Stored Procedure Guidelines

Stored Procedure Guidelines

Version 1.7

May 29, 2008
Table of Contents

3Table of Contents

Purpose
5
Users of the Guidelines
5
How to Use the Guidelines most effectively
5
Change Log
5
Date
5
Name
5
Reason for change
5
Introduction
6
SQL Stored Procedures
6
Benefits of Using Stored Procedures
7
Performance
7
Execution Plan Caching and Reuse
8
Naming Conventions and Notation
9
System Stored Procedures
9
Notation
9
Filenames
9
Naming Indexes
10
Naming Stored Procedures
10
Variables and Parameters
10
Development
12
Functional Requirements
12
SQL Formatting and Indentation
13
SQL Coding
13
Joining Tables
20
Calling Other Stored Procedures
22
Parameters & Default Values
22
Temporary Tables
23
Cursors
23
Indexes
24
Measuring Performance
24
Code Reviews
26
Purpose of Code Reviews
26
How to Perform a Code Review
26
Testing
27
Benefits of Sufficient Testing of stored procedures
27
Testing Business Functionality
27
Headers and Comments
31
General
34
Code Comments
34
Transaction Processing
36
When to Use a Transaction
36
Error Handling
37
Return Codes
37
Error Codes
38
Errors and Transactions
38
SQL Server
39
Stored procedures
39
Query Plan
39
Parameters
39
Alter Procedure Statement
39
Top Statement
39
The SQL Server Profiler
40
SQL Server Query Analyzer
40
In-Depth DBA Guidelines
41
JOINS
41
INDEX SELECTION
41
SELECT STATEMENTS
41
UNQUALIFIED DELETES
41
ERROR HANDLING
41
NEW TABLES
42
ORDER BY and ROW ORDER
42
UNION vs UNION ALL
42
DISTINCT
42
WORKTABLES
42
EXISTENCE CHECKING
42
DESIGN
42
Reference:
46
Appendix A: RAISERROR
47
Appendix B: RAISERROR Example Code
49
Update Example:
49
Insert Example:
49
Delete Example:
50
Appendix C: Example stored procedure
51

Purpose

This document (known as the Guidelines) contains enterprise-wide standards for stored procedure development.

Users of the Guidelines

Many parties involved in development or production will find a good use for the Guidelines:

· xe "Administration:Database"

Database Administrators – guidelines for optimizing stored procedure performance and reviewing code.

· xe "Developers"Developers – guidelines for developing and optimizing stored procedures.

· xe "Testing"Testers – guidelines for testing stored procedures.

· xe "Administration:Project"Project Leads – guidelines for providing adequate time and resources for stored procedure development and testing.

How to Use the Guidelines most effectively

To best use the Guidelines:

· Inspection – Keep the Guidelines up-to-date.

· Location – Keep the Guidelines in a well-known place, such as a file share where documents are located.

· Development – Use these Guidelines when developing stored procedures for a consistent and complete set of standards for development.

· Testing – Use the Guidelines when testing stored procedures.

· Instruction – Teach these guidelines to new employees, and have periodic training seminars for writing good stored procedures.

Change Log

	Date
	Name
	Reason for change

	February 23, 2000
	George Huey
	Finished initial draft of the document

	January 30, 1001
	George Huey
	Added section on Error management

	February 15, 2001
	George Huey
	Modified the Headers and Comments section to reflect XML tags

Introduction

Best Practices is a great and wonderful thing … that is if everyone working on the project adheres to them. In order to make sure that everybody adheres to the coding standards, they need to understand that their code will be reviewed before it is allowed to go into production. This understanding is key for a couple of reasons:

1) If people know that their code will be reviewed, they are more likely to put more thought behind what they write.

2) They learn from the review process.

3) Quality of code is enforced.

4) Forces the developer to take ownership of the code they write.

This document is used to define the best practices that will be used (for coding and code reviews).

SQL Stored Procedures
A stored procedure is a group of Transact-SQL statements compiled into a single execution plan.

Microsoft® SQL Server™ 2000 stored procedures return data in four ways:

· Output parameters, which can return either data (such as an integer or character value) or a cursor variable (cursors are result sets that can be retrieved one row at a time).

· Return codes, which are always an integer value.

· A result set for each SELECT statement contained in the stored procedure or any other stored procedures called by the stored procedure.

· A global cursor that can be referenced outside the stored procedure.

Stored procedures assist in achieving a consistent implementation of logic across applications. The SQL statements and logic needed to perform a commonly performed task can be designed, coded, and tested once in a stored procedure. Each application needing to perform that task can then simply execute the stored procedure. Coding business logic into a single stored procedure also offers a single point of control for ensuring that business rules are correctly enforced.

Stored procedures can also improve performance. Many tasks are implemented as a series of SQL statements. Conditional logic applied to the results of the first SQL statements determines which subsequent SQL statements are executed. If these SQL statements and conditional logic are written into a stored procedure, they become part of a single execution plan on the server. The results do not have to be returned to the client to have the conditional logic applied; all of the work is done on the server. The IF statement in this example shows embedding conditional logic in a procedure to keep from sending a result set to the application:

IF (@QuantityOrdered < (SELECT QuantityOnHand

 FROM pubs.dbo.Inventory
 WHERE PartID = @PartOrdered))
BEGIN
 -- SQL statements to update tables and process order.
END
ELSE
BEGIN
 -- SELECT statement to retrieve the IDs of alternate items
 -- to suggest as replacements to the customer.
END
Applications do not need to transmit all of the SQL statements in the procedure: they have to transmit only an EXECUTE or CALL statement containing the name of the procedure and the values of the parameters.

Stored procedures can also shield users from needing to know the details of the tables in the database. If a set of stored procedures supports all of the business functions users need to perform, users never need to access the tables directly; they can just execute the stored procedures that model the business processes with which they are familiar.

An illustration of this use of stored procedures is the SQL Server system stored procedures used to insulate users from the system tables. SQL Server includes a set of system stored procedures whose names usually start with sp_. These system stored procedures support all of the administrative tasks required to run a SQL Server system. You can administer a SQL Server system using the Transact-SQL administration-related statements (such as CREATE TABLE) or the system stored procedures, and never need to directly update the system tables.

xe "Stored Procedure:Benefits"Benefits of Using Stored Procedures

Stored procedures for database access are more powerful than they look. At first glance, a stored procedure seems just to encapsulate a SQL statement into a function similar to a Visual Basic (VB) function or procedure. The stored procedure becomes an object in the database and works like a function, but its value goes far beyond these features.

Saving a stored procedure to the database actually pre-compiles it. This pre-compilation takes some of the processing out of executing the stored procedure at runtime, so it executes much faster than standard SQL (also known as dynamic SQL). Here are some of the benefits of using stored procedures:

· Minimize network traffic – They help to minimize round trips to and from the Server.

· SQL code is centralized on the server – Code on the Server can be optimized without program intervention.

· Common API – Stored procedures provide a common and predictable means of accessing data.

· Code re-use – Many applications will be able to re-use the stored procedures on the server. It also prevents many variations of the code from being used.
· Prevents duplicative efforts – Only one set of SQL instructions needs to be built, and it can be executed many times over again.
· No dynamic SQL – Stored procedures can be optimized on the back-end without intervention from the calling applications.
· Security -- You can use stored procedures as security mechanisms to control access to information in tables and to control the ability to perform data modification. For example, you can deny other users permission to use the “select” command on a table that you own and create a stored procedure that allows them to see only certain rows or certain columns. You can also use stored procedures to limit update, delete, or insert statements.

Performance

Coding with standards (best practices) is a very good first step, but that does not mean that the end result will be extremely efficient (fast) code. Performance should always be foremost in your mind. I talked to a developer once about his code and when I asked him about performance, he said that he didn’t write his code with performance in mind, he wrote to accomplish a specific task. While his code worked and produced the result that he expected, the code was worthless because it would bring the machine to its knees. Everything that you write should be evaluated for value add and performance. Do not write code for the sake of writing code. When you write a query, keep in mind, that there are always several different ways to get the results that you want. Examine them and figure out the most efficient way to get your what you need and only what you need. Run your queries in SQL Query Analyzer and examine time and IO statistics. Make sure that there is a business need for everything that you do. Do not do things just because it is neat. Remember, everything that you do has an impact on performance.

Execution Plan Caching and Reuse
Microsoft® SQL Server™ 2000 has a pool of memory used to store both execution plans and data buffers. The percentage of the pool allocated to either execution plans or data buffers fluctuates dynamically depending on the state of the system. The part of the memory pool used to store execution plans is called the procedure cache.

SQL Server 2000 execution plans have the following main components:

· Query plan

The bulk of the execution plan is a reentrant, read-only data structure used by any number of users. This is called the query plan. No user context is stored in the query plan. There are never more than one or two copies of the query plan in memory: one copy for all serial executions and another for all parallel executions. The parallel copy covers all parallel executions, regardless of their degree of parallelism.

· Execution context

Each user currently executing the query has a data structure that holds the data specific to their execution, such as parameter values. This data structure is called the execution context. The execution context data structures are reused. If a user executes a query and one of the structures is not in use, it is reinitialized with the context for the new user.

When any SQL statement is executed in SQL Server 2000, the relational engine first looks through the procedure cache to verify that an existing execution plan for the same SQL statement exists. SQL Server 2000 reuses any existing plan it finds, saving the overhead of recompiling the SQL statement. If no existing execution plan exists, SQL Server 2000 generates a new execution plan for the query.

SQL Server 2000 has an efficient algorithm to find any existing execution plans for any given SQL statement. In most systems, the minimal resources used by this scan are less than the resources saved by being able to reuse existing plans instead of compiling every SQL statement.

The algorithms to match new SQL statements to existing, unused execution plans in the cache require that all object references be fully qualified. For example, the first of these SELECT statements is not matched with an existing plan, and the second is matched:

SELECT fname, lname FROM Employees

SELECT fname, lname FROM Northwind.dbo.Employees
There is a higher probability that individual execution plans will be reused in an instance of SQL Server 2000 than in SQL Server version 6.5 and earlier.

Naming Conventions and Notation

System Stored Procedures
Many of your administrative activities in Microsoft® SQL Server™ 2000 are performed through a special kind of procedure known as a system stored procedure
. System stored procedures are created and stored in the master database and have the sp_ prefix. System stored procedures can be executed from any database without having to qualify the stored procedure name fully using the database name master.

