The function G aphAddEdge adds an edge to the graph given the starting and the
ending vertices. The function returns the index of the inserted edge, which isthe value
of the second 4-byte field of the free cell.

The function reports an error if

* the edge that connects the vertices already exists; in this case graph orientation is
taken into account;

® apointer isNULL or indices are invalid;

* some of vertices do not exist, that is, not checked when the pointers are passed to
vertices; or

14-48

OpenCV Reference Manual Basic Sructures and Operations Reference 14

* thestarting vertex is equal to the ending vertex, that is, it isimpossible to create
loops from a single vertex.

The function reports an error, if input vertices do not belong to the graph, that makes it
safer than G aphAddEdgeBy Pt r , but |ess efficient.

GraphAddEdgeByPtr
Adds edge to graph.

int cvG aphAddEdgeByPtr (CvG aph* graph, CvG aphVtx* startVtx, CvG aphWwt x*
endVt x, CvGraphEdge* edge, CvG aphEdge** insertedEdge=0);

gr aph Graph.

startVtx Pointer to the starting vertex of the edge.

endVt x Pointer to the ending vertex of the edge.

edge Optional input parameter, initialization datafor the edge. If not NULL,

the parameter is copied starting from the 5th 4-byte field.

i nsertedEdge Optional output parameter to contain the address of the inserted edge
within the edge set.

Discussion

The function G aphAddEdgeByPt r adds an edge to the graph given the starting and the
ending vertices. The function returns the index of the inserted edge, which isthe value
of the second 4-byte field of the free cell.

The function reports an error if

* the edge that connects the vertices already exists; in this case graph orientation is
taken into account;

® apointer iSNULL or indices are invalid;

* some of vertices do not exist, that is, not checked when the pointers are passed to
vertices; or

intel. 1449

OpenCV Reference Manual Basic Sructures and Operations Reference 14

* thestarting vertex is equal to the ending vertex, that is, it isimpossible to create
loops from a single vertex.

The function is more efficient than G aphAddEdge but less safe, because it does not
check whether the input vertices belong to the graph.

GraphRemoveEdge
Removes edge from graph.

voi d cvG aphRenoveEdge (CvG aph* graph, int startldx, int endldx);

graph Graph.

startldx Index of the starting vertex of the edge.
endl dx Index of the ending vertex of the edge.
Discussion

The function G aphRenoveEdge removes an edge from the graph that connects given
vertices. If the graph is oriented, the vertices must be passed in the appropriate order.
The function reports an error if any of the vertices or edges between them do not exist.

The function reports an error, if input vertices do not belong to the graph, that makes it
safer than G aphRenpveEdgeBy Pt r, but |ess efficient.

GraphRemoveEdgeByPtr
Removes edge from graph.

voi d cvG aphRenoveEdgeByPtr (CvG aph* graph, CvG aphVt x* startVtx, CvG aphVtx*

endVt x) ;
graph Graph.
startVtx Pointer to the starting vertex of the edge.

I ntel € 14-50

OpenCV Reference Manual Basic Sructures and Operations Reference 14

endVt x Pointer to the ending vertex of the edge.

Discussion

The function G aphRenoveEdgeByPt r removes an edge from the graph that connects
given vertices. If the graph is oriented, the vertices must be passed in the appropriate
order. The function reports an error if any of the vertices or edges between them do not
exist.

The function is more efficient than G- aphRenoveEdge but less safe, because it does
not check whether the input vertices belong to the graph.

FindGraphEdge
Finds edge in graph.

CvG aphEdge* cvFi ndG aphEdge (CvG aph* graph, int startldx, int endldx);

graph Graph.

startldx Index of the starting vertex of the edge.
endl dx Index of the ending vertex of the edge.
Discussion

The function Fi ndGr aphEdge finds the graph edge that connects given vertices. If the
graph isoriented, the vertices must be passed in the appropriate order. Function returns
NULL if any of the vertices or edges between them do not exist.

The function reports an error, if input vertices do not belong to the graph, that makes it
safer than Fi ndG aphEdgeByPt r, but less efficient.

14-51

OpenCV Reference Manual Basic Sructures and Operations Reference 14

FindGraphEdgeByPtr
Finds edge in graph.

CvG aphEdge* cvFi ndG aphEdgeByPtr (CvG aph* graph, CvG aphVtx* startWtx,
CvG aphVt x* endVt x) ;

graph Graph.

startVtx Pointer to the starting vertex of the edge.
endVt x Pointer to the ending vertex of the edge.
Discussion

The function Fi ndGr aphEdgeByPt r finds the graph edge that connects given vertices.
If the graph is oriented, the vertices must be passed in the appropriate order. Function
returns NULL if any of the vertices or edges between them do not exist.

The function is more efficient than Fi ndG aphEdge but |ess safe, because it does not
check whether the input vertices belong to the graph.

GraphVitxDegree
Finds edge in graph.

int

cvG aphVt xDegree (CvG aph* graph, int vtxldx);

graph Graph.
vt x Pointer to the graph vertex.
Discussion

The function Gr aphVvt xDegr ee counts the edges incident to the graph vertex, both
incoming and outcoming, and returns the result. To count the edges, the following code
is used:

CvG aphEdge* edge = vertex->first; int count = O;

14-52

OpenCV Reference Manual Basic Sructures and Operations Reference 14

whil e(edge) {

edge = CV_NEXT_CGRAPH EDGE(edge, vertex);

count ++;

}.

The macro CV_NEXT_GRAPH _EDGE(edge, vertex) returnsthe next edge after the
edge incident to the vertex.

The function reports an error, if input vertices do not belong to the graph, that makes it
safer than G aphVt xDegr eeByPt r, but less efficient.

GraphVtxDegreeByPtr
Finds edge in graph.

i nt cvG aphVt xDegreeByPtr (CvG aph* graph, CvG aphVtx* vtx);

graph Graph.
vt X Pointer to the graph vertex.
Discussion

The function Gr aphVt xDegr eeByPt r counts the edges incident to the graph vertex,
both incoming and outcoming, and returnsthe result. To count the edges, the following
code is used:

CvG aphEdge* edge = vertex->first; int count = O;

whil e(edge) {

edge = CV_NEXT_CGRAPH EDGE(edge, vertex);

count ++;

}.

The macro CV_NEXT_GRAPH EDGE(edge, vertex) returnsthe next edge after the
edge incident to the vertex.

The function is more efficient than G aphvt xDegr ee but less safe, because it does not
check whether the input vertices belong to the graph.

14-53

OpenCV Reference Manual Basic Sructures and Operations Reference 14

ClearGraph
Clears graph.

void cvCd earG aph (CvG aph* graph);
gr aph Graph.
Discussion

The function d ear G aph removes all the vertices and edges from the graph. Similar
to the function d ear Set , this function takes Q(1) time.

GetGraphVitx
Finds graph vertex by index.

CvG aphVt x* cvGet G aphVtx (CvG aph* graph, int vtxldx);

graph Graph.
vt xI dx Index of the vertex.
Discussion

Thefunction Get G aphVvt x findsthe graph vertex by index and returnsthe pointer to it
or, if not found, to afree cell at thisindex. Negative indices are supported.

GraphVixldx

Returns index of graph vertex.

int cvGaphVtxldx (CvG aph* graph, CvG aphVtx* vtx);

I ntel e 14-54

OpenCV Reference Manual Basic Sructures and Operations Reference 14

graph Graph.
vt X Pointer to the graph vertex.
Discussion

The function G aphvt x1 dx returnsthe index of the graph vertex by setting pointersto
it.

GraphEdgeldx
Returns index of graph edge.

int cvG aphEdgel dx (CvGraph* graph, CvG aphEdge* edge);

graph Graph.
edge Pointer to the graph edge.
Discussion

The function Gr aphEdgel dx returns the index of the graph edge by setting pointers to
it.

Graphs Data Structures

Example 14-11 CvGr aph Structure Definition

#define CV_GRAPH_FI ELDS() \
CV_SET_FI ELDS() \
CvSet * edges;

typedef struct _CvGaph

{

CV_GRAPH_FI ELDS()
}
CvG aph;

| ntel . 14-55

OpenCV Reference Manual Basic Sructures and Operations Reference 14

In OOP terms, the graph structure is derived from the set of vertices and includes a set
of edges. Besides, special data types exist for graph vertices and graph edges.

Example 14-12 Definitions of CvGr aphEdge and CvGr aphVit x Structures
#def i ne CV_GRAPH_EDGE_FI ELDS() \

struct _CvG aphEdge* next[2]; \
struct _CvG aphVertex* vtx[2];

#def i ne CV_GRAPH VERTEX_FI ELDS() \
struct _CvG aphEdge* first;

typedef struct _CvG aphEdge
CV_GRAPH_EDGE_FI ELDS()

]E)/GraphEdge;

typedef struct _CvG aphVertex

{ CV_GRAPH_VERTEX_FI ELDS()

}C,\/Grapthx;

I ntel € 14-56

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Matrix Operations Reference

Example 14-13 CvMat Structure Definition
typedef struct CvMat {

int type; /* the type of matrix elenments */

uni on

int rows; /* nunber of rows in the matrix */
int height; /* synonym for <rows> */

b
uni on
{
int cols; /* nunber of colums */
int width; /* synonymfor <cols> */
b
int step; /* matrix stride */
uni on
float* fl;
doubl e* db;
uchar* ptr;
} data; /* pointer to matrix data */
b

Example 14-14 CvMat Ar r ay Structure Definition

typedef struct CvMatArray

int rows; //nunber of rows
int cols; [//nunber pf cols
int type; [// type of matrices
int step; // not used
int count; // nunber of matrices in aary
uni on
float* fl;
float* db;
}data; // pointer to matrix array data
} Cvivat Ar r ay

I ntGI e 14-57

OpenCV Reference Manual Basic Sructures and Operations Reference 14

CreateMat
Creates new matrix.

Cviat* cvCreateMat (int rows, int cols, int type);

r ows Number of rows in the matrix.
col s Number of columnsin the matrix.
type Type of the new matrix —depth and number of channels; may be

specified in form cv_<bi t dept h>(S| U) C<nunber of channel s>,
e.g., CvV_8UCL means an 8-bit unsigned single-channel matrix,
CV_32SC2 means a 32-bit signed matrix with two channels.
SeeCvMat Structure Definition anddescriptioninthe Guide.

Discussion

The function Cr eat evat alocates header for the new matrix and underlying data, and
returns a pointer to the created matrix. It is a short form for:

Cvivat* mat = cvCreateMatri xHeader(rows, cols, type);

cvCreateData(mat);

Matrices are stored row by row. All the rows are aligned by 4 bytes.

To get different alignment, use | ni t Mat Header to reinitialize header, created by
Cr eat eMat Header , and then call Cr eat eDat a separately.

CreateMatHeader
Creates new matrix header.

Cviat * cvCreat eMat Header (int rows, int cols, int type);
r ows Number of rows in the matrix.
col s Number of columnsin the matrix.

I ntel € 14-58

OpenCV Reference Manual Basic Sructures and Operations Reference 14

type Type of the new matrix —depth and number of channels, may be
specified in form Cv_<bi t dept h>(S| U) C<nunber of channel s>,
e.g., CV_8UC1 means an 8-hit unsigned single-channel matrix,
CV_32SC2 means a 32-bit signed matrix with two channels.
See CvMat Structure Definition and descriptioninthe Guide.

Discussion

The function Cr eat eMat Header allocates new matrix header and returns pointer to it.
The matrix data can further be allocated using Cr eat eDat a or set explicitly to
user-allocated data via Set Dat a. See also description of Cr eat eMat .

ReleaseMat
Deallocates matrix.

voi d cvRel easeMat (CvMat** mat);
mat Double pointer to the matrix.

Discussion

The function Rel easeMat releases memory occupied by the matrix header and
underlying data. If *mat isnull pointer, the function has no effect. The pointer * mat is
cleared upon the function exit.

It isthe short form for:
if(*mat)

cvRel easeData(*mat);
cvRel easeMat Header (mat);

| ntel . 14-59

OpenCV Reference Manual Basic Sructures and Operations Reference 14

ReleaseMatHeader
Deallocates matrix header.

voi d cvRel easeMat Header (CvMat** mat);
mat Double pointer to the matrix header.

Discussion

The function Rel easeMat Header releases memory occupied by the matrix header. If
*mat isnull pointer, the function has no effect. The pointer * mat is cleared upon the
function exit.

Unlike Rel easeMat , the function Rel easeMat Header does not deallocate the matrix
data, so the user should do it on his’her own.

InitMatHeader
Initializes matrix header.

voi d cvlnit Mt Header (CvMwat* mat, int rows, int cols, int type, void* data = 0,
int step = CV_AUTCSTEP) ;

mat Pointer to the matrix header to be initialized.

r ows Number of rows in the matrix.

cols Number of columnsin the matrix.

type Type of the new matrix —depth and number of channels; may be

specified in form Cv_<bi t dept h>(S| U) C<nunber of channel s>,
e.g., CvV_8UCL means an 8-bit unsigned single-channel matrix,
CV_32SC2 means a 32-hit signed matrix with two channels.
SeeCvMat Structure Definition anddescriptioninthe Guide.

dat a Optional data pointer assigned to the matrix header.

I ntel € 14-60

OpenCV Reference Manual Basic Sructures and Operations Reference 14

step Full row width in bytes of the data assigned. By default, the minimal
possible step is used, i.e., no gaps assumed between subsequent rows
of the matrix.

Discussion

The function I ni t Mat Header initializes already allocated cvvat structure. It can be
used to process raw data with OpenCV matrix functions.

For example, the following code computes matrix product of two matrices, stored as
ordinary arrays.

Example 14-15 Calculating Product of Two Matrices

double a[] ={ 1, 2, 3, 4

5 6, 7, 8,

9, 10, 11, 12 };
double b[] ={ 1, 5, 9,

2, 6, 10,

3, 7, 11,

4, 8, 12}

double c[9];

CvMat Ma, My, M,
cvlni t Mat Header (&V, 3, 4, CV_64FCl, a);
cvlni t Mat Header (&, 4, 3, CV_64FCl, b);
cvlnit Mat Header (&, 3, 3, CV_64FCl, c);
cvMat Mul Add(&vh, &Wwb, 0, &\t); // ¢ array now contains product of a(3x4) and
b(4x3) matrices

CloneMat

Creates matrix copy.

CvMat* cvC oneMat (CvMat* mat);
mat [nput matrix.

Discussion

The function d oneMat creates a copy of input matrix and returns the pointer to it. If
the input matrix pointer is null, the resultant matrix also has a null data pointer.

I ntGI e 14-61

OpenCV Reference Manual Basic Sructures and Operations Reference 14

SetData
Attaches data to matrix header.

void cvSetData (CvArr* mat, void* data, int step);

mat Pointer to the matrix header.

data Data pointer assigned to the matrix header.
step Full row width in bytes of the data assigned.
Discussion

The function Set Dat a attaches user-allocated data to the matrix header. It is a faster
and shorter equivalent for | ni t Mat Header (mat , mat — rows, mat — cols,mat —
t ype, dat a, st ep) that is useful in situation when multiple matrices of the same size
and type are processed, e.g., video frames and their blocks, feature points, etc.

The dat a pointer can be null and such afunction call is useful in preventing outside
data from being deallocated occasionally by Rel easeMat .

GetMat

Initializes matrix header for arbitrary array.

Cvivat* cvGet Mat (const CvArr* arr, CvMat* mat, int* coi = 0);

arr Input array.
mat Pointer to cviat structure used atemporary buffer.
coi Optional output parameter for storing COI.

I ntel e 14-62

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function Get Mat creates a matrix header for an input array that can be matrix —
CvMat , or image — | pl | mage. In the case of matrix the function simply returns the
input pointer. In the case of 1 pl | mage itinitializesmat structure with parameters of
the current image ROI and returns pointer to this temporary structure. Because COI is
not supported by cviat , it isreturned separately.