It is strongly recommended that you do not create any stored procedures using sp_ as a prefix. SQL Server always looks for a stored procedure beginning with sp_ in this order:

1. The stored procedure in the master database.

2. The stored procedure based on any qualifiers provided (database name or owner).

3. The stored procedure using dbo as the owner, if one is not specified.

Therefore, although the user-created stored procedure prefixed with sp_ may exist in the current database, the master database is always checked first, even if the stored procedure is qualified with the database name.

Important: If any user-created stored procedure has the same name as a system stored procedure, the user-created stored procedure will never be executed.

Notation

· Reserved Words – Capitalize all SQL reserved words (e.g. SELECT, UPDATE, DROP, etc.). This helps to easily identify SQL statements.

· User Names – User-defined names (for stored procedures, variables, temp tables, etc.) should all be in mixed case or underscored.

· Existing Standard – When choosing a name, examine the database to see what style has been adopted for the database. Use this style for your names.

xe "Tables:Naming Convention"

xe "Views:Naming Convention"Filenames

Each database object (a table, view, stored procedure, or update script) is defined in one and only one file, and each file contains no more than one database object. The file format is...

<Object_Name>.sql

... where <Object_Name> is the name of the database object. In order differentiate between the objects, the object name shall contain a prefix which describes what type of object it is.

Table filename example:

tb_employee.sql

Stored procedure filename example:

csp_GetEmployee.sql

View filename example:

vw_Employee.sql

Naming

xe "Indexes:Naming Convention" Indexes

Idx_<Table>_<Cols>
Each index should begin with idx_<table>_<columns>, where <table> is the name of the table the index is applied on. If the name for the index exceeds the system limit, find a more appropriate name for the <columns> field. Keep the idx_<table> prefix for consistency and easy recognition of the index.

Naming xe "Stored Procedure:Naming Convention"Stored Procedures

Name the stored procedure by the function it performs. The following list contains the list of functions:

csp_Table_Find<Field>
for SELECT <field> procedures

csp_Table_Get
for SELECT <columns> procedures

csp_Table_Ins
for INSERT INTO procedures

csp_Table_Del
for DELETE procedures

csp_Table_Upd
for UPDATE procedures

Note, that all stored procedures are prefixed by csp (custom stored procedure). You can replace “c” with the first letter of your company (i.e. Ragnarok – rsp (Ragnarok stored procedure)). See System Stored Procedures for explanation. Specifying the table name first before the function helps groups your stored procedures.

xe "Parameters:Naming Convention"

xe "Variables:Naming Convention"Variables and Parameters

All variables should be explicitly declared at the top of each stored procedure. Place each declaration on its own line. Explain what each parameter is for:

DECLARE @lCaseStart integer
-- Starting case number
DECLARE @dStartDate datetime
-- First posted date of cases
DECLARE @dEndDate datetime
-- Last posted date of cases

DECLARE @lCaseCount integer
-- Running total of cases

xe "Variables:Globals"Do not make a variable name that begins with ‘@@’. Although it is a legitimate thing to do, the ‘@@’ is typically reserved for SQL Server global variables. This makes readers confused in thinking a system variable when it is not.

DECLARE @sGoodName varchar(50)
-- Good name

DECLARE @@sBadName varchar(50)
-- Bad name

Never name a variable name by its data type or by a reserved word. Use a valid business explanation of what the variable name is for. Use...

DECLARE @dCaseOpen datetime
-- Date the case opened

... instead of...

DECLARE @datetime datetime

-- Huh?

A prefix for variables should contain the data type prefix, followed by what the variable or parameter is for. For user-defined types, use the prefix where the type came from. Acceptable prefixes:

l
integer, smallint, tinyint

s
char, varchar

d
datetime, smalldatetime

c
money, smallmoney

b
bit, binary, varbinary

f
float, real

n
decimal, numeric

Parameter names have the same requirements as variables. They begin with a single ‘@’, have the type prefix, followed by a brief explanation of what the parameter is for.

Assign default values to optional parameters in stored procedures. Required parameters should not have a default, as the user of the stored procedure should be required to use it correctly. Example...

CREATE PROCEDURE csp_Employee_GetManagerEmployees

(

@lManagerId integer,
-- Required: Manager’s ID
@dAfterHireDate smalldatetime = NULL,
-- Default: no hire date required
.

.

)

Also note, that while the “()” are not required, it is good practice to include them to help identify the parameters.

Development

Functional Requirements

Make sure the requirements and purpose of the stored procedure are clearly understood. Make sure the following items are understood for the stored procedure:

· Input/output parameters

· Number and types of record sets

· Error handling return codes

· Transaction scope

· Return values.

Check the database for an already existing stored procedure that satisfies the requirements before developing a new one. If one exists, you’re done! Reuse is a wonderful thing! If parameters need to be altered on an existing procedure to accommodate new business requirements, consider doing so.) The developer will need to make sure that changes to shared stored procedures do not impact others that are using that stored procedure. Use the sp_depends stored procedure to find dependent objects.

In order to institute a policy of reuse, the following points need to be followed:

· Once you publish an interface, you’re not allowed to change it. This means that once a stored procedure is published to the world (meaning someone out there can see it and may choose to reuse it), you cannot change how the procedure interfaces to the calling application. You may not change the parameters it takes, the order in which they are, or remove a default value.

· Once you publish functionality, you may not change the functionality except in the cases of system-wide changes. Because anyone may be reusing your code, you can’t change the net result of what the procedure does (or else you will most probably break someone else’s program). The exception to this is if a change is system-wide. In this case, the benefit of reuse is realized because you make the change in one place, and all applications pick it up.

· You should create a dependency chart for each stored procedure. When someone reuses a procedure, the application that does the reusing should be added to the dependency list for this stored procedure. Without such a list, it will be impossible to confidently know that all the ramifications of a change to a stored procedure have been tested prior to releasing an update.

Decide whether the business logic should reside in the middle tier or the back end. It may be possible to optimize the functionality by a mix of middle tier and back-end logic.
Keep the stored procedure small in size and scope. Procedures are not reentrant (i.e. two users invoking the same stored procedure simultaneously will cause the procedure to create two query plans in cache). It is much more efficient to have a stored procedure call other ones then to have one large procedure. Stored procedure query plans are built whenever a procedure is loaded into cache. Therefore, the smaller the stored procedure, the faster the compilation time. Try to keep a stored procedure down to one logical unit of work.

Remember that software productivity declines as the size of the application grows. Try to minimize the code size and complexity as much as possible.

See what concurrency issues apply. Attempt to make a balance between speed over concurrency.

SQL Formatting and Indentation

“Indentation can be beautiful and clear.” – Ted Nadeau
Properly formatted SQL statements make code reviews and future revisions a lot easier.

Always begin a new line with each clause in the statement.

Use tabs and spaces for indentation when arguments of a clause in the statement exceed one line. Use tabs and spaces consistently throughout the script.

Line up the BEGIN and END statements and the BEGIN TRAN and COMMIT TRAN statements.

Begin a new line with each column name in the SELECT clause if many columns are being selected.

Begin a new line with each table name in the FROM clause if many tables are being used. Indent two spaces for the first line; indent four spaces for each additional join.

Begin a new line with each condition of the WHERE clause. Indent two spaces.

Code example. Use…

SELECT em.fname,

 em.lname,

 jb.job_desc

 FROM pubs.dbo.Employees em WITH (NOLOCK)

 JOIN pubs.dbo.Jobs jb WITH (NOLOCK) ON (em.Job_Id = jb.Job_Id)

 ORDER BY em.fname

… instead of…

SELECT em.fname, em.lname, jb.job_desc FROM Employees em WITH (NOLOCK) JOIN Jobs jb WITH (NOLOCK) ON em.Job_Id = jb.Job_Id) ORDER BY em.fname

Also note that the table alias (i.e. em or jb) is at least two characters long. Try to avoid using single characters.

SQL Coding

xe "Parameters:Assignments"Make explicit default assignments to all assigned local variables immediately after declaring them. Otherwise, the default value for all data types is NULL.

SELECT
@lCaseStart = 1,

@dStartDate = GetDate(),

@dEndDate = NULL,

@lCaseCount = 0

xe "NULLs"Use ANSI conventions for dealing with nulls. Use @var IS NULL and @var IS NOT NULL instead of @var = NULL and @var <> NULL. Use…

IF (@var IS NOT NULL)

BEGIN

. . .

END

ELSE

BEGIN

. . .

END

… instead of …

IF (@var = NULL) ...

IF (@var <> NULL) ...

IF (@var != NULL) ...

IF (@var > NULL) ...

xe "Named Columns"Use named columns in SELECT statements. Using ‘*’ increases network traffic, requires more buffers and processing, and could prove error prone if the table or view definition changes. Use...

SELECT au_id,

 au_lname,

 au_fname,

 phone,

 contract

 FROM pubs.dbo.authors

... instead of...

SELECT *

FROM pubs.dbo.authors

xe "Named Columns"Use named columns in INSERT statements. Using all columns increases network traffic, requires more buffers and processing, and could prove error prone if the table or view definition changes. Use...

INSERT INTO pubs.dbo.authors

(au_id,

 au_lname,

 au_fname,

 phone,

 contract)

VALUES

(@au_id,

 @au_lname,

 @au_fname,

 @phone,

 @contract)

... instead of ... ProgressBar1.Value

INSERT INTO pubs.dbo.authors VALUES (1, v2, v3, v4, v5, v6, v7, v8, v9)

xe "Named Columns"When returning functions in SELECT statements, make sure each column has a name. Use...

SELECT Case_Id,

COUNT(*) AS ‘Total Case Instances’

FROM mydb.dbo.Events

GROUP BY Case_Id

... instead of ...

SELECT Case_Id,

COUNT(*)

 FROM mydb.dbo.Events

 GROUP BY Case_Id

xe "Operators:BEGIN...END"When using IF ...ELSE... or WHILE ... statements, remember to use the BEGIN...END block even when multiple statements are not necessary.

xe "Commands:GOTO"Avoid using the infamous GOTO. This is a time-proven means of adding disorder to program flow. There are some cases where intelligent use of GOTO is preferable to dogmatically refusing to use it. On the other hand, unintelligent use of GOTO is a quick ticket to unreadable code.

xe "Commands:RETURN"Avoid using RETURN until the end of the procedure. This helps the flow of logic follow a simple one-way-in and one-way-out scheme. Use...