The function provides an easy way to handle both types of array - 1 pl | mage and
CvMat -, using the same code. Reverse transform from cvivat to 1 pl | nage can be
done using cvGet | mage function.

Input array must have underlying data allocated or attached, otherwise the function
fails.

If theinput array is | pl | mage with planar data layout and COI set, the function returns
pointer to the selected plane and COI = 0. It enables per-plane processing of
multi-channel images with planar data layout using OpenCV functions.

GetAt

Returns array element.

CvScal ar cvGet At (const CvArr* arr, int row, int col = 0);

arr Array.
r ow Zero-based index of the row containing the requested element.
col Zero-based index of the column containing the requested element;

equal to 0 by default to smplify accessto 1D arrays.

Discussion

The function Get At returns value of the specified array element. In the case of
I pl I mage, the whole element is returned regardless of COI settings.

The function is not the fastest way to retrieve array elements. The function cvntGet is
the fastest variant for single-channel floating-point arrays.

14-63

OpenCV Reference Manual Basic Sructures and Operations Reference 14

If the array has adifferent format, it is still more efficient to avoid Get At and use
Get At Pt r instead.

Finaly, if the fast sequential accessto array elementsis needed, Get Rawbat a istill a
better option than any of the above methods.

SetAt

Sets array element to given value.

void cvSet At (CvArr* arr, CvScal ar value, int row, int col = 0);
arr Array.
val ue New element value.
r ow Zero-based index of the row containing the requested element.
col Zero-based index of the column containing the requested element;

equal to 0 by default to simplify accessto 1D arrays.

Discussion

The function set At changes value of the specified array element. In the case of
I pl I mage, the whole element is changed regardless of COI settings.

The function is not the fastest way to change array elements. The function cvnset is
the fastest variant for single-channel floating-point arrays.

If the array has adifferent format, it is still more efficient to avoid Set At and use
Get At Pt r instead.

Finally, if the fast sequential accessto array elements is needed, Get RawbDat a is still a
better option than any of the above methods.

I ntel e 14-64

OpenCV Reference Manual Basic Sructures and Operations Reference 14

GetAtPtr

Returns pointer to array element.

uchar* cvCGet AtPtr (const CvArr* arr, int row, int col = 0);
arr Array.
r ow Zero-based index of the row containing the requested element.
col Zero-based index of the column containing the requested element;

equal to 0 by default to smplify accessto 1D arrays.

Discussion

The function Get At Pt r returns pointer of the specified array element. In the case of
I pl I mage, pointer to the first channel value of the element is returned regardless of
COlI settings.

The function is more efficient than Get At and Set At , but for faster sequential accessto
array elements Get RawDat a is still abetter option.

GetSubArr

Returns rectangular sub-array of given array.

Cviat * cvGet SubArr (const CvArr* arr, CvMat* subarr, CvRect rect);

arr Input array.

subarr Pointer to the resulting sub-array header.

rect Zero-based coordinates of top-left corner of the sub-array and its
linear sizes.

| ntel . 14-65

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function Get SubAr r returns header, corresponding to a specified rectangle of the
input array. In other words, it allowsthe user to treat arectangular part of input array as
astand-alone array. ROI is taken into account by the function so the sub-array of ROI
isreally extracted.

GetRow

Returns array row.

Cviat* cvGet Row (const CvArr* arr, CvMat* subarr, int row);

arr Input array.

subarr Pointer to the resulting sub-array header.
r ow Zero-based index of the selected row.
Discussion

The function Get Row returns the header, corresponding to a specified row of the input
array. The function is a short form for:

cvCet SubArr (arr, subarr, cvRect (0, row, arr - cols, 1));

GetCol

Returns array column.

Cvivat* cvGet Col (const CvArr* arr, CvMat* subarr, int col);

arr Input array.
subarr Pointer to the resulting sub-array header.
col Zero-based index of the selected column.

I ntel € 14-66

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function Get Col returns the header, corresponding to a specified column of the
input array. The function is a short form for:

cvGet SubArr (arr, subarr, cvRect (col, 0, 1, arr — rows));

GetDiag

Returns array diagonal.

Cvivat* cvGetDiag (const CvArr* arr, CvMat* subarr, int diag);

arr Input array.
subarr Pointer to the resulting sub-array header.
di ag Diagonal number; O correspondsto the main diagonal, 1 corresponds

to the diagonal above the main diagonal, -1 correspondsto the
diagonal below the main diagonal, etc.

Discussion

The function Get Di ag returns the header, corresponding to a specified diagonal of the
input array.

GetRawData

Returns low level information on array.

void cvRawData (const CvArr* arr, uchar** data, int* step, CvSize* roiSize);

arr Input array.

dat a Pointer to the retrieved array data pointer.

step Pointer to the retrieved array step.

roi Si ze Pointer to the retrieved array size, or selected ROI size.

I ntGI e 14-67

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function Get RawDat a returns array data pointer, step, or full row width in bytes.
and linear size. All the output parameters are optional, that is, the correspondent
pointers may be null. The function provides the fastest sequential accessto array
elementsif the format of el ementsis known.

For example, the following code finds absolute value of every element of a
single-channel floating-point array:

Example 14-16 Using Get RawDat a for Image Pixels Access.

fl oat* data;
int step;
CvSi ze size;
int x, vy;

cvGet RawDat a(Array, (uchar**)&data, &step, &size);
step /= sizeof (data[0]);

for(y =0; y < size.height; y++, data += step)
for(x = 0; x < size.width; x++)
data[x] = (float)fabs(data[x]);

If array is|1 pl | mage with ROI set, parameters of ROI are returned.

GetSize
Returns width and height of array.

CvSi ze cvGet Size (const CvArr* arr);

arr Array.

Discussion

The function Get Si ze returns width, or the number of columns, and height, or the
number of rows, of the array.

If array is1 pl | mage with ROI set, size ROI is returned.

14-68

OpenCV Reference Manual Basic Sructures and Operations Reference 14

CreateData
Allocates memory for array data.

void cvCreateData (CvArr* mat);
mat Pointer to the array for which memory must be allocated.

Discussion

The function Cr eat eDat a alocates memory for the array data.

AllocArray

Allocates memory for matrix array data.

void cvmAl [ocArray (CvMatArray* matArr);
mat Arr Pointer to the matrix array for which memory must be allocated.

Discussion
Thefunction Al | ocArray allocates memory for the matrix array data.

Structure cvMat Ar r ay is obsolete. Use multi-channel matrices cvivat and functions
Mat Mul AddS and Per spect i veTr ansf or mto operate on agroup of small vectors.

ReleaseData
Frees memory allocated for array data.

voi d cvRel easeData (CvArr* nmat);
mat Pointer to the array.

| ntel . 14-69

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function Rel easeDat a releases the memory allocated by the function
Cr eat eDat a.

FreeArray
Frees memory allocated for matrix array data.

void cvnFreeArray (CvMatArr* matArr);
mat Ar r Pointer to the matrix array.

Discussion
The function Fr eeAr ray releases the memory allocated by the function Al | ocArr ay.

Structure CvMat Array s obsolete. Use multi-channel matrices cvMat and functions
Mat Mul AddS and Per spect i veTr ansf or mto operate on agroup of small vectors.

Copy

Copies one array to another.

void cvCopy (const CvArr* A, CvArr* B, const CvArr* mask=0);

A Pointer to the source array.
B Pointer to the destination array.
mask Operation mask, 8-bit single channel array; specifies elements of

destination array to be changed.

I ntel e 14-70

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function Copy copies selected pixels from input array to output array. If any of the
passed arraysisof | pl | mge type, then its ROl and COI fields are used. Both arrays
should be of the same type and their sizes, or their ROIs sizes, must be the same.

B, = A ,if msk;; #0.

ij ij
All array parameters should have the same size or selected ROI sizes and al of them,
except mask, must be of the same type.

Set

Sets every element of array to given value.

voi d

cvSet (CvArr* A, CvScalar S, const CvArr* mask=0);

A Pointer to the destination array.
S Fill value.
mask Operation mask, 8-bit single channel array; specifies elements of

destination array to be changed.

Discussion

The function Set copies scalar S to every selected element of the destination array. If
array Aisof I pl | mage type, then is ROI used, but COI should not be set.

A = s,if mask;; #0.

Add

Computes sum of two arrays.

voi d cvAdd (const CvArr* A, const CvArr* B, CvArr* C, const CvArr* mask=0);

A Pointer to the first source array.

14-71

OpenCV Reference Manual Basic Sructures and Operations Reference 14

B Pointer to the second source array.
C Pointer to the destination array.
mask Operation mask, 8-bit single channel array; specifies elements of

destination array to be changed.

Discussion
The function Add adds array B to array A and stores the result in C.

Gij

All array parameters should have the same size or selected ROI sizes and al of them,
except mask, must be of the same type.

= A +B;,Iif msk;; #0.

ij

AddS

Computes sum of array and scalar.

voi d cvAddS (const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask=0);

A Pointer to the source array.

S Added scalar.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of

destination array to be changed.

Discussion

The function AddS adds scalar S to every element in the source array A and stores the
resultin C.

Gij

All array parameters should have the same size or selected ROI sizes and all of them,
except mask, must be of the same type.

= A +S,if mask;; #0.

14-72

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Sub

Computes difference of two arrays.

void cvSub (const CvArr* A, const CvArr* B, CvArr* C, const CvArr* mask=0);

A Pointer to the first source array.

B Pointer to the second source array.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of

destination array to be changed.

Discussion
The function sub subtracts array B from array A and storestheresultin C.

Gij

All array parameters should have the same size or selected ROI sizes and al of them,
except mask, must be of the same type.

= A;-B ,if mask;; #0.

SubS

Computes difference of array and scalar.

voi d cvSubS (const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask=0);

A Pointer to the first source array.

S Subtracted scalar.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of

destination array to be changed.

I ntGI e 14-73

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function subS subtracts scalar s from every element in the source array A and
storestheresult in C.

Gij

All array parameters should be of the same type and size or have the same ROI size.

= Aij—S,if mask;; #0.

SubRS

Computes difference of scalar and array.

voi d cvSubRS (const CvArr* A CvScalar S, CvArr* C, const CvArr* nask=0);

A Pointer to the first source array.

S Scalar to subtract from.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of

destination array to be changed.

Discussion

The function subRS subtracts every element of source array A from scalar s and
storestheresultin C.

Gj =SAj,

All array parameters should have the same size or selected ROI sizes and al of them,
except mask, must be of the same type.

if mask;; #0.

14-74

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Mul

Calculates per-element product of two arrays.

void cvMil (const CvArr* A, const CvArr* B, CQVArr* O ;

A Pointer to the first source array.

B Pointer to the second source array.
C Pointer to the destination array.
Discussion

Thefunction mul calculates per-element product of arrays A and B and stores the result
incC.
G
All array parameters should be of the same size or selected ROI sizes and of the same
type.

=A| B .

And

Calculates logical conjunction of two arrays.

void cvAnd (const CvArr* A, const CvArr* B, CvArr* C, const CvArr* mask=0);

A Pointer to the first source array.

B Pointer to the second source array.

C Pointer to the destination array.

mask Operation mask, 8-hit single channel array; specifies elements of

destination array to be changed.

I ntGI e 14-75

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function And calculates per-element logical conjunction of arrays A and B and
storestheresult in C.

C; =A;adB; ,Iif msk;; #0.

Table 14-2 shows the way to compute the result from input bits.

Table 14-2 Result Computation for cvAnd

k-th bit of A k-th bit of By k-th bit of G
0 0 0
0 1 0
1 0 0
1 1 1

In the case of floating-point images their bit representations are used for the operation.

All array parameters should have the same size or selected ROI sizes and all of them,
except mask, must be of the same type.

AndS

Calculates logical conjunction of array and

scal

lar.

voi

d cvAndS (const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask = 0);

A Pointer to the source array.

S Scalar to use in the operation.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of

destination array to be changed.

14-76

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function AndS calculates per-element logical conjunction of array A and scalar S
and storestheresultin C.

Before the operation isimplemented the scalar is converted to the same type as arrays.

Gij

Table 14-3 shows the way to compute the result from input bits.

= A ands, if mask;; 0.

Table 14-3 Result Computation for cvAndS

k-th bit of A k-th bit of S k-th bit of G
0 0 0
0 1 0
1 0 0
1 1 1

In the case of floating-point images their bit representations are used for the operation.

All array parameters should have the same size or selected ROI sizes and all of them,
except mask, must be of the same type.

Or

Calculates logical digunction of two arrays.

void cvO (const CvArr* A, const CvArr* B, CvArr* C, const CvArr* mask = 0);

A Pointer to the first source array.

B Pointer to the second source array.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of

destination array to be changed.

I ntGI e 14-77

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function O calculates per-element logical disunction of arrays A and B and stores
theresultin C.

C; =A;orB,if msk;; #0.

Table 14-4 shows the way to compute the result from input bits.

Table 14-4 Result Computation for Or

k-th bit of A k-th bit of By k-th bit of G
0 0 0
0 1 1
1 0 1
1 1 1

In the case of floating-point images their bit representations are used for the operation.

All array parameters should have the same size or selected ROI sizes and all of them,
except mask, must be of the same type.

Or

S

Calculates logical digunction of array and
scalar.

voi

d cvAndS (const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask = 0);

A Pointer to the source array.

S Scalar to use in the operation.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of

destination array to be changed.

14-78

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function O s calculates per-element logical disjunction of array A and scalar s and
storestheresult in C.

Gij

Table 14-5 shows the way to compute the result from input bits.

= A oS, if msk;; #0.

Table 14-5 Result Computation for Or S

k-th bit of A k-th bit of S k-th bit of G
0 0 0
0 1 1
1 0 1
1 1 1

In the case of floating-point images their bit representations are used for the operation.

All array parameters should have the same size or selected ROI sizes and all of them,
except mask, must be of the same type.

Xor

Calculateslogical “ exclusive or” operation on

two arrays.

void cvXor (const CvArr* A, const CvArr* B, CvArr* C, const CvArr* mask = 0);

A Pointer to the first source array.

B Pointer to the second source array.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of

destination array to be changed.

14-79

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function Xor calculates per-element logical “exclusive or” operation on arrays A
and B and stores theresult in C.

G =Ajxorpg;,

Table 14-6 shows the way to compute the result from input bits.

if mask;; z0.

Table 14-6 Result Computation for Xor

k-th bit of A k-th bit of By k-th bit of G
0 0 0
0 1 1
1 0 1
1 1 0

In the case of floating-point images their bit representations are used for the operation.

All array parameters should have the same size or selected ROI sizes and all of them,
except mask, must be of the same type.

XorS

Calculateslogical “ exclusive or” operation on
array and scalar.

voi

d cvAndS (const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask = 0);

A Pointer to the source array.

S Scalar to use in the operation.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of

destination array to be changed.

14-80

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function Xor S calculates per-element logical “exclusive or” operation array A and
scalar S and storestheresult in C.

Gij

Table 14-7 shows the way to compute the result from input bits.

= A xor S, if mask;; #0.

Table 14-7 Result Computation for Xor S

k-th bit of A k-th bit of S k-th bit of G
0 0 0
0 1 1
1 0 1
1 1 0

In the case of floating-point images their bit representations are used for the operation.

All array parameters should have the same size or selected ROI sizes and all of them,
except mask, must be of the same type.

DotProduct

Calculates dot product of two arraysin Euclidian
metrics.

doubl e cvDot Product (const CvArr* A, cjnst CvArr* B);

A Pointer to the first source array.

B Pointer to the second source array.

Discussion

The function Dot Product calculates and returns the Euclidean dot product of two
arrays.

I ntGI e 14-81

OpenCV Reference Manual Basic Sructures and Operations Reference 14

DP = A(B= YA B .
i

CrossProduct
Calculates cross product of two 3D vectors.

voi d cvCrossProduct (const CvArr* A, const CvArr* B, CVArr* Q);
Pointer to the first source vector.
B Pointer to the second source vector.
Pointer to the destination vector.

Discussion
The function Cr ossProduct calculates the cross product of two 3D vectors:

C = AxB, (C; =A,B;—A3B, C,=A;B;—A;B; Cy3= AB,—A,B;) .

ScaleAdd

Calculates sum of scaled array and another
array.

void cvScal eAdd (const CvArr* A, CvScalar S, const CvArr* B, CVArr* O);

A Pointer to the first source array.

S Scale factor for thefirst array.

B Pointer to the second source array.
C Pointer to the destination array

I ntel e 14-82

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function Scal eAdd calculates sum of scaled array A and array B and stores the
resultin C.

C

. = A 5+8B .

All array parameters should be of the same size or selected ROI sizes and of the same
type.
The function name Mul AddS may be used as a synonym of Scal eAdd.

MatMulAdd

Calculates shifted matrix product.

void cvMatMul Add (const CvArr* A, const CvArr* B, const CvArr* C, CvVArr* D);

A Pointer to the first source array.

B Pointer to the second source array.

C Pointer to the third source array (shift).
D Pointer to the destination array.

Discussion

The function Mat Mul Add calculates matrix product of arrays A and B, adds array C to
the product and stores the final result in D.

D=AMB+C, D = YA B +G; .
k

All parameters should be of the same type — single-precision or double-precision
floating point real or complex numbers (32f C1, 64f C1, 32f C2 or 64f C2). Dimensions
of A,B, C and, D must co-agree: if matrix A has mrows and k columns and matrix B
has k rows and n columns, then matrix C, if present, must have mrows and n columns
and matrix D must have mrows and n columns too.

14-83

OpenCV Reference Manual Basic Sructures and Operations Reference 14

MatMulAddS

Performs matrix transform on every element of
array.

void cviMat Mul AddS (const CvArr* A, CvArr* C, const CVArr* M const QVArr* V =

0);
A Pointer to the first source array.
C Pointer to the destination array.
M Transformation matrix.
\% Optional shift.
Discussion

The function Mat Mul AddS performs matrix transform on every element of array A and
storestheresultin C.

The function considers every element of N-channel array A as avector of N
components.

C, = MmN +V, C(cn) = ZNLn,kDAij(k)+Vcn,ifM iIS(Nx N
k
or
[C; 1] =[M0..01] (OA; 1], G (cn) = ZNLn'kEAij(k)H\/EnYN_l,ifMiS(N X N+1).
In the second variant the shift vector is stored in the right column of the matrix m

Both source and destination arrays should be of the same size or selected ROI size and
of the same type. Mand v should be real single-precision or double-precision matrices.

The function can be used for geometrical transforms of point sets and linear color
transformations.

I ntel e 14-84

OpenCV Reference Manual Basic Sructures and Operations Reference 14

MulTransposed

Calculates product of array and transposed
array.

voi d cvMul Transposed (const CvArr* A, CvArr* C, int order);

A Pointer to the source array.

C Pointer to the destination array.
or der Order of multipliers.
Discussion

The function mul Transposed calculates the product of A and its transposition.

The function evaluates B = A'A if or der isnon-zero, B = AAT otherwise.

Invert
Inverts array.

void cvlnvert (const CvArr* A CvArr* B);

A Pointer to the source array.
B Pointer to the destination array.
Discussion

Thefunction | nvert inverts A and stores the result in B.
B=A' AB=BA=1.

The function name I nv can be used as a synonym for I nvert .

| ntel . 14-85

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Trace
Returnstrace of array.

CvScal ar cvTrace (const CVArr* A);

A Pointer to the source array.
Discussion
The function Tr ace returns the sum of diagonal elements of the array A.

trA=>%A.

Det

Returns determinant of array.

CvScal ar cvDet (const CvArr* A);
A Pointer to the source array.

Discussion
The function Det returns the determinant of the array A.

Mahalonobis

Calculates Mahal onobis distance between
Vectors.

doubl e cvMahal onobis (const CvArr* A, const CvArr* B, CVArr* T);
A Pointer to the first source vector.

I ntel € 14-86

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Pointer to the second source vector.
T Pointer to the inverse covariance array.

Discussion

The function Mahal onobi s calculates the weighted distance between two vectors and
returnsit:

di st = JZTij (A =B (A -B).
i

Transpose
Transposes array.

void cvTranspose (const CvArr* A, CvVArr* B);
Pointer to the source array.
B Pointer to the destination array.

Discussion
The function Tr anspose transposes A and storesresult in B.
B=A, B, = A, .

The function name T can be used as a synonym of Tr anspose.

Flip
Reflects array around horizontal or vertical axis
or both.

void cvFlip (const CvArr* A CvArr* B, int fliphode);

I ntGI e 14-87

OpenCV Reference Manual Basic Sructures and Operations Reference 14

A Pointer to the source array.

B Pointer to the destination array.

flipMde Flip mode; specifies an axis to reflect the array around.
Discussion

The function FI i p flipsarray A horizontally, vertically or in both directions and stores
the result in C. Both arrays must be of the same size or selected ROI size and of the
same type.

Let array A have Mrows and N columns, then array Cis calculated as follows:
Cwi —1j = Aj,iffliphode =0,
G N

.= A ,ifflipMde >0,

_j ij

Cvoi —an—j -1 = Aj s if f1i pvbde <O.

Reshape

Changes dimensions and/or number of channels

in matrix.

Cviat * cvReshape (const CvArr* A, CvMat* header, int newNunChannels, int
newRows = 0);

A Source matrix.

header Destination matrix header; the data must not be allocated because
data pointer is taken from the source matrix and the previous
pointer islost.

newNuntChannel s New number of channels.

newRows New number of rows; the default valueis 0 and it means that the
number of rowsis not changed.

14-88

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function Reshape initializes destination header with the parameters of the source
matrix but with a different number of channels and/or a different number of rows. The
new number of columnsis calculated from these new parameters. The following
examplesillustrate use of the function:

1. Suppose, A is a 3x3 floating-point matrix and is treated asa 1D
vector of 9 elements. It isdonevia

Cvivat vec;

cvReshape(A, &vec, 1, 1); // |eave a single-channel and change nunber

of rows to 1.

2. Suppose, A isa YUV video frame with interleaved channels and
decimated Uand v planes: YO U0 Y1 VO Y2 Ul Y3 V1 .., treatedas
a4-channel image where each element (quadruple) represents two
pixelsin the original image. The respective code is as follows:

Cviat cling;

cvReshape(A, &cling, 4, 0); // make the i mage 4-channel and | eave the
nunber of rows unchanged.

After that call the function Cvt Pi x ToPI ane may be used to extract U, v and two halves
of Y planes.

The number of rows can be changed only if the matrix is continuous, i.e., no gaps
exist between subsequent rows. Also, if the number of channels changes, a new
number of columns should be a multiple of the new number of channels.

SetZero

Setsarray to zero.

void cvSetZero (CvArr* A);
A Pointer to the array to be set to zero.

| ntel . 14-89

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion
The function Set Zer o setsthe array to zero.
A=0A; =0.

The function name zer o can be used as a synonym for Set Zer o.

Setldentity
Sets array to identity.

void cvSetldentity (CvArr* A);
A Pointer to the array to be set to identity.

Discussion

The function Set | dent i ty setsthe array to identity.
i =]

A=I1,A. =& .=) .
' {O,Iij

i j

SVD

Performs singular value decomposition of matrix.

void cvSVD (CvArr* A, CvArr* W CvArr* U=0, CVArr* V=0, int flags = 0);

A Source matrix.

w Resulting singular value matrix or vector.

U Optional left orthogonal matrix.

\% Optional right orthogonal matrix.

flags Operation flags; can be combination of the following:

® (CV_SVD MODI FY_A enables modification of matrix A
during the operation. It makes the processing faster.

I ntel € 14-90

OpenCV Reference Manual Basic Sructures and Operations Reference 14

®* CV_SVD U T meansthat the matrix Uistransposed on
exit.

® CV_SVD V_T meansthat the matrix Vv is transposed on
exit.

Discussion

The function svD decomposes matrix A into a product of a diagonal matrix and two
orthogonal matrices:

A = U'w/, where

A isan arbitrary Mx N matrix,

u isan orthogonal M x Mmatrix,
\Y isan orthogonal N x N matrix,
w

isadiagona M x Nmatrix with non-negative diagonal elements or
just avector of m n(M N) elements storing diagonal elements.

The function svD is numerically robust and its typical applications include:

* accurate eigenvalue problem solution when matrix Ais
symmetric and positively defined, e.qg., it is a covariation matrix

* accurate solution of poor-conditioned linear systems
* |east-squares solution of overdetermined linear systems

e accurate calculation of different matrix characteristics such as
rank, condition number, determinant, L2-norm. This does not
require calculation of U and v matrices.

See also Pseudol nv function.

Pseudolnv
Finds pseudo inverse of matrix.

voi d cvPseudolnv (CvArr* A, CvArr* B, int flags = 0);

I ntGI e 14-91

OpenCV Reference Manual Basic Sructures and Operations Reference 14

A Source matrix.
w Resultant pseudo inverse matrix.
flags Operation flags- 0 or cv_SvD_MoDI FY_A, which means that the

function can modify matrix A during processing.

Discussion
The function Pseudol nv finds pseudo inverse of matrix A using the function svD:

B = V'"w, where U, v and wfrom the formula below are components of singular value
decomposition of matrix A, and wis calculated as follows:

1
=, [W; ; #0
o = I !
0,

dse

EigenVV

Computes eigenvalues and e genvectors of
symmetric array.

void cvEigenwW (CvArr* A CvArr* evects, CvArr* evals, Double eps);

A Pointer to the source array.

evects Pointer to the array where eigenvectors must be stored.
eval s Pointer to the array where eigenvalues must be stored.
eps Accuracy of diagonalization.

Discussion

The function Ei genvv computes the eigenvalues and eigenvectors of the array A and
stores them in the parameterseval s and evects correspondingly. Jacobi method is
used. Eigenvectors are stored in successive rows of array eigenvectors. The resultant
eigenvalues are in descending order.

14-92

OpenCV Reference Manual Basic Sructures and Operations Reference 14

E NOTE. Thefunction EigenVV destroysthe sourcearray A. Therefore,
= if the source array is needed after eigenval ues have been cal culated,
clone it before running the function EigenV\V.

PerspectiveTransform
I mplements general transform of 3D vector array.

voi d cvPerspectiveTransform (const CvArr* A CvArr* B, const QVArr* M;

A Pointer to the source three-channel floating-point array, 32f or 64f.

B Pointer to the destination three-channel floating-point array, 32f or
64f.

M 4x4 transformation array.

Discussion

The function Per spect i veTr ansf or m maps every element of array A - 3D vector
(x,y,z)" to (x'/wy'/w z'/w)", where
W, W #0

oy ot T_ X T =
(x,y,z'\ W) = Mx(x,y,z,I) andw {1,\,\/:0'

| ntel . 14-93

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Drawing Primitives Reference

Line
Draws simple or thick line segment.

void cvLine (Ipllnmge* inmg, CvPoint ptl, CvPoint pt2, int color, int
t hi ckness=1);

i mg Image.

pt 1 First point of the line segment.

pt 2 Second point of the line segment.

col or Line color (RGB) or brightness (grayscale image).
t hi ckness Line thickness.

Discussion

The function Li ne draws the line segment between pt 1 and pt 2 pointsin the image.
Thelineis clipped by the image or ROI rectangle. The Bresenham algorithm is used
for simple line segments. Thick lines are drawn with rounding endings. To specify the
line color, the user may use the macro cv_RGB (r, g, b) that makesa 32-bit color value
from the color components.

LineAA

Draws antialiased line segment.

voi d cvLi neAA (Ipllnmage* ing, CvPoint ptl, CvPoint pt2, int color, int

scal e=0);
i mg Image.
pt 1 First point of the line segment.

I ntel e 14-94

OpenCV Reference Manual Basic Sructures and Operations Reference 14

pt 2 Second point of the line segment.

col or Line color (RGB) or brightness (grayscale image).
scal e Number of fractional bits in the end point coordinates.
Discussion

Thefunction Li neAA drawstheline segment between pt 1 and pt 2 pointsin theimage.
Thelineis clipped by the image or ROI rectangle. Drawing algorithm includes some
sort of Gaussian filtering to get a smooth picture. To specify the line color, the user
may use the macro Cv_RGB (r, g, b) that makes a 32-bit color value from the color
components.

Rectangle
Draws simple, thick or filled rectangle.

voi d cvRectangle (IpllInmage* ing, CvPoint ptl, CvPoint pt2, int color, int
t hi ckness);

i mg Image.

pt 1 One of the rectangle vertices.

pt 2 Opposite rectangle vertex.

col or Line color (RGB) or brightness (grayscale image).
t hi ckness Thickness of lines that make up the rectangle.
Discussion

The function Rect angl e draws a rectangle with two opposite cornerspt 1 and pt 2. If
the parameter t hi ckness is positive or zero, the outline of the rectangle is drawn with
that thickness, otherwise afilled rectangle is drawn.

14-95

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Circle
Draws simple, thick or filled circle.

void cvCircle (Ipllmge* i ng, CvPoint center, int radius, int color,
int thickness=1);

i ng Image where the line is drawn.

center Center of thecircle.

radi us Radius of the circle.

col or Circle color (RGB) or brightness (grayscale image).

t hi ckness Thickness of the circle outlineif positive, otherwise indicates that a

filled circleis to be drawn.

Discussion

The function Gi rcl e drawsasimpleor filled circle with given center and radius. The
circleis clipped by ROI rectangle. The Bresenham algorithm is used both for simple
and filled circles. To specify the circle color, the user may use the macrocv_RGB (r, g,
b) that makes a 32-bit color value from the color components.

Ellipse

Draws simple or thick elliptic arc or fills ellipse
sector.

void cvEl lipse (Ipllmge* ing, CvPoint center, CvSize axes, double angle,
doubl e start Angl e, double endAngle, int color, int thickness=1);

i mg Image.

center Center of the ellipse.
axes Length of the ellipse axes.
angl e Rotation angle.

I ntel € 14-96

OpenCV Reference Manual Basic Sructures and Operations Reference 14

startAngl e Starting angle of the elliptic arc.

endAngl e Ending angle of the elliptic arc.

col or Ellipse color (RGB) or brightness (grayscale image).
t hi ckness Thickness of the ellipse arc.

Discussion

Thefunction Bl i pse drawsasimpleor thick elliptic arc or fillsan ellipse sector. The
arc is clipped by ROI rectangle. The generalized Bresenham algorithm for conic
section isused for simple éliptic arcs here, and piecewise-linear approximation is used
for antialiased arcs and thick arcs. All the angles are given in degrees. Figure 14-3
shows the meaning of the parameters.

Figure 14-3 Parameters of Elliptic Arc

First Ellipse Axis

Second Ellipse Axis

Drawn Arc

Starting Angle of the Arc

Ending Angle of the Arc

4 Rotation Angle

I ntGI e 14-97

OpenCV Reference Manual Basic Sructures and Operations Reference 14

EllipseAA
Draws antialiased elliptic arc.

voi d cvEl |i pseAA (I pl 1l mage* i ng, CvPoint center, CvSi ze axes, doubl e angl e,
doubl e start Angl e, doubl e endAngle, int color, int scal e=0);

i mg Image.

center Center of the éllipse.

axes Length of the ellipse axes.

angl e Rotation angle.

startAngl e Starting angle of the elliptic arc.

endAngl e Ending angle of the elliptic arc.

col or Ellipse color (RGB) or brightness (grayscale image).

scal e Specifies the number of fractiona bitsin the center coordinates and
axes sizes.