IF (EXISTS (SELECT 1 FROM master.dbo.sysobjects WITH (NOLOCK)

WHERE (type = ‘U’)))

BEGIN

 SELECT @lExitValue = 1

END

ELSE

BEGIN

 SELECT @lExitValue = 0

END

RETURN @lExitValue

... instead of ...

IF (EXISTS (SELECT 1 FROM master.dbo.sysobjects WITH (NOLOCK)

 WHERE (type = ‘U’)))

 RETURN 1

RETURN 0

***Case in point for GOTO. If you have a dozen SELECT statements that retrieve values from lookup tables and you only want to use one RETURN, your choices are:

· Test each SELECT for success, nesting your successive SELECTS within the success portion of your IF test;

· Don’t test each SELECT at all, and cross your fingers that they’ll all succeed;

· Test each SELECT for failure and GOTO the RETURN statement if they failed (after setting the appropriate failure return value).

xe "Operators:IN"

Use the IN operator when comparing a column to a list of constants. It performs better than the OR operator while making the code easier to understand. Use...

SELECT Emp_Id

 FROM pubs.dbo.Employees

 WHERE (Emp_Id IN (1, 2, 5))

... instead of ...

SELECT Emp_Id

 FROM pubs.dbo.Employees

 WHERE ((Emp_Id = 1) OR

(Emp_id = 2) OR

(Emp_id = 5))

xe "Operators:BETWEEN"Use BETWEEN

when searching over a range of values instead of the IN operator or a compound (col >= start) AND (col <= end) clause. Use...

SELECT Emp_Id

 FROM pubs.dbo.Employees

 WHERE (Emp_Id BETWEEN 1 and 10)

... instead of...

SELECT Emp_Id

 FROM pubs.dbo.Employees

 WHERE (Emp_Id IN (1, 2, 3, 4, 5, 6, 7, 8, 9, 10))

Avoid use of ‘LIKE’ predicated where possible. It reduces performance because it must check every combination of characters in the column specified in the ‘LIKE’ clause.

xe "Operators:Precedence"

Parenthesize all expressions. This prevents ambiguity in the code. Consider the following example of how a pair of parentheses can make a difference in return value...

IF 1 = 2 AND 4 = 7 OR 4 = 4
- Evaluates to ‘TRUE’

BEGIN

 PRINT 'True'

END

ELSE

BEGIN

 PRINT 'False'

END

IF 1 = 2 AND (4 = 7 OR 4 = 4)
- Evaluates to ‘FALSE’

BEGIN

 PRINT 'True'

END

ELSE

BEGIN

 PRINT 'False'

END

xe "Operators:Precedence"Remember the ordering of the precedence levels. This determines how SQL Server parses SQL code. Operators have the following precedence levels:

· Primary grouping: ()

· Bitwise: ~

· Multiplicative: * / %

· Additive: + -

· Bitwise: ^

· Bitwise: &

· Bitwise: |

· NOT

· AND

· OR

xe "Search Arguments"Use search arguments instead of functions in the queries. Use...

DECLARE @d30DaysAgo datetime

SELECT @d30DaysAgo = DATEADD (dd, -30, GetDate())

SELECT ... FROM mydb.dbo.Tbl1 WHERE (DateColumn <= @d30DaysAgo)

SELECT ... FROM mydb.dbo.Tbl2 WHERE (DateColumn <= @d30DaysAgo)

... instead of ...

SELECT ... FROM mydb.dbo.Tbl1 WHERE (DATEDIFF (dd, DateColumn, GetDate()) > 30)

SELECT ... FROM mydb.dbo.Tbl2 WHERE (DATEDIFF (dd, DateColumn, GetDate()) > 30)

xe "Operators:MIN"

xe "Operators:MAX"Use the MIN or MAX functions instead of the SET ROWCOUNT 1...SET ROWCOUNT 0 scheme. Use...

SELECT @lMax = MAX (Emp_id)

 FROM pubs.dbo.Employee

... instead of ...

SELECT ROWCOUNT 1

SELECT @lMax = Emp_id

 FROM pubs.dbo.Employee

 ORDER BY Emp_Id DESC

SELECT ROWCOUNT 0

xe "Deadlocks"Reduce the chance of deadlocks by using resources in the same order. For example, if stored procedures SP1 and SP2 use tables T1 and T2, make sure both SP1 and SP2 process T1 and T2 in the same order. Otherwise, if SP1 uses T1 and then T2, and SP2 uses T2 and then T1, both stored procedures could be waiting on resources from the other.

***Given the size of the database, tracking the order in which resources are used will be an onerous task. As such, it may be better to isolate this task to a select group and enforce it there. This might be a good thing to look for and catch in the DBA that all code goes through.

xe "Datatypes:Dates"When comparing date ranges, consider the hours/minutes/seconds part of the date. Too often a date contains hours, minutes or seconds, while user information contains only years, months, and days. The full day range, for all of New Years Day of 1999 for example, should be January 1, 1998 00:00:00 to January 4, 1999 23:59:59.

xe "Operators:EXISTS"

Use EXISTS instead of COUNT(*) when looking for the existence of one or more rows in a subquery. EXISTS cancels the subquery once the first existence of a record is found, while COUNT(*) forces processing of the entire query. Use...

IF (EXISTS(SELECT 1 FROM pubs.dbo.Employee WHERE Emp_Id = 2))

... instead of ...

IF (SELECT COUNT(*) FROM pubs.dbo.Employee WHERE Emp_Id = 2) > 0

xe "Optimizer Hints:NOLOCK"

Use the NOLOCK optimizer hint on all SELECT statements
. This hint allows, "dirty reads," which means that no shared locks are issued and no exclusive locks are honored. This can result in higher concurrency, but at the cost of lower consistency. Do not use the NOLOCK optimizer hint on selects involving the UPDATE or DELETE statements. Use...

SELECT fname,

lname,

Emp_Id

 FROM pubs.dbo.Employee WITH (NOLOCK)

... instead of ...

SELECT fname,

 ProgressBar1.Valuelname,

 Emp_Id

 FROM pubs.dbo.Employee

xe "Operators:DISTINCT"

xe "Operators:GROUP BY"

xe "Operators:HAVING"

xe "Operators:ORDER BY"

Avoid using DISTINCT, GROUP BY, HAVING, or ORDER BY clauses when possible. These operations each create a worktable and require additional processing for the result set.

When using ‘SELECT DISTINCT’ on queries that return over 1000 rows, indexes should exist on the columns that have the ‘DISTINCT’ keyword associated with them. Otherwise, SQL server must sort the results to remove duplicates.

The ‘ORDER BY’ statement should be used with indexed columns.

Verify that all rows retrieved or changed are actually necessary. This may sound trivial, but perhaps the query is performing too much work when it isn’t really necessary.

xe "Operators:UNION"Use UNION ALL over UNION when the SELECT statement knowingly does not produce duplicate rows. A UNION (without the ALL) performs an internal sorting to eliminate duplicate rows, thus creating a worktable. Use...

-- These sub-selects are already unique sets, no sorting necessary

SELECT fname,

lname,

Emp_Id

FROM pubs.dbo.Employee WITH (NOLOCK)

 WHERE (Emp_Id < 10)

 UNION ALL

SELECT fname,

 lname,

 Emp_Id

 FROM pubs.dbo.Employee WITH (NOLOCK)

 WHERE (Emp_Id >= 100)

... instead of ...

-- These sub-selects are already unique sets, but sorting happens anyway

SELECT fname,

 lname,

 Emp_Id

 FROM pubs.dbo.Employee WITH (NOLOCK)

 WHERE (Emp_Id < 10)

UNION

SELECT fname,

 lname,

 Emp_Id

 FROM pubs.dbo.Employee WITH (NOLOCK)

 WHERE (Emp_Id >= 100)

xe "Parameters"Remove unnecessary parameters from the stored procedure. These un-referenced parameters clutter code and confuse code reviewers. If a parameter is not used in the stored procedure body, remove it! If the parameter is needed for backward compatibility with an application that is already deployed, use a comment to indicate this.

***Unless this is a published stored procedure that has the possibility of having been reused by someone somewhere. In that case, either find all the users and change them too, or make changes at great peril.

xe "Conditions:Negative"Avoid negative search conditions, such as NOT IN, NOT EXISTS, <>, etc. Indexes can rarely utilize an operation with a NOT properly, so these clauses tend to be costly operations in processing and I/O. Try to re-work the query to handle the same expression without using the NOT operation.

Do not compare a search argument to a constant in the WHERE clause...

SELECT SomeColumn

-- Empty result set returned if @Arg <> 14

 FROM SomeTable

 WHERE (Column = 5) AND (@Arg = 14)

Be careful of the difference between no result set and a result set without any records. There is a difference! Consider the two statements that seem similar:

IF (@Arg = 14)

-- No result set returned if @Arg <> 14
 SELECT SomeColumn

 FROM mydb.dbo.SomeTable

 WHERE (Column = 5)

SELECT SomeColumn

-- Empty result set returned if @Arg <> 14
 FROM mydb.dbo.SomeTable

 WHERE (Column = 5) AND (@Arg = 14)

Regarding the conditional code in the select clause issue. A better coding practice is to initialize the variable outside of the select statement. Use...

DECLARE @cPrice money

SELECT @cPrice = 100

-- Default value if no rows exist

SELECT @cPrice = ISNULL (price, 100)

 FROM mydb.dbo.Titles

 WHERE (title_id = ‘MC3026’)

SELECT ‘Value of I’ = @cPrice

-- Will never be NULL

... instead of ...

DECLARE @cPrice money

SELECT @cPrice = ISNULL (price, 100)

 FROM pubs.dbo.Titles

 WHERE (title_id = ‘MC3026’)

SELECT ‘Value of cPrice’ = @cPrice
-- Might be NULL

xe "Operators:UNION"Consolidate result sets when using UNION wherever possible. This boosts performance by applying one scan of the table instead of two. Do not use UNION to simply “append” more rows to the end of a result set; optimize all sections of the UNION. Use...