Discussion

The function El 1 i pseAA draws an antialiased elliptic arc. The arc is clipped by ROI
rectangle. The generalized Bresenham agorithm for conic section is used for simple
elliptic arcs here, and piecewise-linear approximation is used for antialiased arcs and
thick arcs. All the angles are in degrees. Figure 14-3 shows the meaning of the
parameters.

FillPoly

Fills polygons interior.

void cvFill Poly (IpllImge* ing, CvPoint** pts, int* npts, int contours,
int color);

i mg Image.

I ntel € 14-98

OpenCV Reference Manual Basic Sructures and Operations Reference 14

pt's Array of pointersto polygons.

npt's Array of polygon vertex counters.

cont ours Number of contours that bind the filled region.

col or Polygon color (RGB) or brightness (grayscale image).
Discussion

Thefunction Fi | | Pol y fills an area bounded by several polygonal contours. The
function fills complex areas, for example, areas with holes, contour self-intersection,
etc.

FillConvexPoly

Fills convex polygon.

void cvFill ConvexPoly (Ipllrmage* ing, CvPoint* pts, int npts, int color);

i mg Image.

pts Array of pointersto asingle polygon.

npt's Polygon vertex counter.

col or Polygon color (RGB) or brightness (grayscale image).
Discussion

The function Fi I | ConvexPol y fills convex polygon interior. This function is much
faster than the function Fi | | Pol y and fills not only the convex polygon but any
monotonic polygon, that is, a polygon whose contour intersects every horizontal line
(scan line) twice at the most.

| ntel . 14-99

OpenCV Reference Manual Basic Sructures and Operations Reference 14

PolyLine

Draws simple or thick polygons.

voi d cvPol yLi ne (I pl I mage* i ng, CvPoi nt** pts, int* npts, int contours, int
isC osed, int color, int thickness=1);

i mg Image.

pts Array of pointersto polylines.

npts Array of polyline vertex counters.

cont ours Number of polyline contours.

i sCl osed Indicates whether the polylines must be drawn closed. If closed, the
function draws the line from the last vertex of every contour to the
first vertex.

col or Polygon color (RGB) or brightness (grayscale image).

t hi ckness Thickness of the polyline edges.

Discussion

The function Pol yLi ne draws aset of smple or thick polylines.

PolyLineAA
Draws antialiased polygons.

voi d cvPol yLi neAA (I pl I mage* i ng, CvPoi nt** pts, i nt* npts, int contours, int
isC osed, int color, int scale=0);

i my Image.

pts Array of pointersto polylines.
npts Array of polyline vertex counters.
cont ours Number of polyline contours.

InU@ 14-100

OpenCV Reference Manual

Basic Sructures and Operations Reference 14

i s osed

col or

scal e

Discussion

Indicates whether the polylines must be drawn closed. If closed, the
function draws the line from the last vertex of every contour to the
first vertex.

Polygon color (RGB) or brightness (grayscale image).

Specifies number of fractional bitsin the coordinates of polyline
vertices.

The function Pol yLi neAA draws a set of antialiased polylines.

InitFont

Initializes font structure.

voi d cvlnitFont

(CvFont* font, CvFontFace fontFace, float hscale, float

vscale, float italicScale, int thickness);

f ont

f ont Face

hscal e

vscal e

italicScal e

t hi ckness

Pointer to the resultant font structure.

Font name identifier. Only the font Cv_FONT_VECTORO is currently
supported.

Horizontal scale. If equal to 1. of , the characters have the original
width depending on the font type. If equal to 0. 5f, the characters are
of half the original width.

Vertical scale. If equal to 1. of , the characters have the original
height depending on the font type. If equal to 0. 5f , the charactersare
of half the original height.

Approximate tangent of the character slope relative to the vertical
line. Zero value means a non-italic font, 1. 0f means ~45x slope, etc.

Thickness of lines composing letters outlines. The function cvLi ne
isused for drawing letters.

14-101

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

Thefunction | ni t Font initializesthe font structure that can be passed further into text
drawing functions. Although only one font is supported, it is possible to get different
font flavors by varying the scale parameters, slope, and thickness.

PutText
Draws text string.

voi d cvPut Text (Ipllmage* inmg, const char* text, CvPoint org, CvFont* font, int

color);
i Ny Input image.
t ext String to print.
org Coordinates of the bottom-left corner of the first letter.
f ont Pointer to the font structure.
col or Text color (RGB) or brightness (grayscale image).
Discussion

The function Put Text renders the text in the image with the specified font and color.
The printed text is clipped by ROI rectangle. Symbols that do not belong to the
specified font are replaced with the rectangle symbol.

GetTextSize
Retrieves width and height of text string.

voi d cvGet Text Si ze (CvFont* font, const char* textString, CvSize* textSize,
int* ymn);
f ont Pointer to the font structure.

InU@ 14-102

OpenCV Reference Manual Basic Sructures and Operations Reference 14

textString Input string.

text Si ze Resultant size of the text string. Height of the text does not include
the height of character parts that are below the baseline.

ymin Lowest y coordinate of the text relative to the baseline. Negative, if
the text includes such charactersasg, j, p, g, V, €tc., and zero
otherwise.

Discussion

The function Get Text Si ze calculates the binding rectangle for the given text string
when a specified font is used.

Utility Reference

ADbsDiff

Calculates absol ute difference between two
images.

void cvAbsDi ff (Ipllnmage* srcA, |pllmage* srcB, |pllnmage* dst);

SrcA First compared image.
srcB Second compared image.
dst Destination image.
Discussion

The function AbsDi f f calculates absolute difference between two images.

dst (x,y) = abs(srcA(x,y)—-srcB(x,y)).

"Ttel@ 14-103

OpenCV Reference Manual Basic Sructures and Operations Reference 14

AbsDIffS

Calculates absol ute difference between image
and scalar.

void cvAbsDi ffS (Ipllmage* srcA |pllnmage* dst, double val ue);

SrcA Compared image.
dst Destination image.
val ue Value to compare.
Discussion

The function AbsDi f f S calculates absolute difference between an image and a scalar.

dst (x,y) = abs(srcA(x,y)—val ue).

MatchTemplate

Fills characteristic image for given image and
template.

void cvMatchTempl ate (I pllmage* ing, |Ipllmage* tenpl, I|pllnage* result,
CvTenpl Mat chMet hod et hod) ;

i Ny Image where the search is running.

t enpl Searched template; must be not greater than the source image. The
parametersi ng and t enpl must be single-channel images and have
the same depth (1 PL_DEPTH_8U, | PL_DEPTH_8S, or
| PL_DEPTH_32F).

resul t Output characteristic image. It hasto be a single-channel image with
depth equal to | PL_DEPTH_32F. If the parameter i ng has the size of
wx H and the template has the size wx h, the resulting image must
have the size or selected ROl W-w+1xH-h+1.

InU@ 14-104

OpenCV Reference Manual Basic Sructures and Operations Reference 14

met hod Specifies the way the template must be compared with image
regions.

Discussion

The function Mat chTenpl at e implements a set of methods for finding the image
regions that are similar to the given template.

Given a source image with wx H pixels and atemplate with wx h pixels, the resulting
image has w-w+ 1 xH-h +1 pixels, and the pixel valuein each location (x, y)
characterizes the similarity between the template and the image rectangle with the
top-left corner at (x, y) and the right-bottom cornerat (x + w - 1,y + h - 1).
Similarity can be calculated in several ways:

Squared difference (met hod == CV_TM SQDI FF)

h-1w-1

St,y) = 3 ST Y) -1 (x+xy +y01%,

y'=0x'=0

wherel (x, y) isthevaue of theimage pixel inthelocation (x, y) , whileT(x, y) isthe
value of the template pixel in the location (x, y) .

Normalized squared difference (met hod == CV_TM SQDI FF_NORVED)

h-1w-1
33 TG Y1 (XY +y))?
— '=0x'=0
Sky) = h—yl w—1 h—1w_1 '
JZ ST Y)E Y T Xy +y)P
y'=0x'=0 y'=0x'=0
Cross correlation (met hod == CV_TM CCORR):
h-1w-1
C(x,y) = Z Z TX,y) (X +x,y +y').
y'=0x'=0

Cross correlation, normalized (met hod == CV_TM CCORR_NORMED):

14-105

OpenCV Reference Manual Basic Sructures and Operations Reference 14

h-1w-1
DD T Y (X +xLy +y7)
Cy) = h—1x\:\;—:10XI:0 h—1w-1 '
Jz ST Y)Y S (x+xy +y)?
y'=0x'=0 y'=0x'=0
Correlation coefficient (met hod == CV_TM CCOEFF):
h-1w-1
ROGY) = > 3 Ty (x+xhy +y'),
y'=0x'=0

where T(x',y") = T(x,y) =T, I'(x +x,y +y") = | (x +x,y +y')=T(x,y), and where T
stands for the average value of pixelsin the template raster and I (x,y) stands for the
average value of the pixelsin the current window of the image.

Correlation coefficient, normalized (nmet hod == CV_TM CCOEFF_NORVED):

h-1w-1
DY T YIF(x+xhy +y7)
R(x,y) = LEDCE0

h—1 w-1 h—1 w—1 ’
JZ S THYP Y S Fx+x,y +y)’

y'=0x'=0 y'=0x'=0

After the function Mat chTenpl at e returns the resultant image, probable positions of
the template in the image could be located as the local or global maximums of the
resultant image brightness.

InU@ 14-106

OpenCV Reference Manual Basic Sructures and Operations Reference 14

CvtPixToPlane
Divides pixel image into separate planes.

voi d cvCvt Pi xToPl ane (I pl I mage* src, |pllmge* dstO, |Ipllmage* dstl, Ipllnmage*
dst2, Ipllmage* dst3);

src Source image.
dstO...dst3 Destination planes.

Discussion

The function cvt Pi xToPl ane divides acolor image into separate planes. Two modes
are available for the operation. Under the first mode the parameters dst 0, dst 1, and
dst 2 are non-zero, while dst 3 must be zero for the three-channel source image. For
the four-channel source image all the destination image pointers are non-zero. In this
case the function splits the three/four channel image into separate planes and writes
them to destination images. Under the second mode only one of the destination images
isnot NULL; in this case, the corresponding plane is extracted from the image and
placed into destination image.

CvtPlaneToPix

Composes color image from separ ate planes.

voi d cvCvt Pl aneToPi x (I pllmage* srcO, Ipllmage* srcl, |pllmge* src2,
I pl | mage* src3, |pllmge* dst);

srcO0...src3 Source planes.
dst Destination image.

Int9|@ 14-107

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function cvt Pl aneToPi x composes acolor image from separate planes. If the dst
has three channels, then sr c0, src1, and sr c2 must be non-zero, otherwise dst must
have four channels and all the source images must be non-zero.

ConvertScale

Converts one image to another with linear
transfor mation.

voi d cvConvert Scal e (IpllImge* src, |pllmge* dst, double scale, double
shift);

src Source image.

dst Destination image.

scal e Scale factor.

shift Va ue added to the scaled source image pixels.
Discussion

The function Conver t Scal e applieslinear transform to al pixelsin the source image
and puts the result into the destination image with appropriate type conversion. The
following conversions are supported:

| PL_DEPTH_8U « | PL_DEPTH_32F,
| PL_DEPTH 8U « | PL_DEPTH_16S,
| PL_DEPTH 8S « | PL_DEPTH_32F,
| PL_DEPTH_8S « | PL_DEPTH_16S,
| PL_DEPTH_16S « | PL_DEPTH_32F,
| PL_DEPTH 32S « | PL_DEPTH_32F.

Applying the following formula converts integer typesto float:

InU@ 14-108

OpenCV Reference Manual Basic Sructures and Operations Reference 14

dst(x,y) = (float)(src(x,y)*scale + shift),
while the following formula does the other conversions:
dst(x,y) = saturate(round(src(x,y)*scale + shift)),

wherer ound function converts the floating-point number to the nearest integer number
and sat ur at e function performs as follows:

* Dedtination depth is| PL_DEPTH_8U: sat ur at e(x)
255 : X

* Dedtination depth is| PL_DEPTH_8S: sat ur at e(x)
127 ? 127 : x

* Dedtination depth is| PL_DEPTH_16S: saturate(x) = x < -32768 ? —32768 :
X > 32767 ? 32767 : X

* Destination depth is| PL_DEPTH_32S: sat ur at e(x)

X <0?0: x >2557

X < -128 ? =128 : x >

"
x

LUT

Performs look-up table transformation on image.

Cviat* cvLUT (const CvArr* A, CvArr* B, const CvArr* |ut);

A Source image of 8-bit elements.

B Destination array of arbitrary depth and of the same number of
channels as the source array has.

| ut L ook-up table of 256 elements; should be of the same depth as the

destination array.

Discussion

The function LUT fillsthe destination array with values of 1ook-up table entries.
Indices of the entries are taken from the source array. That is, the function
processes each pixel asfollows:

B; =lut[A; +4],where a isequal to O for su source image and to 128 for 8s
source image.

"Ttel@ 14-109

OpenCV Reference Manual Basic Sructures and Operations Reference 14

InitLinelterator
Initializes line iterator.

int cvinitLinelterator (Ipllmage* inmg, CvPoint ptl, CvPoint pt2,

CvLi

nelterator* linelterator);

i mg Image.
pt 1 Starting the line point.
pt 2 Ending the line point.

linelterator Pointer to thelineiterator state structure.

Discussion

Thefunction I ni t Li nel t erat or initializestheline iterator and returns the number of
pixels between two end points. Both points must be inside theimage. After the iterator
has been initialized, all the points on the raster line that connects the two ending points
may be retrieved by successive calls of Cv_NEXT_LI NE_PO NT point. The points on the
line are calculated one by one using the 8-point connected Bresenham algorithm. See
Example 14-17 for the method of drawing the line in the RGB image with the image
pixels that belong to the line mixed with the given color using the XOR operation.

Example 14-17 Drawing Line Using XOR Operation

voi d put_xor _line(Ipllmge* ing, CvPoint ptl, CvPoint pt2, int r, int
g, int b) {

CvLinelterator iterator;

int count = cvlinitLinelterator(ing, ptl, pt2, &terator);

for(int i =0; i < count; i++){

iterator.ptr[0] ~= (uchar)b;
iterator.ptr[1] ~= (uchar)g;
iterator.ptr[2] ~= (uchar)r;
CV_NEXT_LINE_PO NT(iterator);
}
}

14-110

OpenCV Reference Manual Basic Sructures and Operations Reference 14

SampleLine
Reads raster line to buffer.

int cvSanpl eLine (Ipllmage* ing, CvPoint ptl, CvPoint pt2, void* buffer);

i my Image.

pt 1 Starting the line point.

pt 2 Ending the line point.

buf f er Buffer to store the line points; must have enough size to store

MAX(|pt2.x - ptl.x| + 1,|pt2.y - ptl.y|+1) points.

Discussion

The function Sanpl eLi ne implements a particular case of application of line iterators.
The function reads all the image points lying on the line between pt 1 and pt 2,
including the ending points, and stores them into the buffer.

GetRectSubPix

Retrieves raster rectangle fromimage with
sub-pixel accuracy.

voi d cvGet Rect SubPi x (I plImage* src, Ipllmage* rect, CvPoint2D32f center);

src Source image.
rect Extracted rectangle; must have odd width and height.
center Floating point coordinates of the rectangle center. The center must be

inside the image.

Discussion

The function Get Rect SubPi x extracts pixelsfrom sr c, if the pixel coordinates meet
the following conditions:

IntGI@ 14-111

OpenCV Reference Manual Basic Sructures and Operations Reference 14

center.x —(widthrect-1)/2 <= x <= center.x + (widthrect-1)/2;
center.y -(heightrect-1)/2 <=y <= center.y +(heightrect-1)/2.

Since the center coordinates are not integer, bilinear interpolation is applied to get the
values of pixelsin non-integer locations. Although the rectangle center must be inside
the image, the whol e rectangle may be partially occluded. In this case, the pixel values
are spread from the boundaries outside the image to approximate values of occluded
pixels.

bFastArctan

Calculates fast arctangent approximation for
arrays of abscissas and ordinates.

voi d cvbFast Acrtan (const float* y, const float* x, float* angle, int len);

y Array of ordinates.

X Array of abscissas.

angl e Calculated angles of points(x[i],y[i]).
I en Number of elementsin the arrays.
Discussion

The function bFast Acrt an calculates an approximate arctangent value, the angle of
the point (x, y) . Theangleisin the range from 0° to 360°. Accuracy is about 0.1°. For
point (0, 0) the resultant angleisO.

Sqrt

Calculates sguare root of single float.

float cvSgrt (float Xx);
X Scalar argument.

intel. 14112

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function sqrt calculates square root of a single argument. The argument should
be non-negative, otherwise the result is unpredictable. The relative error is less than
9e- 6.

bSqrt

Calculates square root of array of floats.

void cvbSgrt (const float* x, float* y, int len);

X Array of arguments.

y Resultant array.

I en Number of elementsin the arrays.
Discussion

The function cvbSqrt calculates the square root of an array of floats. The arguments
should be non-negative, otherwise the results are unpredictable. The relative error is
less than 3e- 7.

InvSqgrt

Calculates inverse sguare root of single float.

float cvlinvSgrt (float x);
X Scalar argument.

Discussion

The function | nvSgrt calculates the inverse square root of asingle float. The
argument should be positive, otherwise the result is unpredictable. Therelative error is
less than 9e- 6.

IntGI@ 14-113

OpenCV Reference Manual Basic Sructures and Operations Reference 14

bInvSqrt

Calculates inverse sguare root of array of floats.

void cvblnvSgrt (const float* x, float* y, int |en);

X Array of arguments.

y Resultant array.

I en Number of elementsin the arrays.
Discussion

The function bl nvSqrt calculates the inverse square root of an array of floats. The
arguments should be positive, otherwise the results are unpredictable. The relative
error islessthan 3e- 7.

bReciprocal
Calculates inverse of array of floats.

voi d cvbReci procal (const float* x, float* y, int len);

X Array of arguments.

y Resultant array.

I en Number of elementsin the arrays.
Discussion

The function bReci procal calculatesthe inverse (1/ x) of arguments. The arguments
should be non-zero. The function gives avery precise result with the relative error less
than le-7.

intel. 14114

OpenCV Reference Manual Basic Sructures and Operations Reference 14

bCartToPolar

Calculates magnitude and angle for array of
abscissas and ordinates.

voi d cvbCart ToPol ar (const float* y, const float* x, float* mag, float* angle,

int len);
y Array of ordinates.
X Array of abscissas.
mag Calculated magnitudes of points (x[i],y[i]).
angl e Calculated angles of points(x[i],y[i]).
I en Number of elementsin the arrays.
Discussion

The function bCar t ToPol ar cal cul ates the magnitude +x[i 1°+y[i]* and the angle
arctan(y[i]/x[i]) of each point (x[i],y[i]). Theangleismeasured in degrees and
varies from 0° to 360°. The function is a combination of the functions bFast Ar ct an
and bsqr t , so the accuracy is the same asin these functions. If pointers to the angle
array or the magnitude array are NULL, the corresponding part is not calculated.

bFastExp

Calculates fast exponent approximation for array
of floats.

voi d cvbFast Exp (const float* x, double* exp_x, int len);

X Array of arguments.
exp_x Array of results.
I en Number of elementsin the arrays.

IntGI@ 14-115

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function bFast Exp calculates fast exponent approximation for each element of
the input array. The maximal relative error is about 7e- 6.

bFastLog

Calculates fast approximation of natural
logarithm for array of doubles.

voi d cvbFastLog (const double* x, float* log x, int len);

X Array of arguments.

| og_x Array of results.

I en Number of elementsin the arrays.
Discussion

The function bFast Log calculates fast logarithm approximation for each element of
the input array. Maximal relative error is about 7e- 6.

RandInit

Initializes state of random number generator.

void cvRandl nit (CvRandState* state, float |ower, float upper, int seed);

state Pointer to the initialized random number generator state.
| ower Lower boundary of uniform distribution.

upper Upper boundary of uniform distribution.

seed Initial 32-bit value to start arandom sequence.

InU@ 14-116

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function Randl! ni t initializesthe st at e structure that is used for generating
uniformly distributed numbersin therange[| ower, upper). A multiply-with-carry
generator is used.

bRand

Fills array with random numbers.

void cvbRand (CvRandState* state, float* x, int |en);

state Random number generator state.
X Destination array.

I en Number of elementsin the array.
Discussion

The function bRand fills the array with random numbers and updates generator state.

Rand

Fills array with uniformly distributed random
numbers.

voi d cvRand (CvRandState* state, CvArr* arr);

state RNG state initialized by the function Randl ni t and, optionally, by
RandSet Range.
arr Destination array.

IntGI@ 14-117

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function Rand fillsthe destination array with uniformly distributed random
numbers and updates RNG state.

Filllmage
Fills image with constant value.

void cvFilllmge (IpllInmage* ing, double val);
i ng Filled image.
val Valueto fill theimage.
Discussion

ThefunctionFi I | | mage isequivalent to eitheri pl Set FP ori pl Set , depending on the
pixel type, that is, floating-point or integer.

RandSetRange

Sets range of generated random number s without
reinitializing RNG state.

voi d cvRandSet Range (CvRandState* state, double |ower, double upper);

state State of random number generator (RNG).
| ower New lower bound of generated numbers.
upper New upper bound of generated numbers.

InU@ 14-118

OpenCV Reference Manual Basic Sructures and Operations Reference 14

Discussion

The function RandSet Range changes the range of generated random numbers without
reinitializing RNG state. For the current implementation of RNG the function is
equivalent to the following code:

unsi gned seed = state. seed;

unsi gned carry = state.carry;

cvRandlnit(&state, |ower, upper, 0);

stat e. seed = seed;

state.carry = carry;

However, the function is preferable because of compatibility with the next versions of
the library.

KMeans
Solits set of vectorsinto given number of clusters.

voi d cvKMeans (int nunClusters, CvVect32f* sanples, int nunBanples, int
vecSi ze, CvTernCriteria terncrit, int* cluster);

nunCl usters Number of required clusters.

sanpl es Pointer to the array of input vectors.

nunBanpl es Number of input vectors.

vecSi ze Size of every input vector.

terncrit Criteria of iterative agorithm termination.

cluster Characteristic array of cluster numbers, corresponding to each input
Vector.

Discussion

The function KMeans iteratively adjusts mean vectors of every cluster. Termination
criteriamust be used to stop the execution of the algorithm. At every iteration the
convergence value is computed as follows:

14-119

OpenCV Reference Manual Basic Sructures and Operations Reference 14

K
> ol d_mean; —new_nean; Hz

i=1

The function terminatesif E<Terncrit.epsilon.

InU@ 14-120

System Functions

This chapter describes system library functions.

Table 15-1 System Library Functions

Name Description

LoadPrimtives Loads versions of functions that
are optimized for a specific
platform.

Get Li braryl nfo Retrieves information about the
library.

LoadPrimitives

Loads optimized versions of functions for specific
platform.

int cvLoadPrimtives (char* dll Nane, char* processorType);

dl | Nane Name of dynamically linked library without postfix that
contains the optimized versions of functions
processor Type Postfix that specifies the platform type:

“wr” for Pentium® 4 processor, “A6” for Intel® Pentium® 11
processor, “Ms” for Intel® Pentium® |1 processor, NULL for
auto detection of the platform type.

InteL 15-1

OpenCV Reference Manual System Functions 15

Discussion

The function LoadPri mi ti ves loadsthe versions of functionsthat are optimized for a
specific platform. The function isautomatically called beforethefirst call to thelibrary
function, if not called earlier.

GetLibrarylnfo

Getsthelibrary information string.

void cvGetlLibrarylnfo (char** version, int* | oaded, char** dl| Nane);

ver si on Pointer to the string that will receive the build date information; can
be NULL.
| oaded Postfix that specifies the platform type:

“wr” for Pentium® 4 processor, “A6” for Intel® Pentium® 111
processor, “Ms” for Intel® Pentium® |1 processor, NULL for auto
detection of the platform type.

dl | Namre Pointer to the full name of dynamically linked library without path,
could be NULL.

Discussion

The function Get Li braryl nf o retrievesinformation about the library: the build date,
the flag that indicates whether optimized DLLs have been loaded or not, and their
names, if loaded.

intel@ 15-2

Bibliography 16

This bibliography provides alist of publications that might be useful to the Intel®
Computer Vision Library users. Thislist is not complete; it serves only as a starting

point.
[Borgefors36]

[BradskiO0]

[Burt81]

[Canny86]

[Daviso7]

[DeMenthon92]

[Fitzgibbon95]

[Horn81]

GunillaBorgefors. Distance Transformations in Digital Images.
Computer Vision, Graphics and Image Processing 34, 344-371
(1986).

G Bradski and J. Davis. Motion Segmentation and Pose Recognition
with Motion History Gradients. |EEE WACV'00, 2000.

P.J. Burt, T. H. Hong, A. Rosenfeld. Segmentation and Estimation of
Image Region Properties Through Cooperative Hierarchical
Computation. IEEE Tran. On SMC, Vol. 11, N.12, 1981, pp.
802-809.

J. Canny. A Computational Approach to Edge Detection, IEEE
Trans. on Pattern Analysis and Machine Intelligence, 8(6), pp.
679-698 (1986).

J. Davis and Bobick. The Representation and Recognition of Action
Using Temporal Templates. MIT Media Lab Technical Report 402,
1997.

Daniel F. DeMenthon and Larry S. Davis. Model-Based Object Pose
in 25 Lines of Code. In Proceedings of ECCV '92, pp. 335-343, 1992.

Andrew W. Fitzgibbon, R.B.Fisher. A Buyer’s Guide to Conic
Fitting. Proc.5t" British Machine Vision Conference, Birmingham,
pp. 513-522, 1995.

Berthold K.P. Horn and Brian G. Schunck. Determining Optical
Flow. Artificial Intelligence, 17, pp. 185-203, 1981.

16-1

OpenCV Reference Manual

Bibliography 16

[Hu62]

[Jahne97]
[K ass88]

[Matasog]
[Rosenfeld73]

[RubnerJan98]

[RubnerSept98]

[RubnerOct98]

[Serra82]

[Schiele00]

[Suzuki85]

[Teh8g]

M. Hu. Visual Pattern Recognition by Moment Invariants, IRE
Transactions on Information Theory, 8:2, pp. 179-187, 1962.

B. Jahne. Digital Image Processing. Springer, New York, 1997.

M. Kass, A. Witkin, and D. Terzopoulos. Shakes. Active Contour
Models, International Journal of Computer Vision, pp. 321-331,
1988.

J.Matas, C.Galambos, J.Kittler. Progressive Probabilistic Hough
Transform. British Machine Vision Conference, 1998.

A. Rosenfeld and E. Johnston. Angle Detection on Digital Curves.
|EEE Trans. Computers, 22:875-878, 1973.

Y. Rubner. C. Tomasi, L.J. Guibas. Metrics for Distributions with
Applications to Image Databases. Proceedings of the 1998 |IEEE
International Conference on Computer Vision, Bombay, India,
January 1998, pp. 59-66.

Y. Rubner. C. Tomasi, L.J. Guibas. The Earth Mover’s Distance as a
Metric for Image Retrieval. Technical Report STAN-CS-TN-98-86,
Department of Computer Science, Stanford University, September
1998.

Y. Rubner. C. Tomasi. Texture Metrics. Proceeding of the IEEE
International Conference on Systems, Man, and Cybernetics,
San-Diego, CA, October 1998, pp. 4601-4607.

http://robotics.stanf ord.edu/~rubner/publications.html

J. Serra. Image Analysis and Mathematical Morphology. Academic
Press, 1982.

Bernt Schiele and James L. Crowley. Recognition without
Correspondence Using Multidimensional Receptive Field
Histograms. In International Journal of Computer Vision 36 (1),
pp. 31-50, January 2000.

S. Suzuki, K. Abe. Topological Sructural Analysis of Digital Binary
Images by Border Following. CVGIP, v.30, n.1. 1985, pp. 32-46.

C.H. Teh, R.T. Chin. On the Detection of Dominant Points on
Digital Curves. - IEEE Tr. PAMI, 1989, v.11, No.8, p. 859-872.

16-2

1

OpenCV Reference Manual

Bibliography 16

[Trucco98]

[Welshos]

[Williams92]

[Yuillesd]

[Zhang96]

[Zhang99]

[Zhang00]

Emanuele Trucco, Alessandro Verri. Introductory Techniques for
3-D Computer Vision. Prentice Hall, Inc., 1998.

Greg Welsh, Gary Bishop. An Introduction To the Kalman Filter.
Technical Report TR95-041, University of North Carolina at Chapel
Hill, 1995.

D. J. Williams and M. Shah. A Fast Algorithm for Active Contours
and Curvature Estimation. CV GIP: Image Understanding, Vol. 55,
No. 1, pp. 14-26, Jan., 1992._
http://www.cs.ucf.edu/~Vvision/papers/shah/92/WIS92A .pdf.

A.Y.Yuille, D.S.Cohen, and PW.Hallinan. Feature Extraction from
Faces Using Deformable Templatesin CVPR, pp. 104-109, 1989.

Z. Zhang. Parameter Estimation Techniques: A Tutorial with
Application to Conic Fitting, Image and Vision Computing Journal,
1996.

Z. Zhang. Flexible Camera Calibration By Viewing a Plane From
Unknown Orientations. International Conference on Computer
Vision (ICCV'99), Corfu, Greece, pages 666-673, September 1999.

Z. Zhang. A Flexible New Technique for Camera Calibration. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
22(11):1330-1334, 2000.

16-3

Williams92
Williams92
http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html

Supported |mage Attributes
and Operation Modes

A

The table below specifies what combinations of input/output parameters are accepted
by different OpenCV functions. Currently, the table describes only array-processing
functions, that is, functions, taking on input, output or both the structures| pl | mage
and ovat . Functions, working with complex datastructures, e.g., contour processing,
computational geometry, etc. are not included yet.

Format is coded in form dept h , where dept h iscoded asnunber of bits{u|s|f},u
stands for "integer Unsigned”, s stands for "integer Signed" and f stands for "Floating
point".

For example, 8u means 8-bit unsigned image or array, 32f means floating-point image
or array. 8u- 64f isashort formof 8u, 8s, 16s, 32s, 32f, 64f.

If afunction has several input/output arrays, they all must have the same type unless
oppositeis explicitly stated.

Word same in Output Format column means that the output array must have the same
format with input array[s]. Word inplace in Output Format column means that the
function changes content of one of the input arrays and thus produces the output. Word
n/a means that the function output is not an image and format information is not
applicable.

Mask parameter, if present, must have format 8u or 8s.

The following table includes only the functions that have raster images or matrices on
input and/or on output.