SELECT DISTINCT UserID, UserType_ID

 FROM mydb.dbo.join_user_usertypes

 WHERE UserType_ID IN (16, 17)

... instead of ...

SELECT DISTINCT UserID, UserType_ID

 FROM mydb.dbo.join_user_usertypes

 WHERE (UserType_ID = 16)

UNION

SELECT DISTINCT UserID, UserType_ID

 FROM mydb.dbo.join_user_usertypes

 WHERE (UserType_ID = 17)

Use the TRUNCATE TABLE command to quickly delete all rows from a table. This command deallocates pages, which is faster than performing row deletions. It also does not write each deleted record to the log. (Note that this command resets the identity seed for the table back to its initial value). Also note that in order to use TRUNCATE TABLE, you need to be the table owner or DBO. Use...

TRUNCATE TABLE pubs.dbo.authors

... instead of ...

DELETE FROM pubs.dbo.authors

Note if you try to truncate a table with a foreign key constraint, it will not work. You will get the following message:

Server: Msg 4712, Level 16, State 1, Line 1

Cannot truncate table 'MyTable' because it is being referenced by a FOREIGN KEY constraint.

xe "Joins"Joining Tables

SQL Server 6.5 and later support the ANSI-style join syntax for cross, inner, and outer joins. Restricting the inner table of an ANSI-style outer join may appear to return results that differ from those returned using the Transact-SQL-style outer join syntax.

An outer join allows you to restrict the rows in one table, while not restricting the rows in another table. Consider the following Transact-SQL-style example, using the pubs database:

SELECT titles.title_id, title, qty

 FROM titles, sales

 WHERE titles.title_id *= sales.title_id

This query would return at least one row for every title, and additional rows if there are multiple sales for a single title. Titles with no sales would display a NULL in the "qty" column.

Because future versions of SQL Server may discontinue support for the "*=" and "=*" outer join operators, it is recommended that you use the ANSI- standard join clauses. The equivalent ANSI-style query for the query above is:

SELECT titles.title_id, title, qty

 FROM titles

 LEFT OUTER JOIN sales ON titles.title_id = sales.title_id

If you wanted to restrict the sales table to only return sales for a particular store, you would qualify the inner table, as in the following example:

SELECT titles.title_id, title, qty

 FROM titles, sales

 WHERE titles.title_id *= sales.title_id

 AND store_id = '7066'

This would return 18 rows. To apply the same restriction with the ANSI- style syntax, you might use a query similar to the following:

SELECT titles.title_id, title, qty

 FROM titles

 LEFT OUTER JOIN sales ON titles.title_id = sales.title_id

 WHERE store_id = '7066'

However, in this case, only two rows are returned because the restriction on store_id is applied after the outer join has been performed. Therefore, titles that do not have sales in the specified store will not appear in the query. The outer join does not appear to have been performed.

The proper way to restrict the inner table of an outer join is to place the inner table qualifier in the ON portion of the FROM clause, as in the following example:

SELECT titles.title_id, title, qty

 FROM titles

 LEFT OUTER JOIN sales ON titles.title_id = sales.title_id

 AND store_id = '7066'

The restriction on the inner table will be applied in the formulation of the outer join, and the result will be equivalent to the Transact-SQL-style syntax example.

xe "Joins"Whenever possible, use joins over sub-queries. These tend to yield better performance.

Use SQL-92 conventions for joins with the JOIN operators. This allows joins between tables to be handled in the FROM clause and business logic to be handled in the WHERE clause. Use...

SELECT 'Table' = so.Name,

 'ColId' = sc.ColId,

 'Column' = sc.Name

 FROM master.dbo.sysobjects so WITH (NOLOCK)

 JOIN master.dbo.syscolumns sc WITH (NOLOCK) ON (so.id = sc.id)

 WHERE so.name LIKE 'sys%'

… instead of …

SELECT 'Table' = so.Name,

 'ColId' = sc.ColId,

 'Column' = sc.Name

 FROM master.dbo.sysobjects so WITH (NOLOCK),

 master.dbo.syscolumns sc WITH (NOLOCK)

 WHERE so.name LIKE 'sys%' AND so.id = sc.id

Make sure that each table is connected properly via the JOIN statement!

Join columns that have identical data types whenever possible. Performance suffers when non-identical columns are compared; SQL Server needs an implicit conversion between the two types.

Performance is better when the tables being joined are defined with identical types. This prevents implicit data conversions by the query engine.

Calling Other Stored Procedures

Explicitly use the EXEC or EXECUTE commands when calling stored procedures. It allows multiple stored procedures to be called in a batch. Use...

EXEC sp_help authors

... instead of ...

sp_help authors

Call parameters with keywords; do not depend on positions of the parameters. This is more tolerant to interface changes. Use...

EXEC sp_help @objname = ‘authors’

... instead of ...

EXEC sp_help authors

Parameters & Default Values

xe "Parameters:Default Values "Assign defaults to parameters as necessary. Parameters that are called with a common value should be defaulted in the parameter’s declaration. Usually nullable columns should have default value set to NULL in the parameter list.

Check parameters immediately upon entering the stored procedure. This can help prevent unnecessary SQL queries with invalid parameters.

CREATE PROCEDURE csp_Get_Table_Count

(

 @sTablePrefix varchar(3) = NULL

)

AS

DECLARE @lTableCount int

IF ((@sTablePrefix IS NULL) OR (@sTablePrefix = ''))

BEGIN

SELECT @lTableCount = 0

END

ELSE

BEGIN

SELECT @lTableCount = COUNT(*)

 FROM master.dbo.sysobjects WITH (NOLOCK)

 WHERE type = 'U' AND name LIKE @sTablePrefix

END

RETURN @lTableCount

xe "Temporary Tables"Temporary Tables

Use temp tables judiciously. Remember that there is a limited amount of space available in the temp database for temp table creation. If the temp database gets too large that performance is an issue, try creating permanent tables in another database. Remember to remove these tables when finished. See the DBA for assistance.

When dealing with large tables repeatedly, use a temp table to extract the rows (or keys) necessary for the multiple queries. This will minimize the hits on the large table. In addition, temp indexes can be applied to temp tables for better performance.

xe "Indexes:Temporary Tables"It is possible to create a temp index on a temp table

. Use...

CREATE INDEX #idx_Employee_PK ON #TempEmp (Emp_Id)

xe "Commands:DROP TABLE"Avoid using DROP #TABLE in a stored proc. (i.e., just let the #TABLE go out of scope). There are two reasons:

1) You avoid adding unnecessary locks to tempdb's system tables (6.5 deadlocking in tempdb's system tables is a big issue)

2) you avoid recompiles in 7.0..

xe "Cursors"Cursors

 Use cursors wisely. Cursors are fundamentally evil. They force the database engine to repeatedly fetch rows, negotiate blocking, manage locks, and transmit results. They consume network bandwidth as the results are transmitted back to the client, where they consume RAM, disk space, and screen real estate. Consider the resources consumed by each cursor you build and multiply this demand by the number of simultaneous users. Smaller is better.
 Use the right cursor for the right job.
o Don't use a scrollable cursor if you don't plan to let the user scroll through the rows. Grid controls don't need scrollable result sets to enable scrolling.
o Use read-only cursors unless you need to update tables. In most cases, you should only update through use of stored procedures.
o The Forward-only, read-only, CacheSize (RowsetSize) "firehose" cursor is the fastest way to get data from the server—because these settings don't create a cursor at all.
 Populate the cursor quickly. Use the MoveLast method to position to the last row before allowing the user to scroll through the data. This tells the data interface to fetch all of the rows from the server—thus freeing blocking constraints and resources on the server.
 Use GetRows or Get(Clip)String instead of MoveNext. These data-access functions fetch all of the rows in a single operation and deposit them into a Variant array or a delimited string. Looping through a result set row-by-row is very inefficient. If you are populating controls yourself, be sure to pre-fetch before showing the first row. With only 90 seconds worth of data, this should be fast.
 Fetching fewer rows makes any query run faster. When a cursor includes fewer rows than CacheSize rows, the interface can pre-fetch the rows in the background to complete cursor population more quickly. Once the cursor is fully populated, other users can access the data for update and your connection can be reused or simply released.
 Update related data in a single transaction and batch. When you are ready to update data, group related tables into a transaction.
xe "Indexes"Indexes

Do not place a clustered index on the IDENTITY column of a large table that expects a lot of writes. This causes a hot spot that can slow performance.

xe "Showplan"Examine the SET SHOWPLAN_ALL and SET SHOWPLAN_TEXT for the stored procedure to assure that the proper indexes are chosen. The SET SHOWPLAN_ALL and SET SHOWPLAN_TEXT statements return only query or statement execution plan information and do not execute the query or statement. To execute the query or statement, turn the appropriate SHOWPLAN statement OFF. The query or statement will then execute.

xe "Optimizer Hints:INDEX ="If SQL Server still chooses the incorrect (or not most efficient index), force the index use with the INDEX = <index_id> optimizer hint. Use index hints sparingly, let me say this again, think twice or maybe even three times before using hints, as index statistics may change and provide a faster means of computing the query at a later date. In reality, they should never be used (ideally). The reason that table scans are done is because 1. Requesting so much data that a non-clustered index would incur more i/o than a single table scan; 2. An appropriate index does not exist (not always bad, see previous comment). At any rate, one of the keys to effective data access is to code to the structure. In other words, your WHERE clause should contain the necessary columns to make an index usable. This means that the most significant column of an index must be referenceable. A good guideline is to make your request for data very specific and as unique as possible without getting silly.
Indexes are vital to efficient data access; however, there is a cost associated with creating and maintaining an index structure. For every insert, update and delete, each index must be updated. In a data warehouse, this is acceptable, but in a transactional database, you should weigh the cost of maintaining an index on tables that incur heavy changes. The bottom line is to use effective indexes judiciously. On analytical databases, use as many indexes as necessary to read the data quickly and efficiently.

Minimize updating or deleting based on indexed columns. SQL Server indexes are simple B-Tree structures and key changes are costly.

Keep clustered index as small as possible. Clustered index key(s) are used (perhaps along with a uniquifier) within a non-clustered index's rows. The CI identifies the data to which the NCI is referring.