A-1

Supported I mage Attributes and Operation Modes A

OpenCV Reference Manual
Table A-1 Image Atributes and Operation Modes for Array-Processing Functions
Number
of
Function Input Format Channels Output Format
AbsDi f f 8u - 64f 1-4 same
AbsDi ff S 8u - 64f 1-4 same
Acc src = 8u, 8s, 1,3 inplace
32f
acc = 32f (same 1-3
channels number as
Src)
Adapti veThreshol d 8u, 8s, 32f 1 same
Add 8u, 16s, 32s, 1-4 same
32f, 64f
AddS 8u, 16s, 32s, 1-4 same
32f, 64f
And 8u - 64f 1-4 same
AndS 8u - 64f 1-4 same
bCart ToPol ar 32f 1 32f
bFast Arct an 32f 1 32f
bFast Exp 32f 1 64f
bFast Log 64f 1 64f
bl nvSgrt 32f 1 32f
bRand none 1 32f
bReci procal 32f 1 32f
bSqrt 32f 1 32f
Cal cAf fi neFl owPyr LK inmg = 8u 1 32f
Cal cBackPr oj ect hi stogram ing 1 same as i ng
=8u, 8s, 32f
Cal cEi genObj ect s img = 8u 1 ei g = 32f
Cal cd obal Orientation mhi =32f ,ori ent 1 32f

=32f,msk = 8u

intel.

OpenCV Reference Manual Supported I mage Attributes and Operation Modes A

Table A-1 Image Atributes and Operation Modes for Array-Processing Functions (continued)

Number
of
Function Input Format Channels Output Format
Cal cHi st i mg =8u, 8s, 1 hi st ogram
32f
Cal cMbti onG adi ent mhi = 32f 1 orient =32f,
mask
Cal cOpti cal Fl owBM 8u 1 32f
Cal cOpti cal Fl owHS 8u 1 32f
Cal cOpti cal Fl owLK 8u 1 32f
Cal cOpti cal Fl owPyr LK i mg=8u 1 32f
CanBhi ft 8u, 8s, 32f 1 n/a
Canny 8u 1 8u
Crcle 8u - 64f 1-4 inplace
Crcl ehA 8u 1,3 inplace
Cmp 8u - 64f 1-4 8u
CmpS 8u - 64f 1-4 8u
Convert Scal e 8u - 64f 1-4 8u - 64f, the
same channels
number
Copy 8u - 64f 1-4 same
Cor ner Ei genVal sAndVecs 8u, 8s, 32f 1 32f
Cor ner M nEi genVal 8u, 8s, 32f 1 32f
Count NonZer o 8u - 64f 1-4 64f
Cr ossPr oduct 32f, 64f 1,3 same (array size=3)
Cvt Pi XxToPI ane 8u - 64f input-2,3 8u - 64f
or 4,
output - 1
Cvt Pl aneToPi x 8u - 64f input - 1, 8u - 64f
output -
2,30r4
Det 32f, 64f 1 CvScalar
Dilate 8u, 32f 1,3,4 same

OpenCV Reference Manual Supported I mage Attributes and Operation Modes A

Table A-1 Image Atributes and Operation Modes for Array-Processing Functions (continued)

Number
of

Function Input Format Channels Output Format
D st Transform 8u, 8s 1 32f

8u - 64f 1-4 double
Dr awCont our s contour, ing= 1-4 inplace

8u - 64f
Ei genWw 32f, 64f 1 same
Ellipse 8u - 64f 1-4 inplace
El Ii pseAA 8u 1,3 inplace
Er ode 8u, 32f 1,34 same
Fi | | ConvexPoly 8u - 64f 1-4 inplace
Fill Poly 8u - 64f 1-4 inplace
Fi ndChessBoar dCor ner Guesses 8u 1 n/a
Fi ndCont our s img = 8u, 8s 1 contour
Fi ndCor ner SubPi x i ng=8u, 8s, 1 n/a

32f
Flip 8u - 64f 1-4 same
Fl oodFi | | 8u, 32f 1 inplace
Cet Rect SubPi x 8u, 8s, 32f, 1 same or 32f or 64f

64f for8u & 8s
GoodFeat ur esToTr ack i ng=8u, 8s, 1 n/a

32f, eig =32f,

t enp = 32f
HoughLi nes i mg=8u 1 n/a
HoughLi nesP i mg=8u 1 n/a
HoughLi nesSDi v ing=8u 1 n/a
| ngToObs_DCT i mg=8u 1 n/a
| nvert 32f, 64f 1 same
Lapl ace 8u, 8s, 32f 1 16s, 32f
Li ne 8u - 64f 1-4 inplace
Li neAA 8u 1,3 inplace

intel.

Supported I mage Attributes and Operation Modes A

OpenCV Reference Manual
Table A-1 Image Atributes and Operation Modes for Array-Processing Functions (continued)
Number
of
Function Input Format Channels Output Format
LUT 8u - 8s 1-4 8u - 64f
Mat chTenpl at e 8u, 8s, 32f 1 32f
Mat Mul Add 32f, 64f 1,2 same
Mat Mul AddS 8u, 32s, 32f, 2,3,4 same
64f
Mat Mul AddEx 32f, 64f 1 same
Mean 8u - 64f 1-4 64f
Mean_St dDev 8u - 64f 1-4 64f
Meanshi ft 8u, 8s, 32f 1 n/a
M niaxLoc 8u - 64f 1-4 CvPoi nt, 64f
(coi!=0)
Monent s 8u - 64f 1-4 CvMorent s
(coi!=0)
Mor phol ogyEx 8u, 32f 1,34 same
Mul 8u, 16s, 32s, 1-4 same
32f, 64f
Mul AddS (See Mul) 32f, 64f 1,2 same
Mul ti pl yAcc src = 8u, 8s, 1,3 inplace
32f
acc = 32f (same 1-3
channels number as
Src)
Mul Tr ansposed 32f, 64f 1 same
Nor m 8u - 64f 1-4 64f
(coi!=0, if
mask! =0)
(o8 8u - 64f 1-4 same
oS 8u - 64f 1-4 same
Per spectiveTransform 32f, 64f 3 same
Pol yLi ne 8u - 64f 1-4 inplace
"Ttel@ A-5

OpenCV Reference Manual

Supported I mage Attributes and Operation Modes A

Table A-1 Image Atributes and Operation Modes for Array-Processing Functions (continued)

Number
of

Function Input Format Channels Output Format
Pol yLi neAA 8u 1,3 inplace
Pr eCor ner Det ect 8u, 8s, 32f 1 32f
Pseudol nv 32f, 64f 1 same
Put Text 8u - 64f 1-4 inplace
Pyr Down 8u, 8s, 32f 1,3 same
Pyr Segnent at i on 8u 1,3 same
Pyr Up 8u, 8s, 32f 1,3 same
Rand - 1-4 8u - 64f
RandNext none 1 32u
Rect angl e 8u - 64f 1-4 inplace
Reshape 8u - 32f 1-4 same depth
Runni ngAvg src = 8u, 8s, 1,3 inplace

32f

acc = 32f (same 1-3

channels number as

Src)
Sanpl eLi ne 8u - 64f 1-4 inplace
Scal eAdd 32f, 64f 1,2 same
Segnent Moti on 32f 1 32f
Set 8u - 64f 1-4 inplace
Setldentity 8u - 64f 1-4 inplace
Set Zero 8u - 64f 1-4 inplace
Snakel mage i my=8u, 8s, 1 n/a

32f
Sobel 8u, 8s, 32f 1 16s, 32f
Squar eAcc src = 8u, 8s, 1,3 inplace

32f

acc = 32f (same 1-3

channels number as
Src)

intel.

OpenCV Reference Manual Supported I mage Attributes and Operation Modes A

Table A-1 Image Atributes and Operation Modes for Array-Processing Functions (continued)

Number
of
Function Input Format Channels Output Format
St art Fi ndCont our s img=8u, 8s 1 contour
Sub 8u, 16s, 32s, 1-4 same
32f, 64f
SubRS 8u, 16s, 32s, 1-4 same
32f, 64f
SubS 8u, 16s, 32s, 1-4 same
32f, 64f
SubRS 8u, 16s, 32s, 1-4 same
32f, 64f
Sum 8u - 64f 1-4 64f
SVD 32f, 64f 1 same
Threshol d 8u, 8s, 32f 1 same
Tr ace 8u - 64f 1-4 CvScalar
| nvert 8u - 64f 1-4 same
UnDi st ort 8u 1,3 same
UnDi st ort Once 8u 1,3 same
Updat eMbti onHi story mi =32f, silh= 1 mhi = 32f
8u, 8s
Xor 8u - 64f 1-4 same
Xor S 8u - 64f 1-4 same

Glossary

arithmetic operation

background

blob

Burt’'s algorithm

CamShift

channel of interest
COl
connected component

corner

An operation that adds, subtracts, multiplies, or squares the
image pixel values.

A set of motionlessimage pixels, that is, pixelsthat do not
belong to any object moving in front of the camera. This
definition can vary if considered in other techniques of
object extraction. For example, if a depth map of the scene
is obtained, background can be defined as parts of scene that
are located far enough from the camera.

A region, either a positive or negative, that results from
applying the Laplacian to an image. See Laplacian pyramid.
An iterative pyramid-linking algorithm implementing a
combined segmentation and feature computation. The
algorithm finds connected components without a
preliminary threshold, that is, it works on a grayscale image.

Continuously Adaptive Mean-SHIFT agorithm. Itisa
modification of MeanShift algorithm that can track an
object varying in size, e.g., because distance between the
object and the camera varies.

channel in the image to process.
See channel of interest.

A number of pixels sharing aside (or, in some cases, a
corner aswell).

An areawhere level curves multiplied by the gradient
magnitude assume alocal maximum.

Glossary-1

OpenCV Reference Manual

Glossary

down-sampling

earth mover distance

edge

EMD
flood filling

Gaussian pyramid

histogram

image features
Laplacian pyramid

Down-sampling conceptually decreases image size by
integer through replacing a pixel block with asingle pixel.
For instance, down-sampling by factor of 2 replacesa2 X 2
block with asingle pixel. In image processing convolution
of the original image with blurring or Gaussian kernel
precedes down-sampling.

minimal work needed to translate one point mass
configuration to another, normalized by the total
configuration mass. The EMD is a optimal solution of
transportation problem.

A point at which the gradient assumes alocal maximum
along the gradient direction.

See earth mover distance.

Flood filling means that a group of connected pixels with
close valuesisfilled with, or is set to, a certain value. The
flood filling process starts with some point, called “seed”,
that is specified by function caller and then it propagates
until it reaches the image ROI boundary or cannot find any
new pixelsto fill dueto alarge differencein pixel values.

A set of images derived from each other with combination
of convolution with Gaussian kernel and down-sampling.
See down-sampling and up-sampling.

A discrete approximation of stochastic variable probability
distribution. The variable can be both a scalar value and a
vector. Histograms represent a simple statistical description
of an object, e.g., an image. The object characteristics are
measured during iterations through that object

See edge, ridge, and blob.

A set of images, which can be obtained by subtracting
upsampled images from the original Gaussian Pyramid, that
is, Lj = Gj — up-sample (Gj;q) or Lj = G; — up-sample

Glossary-2

OpenCV Reference Manual

Glossary

locally minimum

(down-sample (G;)), where L; are images from Laplacian
Pyramid and G; areimages from Gaussian Pyramid. See also
down-sampling and up-sampling.

A triangle made of two boundary runsin hierarchical

interceptive areatriangle representation of contours, if the interceptive area of its base

LMIAT

lineis smaller than both its neighboring triangles areas.

See locally minimum interceptive areatriangle.

mathematical morphologyA set-theoretic method of image analysis first developed by

memory storage

minimal enclosing circle

MHI
motion history image

optical flow

Matheron and Serra. The two basic morphological
operations are erosion (thinning) and dilation (thickening).
All operations involve an image A (object of interest) and a
kernel element B (structuring element).

Storage that provides the space for storing dynamic data
structures. A storage consists of a header and a
double-linked list of memory blocks treated as a stack, that
is, the storage header contains a pointer to the block not
occupied entirely and an integer value, the number of free
bytesin this block.

A circlein aplanar point set whose points are entirely
located either inside or on the boundary of the circle.
Minimal means that there is no enclosing circle of asmaller
radius.

See motion history image.

Motion history image (MHI) represents how the motion
took place. Each MHI pixel has a vaue of timestamp
corresponding to the latest motion in that pixel. Very early
motions, which occured in the past beyond a certain time
threshold set from the current moment, are cleared out. As
the person or object moves, copying the most recent
foreground silhouette as the highest values in the motion
history image creates alayered history of the resulting
motion.

An apparent motion of image brightness.

intel.

Glossary-3

OpenCV Reference Manual

Glossary

pixel value

region of interest

ridge

ROI

sequence

signature

snake

template matching

tolerance interval

up-sampling

Aninteger or float point value that defines brightness of the
image point corresponding to this pixel. For instance, in the
case of 8u format images, the pixel valueis an integer
number from O to 255.

A part of the image or a certain color plane in the image, or
both.

Sort of a skeletonized high contrast object within an image.
Ridgesarefound at points where the gradient is non-zero (or
the gradient is above a small threshold).

See region of interest.

A resizable array of arbitrary type elements located in the
memory storage. The sequence is discontinuous. Sequence
data may be divided into several continuous blocks, called
sequence blocks, that can be located in different memory
blocks.

Generalization of histograms under which characteristic
values with rather fine quantization are gathered and only
non-zero bins are dynamically stored.

An energy-minimizing parametric closed curve guided by
external forces.

Marking the image regions coinciding with the given
template according to a certain rule (minimum squared
difference or maximum correlation between the region and
template).

Lower and upper levels of pixel values corresponding to
certain conditions. See pixel value.

Up-sampling conceptually increases image size through
replacing a single pixel with apixel block. For instance,
up-sampling by factor of 2 replaces asingle pixel with
a2 X 2 block. In image processing convolution of the
original image with Gaussian kernel, multiplied by the
sgquared up-sampling factor, follows up-sampling.

Glossary-4

| ndex

A

about this manual, 1-4
about this software, 1-1

Active Contours
energy function, 2-15
contour continuity, 2-16

contour continuity energy, 2-16
contour curvature energy, 2-16

external energy, 2-15
internal energy, 2-15
snake corners, 2-17
full snake energy, 2-16
Active Contours Function, 9-11
Snakelmage, 9-11
audience for this manual, 1-8

B

Backgroud Subtraction Functions, 9-3
Background subtraction
background, 2-1
background model, 2-1
Background Subtraction Functions
Acc, 9-3
MultiplyAcc, 9-4
RunningAvg, 9-5
SquareAcc, 9-4
bi-level image, 3-11, 3-15, 3-24
binary tree representation, 4-10
black-and-white image, 3-24
blob, 3-24

Block Matching, 2-20
Burt’s algorithm, 3-17

Camera Calibration, 6-1

homography, 6-2
lens distortion, 6-4
pattern, 6-3

Camera Calibration Functions

CalibrateCamera, 13-4
CalibrateCamera 64d, 13-5
FindChessBoardCornerGuesses, 13-11
FindExtrinsicCameraParams, 13-6
FindExtrinsicCameraParams_64d, 13-7
Rodrigues, 13-7

Rodrigues_64d, 13-8

UnDistort, 13-10

UnDistortlnit, 13-9

UnDistortOnce, 13-9

camera parameters, 6-1

extrinsic, 6-1
rotation matrix, 6-1, 6-2
trandation vector, 6-1, 6-2
intrinsic, 6-1
effective pixel size, 6-1
focal length, 6-1
location of the image center, 6-1
radial distortion coefficient, 6-1

camera undistortion functions, 6-5
Camshift algorithm, 2-9, 2-10, 2-12

calculation of 2D orientation, 2-14
discrete distributions, 2-11

intel.

OpenCV Reference Manual

Index

dynamically changing distributions, 2-11
mass center calculation, 2-11
probability distribution image, 2-10
search window, 2-11
zeroth moment, 2-11

Camshift Functions, 9-9
Camshift, 9-9
MeanShift, 9-10

centroid, 2-11

channel of interest, 7-3

child node, 4-10

CNP, See corresponding node pair

codes
chain codes, 4-1
higher order codes, 4-1

COl, Seechannd of interest

conic fitting, 4-14

Contour Processing, 4-1
contours moments, 4-5
Douglas-Peucker approximation, 4-4
hierarchical representation of contours, 4-8
locally minimum interceptive areatriangle, 4-9
polygonal approximation, 4-1

Contour Processing Functions
ApproxChains, 11-3
ApproxPoly, 11-5
ContourArea, 11-8
ContourBoundingRect, 11-7
ContourFromContourTree, 11-11
ContoursMoments, 11-8
CreateContourTree, 11-10
DrawContours, 11-6
EndFindContours, 10-9
FindContours, 10-6
FindNextContour, 10-8
MatchContours, 11-9
MatchContourTrees, 11-12
ReadChainPoint, 11-5
StartFindContours, 10-7
StartReadChainPoints, 11-4
SubstituteContour, 10-9

Contour Retrieving

1-component
border, 3-3
border point, 3-3
hole, 3-3
hole border, 3-3
outer border, 3-3
4-connected pixels, 3-1
8-connected pixels, 3-1
algorithm, 3-4
border following procedure, 3-5
chain code See Freeman method
contour See 1-component border
Freeman method, 3-3 See also chain code
hierarchical connected components, 3-2
polygonal representation, 3-4
contours moments, 4-5
conventions
font, 1-9
naming, 1-9
convergence, 6-15
convexity defects, 4-16
corresponding node pair, 4-13
covariance matrix, 5-1

D

Data Types supported, 1-3
decomposition coefficients, 5-2
deque, 7-5
Distance Transform Function
DistTransform, 10-34
Douglas-Peucker approximation, 4-4
Drawing Primitives Functions
Circle, 14-96
Ellipse, 14-96
EllipseAA, 14-98
FillConvexPoly, 14-99
FillPoly, 14-98
GetTextSize, 14-102
InitFont, 14-101
Line, 14-94
LineAA, 14-94

intel.

Index-2

OpenCV Reference Manual

Index

PolyLine, 14-100

PolyLineAA, 14-100

PutText, 14-102

Rectangle, 14-95

Dynamic Data Structures

Graphs
ClearGraph, 14-54
CreateGraph, 14-46
FindGraphEdge, 14-51
FindGraphEdgeByPtr, 14-52
GetGraphVix, 14-54
GraphAddEdge, 14-48
GraphAddEdgeByPtr, 14-49
GraphAddVx, 14-46
GraphEdgel dx, 14-55
GraphRemoveEdge, 14-50
GraphRemoveEdgeByPtr, 14-50
GraphRemoveVtx, 14-47
GraphRemoveVtxByPtr, 14-47
GraphVtxDegree, 14-52
GraphVitxDegreeByPtr, 14-53
GraphVixldx, 14-54

Memory Functions
ClearMemStorage, 14-23
CreateChildMemStorage, 14-22
CreateMemStorage, 14-22
ReleaseMemStorage, 14-23
RestoreMemStoragePos, 14-24

Sequence Reference
cvSeqgBlock Structure Definition, 14-28
cvSequence Structure Definition, 14-26
Standard Kinds of Sequences, 14-27
Standard Types of Sequence Elements, 14-27

Sequences
ClearSeq, 14-34
CreateSeq, 14-29
CvtSegToArray, 14-36
GetSegElem, 14-35
MakeSeqHeaderForArray, 14-36
SeqElemldx, 14-35
Seginsert, 14-33
SegPop, 14-31
SegPopFront, 14-32
SegPopMulti, 14-33

SegPush, 14-30
SeqPushFront, 14-31
SegPushMulti, 14-32
SegRemove, 14-34
SetSeqBlockSize, 14-30

ClearSet, 14-44
CreateSet, 14-42
GetSetElem, 14-43
SetAdd, 14-42
SetRemove, 14-43
Writing and Reading Sequences
EndWriteSeq, 14-39
FlushSeqWriter, 14-39
GetSeqReaderPos, 14-41
SetSeqReaderPos, 14-41
StartAppendToSeq, 14-37
StartReadSeq, 14-40
StartWriteSeq, 14-38
Dynamic Data Structures Reference
Memory Storage
cvMemBIlock Structure Definition, 14-21
cvMemStorage Structure Definition, 14-21
cvMemStoragePos Structure Definition,
14-21

E

Earth mover distance, 3-27

Eigen Objects, 5-1

Eigen Objects Functions
CacCovarMatrixEx, 12-3
CalcDecompCoeff, 12-5
CalcEigenObjects, 12-4
EigenDecomposite, 12-6
EigenProjection, 12-7

eigenvectors, 5-1

elipsefitting, 4-14

Embedded Hidden Markov Models, 5-2

Embedded Hidden Markov Models Functions
Create2DHMM, 12-12
CreateObsInfo, 12-13
EstimateHMM StateParams, 12-17

intel.

Index-3

OpenCV Reference Manual

Index

EstimateObsProb, 12-18
EstimateTransProb, 12-17
EViterbi, 12-18
ImgToObs_DCT, 12-14
InitMixSegm, 12-16
MixSegmL 2, 12-19
Release2DHMM, 12-13
ReleaseObsinfo, 12-14
UniformlmgSegm, 12-15

corner detection, 3-11
feature detection, 3-10
Fixed Filters, 3-5
convolution primitives, 3-6
first Sobel derivative operators, 3-6
second Sobdl derivative operators, 3-7
third Sobel derivative operators, 3-9
Hough transform, 3-14
multidimentsional Hough Transform, 3-14 See also

standard Hough transform, 3-14
Optimal Filter Kernels with Floating Point
Coefficients

EMD, See Earth mover distance
error handling, 1-3
Estimators

ConDensation algorithm, 2-23
discrete Kalman estimator, 2-22
Kaman filter, 2-22
measurement update, 2-21
equations, 2-23
state estimation programs, 2-20
system model, 2-21
system parameters, 2-21
system state, 2-20
time update, 2-21
equations, 2-23

Estimators Functions, 9-16

ConDenslnitSampleSet, 9-18
ConDensUpdateby Time, 9-19
CreateConDensation, 9-17
CreateKaman, 9-16
KamanUpdateByM easurement, 9-17
KamanUpdateBy Time, 9-17
ReleaseConDensation, 9-18
ReleaseKaman, 9-16

Features, 3-5

Canny edge detection, 3-11
differentiation, 3-12
edge thresholding, 3-13
hysteresis thresholding, 3-13
image smoothing, 3-12
non-maximum suppression, 3-12
streaking, 3-13

first derivative filters, 3-9
optimal filter kernels with floating point
coefficients, 3-9
Laplacian approximation, 3-10
second derivative filters, 3-10
progressive probabilistic Hough Transform, 3-14
See also Hough transform, 3-14
standard Hough Transform, 3-14 See also Hough
transform, 3-14

Features Functions
Feature Detection Functions
Canny, 10-11
CornerEigenValsandVecs, 10-12
CornerMinEigenVal, 10-13
FindCornerSubPix, 10-14
GoodFeaturesToTrack, 10-16
PreCornerDetect, 10-12
Fixed Filters Functions
Laplace, 10-10
Sobdl, 10-10
Hough Transform Functions
HoughLines, 10-17
HoughLinesP, 10-19
HoughLinesSDiv, 10-18
Flood Filling
4-connectivity, 3-25
8-connectivity, 3-25
definition, 3-25
seed, 3-25
Flood Filling Function
FloodFill, 10-40

intel.

Index-4

OpenCV Reference Manual

Index

flush, 7-7

focal length, 6-2

font conventions, 1-9
function descriptions, 1-8

G

Gabor transform, 3-29
Gaussian window, 2-19
GDI draw functions, 7-18
geometric image formation, 6-10
Geometry
convexity defects, 4-16
dlipsefitting, 4-14
fitting of conic, 4-14
linefitting, 4-15
weighted least squares, 4-16
Geometry Data Types, 11-25
cvConvexityDefect Structure Definition, 11-25
Geometry Functions
CalcPGH, 11-23
CheckContourConvexity, 11-21
ContourConvexHull, 11-18
ContourConvexHull Approx, 11-20
ConvexHull, 11-17
ConvexHullApprox, 11-18
ConvexityDefects, 11-21
FitEllipse, 11-12
FitLine2D, 11-13
FitLine3D, 11-15
MinAreaRect, 11-22
MinEnclosingCircle, 11-24
Project3D, 11-16
Gesture Recognition
agorithm, 6-16
homography matrix, 6-18
image mask, 6-17
probability density, 6-17
Gesture Recognition Functions
CalclmageHomography, 13-23
CalcProbDensity, 13-24
CreateHandMask, 13-23

FindHandRegion, 13-21
FindHandRegionA, 13-22
MaxRect, 13-25
graph
non-oriented, 7-13
oriented, 7-13
graphs, 7-11
grayscale image, 3-11, 3-15, 3-20, 3-24, 7-2, 7-18
Green'sformula, 4-5

H

hardware and software requirements, 1-3
header, 7-4, 7-10
hierarchical representation of contours, 4-8
Histogram
analyzing shapes, 3-26
bayesian-based object recognition, 3-26
content based retrieval, 3-26
definition, 3-25
histogram back-projection, 2-10
signature, 3-27
Histogram Data Types, 10-57
Histogram Functions
CalcBackProject, 10-51
CalcBackProjectPatch, 10-52
CalcContrastHist, 10-55
CacEMD, 10-54
CalcHist, 10-50
CompareHist, 10-48
CopyHist, 10-49
CreateHist, 10-41
GetHistValue 1D, 10-45
GetHistValue 2D, 10-45
GetHistValue 3D, 10-46
GetHistValue_nD, 10-46
GetMinMaxHistValue, 10-47
MakeHistHeaderForArray, 10-42
NormalizeHist, 10-47
QueryHistValue 1D, 10-43
QueryHistValue 2D, 10-43
QueryHistValue 3D, 10-44

intel.

Index-5

OpenCV Reference Manual

Index

QueryHistValue nD, 10-44
ReleaseHist, 10-42
SetHistThresh, 10-50
ThreshHist, 10-48
HMM, See Embedded Hidden Markov Models
homography, 6-2
homography matrix, 6-2, 6-18
Horn & Schunck Technique, 2-19
Lagrangian multiplier, 2-19
HT, SeeHough Transform in Features
Hu invariants, 3-15
Hu moments, 6-18

Image Functions, 7-1

Image Functions Reference
Copylmage, 14-15
Createlmage, 14-9
CreatelmageData, 14-11
CreatelmageHeader, 14-9
GetlmageRawData, 14-14
InittmageHeader, 14-14
Releasel mage, 14-10
ReleaselmageData, 14-12
Releasel mageHeader, 14-10
SetlmageCOl, 14-13
SetlmageData, 14-12
SetlmageROl, 14-13

Image Statistics Functions
CountNonZero, 10-20
GetCentraMoment, 10-25
GetHuMoments, 10-27
GetNormalizedCentra Moment, 10-26
GetSpatial M oment, 10-25
Mean, 10-21
Mean_StdDev, 10-21
MinMaxLoc, 10-22
Moments, 10-24
Norm, 10-22
SumPixels, 10-20

Intel® Image Processing Library, 1-1, 7-1

IPL, SeelIntel® Image Processing Library

L
Lagrange multiplier, 4-15
least squares method, 4-15
lens distortion, 6-2
distortion coefficients
radial, 6-4
tangenial, 6-4
line fitting, 4-15
LMIAT, Seelocally minimum interceptive areatriangle
Lucas & Kanade Technique, 2-19

M

Mahalanobis distance, 6-18
manual organization, 1-4
mathematical morphology, 3-19
Matrix Operations, 7-15
Matrix Operations Data Types

cvMatArray Structure Definition, 14-57
Matrix Operations Functions

Add, 14-71

AddS, 14-72

AllocArray, 14-69

And, 14-75

AndS, 14-76

CloneMat, 14-61

Copy, 14-70, 14-89

CreateData, 14-69

CreateMat, 14-58

CreateM atHeader, 14-58

CrossProduct, 14-82

Det, 14-86

DotProduct, 14-75

Flip, 14-87

FreeArray, 14-70

GetAt, 14-63

GetAtPtr, 14-65

GetCol, 14-66

GetDiag, 14-67

IntGIC Index-6

OpenCV Reference Manual

Index

GetMat, 14-62
GetRawData, 14-67
GetRow, 14-66
GetSize, 14-68
GetSubArr, 14-65
InitMatHeader, 14-60
Invert, 14-85
Mahalonobis, 14-86
MatMulAdd, 14-75
MaMulAddsS, 14-84
Mul, 14-75
MulAdds, 14-83
MulTransposed, 14-75
Or, 14-77
Ors, 14-78
PerspectiveTransform, 14-93
Pseudolnv, 14-91
ReleaseData, 14-69
ReleaseMat, 14-59
ReleaseM atHeader, 14-60
Reshape, 14-88
ScaleAdd, 14-75, 14-82
SetAt, 14-64
SetData, 14-62
Setldentity, 14-90
SetZero, 14-89
Sub, 14-73
SUbRS, 14-74
Subs, 14-73
SVD, 14-88, 14-90, 14-91
Trace, 14-86
Transpose, 14-85, 14-87
Xor, 14-79
XorS, 14-80
mean location, 2-11
Mean Shift algorithm, 2-9
memory block, 7-4
memory storage, 7-4
M-estimators, 4-15
MHT Seemultidimesional Hough transformin Features
mode! plane, 6-3
moire, 6-8

Morphology
angle resolution, 3-29
black hat, 3-23
CIE Lab model, 3-29
closing equation, 3-21
dilation, 3-19
dilation formula, 3-20
dilation formulain 3D, 3-22
dilationin 3D, 3-21
Earth mover distance, 3-27
erisionin 3D, 3-21
erosion, 3-19
erosion formula, 3-20
erosion formulain 3D, 3-23
flow matrix, 3-28
ground distance, 3-29
lower boundary of EMD, 3-30
morphological gradient function, 3-23
object of interest, 3-19
opening equation, 3-21
optimal flow, 3-28
scale resolution, 3-29
structuring element, 3-19
thickening, See dilation
thinning, See erosion
top hat, 3-23
Morphology Functions
CreateStructuringElementEx, 10-30
Dilate, 10-32
Erode, 10-31
MorphologyEx, 10-33
Rel easeStructuringElement, 10-31
Motion History Image, 2-3
motion representation, 2-2
motion gradient image, 2-3
regiona orientation, 2-6
motion segmentation, 2-7
downward stepping floodfill, 2-7
Motion Templates
motion template images, 2-2
normal optical flow method, 2-2
Motion Templates Functions, 9-6
CalcGlobal Orientation, 9-7

intel.