Measuring Performance

Use Statistics I/O to get performance measurements of the stored procedure. Document these performance measurements in the stored procedure for future debugging needs.

xe "Showplan"When using SHOWPLAN, watch out for table scans (scanning the entire table without using an index), queries with reformatting and worktables (these both create worktables in the temp database). Not only are table scans bad; clustered index scans (as opposed to seeks) are bad as well. Table scans are sometimes more convenient for very small tables, where searching via an index would take more time than if the entire table were scanned from the start. When this happens, the query optimizer would choose a table scan, but it can also be forced with the optimizer hint index = 0.

***Another way to interpret the last paragraph: In general, watch out for table scans, but if the table is small, you’ll always get a table scan because SQL Server won’t even bother with the index if the table is under four pages (I think it’s four). So don’t worry about those. In general, I’d recommend against forcing the table scan with INDEX = 0 as you never know, the table may someday get big enough to warrant the index. Unless the statistics for a table are off and you have to force an index to be used, you really shouldn’t be trying to second-guess the SQL Server query optimizer.

xe "Code Reviews"Code Reviews

Purpose of Code Reviews

“Garbage in, garbage out” – Old computing adage.
Studies suggest that finding defects after it goes to test or production takes 6 times longer than if the defect was found before going to test or production. In addition, it is bad for a software development process to be preoccupied with defect fixes and management. This leads to schedule troubles, and, worse, it pushes all other “release” efforts aside in order to fix bugs. The earlier a bug is found in the development cycle, the more efficient and lest costly it is to fix. Bugs found late in Production can affect thousands of people and bring the entire database crashing down!

Code reviews can help stored procedures to have a higher chance of being defect-free and execute more effectively and efficiently once released into production. Code reviews allow for a review of the design of the stored procedure as well as the code that is built.

How to Perform a Code Review

Either the DBA or experienced SQL stored procedure developer should perform the code review.

Check the database for an existing stored procedure that does a similar activity to the stored procedure being reviewed. If one already exists, inform the developer to discontinue development and use the existing one.

***See caveat to wholesale application of this practice earlier in the document.

Review the procedure with the developer that created the code. Let the developer explain the business requirements and the functional instructions.

Make sure both the developer and the reviewer, understand the business requirements.

Make sure the code is clean (e.g. proper formatting, indexing, alignment, etc.) It makes code reviews easier and less error-prone.

Make sure comments are consistent with the purpose of the procedure.

Make sure the development standards are adopted by the stored procedure.

If code reviews cannot be done with the developer present, provide rapid feedback to the developer whether the code review passed or failed. Tell the developer what is wrong with the script in detail. Refer to the Guidelines when applicable.

Update the Guidelines to include current good and bad practices, their workarounds, and an example for the developers to model from.

Document the results of the review; include all good points and bad. Follow up to make sure all items are attended to.

Testing

Testing is different from the code inspection and review. Code reviews only analyze the code, while testing examines if the procedure does what it should.

Benefits of Sufficient Testing of stored procedures

· Saves unnecessary manpower - Too many end users and DBAs are involved if bugs are released into production. Bugs cause developers to stop current efforts to go back and fix the bug. Bugs caught early reduce the number of “human context switches.”

· Saves unnecessary builds - Rebuilding stored procedures takes both computing and human efforts to get changes all the way up into production. This may also reduce the number of scheduling changes.

· Provides a standard means of testing - Each developer tests code in a different way, in a different language, in a different environment.

· Provide re-use of testing scripts - With each developer testing code in a different way, there is no consistent means of storing these test drivers in a global location, and so the test drivers may get re-invented for each change.

Testing Business Functionality

· Requirements. The stored procedure should perform the proper business function and nothing more. This may sound trivial, but perhaps the stored procedure contains more code and functionality than it should.

· xe "Testing:Test Plans"Build Test Plan

. Building a formal test plan for the stored procedure will assure that it performs all the necessary actions, that all the use cases are considered, etc. This also helps the test driver to be built while the stored procedure is being developed; the test driver doesn’t need to wait for the stored procedure to be finished. The test plan should incorporate two disciplines of testing:

· xe "Testing:Positive Testing"Positive Testing

 - making sure the business requirements are met, and

· xe "Testing:Negative Testing"Negative Testing

 - making sure the procedure doesn’t do anything it should not.

· ***Boundary Conditions – making sure that conditions that fall on the boundary of what should and should not happen are properly tested. It’s all well and good to know that 11-99 are two digit numbers, but what happens when the script encounters 100?

· xe "Error Handling:Testing"Error Handling

. After all, what’s the sense of building error handlers if there’s no way to test them?

· Check that each INSERT, UPDATE and DELETE statement has a corresponding error handler.

· Check that calls to other stored procedures are checked via return parameter.

· Check that the error handlers will work appropriately.

· ***Be aware of statements that overwrite the @@ERROR (and other global) variable. There’s not much point in testing @@ERROR for failure after you do a SELECT @lRows_Touched = @@ROWCOUNT after your INSERT.

· xe "Transactions:Testing"Transaction Processing

.

· Does the error handler properly rollback the transaction?

· Does it properly commit on success?

· Condition Testing. Test that each branch in the code is reachable and performs as expected. If code is not reachable, the stored Procedure should be revised. This can be an error-prone practice.

***Unexpected conditions: As mentioned earlier in this document, don’t assume that just because you think a condition will never happen that it will in fact never happen. Always make sure there is an ELSE to every condition, even if all it does is log an error (which for something you never expect to happen is exactly what you should be doing).

· xe "Datatypes:Testing"Data Types

. Test that the parameters accept the proper data types and that no funny conversions are happening behind the scenes.

· xe "NULLs:Testing"NULLs. Make sure that NULL parameters are handled appropriately (for ANSI compliance). Avoid nulls if possible. Nulls add an extra two bytes of information per row, per column that has it. It can make searching through columns a little slower.

· String Data Types. Check case sensitivity, string lengths, NULL strings, empty strings, spaced-out strings, boundary conditions, valid characters for the strings (e.g. Filenames, printable characters, etc. all need to be checked for input parameters. Check for alphanumeric, punctuation characters, control characters, Unicode characters, decimals, digits-only, alpha-only, etc.).

· Numeric Data Types. Test NULL values, digits only, signed digits, decimal digits, floating-point data, empty/missing data, zeros/negatives/positives, ranges, and enumerated types.

· Conversions. When passing parameters, check what happens if the wrong type is passed to a parameter.

In Transact-SQL, two levels of data type conversions are possible:

· When data from one object is moved to, compared with, or combined with data from another object, the data may have to be converted from the data type of one object to the data type of the other.

· When data from a Transact-SQL result column, return code, or output parameter is moved into a program variable, it must be converted from the Microsoft® SQL Server™ data type to the data type of the variable.

There are two categories of data type conversions:

Implicit conversions are invisible to the user.

· SQL Server automatically converts the data from one data type to another. For example, if a smallint is compared to an int, the smallint is implicitly converted to int before the comparison proceeds.

· Explicit conversions use the CAST or CONVERT functions.

The CAST and CONVERT functions convert a value (a local variable, a column, or another expression) from one data type to another. For example, the following CAST function converts the numeric value of $157.27 into a character string of '$157.27':

CAST ($157.27 AS VARCHAR(10))

CAST is based on the SQL-92 standard and is preferred over CONVERT.

When converting from the data type of one SQL Server object to another, some implicit and explicit data type conversions are not supported. For example, an nchar value cannot be converted to an image value at all. An nchar can only be converted to binary using explicit conversion; an implicit conversion to binary is not supported. An nchar can be either explicitly or implicitly converted to nvarchar.

When handling sql_variant data types, SQL Server supports implicit conversions of objects with other data types to sql_variant type. However, SQL Server does not support implicit conversions from sql_variant data to an object with another data type.

· Other Data Types. Test date, currency, bit, binary, system and user-defined data types too.

· Formats. Phone numbers, dates, social security numbers, etc. have special formats for their entries. Make sure these standards are applied.

· Boundary Conditions and Ranges. When a specific value is in question, test the value before, on, and after that specified value. This will test what will happen when any value is submitted.

· xe "Parameters:Testing"Optional Parameters. Test the missing parameters to see if they provide the proper result. For required arguments, test that they are actually required by omitting them from the stored procedure call.

· Procedure Output. Make sure the output parameters, result set(s), and the return value are all consistent with what is explained in the comments for the stored procedure.

· Build a Test Script

. Build another stored procedure or a .SQL script that can thoroughly test the stored procedure. Use the test script to test the stored procedure. It is a bad practice to build a stored procedure at the database level, and then build a business application that uses to stored procedure for testing. When building database objects, test the database objects at the database layer.

· Dependencies. If the stored procedure calls other stored procedures, then test the stored procedures with the fewest number of dependencies first. Also, if the stored procedure uses other database objects, such as tables or other stored procedures, test these as well (or at least make sure they have been tested at all.)

· Test Environment

. Test the stored procedure in a controlled environment, with a predictable data set and no other users running scripts that may interfere with the test. A clean database is best to test with, one that has a predictable data set and does not change frequently by other users building tests. With data in a database changing frequently with other testing efforts, it is difficult to get an accurate measure on whether the test is correct or not.

· Real-World Data for Testing. Make sample cases for testing the stored procedure that mimic the real-world cases.

· SQL Experience. All creative people can perform tests. Network engineers may test a stored procedure to test network loads. DBAs may test stored procedures for permissions. However, someone with good SQL experience is best suited for testing stored procedures.

· xe "Security:Testing"Security.

 Test that the stored procedure has the proper permissions applied to it. Use a DBO login; an appropriate login for the stored procedure and a login without execute permissions to check that the security is properly established.

· External Operations. If the stored procedure performs an “external” event, such as writing to the EventLog or sending mail, remember to test these functions as well.

· xe "Administration:Project Testing"Project Administration

. Project managers should allocate adequate time and resources for code reviews and testing. In practice, testing and deployment are often the two areas often undercut when time & resource pressures come to bear.

· Time Estimation for Testing. It would be good, for a few projects, to record the time spent on design, coding, testing, and deploying. Keeping these records handy would be a good indicator as to how much time is needed for each item.