Index-7

OpenCV Reference Manual

Index

CalcMotionGradient, 9-6
SegmentMotion, 9-8
UpdateM otionHistory, 9-6

N
node
child, 4-10
parent, 4-10
root, 4-10
trivid, 4-13
node distance, 4-13
node weight, 4-13
non-coplanar points, See also non-degenerate points,
6-14
non-degenerate points, See also non-coplanar points,
6-14
non-maxima suppression, 4-3
notational conventions, 1-8

O

object model pseudoinverse, 6-14

online version, 1-8

optical flow, 2-18

Optical Flow Functions, 9-12
CalcOpticaFlowBM, 9-13
CalcOptica FlowHS, 9-12
CalcOpticalFlowLK, 9-13
CalcOptical FlowPyrLK, 9-14

P

parent node, 4-10

perspective distortion, 6-14
perspective model, 6-10

pinhole model, See perspective model
Pixel Access Macros, 14-15

Pixel Access Macros Reference
CV_INIT_PIXEL_POS, 14-17
CV_MOVE, 14-18

CV_MOVE_PARAM, 14-19
CV_MOVE_PARAM_WRAP, 14-19
CV_MOVE_TO, 14-17
CV_MOVE_WRAP, 14-18
Pixel Access Macros Structures
cvPixelPosition Structures, 14-16
platforms supported, 1-4
polygonal approximation, 4-1
k-cosine curvature, 4-2
L1 curvature, 4-2
Rosenfeld-Johnston algorithm, 4-2
Teh and Chin algorithm, 4-3
POS, See pose from orthography ans scaling
pose, 6-10
pose approximation method, 6-12
pose from orthography and scaling, 6-12
POSIT
algorithm, 6-14
focal length, 6-14
geometric image formation, 6-10
object image, 6-14
object model, 6-14
pose approximation method, 6-12
pose from orthography and scaling, 6-12
POSIT algorithm, 6-10
POSIT Functions
CreatePOSI TObject, 13-19
POSIT, 13-19
ReleasePOSI TObject, 13-20
PPHT Seeprogressive probabilistic Hough transformin
Features
prefix, in function names, 1-9
PUSH version, 7-6
Pyramid, 10-56
Pyramid Data Types
cvConnectedComp Structure Definition, 10-56
Pyramid Functions
PyrDown, 10-28
PyrSegmentation, 10-29
PyrUp, 10-28
Pyramids

intel.

Index-8

OpenCV Reference Manual

Index

down-sampling, 3-15

Gaussian, 3-15

image segmentation, 3-17
hierarchical computing structure, 3-17
hierarchical smoothing, 3-17
segmentation, 3-17

Laplacian, 3-15

son-father relationship, 3-17

up-sampling, 3-16

R

radial distortion, 6-2

radial distortion coefficients, 6-4
region of interest, 7-3

related publications, 1-8

RLE coding, 4-1

ROI, Seeregion of interest

root node, 4-10
Rosenfeld-Johnston a gorithm, 4-2
rotation matrix, 6-6

rotation vector, 6-6

S

scalar factor, 6-3

scaled orthographic projection, See also
weak-perspective projection model, 6-11

scanlines, 6-6

Sequence Reference, 14-26

sequences, 7-5

Sets, 7-8

shape partitioning, 4-12

SHT, See standard Hough transform in Features

stochastic variable, 3-15

synthesized image, 6-6

System Functions

GetLibrarylnfo, 15-2
LoadPrimitives, 15-1

T

tangential distortion coefficients, 6-4

Teh and Chin algorithm, 4-3

three sigmasrule, 2-1

Threshold Functions
AdaptiveThreshold, 10-36
Threshold, 10-38

trivial node, 4-13

U

Use of Eigen Object Functions, 12-7

Use of Eigen Objects Functions
cvCalcEigenObjects in Callback Mode, 12-9
cvCalcEigenObjectsin Direct Access Mode, 12-8

Utility Functions
AbsDiff, 14-103
AbsDiffS, 14-104
bCartToPolar, 14-115
bFastArctan, 14-112
bFastExp, 14-115
bFastL og, 14-116
blnvSart, 14-114
bRand, 14-117
bReciprocal, 14-114
bSart, 14-113
ConvertScae, 14-108
CvtPixToPlane, 14-107
CvtPlaneToPix, 14-107
Filllmage, 14-118
GetRectSubPix, 14-111
InitLinelterator, 14-110
InvSart, 14-113
KMeans, 14-119
LUT, 14-109
MatchTemplate, 14-104
Rand, 14-117
RandInit, 14-116
RandSetRange, 14-118
SampleLine, 14-111
Sort, 14-112

intel.

Index-9

OpenCV Reference Manual Index

\

vectoring algorithms, 3-1

View Morphing, 6-6
moire, 6-8
scanlines, 6-6
warped image, 6-6

view morphing agorithm, 6-6

View Morphing Functions
DeleteMoire, 13-18
DynamicCorrespondMulti, 13-15
FindFundamentalMatrix, 13-12
FindRuns, 13-14
MakeAlphaScanlines, 13-16
MakeScanlines, 13-13
MorphEpilinesMulti, 13-16
PostWarplmage, 13-17
PreWarplmage, 13-13

W

warped image, 6-6

weak-perspective projection, 6-12
weak-perspective projection model, 6-11
weighted least squares, 4-16

world coordinate system, 6-2

"Ttel@ Index-10

	Open Source
	Computer Vision Library
	Contents
	Overview
	About This Software
	Why We Need OpenCV Library
	Relation Between OpenCV and Other Libraries
	Data Types Supported
	Error Handling
	Hardware and Software Requirements
	Platforms Supported

	About This Manual
	Manual Organization
	Function Descriptions
	Audience for This Manual
	On-line Version
	Related Publications

	Notational Conventions
	Font Conventions
	Naming Conventions
	Function Name Conventions

	Motion Analysis and Object Tracking
	Background Subtraction
	Motion Templates
	Motion Representation and Normal Optical Flow Method
	Motion Representation
	A) Updating MHI Images
	B) Making Motion Gradient Image
	C) Finding Regional Orientation or Normal Optical Flow
	Motion Segmentation

	CamShift
	Mass Center Calculation for 2D Probability Distribution
	CamShift Algorithm
	Calculation of 2D Orientation

	Active Contours
	Optical Flow
	Lucas & Kanade Technique
	Horn & Schunck Technique
	Block Matching

	Estimators
	Models
	Estimators
	Kalman Filtering
	ConDensation Algorithm

	Image Analysis
	Contour Retrieving
	Basic Definitions
	Contour Representation
	Contour Retrieving Algorithm

	Features
	Fixed Filters
	Sobel Derivatives

	Optimal Filter Kernels with Floating Point Coefficients
	First Derivatives
	Second Derivatives
	Laplacian Approximation

	Feature Detection
	Corner Detection
	Canny Edge Detector
	Hough Transform

	Image Statistics
	Pyramids
	Morphology
	Flat Structuring Elements for Gray Scale

	Distance Transform
	Thresholding
	Flood Filling
	Histogram
	Histograms and Signatures
	Example Ground Distances
	Lower Boundary for EMD

	Structural Analysis
	Contour Processing
	Polygonal Approximation
	Douglas-Peucker Approximation
	Contours Moments
	Hierarchical Representation of Contours

	Geometry
	Ellipse Fitting
	Line Fitting
	Convexity Defects

	Object Recognition
	Eigen Objects
	Embedded Hidden Markov Models

	3D Reconstruction
	Camera Calibration
	Camera Parameters
	Pattern

	View Morphing
	Algorithm
	Using Functions for View Morphing Algorithm

	POSIT
	Geometric Image Formation
	Pose Approximation Method
	Algorithm

	Gesture Recognition

	Basic Structures and Operations
	Image Functions
	Dynamic Data Structures
	Memory Storage
	Sequences
	Writing and Reading Sequences
	Sets
	Graphs

	Matrix Operations
	Interchangability between IplImage and CvMat.

	Drawing Primitives
	Utility

	Library Technical Organization and System Functions
	Error Handling
	Memory Management
	Interaction With Low-Level Optimized Functions
	User DLL Creation

	Motion Analysis and Object Tracking Reference
	Background Subtraction Functions
	Acc
	SquareAcc
	MultiplyAcc
	RunningAvg

	Motion Templates Functions
	UpdateMotionHistory
	CalcMotionGradient
	CalcGlobalOrientation
	SegmentMotion

	CamShift Functions
	CamShift
	MeanShift

	Active Contours Function
	SnakeImage

	Optical Flow Functions
	CalcOpticalFlowHS
	CalcOpticalFlowLK
	CalcOpticalFlowBM
	CalcOpticalFlowPyrLK

	Estimators Functions
	CreateKalman
	ReleaseKalman
	KalmanUpdateByTime
	KalmanUpdateByMeasurement
	CreateConDensation
	ReleaseConDensation
	ConDensInitSampleSet
	ConDensUpdateByTime

	Estimators Data Types

	Image Analysis Reference
	Contour Retrieving Functions
	FindContours
	StartFindContours
	FindNextContour
	SubstituteContour
	EndFindContours

	Features Functions
	Fixed Filters Functions
	Laplace
	Sobel

	Feature Detection Functions
	Canny
	PreCornerDetect
	CornerEigenValsAndVecs
	CornerMinEigenVal
	FindCornerSubPix
	GoodFeaturesToTrack

	Hough Transform Functions
	HoughLines
	HoughLinesSDiv
	HoughLinesP

	Image Statistics Functions
	CountNonZero
	SumPixels
	Mean
	Mean_StdDev
	MinMaxLoc
	Norm
	Moments
	GetSpatialMoment
	GetCentralMoment
	GetNormalizedCentralMoment
	GetHuMoments

	Pyramid Functions
	PyrDown
	PyrUp
	PyrSegmentation

	Morphology Functions
	CreateStructuringElementEx
	ReleaseStructuringElement
	Erode
	Dilate
	MorphologyEx

	Distance Transform Function
	DistTransform

	Threshold Functions
	AdaptiveThreshold
	Threshold

	Flood Filling Function
	FloodFill

	Histogram Functions
	CreateHist
	ReleaseHist
	MakeHistHeaderForArray
	QueryHistValue_1D
	QueryHistValue_2D
	QueryHistValue_3D
	QueryHistValue_nD
	GetHistValue_1D
	GetHistValue_2D
	GetHistValue_3D
	GetHistValue_nD
	GetMinMaxHistValue
	NormalizeHist
	ThreshHist
	CompareHist
	CopyHist
	SetHistBinRanges
	CalcHist
	CalcBackProject
	CalcBackProjectPatch
	CalcEMD
	CalcContrastHist

	Pyramid Data Types
	Histogram Data Types

	Structural Analysis Reference
	Contour Processing Functions
	ApproxChains
	StartReadChainPoints
	ReadChainPoint
	ApproxPoly
	DrawContours
	ContourBoundingRect
	ContoursMoments
	ContourArea
	MatchContours
	CreateContourTree
	ContourFromContourTree
	MatchContourTrees

	Geometry Functions
	FitEllipse
	FitLine2D
	FitLine3D
	Project3D
	ConvexHull
	ContourConvexHull
	ConvexHullApprox
	ContourConvexHullApprox
	CheckContourConvexity
	ConvexityDefects
	MinAreaRect
	CalcPGH
	MinEnclosingCircle

	Contour Processing Data Types
	Geometry Data Types

	Object Recognition Reference
	Eigen Objects Functions
	CalcCovarMatrixEx
	CalcEigenObjects
	CalcDecompCoeff
	EigenDecomposite
	EigenProjection

	Use of Eigen Object Functions
	Embedded Hidden Markov Models Functions
	Create2DHMM
	Release2DHMM
	CreateObsInfo
	ReleaseObsInfo
	ImgToObs_DCT
	UniformImgSegm
	InitMixSegm
	EstimateHMMStateParams
	EstimateTransProb
	EstimateObsProb
	EViterbi
	MixSegmL2

	HMM Structures

	3D Reconstruction Reference
	Camera Calibration Functions
	CalibrateCamera
	CalibrateCamera_64d
	FindExtrinsicCameraParams
	FindExtrinsicCameraParams_64d
	Rodrigues
	Rodrigues_64d
	UnDistortOnce
	UnDistortInit
	UnDistort
	FindChessBoardCornerGuesses

	View Morphing Functions
	FindFundamentalMatrix
	MakeScanlines
	PreWarpImage
	FindRuns
	DynamicCorrespondMulti
	MakeAlphaScanlines
	MorphEpilinesMulti
	PostWarpImage
	DeleteMoire

	POSIT Functions
	CreatePOSITObject
	POSIT
	ReleasePOSITObject

	Gesture Recognition Functions
	FindHandRegion
	FindHandRegionA
	CreateHandMask
	CalcImageHomography
	CalcProbDensity
	MaxRect

	Basic Structures and Operations Reference
	Image Functions Reference
	CreateImageHeader
	CreateImage
	ReleaseImageHeader
	ReleaseImage
	CreateImageData
	ReleaseImageData
	SetImageData
	SetImageCOI
	SetImageROI
	GetImageRawData
	InitImageHeader
	CopyImage

	Pixel Access Macros
	CV_INIT_PIXEL_POS
	CV_MOVE_TO
	CV_MOVE
	CV_MOVE_WRAP
	CV_MOVE_PARAM
	CV_MOVE_PARAM_WRAP

	Dynamic Data Structures Reference
	Memory Storage Reference
	CreateMemStorage
	CreateChildMemStorage
	ReleaseMemStorage
	ClearMemStorage
	SaveMemStoragePos
	RestoreMemStoragePos

	Sequence Reference
	CreateSeq
	SetSeqBlockSize
	SeqPush
	SeqPop
	SeqPushFront
	SeqPopFront
	SeqPushMulti
	SeqPopMulti
	SeqInsert
	SeqRemove
	ClearSeq
	GetSeqElem
	SeqElemIdx
	CvtSeqToArray
	MakeSeqHeaderForArray

	Writing and Reading Sequences Reference
	StartAppendToSeq
	StartWriteSeq
	EndWriteSeq
	FlushSeqWriter
	StartReadSeq
	GetSeqReaderPos
	SetSeqReaderPos

	Sets Reference
	CreateSet
	SetAdd
	SetRemove
	GetSetElem
	ClearSet
	Sets Data Structures

	Graphs Reference
	CreateGraph
	GraphAddVtx
	GraphRemoveVtx
	GraphRemoveVtxByPtr
	GraphAddEdge
	GraphAddEdgeByPtr
	GraphRemoveEdge
	GraphRemoveEdgeByPtr
	FindGraphEdge
	FindGraphEdgeByPtr
	GraphVtxDegree
	GraphVtxDegreeByPtr
	ClearGraph
	GetGraphVtx
	GraphVtxIdx
	GraphEdgeIdx
	Graphs Data Structures

	Matrix Operations Reference
	CreateMat
	CreateMatHeader
	ReleaseMat
	ReleaseMatHeader
	InitMatHeader
	CloneMat
	SetData
	GetMat
	GetAt
	SetAt
	GetAtPtr
	GetSubArr
	GetRow
	GetCol
	GetDiag
	GetRawData
	GetSize
	CreateData
	AllocArray
	ReleaseData
	FreeArray
	Copy
	Set
	Add
	AddS
	Sub
	SubS
	SubRS
	Mul
	And
	AndS
	Or
	OrS
	Xor
	XorS
	DotProduct
	CrossProduct
	ScaleAdd
	MatMulAdd
	MatMulAddS
	MulTransposed
	Invert
	Trace
	Det
	Mahalonobis
	Transpose
	Flip
	Reshape
	SetZero
	SetIdentity
	SVD
	PseudoInv
	EigenVV
	PerspectiveTransform

	Drawing Primitives Reference
	Line
	LineAA
	Rectangle
	Circle
	Ellipse
	EllipseAA
	FillPoly
	FillConvexPoly
	PolyLine
	PolyLineAA
	InitFont
	PutText
	GetTextSize

	Utility Reference
	AbsDiff
	AbsDiffS
	MatchTemplate
	CvtPixToPlane
	CvtPlaneToPix
	ConvertScale
	LUT
	InitLineIterator
	SampleLine
	GetRectSubPix
	bFastArctan
	Sqrt
	bSqrt
	InvSqrt
	bInvSqrt
	bReciprocal
	bCartToPolar
	bFastExp
	bFastLog
	RandInit
	bRand
	Rand
	FillImage
	RandSetRange
	KMeans

	System Functions
	LoadPrimitives
	GetLibraryInfo

	Bibliography
	Supported Image Attributes and Operation Modes
	Glossary
	Index