· xe "Administration:Change Management "Change Management

. Coordinate testing with the change management process.

xe "Comments"Headers and Comments

Each stored procedure must have a header. The header contains up to seven sections:

Stored Procedure Section (required)

The name of the stored procedure being documented. The stored procedure section is contained between XML tags <storedproc name="" version=""></storedproc>. Note that the storedproc XML tags incase the summary, parameters, returns, histories, and remarks tags. The name attribute is required. For example:

/*++

<storedproc name="csp_Employee_Del" version="1.0">

<summary>This SP deletes an employee from the Employee’s table.</summary>

<parameters>

 <parameter name="@iEmployee_id" type="int" direction="in">

 The id of the employee to be deleted.
 </parameter>

</parameters>

<returns type="int">

<return value="0">Success</return>

<return value="?">SQL Error code explaining why it could not delete employee</return>
</returns>

<histories>

 <history author="Bugs Bunny" date="01/25/2001">

 Original Creation
 </history>

 <history author="Porky Pig" date="02/10/2001">

Put code in to make sure that records in the address table that were related to employee being deleted were also deleted.

 </history>

</histories>

<example>This stored proc is only called by other stored procedures.

 <code>

DECLARE @iReturn int

EXEC @iReturn = csp_Employee_Del 123

SELECT @iReturn

 </code>

</example>

<remarks></remarks>

</storedproc>

--*/

Summary Section (required)

A summary of the contents of the file. The summary is contained between XML tags <summary></summary>. I.E:

<summary>

This SP deletes an employee from the Employee’s table.

</summary>

Parameters & Acceptable Values Section (required)

Use this section to list and describe all parameters. The parameters section is contained between the <parameters></parameters> XML tags. For each parameter in your function, you will have a <parameter name="" type="" direction="" default=""></parameter> section. Note that the <parameter> section has three required and one optional attributes:

1. name

The name of the parameter

2. type

The parameter type (ie. LONG, INT, VARCHAR, NUMARIC …)

3. direction

The direction of the parameter. The valid values are:

a. in

b. out

c. in/out

4. default (optional)

If you leave this attribute off, then you are indicating that this parameter is required. Otherwise, specify the default value for the parameter.

The description of the parameter and any acceptable range / values can be put between the <parameter></parameter> tag. Note, that the optional XML tag <para> can be included between the <parameter></parameter> tags. Also note that if your function does not have any parameters, then enter the tag <void/>.

<parameters>

 <parameter name="@iEmployee_id" type="int" direction="in" default="0">

 The id of the employee to be deleted.
 </parameter>

</parameters>

or if you have no parameters

<parameters><void/></parameters>

Return value section (required)

The return section is contained between the <returns></returns> XML tags. For each return value in you function, you will have a <return value=""></return>. Note that the <return> has one required attribute: value. Enter the return value and then the description of that value between the XML tags. This returns type will just contain the word "void." if the function doesn't return any value (void).

<returns type="int">

<return value="0">Success</return>

<return value="?">SQL Error code explaining why it could not delete employee</return>
</returns>

or if your functions does not return anything

<returns type="void"/>

Histories Section (required)

This section contains a history of the modifications of the file starting with its creation. For each modification, the name of the developer, the date or the modification took place (<history author="" date="">) and a short description of the modification must be included. If applicable, a Trouble Request (TR) or Change Request (CR) number may be included. The history is contained between XML tags <history></ history> which is between the XML tags <histories></histories>. Also note that the XML <history> tag can contain the optional entity <para>. For example:

<histories>

 <history author="Bugs Bunny" date="01/25/2001">

 Original Creation
 </history>

 <history author="Porky Pig" date="02/10/2001">

Put code in to make sure that records in the address table that were related to employee being deleted were also deleted.

 </history>

</histories>

Example Section (required for API)

This section must contain an example of how to use the API. The reader should be able to use the example software in their application (as long as they define the variables used in your example). In other words, the code you put in the sample section must be syntactically correct. This is section can be empty for non-API routines.

<example>This stored proc is only called by other stored procedures.

 <code>

DECLARE @iReturn int

EXEC @iReturn = csp_Employee_Del 123

SELECT @iReturn

 </code>

</example>

Remarks Section (optional)

The remarks should contain any caveats, warnings, ... that the author feels necessary. The remarks section can also contain the options entity <para>. For example:

<remarks>

The caller must release the ADODB.Recordset when they are finished.

</remarks>

The header must be presented in the following format:

/*++

<storedproc name="">

<summary></summary>

<parameters>

 <parameter name="" type="" direction="" default=""></parameter>

</parameters>

<returns type="">

<return value=""></return>

</returns>

<histories>

 <history author="" date=""></history>

</histories>

<example>
 <code></code>

</example>

<remarks></remarks>

</storedproc>

--*/

Note the /*++ and --*/. These are used to delimit the header so that the stored procedures can be dumped and then parsed for the header information to create a document of stored procedure and their function.

The header is a good source of documentation and keeps the documentation as close as possible to the information itself (the function implementation). Headers can be extracted and integrated into the software documentation. The keywords are used by the function search utility. The synopsis information (argument list, input/output) will be included with each argument to keep the comments close to the information it refers to. See layout rules.

General

Liberal use of comments is recommended. It is important that the reader of the procedure fully understand what the procedure is for, what the input parameters should be, what the output parameters and result sets are, what errors can be expected, etc.

Keep the stored procedure clearly documented.

Try to avoid having the scripts over 80 columns wide. This makes viewing on a single screen and printouts easier.

Code Comments

Do not nest comments. Though permitted, nesting comments tends to clutter the SQL script and makes the flow of logic more difficult; user needs more effort to determine when s/he is in a comment or in code. i.e.:

/*

** Commented out this code, because it didn’t work

SELECT @Mgr_ID = Mgr_Id FROM pubs.dbo.Employee where ShipID = @nEmp_ID

/*

** Once you have the Manager’s ID, check to see whom else he has

** working for him.

*/

SELECT fname, lname FROM pubs.dbo.Employee WHERE Mgr_ID = @Mgr_ID

*/

SELECT fname, lname

 FROM pubs.dbo.Employee

 WHERE Mgr_id in (SELECT Mgr_id FROM Employee WHERE Emp_Id = @Emp_ID)

In general practice if code is no longer required DELETE it! Do not comment out code, it just causes more confusion than it is worth.

In-line comments should be modified to include modification and creation dates. Place the comment as close to the right margin as possible to make the code cleaner to examine. For long comments, place the comment before the code. For example…

-- Get names of all lookup tables

SELECT Name

 FROM master.dbo.sysobjects WITH (NOLOCK)

 WHERE (type = ‘U’)

 AND (name LIKE ‘Ti%’)

 ORDER BY Name

-- 1999-01-22, DAD, new requirement
Comment what the code is for, not what it does. The reader will already have the SQL to see what the code does. Use...

SELECT @lBook = (@lBook + 1)
-- Iterate through next book

... instead of ...

SELECT @lBook = (@lBook + 1)
-- Add 1 to @lBook
Complex code segments should always be commented. Always error on the side of having too many comments. This will help prevent misunderstandings of readers of the stored procedure. For a better example see “Appendix C: Example stored procedure”.

xe "Transactions"Transaction Processing

When to Use a Transaction

Transactions require extra processing and resources for their operations. Use transactions sparingly and only when necessary. If at all possible, have any transaction maintenance done outside of SQL in a MTS / COM+ component.

Perform as much processing outside the transaction block as possible.

Collect all user input before opening a transaction. Never open a transaction, wait for user input, and then close the transaction. Users might keep transaction resources locked for hours!

Do not wrap a single SELECT statement in a transaction block; this serves no purpose. For example:

BEGIN TRAN

SELECT @TableCount = COUNT(*)

-- Get count of user tables

 FROM master.dbo.sysobjects WITH (NOLOCK)

 WHERE (type = ‘U’)

COMMIT TRAN

See the SQL Server sections for transaction considerations.

xe "Error Handling"Error Handling

The error reporting routine that we are going to use is RAISERROR (see Appendix A: RAISERROR). You will be required to check the error condition after every INSERT, UPDATE and DELETE (see 오류! 참조 원본을 찾을 수 없습니다.). The severity of the error message can range from 0 to 25 where 0 is the lowest level and 25 is a catastrophic failure. RAISERROR has the following parameters: msg_id | msg_str, severity, state, argument, ...n. For a full description, see Appendix A: RAISERROR. What I would like to bring to your attention is msg_id and msg_str. The msg_id is a key to the sysmessages table. If you use a number (like 50000), make sure that you know what that message means. If you want, create a new message. For example:

RAISERROR ('csp_MyProc: Error updating ESKU_ID %d. Error = %d',

16, 1, @lEsku_Id, @lError)

Now, while the above example is valid, you should stay away from hard coding the error string inside of your stored procedure. Instead, use sp_addmessage to added the message to sysmessages. For example:

USE master

EXEC sp_addmessage @msgnum = 54525, @severity = 16,

@msgtext = N'csp_MyProc: Error updating ESKU_ID %d. Error = %d',

@lang = 'us_english'

This will insert the error message for you in the sysmessages table. Then your error message would look like this:

RAISERROR (54525, 16, 1, @lEsku_Id, @lError)

Both of the above RAISERROR messages will result in the same message. The important thing to note is that you MUST have a message that will help people debug what went wrong. In your code, put a comment above the RAISERROR explaining what the error # actually translates to.

The format of your message should be: <stored procedure name> <message>.

Return Codes

Use ‘0’ for a successful execution of the stored procedure. SQL Server reserves -1 to -99 for their return codes. Use negative numbers below -100 for your return error codes.

Use a unique number for each error handling point where errors are returned. This allows debuggers to find the unique value and know exactly what statement failed. Do not re-use or group the errors into ‘classes’.

Document the error codes at the top of the procedure. IE:

<returns type="int">

 <return value="0">Success</return>

 <return value="-101">Order number was not supplied.</return>

 <return value="-102">Could not find security id</return>

 <return value="-103">Could not find account </return>

 <return value="-104">Failed to insert order record</return>

 <return value="?">SQL Delete error</return>

</returns>

Error Codes

Every INSERT, UPDATE and DELETE statement should be checked with both the @@ROWCOUNT and @@ERROR global variables. @@ERROR should always be checked. @@ROWCOUNT determines how many rows were modified; this value should be checked if a change should happen. (It is not necessarily a SQL error if no rows were modified). For example...

UPDATE ...

-- Update something

SELECT @iError = @@ERROR, @iCnt = @@ROWCOUNT

-- Check for errors

IF (@iError <> 0)

BEGIN

 RAISERROR (50010, 16, -1, ‘<csp_name>’, ‘Error in UPDATE statement’)

 RETURN -101

END

-- Make sure that at least two rows were altered

ELSE IF (@iCnt < 2)

BEGIN

 RAISERROR (50011, 16, -1, ‘<csp_name>’, ‘Less than two rows updated’)

 RETURN -102

END

Note that @@Error and @@ROWCOUNT were saved to local variables. This is done because doing any kind of check on @@ERROR resets it back to 0 and you will lose the value. If you save off @@ERROR, you need to save the @@ROWCOUNT at the same time because the SELECT to save @@ERROR will set @@ROWCOUNT to 1 and you will lose your original value.

Never use a SELECT statement to return an error code. Use the front-end mechanisms to get the error code from the database.

Never return a result set when an error in the stored procedure is present. Always check that the procedure executes correctly, then return any result sets to the calling application. This saves on network bandwidth.

Errors and Transactions

When in a transaction, rollback the transaction if an error occurs to prevent orphaned locks.

Use RAISERROR whenever possible:

BEGIN

 RAISERROR (50010, 16, -1, ‘SP Error’, ‘SP Error’)

 ROLLBACK TRAN

 RETURN -101

END

xe "SQL 7.0"SQL Server

Stored procedures

The stored procedure model has been enhanced in SQL Server 7.0 to provide improved performance and increased application flexibility.

Query Plan

Microsoft® SQL Server™ version 7.0 introduces significant changes in the way execution plans are managed. There is a much higher chance that individual execution plans will be reused in a SQL Server 7.0 system than in earlier versions.

SQL Server 7.0 has a pool of memory that is used to store both execution plans and data buffers. The percentage of the pool allocated to either execution plans or data buffers fluctuates dynamically depending on the state of the system. The part of the memory pool used to store execution plans is called the procedure cache.

When any SQL statement is executed in SQL Server, the relational engine first looks through the procedure cache to see if there is an existing execution plan for the same SQL statement. SQL Server reuses any existing plan it finds, saving the overhead of recompiling the SQL statement. If there is no existing execution plan, SQL Server goes ahead and generates a new execution plan for the query.
SQL Server has an efficient algorithm to find any existing execution plans for any given SQL statement. In most systems, the minimal resources used by this scan are less than the resources saved by being able to reuse existing plans instead of compiling every SQL statement.

The algorithms to match new SQL statements to existing, unused execution plans in the cache require that all object references be fully qualified. For example, the first of these SELECT statements is not matched with an existing plan, while the second is:

SELECT * FROM Employees

SELECT * FROM Northwind.dbo.Employees
xe "SQL 6.5"

xe "Parameters:SQL7.0 Changes"Parameters

The number of parameters permitted is 1,024 per stored procedure. A cursor data type can be used to pass a cursor value into and out of a stored procedure.

Alter Procedure Statement

The ALTER PROCEDURE Transact-SQL command recompiles a stored procedure without losing permissions, referential integrity or dependency information.

Top Statement

A TOP n [PERCENT] option on SELECT statements will return the first n value(s) of an expression. It may replace the need for SET ROWCOUNT N...SET ROWCOUNT 0. Use...

SELECT TOP @lCnt Emp_Id, fName, lName

 FROM pubs.dbo.Employee

 WHERE (HireDate > @dAfterDateHired)

... instead of ...

SET ROWCOUNT @lCnt

SELECT Emp_Id, fName, lName

 FROM pubs.dbo.Employee

 WHERE (HireDate > @dAfterDateHired)

SET ROWCOUNT 0

The SQL Server Profiler

SQL Server Profiler is a tool that captures Microsoft® SQL Server™ 2000 events from a server. The events are saved in a trace file that can later be analyzed or used to replay a specific series of steps when trying to diagnose a problem. SQL Server Profiler is used for activities such as:

 Stepping through problem queries to find the cause of the problem.

 Finding and diagnosing slow running queries.

 Capturing the series of SQL statements that lead to a problem. The saved trace can then be used to replicate the problem on a test server where the problem can be diagnosed.

· Monitoring the performance of SQL Server to tune workloads.

SQL Profiler also supports auditing the actions performed on instances of SQL Server. Audits record security-related actions for later review by a security administrator. SQL Server 2000 auditing meets C2 security certification requirements.

 SQL Server Query Analyzer

SQL Server Query Analyzer is a Microsoft® Win32® Microsoft Windows® application that is an excellent tool for the ad hoc, interactive execution of Transact-SQL statements and scripts. To use SQL Server Query Analyzer, users must understand Transact-SQL.

In SQL Server Query Analyzer, users enter Transact-SQL statements in a full-text window, execute the statements, and view the results in a results window. Users also can open a text file containing Transact-SQL statements, execute the statements, and view the results in the results window.

SQL Server Query Analyzer also offers excellent tools for determining how Microsoft SQL Server is interpreting and working with a Transact-SQL statement. A user can:

 Display a graphical representation of the execution plan generated for the statement.

 Start the Index Tuning Wizard to determine which indexes can be defined for the underlying tables to optimize the performance of the statement.

 Display statistics about the performance of the statement.

In-Depth DBA Guidelines

A desk side code review is the recommended procedure for performing an In-Depth DBA Review. The developer responsible to ALL of the coding changes should meet with a DBA and the development team supervisor to conduct the In-Depth DBA Review.

The developer should be able to identify every change made to a stored procedure. Tools such as WinDiff can be used to highlight changes more accurately. The purpose of the In-Depth DBA Guidelines is primarily to identify potential performance and concurrency problems generated by new code. A secondary benefit of the In-Depth review is to identify coding bugs and practices that don't conform to the stored procedure guidelines.

All new code should be reviewed. Special attention should be paid to new stored procedures or code that accesses new tables.

JOINS

Make sure that there are n-1 join criteria if there are n tables

Make sure that ALL tables included in the statement are joined

Make sure that only tables that

1) Have columns in the select clause

2) Have columns referenced in the where clause

3) Allow two unrelated tables to be joined together are included.

INDEX SELECTION

Index hints should only be used when a reasonable showplan cannot be achieved without it. A comment must be included to indicate why a hint was included

SELECT STATEMENTS

 A SELECT statement should retrieve only data that is necessary. Columns that are not used or already known should not be returned (e.g., SELECT Emp_Id from Employee where Emp_id = 192).

 SELECT * is not a good coding practice.

 Minimize the number of tables in a join where possible and qualify joins as much as possible, this may eliminate rows in certain table before the join takes place

 Do not use expressions that consist of only variables and / or constants in the where clause (e.g., SELECT Emp_Id from Employee where @localvar = 1)

 Use IF statements instead to check local variables before executing the SELECT statement

 Do not use expressions directly on index columns in a where clause. The optimizer will not be able to use the index.

UNQUALIFIED DELETES

Check that deletes are highly qualified. If you don’t, you could end up deleting more than you intended and your performance could be affected because it might end up doing a table scan.

ERROR HANDLING

Make sure that the @@ERROR global variable is checked after every statement which causes an update to the database (INSERT, UPDATE, DELETE).

Make sure that rollbacks (if appropriate) are performed prior to inserting rows into an exception table

A RETURN should follow any exception processing so that control does not continue through the stored procedure

NEW TABLES

New tables should generally have a primary key and possibly secondary indexes to facilitate quicker access to data. Either the primary key or a secondary index should be chosen to be clustering.

ORDER BY and ROW ORDER

Carefully analyze dependencies on the order of rows. Order is ONLY guaranteed when an ORDER BY clause is included. Selects which rely on data clustered by a certain key without an ORDER BY may not work or may not be efficient if the clustered index on a table is changed. Performing a hash join on a clustered index virtually guarantees that data will be unsorted; unless an ORDER BY statement is used.

UNION vs UNION ALL

Analyze any UNION statements to see if UNION ALL is appropriate. UNION sorts for duplicates.

DISTINCT

Use DISTINCT sparingly.

WORKTABLES

Minimize the use of ORDER BY, DISTINCT, UNION, and INSENSITIVE cursors. This reduces resource consumption in the temp database.

EXISTENCE CHECKING

Use exists where there are several rows in a table either being joined to or just selected from when you just want to know if there are any rows in the table. This saves on I/O's and join processing.

DESIGN

· Try to define the data without making it NULL. Null add an extra two bytes of information per row, per column that has it. It can make searching through columns a little slower.

· Think twice about using varchar fields. An extra two bytes of data is added for each column of variable length. It also makes indexing harder and potentially causes more fragmentation. Try to keep fixed data sizes. There is no reason to have variable length data on sizes less than 4 bytes. I would recommend anything fewer than 50 bytes should be fixed (depending on the variance of the data size).

 Eliminate excessive network traffic.

Network roundtrips between the client and SQL Server are usually the number one reason for poor performance in a database application, an even greater factor than the amount of data transferred between server and client. Network roundtrips describe the conversational traffic sent between the client application and SQL Server for every batch and result set. By making use of stored procedures, you can minimize network roundtrips. For example, if your application takes different actions based on data values received from SQL Server, make those decisions directly in the stored procedure whenever possible, thus eliminating network traffic.

 If a stored procedure has multiple statements, then by default SQL Server sends a message to the client application at the completion of each statement and details the number of rows affected for each statement. Most applications do not need these messages. If you are confident that your applications do not need them, you can disable these messages, which will improve performance on a network. Use the SET NOCOUNT ON session setting to disable these messages for the application.

 Use small result sets.

Retrieving needlessly large result sets (for example, thousands of rows) for browsing on the client adds CPU and network I/O load, makes the application less capable of remote use, and limits multi-user scalability. It is better to design the application to prompt the user for sufficient input so queries are submitted that generates modest result sets.

 Keep transactions as short as possible

 Always process the tables in the same order across all transaction blocks. In other words, if you have two transactions that update tables 1,2 and 3, always update the tables in this order! (deadlock prevention)
· When connected to Microsoft® SQL Server™, Transact-SQL statements that use the following guidelines have a better chance that their execution plans will be reused. For more information, see Execution Plan Caching and Reuse and Building Statements at Run Time.

· Use fully qualified names of objects such as tables and views.

· Instead of directly specifying stored procedure parameter values or the values in search condition predicates, use parameterized queries and supply the parameter values. Use either the parameter substitution in sp_executesql.

sp_executesql was introduced in Microsoft® SQL Server™ version 7.0. Using sp_executesql is recommended over using the EXECUTE statement to execute a string. Not only does the support for parameter substitution make sp_executesql more versatile than EXECUTE, it also makes sp_executesql more efficient because it generates execution plans that are more likely to be reused by SQL Server.

DECLARE @lVariable INT

DECLARE @sSQL NVARCHAR(500)

DECLARE @sParmDefinition NVARCHAR(500)

/* Build the SQL string once. */

SET @sSQL = 'SELECT fname, lname FROM pubs.dbo.employee WHERE job_lvl = @level'

/* Specify the parameter format once. */

SET @sParmDefinition = '@level tinyint'

/* Execute the string with the first parameter value. */

SET @lVariable = 35

EXECUTE sp_executesql @sSQL, @sParmDefinition, @level = @lVariable

/* Execute the same string with the second parameter value. */

SET @lVariable = 32

EXECUTE sp_executesql @sSQL, @sParmDefinition, @level = @lVariable

· Reusing Execution Plans

In earlier versions of SQL Server, the only way to be able to reuse execution plans was to define the Transact-SQL statements as a stored procedure and have the application execute the stored procedure. This generates extra administrative overhead for the applications. Using sp_executesql can help reduce this overhead while still allowing SQL Server to reuse execution plans. sp_executesql can be used instead of stored procedures when executing a Transact-SQL statement a number of times, when the only variation is in the parameter values supplied to the Transact-SQL statement. Because the Transact-SQL statements themselves remain constant and only the parameter values change, the SQL Server query optimizer is likely to reuse the execution plan it generates for the first execution.

· Use sp_executesql when you do not need the overhead of defining stored procedures. Always use sp_executesql instead of a temporary stored procedure.

· Do not keep a transaction outstanding for long periods of time. A long-standing transaction can reduce throughput by holding locks on rows for long times, preventing other connections from accessing the rows in a timely manner.

· Do not keep a result set outstanding for a long period of time. After executing a Transact-SQL batch, fully process or cancel all result sets from the batch as quickly as possible.

· Minimize the numbers of rows returned from a SELECT statement by using the WHERE and HAVING clauses to select only the rows needed by the application.

· Minimize the use of not equal operations, <> or !=. SQL Server has to scan a table or index to find all values to see if they are not equal to the value given in the expression. Try rephrasing the expression using ranges:

WHERE KeyColumn < 'TestValue' AND KeyColumn > 'TestValue'

· Use advanced features available in Transact-SQL to perform work in one batch on the server instead of pulling the results to the application and then using them to send another Transact-SQL statement to SQL Server.

· Use variables and control-of-flow statements to build logic into batches, stored procedures, and triggers instead of pulling large result sets to the client and performing the logic there. Use constructs such as CASE to include logic in individual Transact-SQL statements.

· Use the UPDATE statement with the FROM clause to update values in one table using values from other tables in one operation instead of selecting the source result set to the client and then updating the target table one row at a time.

· Within a batch, keep all data definition language (DDL) statements for a temporary table together, for example:

/* Example 1. */

CREATE TABLE #temp1 (ColA INT NOT NULL)

CREATE UNIQUE INDEX MyIndex ON #temp1(ColA)

INSERT INTO #temp1 SELECT IntCol FROM mydb.dbo.SomeTable

SELECT * FROM #temp1

GO

/* This is another example of a good batch Example 2. */

CREATE TABLE #temp1 (ColA INT UNIQUE NOT NULL)

INSERT INTO #temp1 SELECT IntCol FROM mydb.dbo.SomeTable

SELECT * FROM #temp1

GO

/* Do not code: Example 3. */

CREATE TABLE #temp1 (ColA INT NOT NULL)

INSERT INTO #temp1 SELECT IntCol FROM mydb.dbo.SomeTable

CREATE UNIQUE INDEX MyIndex ON #temp1(ColA)

SELECT * FROM #temp1

GO
Each time a DDL operation is performed on a temporary table, all batches that refer to it must be recompiled. The query optimizer ensures that the CREATE statements in examples 1 and 2 are done in one operation and the batches are only recompiled once. In example 3, the INSERT statement between the two CREATE statements forces a separate recompile for each CREATE statement.

· Minimize the use of temporary tables as places to store intermediate results in a series of Transact-SQL statements. Some logic is too complex to perform in a single Transact-SQL statement. In these cases, you must code multiple Transact-SQL statements and use temporary tables to pass the results of one statement to the next. Creating and maintaining the temporary tables requires overhead; if possible, consider coding the operation as a single, more complex Transact-SQL statement.

· In SQL Server 7.0, use of temporary tables in stored procedures and triggers may cause the stored procedure or trigger to be recompiled every time it is used. To avoid such recompilation in version 7.0, stored procedures or triggers that use temporary tables must meet the following requirements:

· In the stored procedure or trigger, all statements that contain the name of a temporary table must refer to a temporary table created in the same stored procedure. The temporary table cannot have been created in a calling or called stored procedure, or in a string executed using EXECUTE or sp_executesql.

· All statements that contain the name of a temporary table must appear syntactically after its creation in the stored procedure or trigger.

· The stored procedure or trigger cannot contain any DECLARE CURSOR statement whose SELECT statement references a temporary table.

· All statements that contain the name of any temporary table must precede any DROP TABLE statement that references a temporary table. DROP TABLE statements are not needed for temporary tables created in a stored procedure; the tables are automatically dropped when the procedure terminates.

· No statements creating a temporary table (such as CREATE TABLE or SELECT INTO) may appear in a control-of-flow statement such as IF...ELSE or WHILE.

· To prevent issues with the interpretation of centuries in dates, do not specify years using two digits, for example:

/* Do this. */

SELECT ShipName

 FROM Northwind.dbo.Orders

 WHERE OrderDate > '12/31/1997'

/* Do not do this. */

SELECT ShipName
 FROM Northwind.dbo.Orders

 WHERE OrderDate > '12/31/97'

Reference:
A
Administration

Change Management
27

Database
5

Project
5

Project Testing
27

C
Code Reviews
24

Commands

DROP TABLE
22

GOTO
15

RETURN
15

Comments
28

Conditions

Negative
19

Cursors
22

D
Datatypes

Dates
17

Testing
26

Deadlocks
17

Developers
5

E
Error Handling
34

Testing
25

I
Indexes
22

Naming Convention
10

Temporary Tables
21

J
Joins
20

N
Named Columns
14

NULLs
13

Testing
26

O
Operators

BEGIN...END
15

BETWEEN
15

DISTINCT
18

EXISTS
17

GROUP BY
18

HAVING
18

IN
15

MAX
17

MIN
17

ORDER BY
18

Precedence
16

UNION
18, 20

Optimizer Hints

INDEX =
22

NOLOCK
17

P
Parameters
18

Assignments
13

Default Values
21

Naming Convention
10

SQL7.0 Changes
36

Testing
26

R
Row Counts
19

S
Search Arguments
16

Security

Testing
27

Showplan
22, 23

SQL 6.5
36

SQL 7.0
36

Stored Procedure

Benefits
7

Naming Convention
10

T
Tables

Naming Convention
9

Temporary Tables
21

Testing
5

Negative Testing
25

Positive Testing
25

Test Plans
25

Transactions
33

Testing
25

V
Variables

Globals
10

Naming Convention
10

Views

Naming Convention
9

Appendix A: RAISERROR

Returns a user-defined error message and sets a system flag to record that an error has occurred. Using RAISERROR, the client can either retrieve an entry from the sysmessages table or build a message dynamically with user-specified severity and state information. After the message is defined it is sent back to the client as a server error message.

Syntax

RAISERROR ({msg_id | msg_str}{, severity, state}[, argument [, ...n]])[WITH option[,...n]]

Arguments

msg_id

Is a user-defined error message stored in the sysmessages table. Error numbers for user-defined error messages should be greater than 50,000. Ad hoc messages raise an error of 50,000. The maximum value for msg_id is 2,147,483,647 (2 (31) - 1).

msg_str

Is an ad hoc message with formatting similar to the PRINTF format style used in C. The error message can have as many as 8,000 characters. All ad hoc messages have a standard message ID of 14,000.

This format is supported for msg_str:

% [[flag] [width] [precision] [{h | l}]] type

The parameters that can be used in msg_str are:

flag

Is a code that determines the spacing and justification of the user-defined error message.

	Code
	Prefix or justification
	Description

	- (minus)
	Left-justified
	Left-justify the result within the given field width.

	+ (plus)
	+ (plus) or - (minus) prefix
	Preface the output value with a + or - sign if the output value is of signed type.

	0 (zero)
	Zero padding
	If width is prefaced with 0, zeros are added until the minimum width is reached. When 0 and - appear, 0 is ignored. When 0 is specified with an integer format (i, u, x, X, o, d), 0 is ignored.

	# (number)
	0x prefix for hexadecimal type of x or X
	When used with the o, x, or X format, the # flag prefaces any nonzero value with 0, 0x, or 0X, respectively. When d, i, or u are prefaced by the # flag, the flag is ignored.

	‘ ‘ (blank)
	Space padding
	Preface the output value with blank spaces if the value is signed and positive. This is ignored when included with the + flag.

width

Is an integer defining the minimum width. An asterisk (*) allows precision to determine the width.

precision

Is the maximum number of characters printed for the output field or the minimum number of digits printed for integer values. An asterisk (*) allows argument to determine the precision.

{h | l} type

Is used with types d, i, o, x, X, or u, and creates short int (h) or long int (l) values.

	PRIVATECharacter type
	Represents

	d or i
	Signed integer

	o
	Unsigned octal

	p
	Pointer

	s
	String

	u
	Unsigned integer

	x or X
	Unsigned hexadecimal

Note: The float, double-, and single-character types are not supported.

severity

Is the user-defined severity level associated with this message. Any user can use severity levels from 0 through 18. Only members of the sysadmin fixed server role use severity levels 19 through 25. For severity levels 19 through 25, the WITH LOG option is required.

Caution Severity levels 20 through 25 are considered fatal. If a fatal severity level is encountered, the client connection is terminated after receiving the message, and the error is logged in the error log and the application log.

state

Is an arbitrary integer from 1 through 127 that represents information about the invocation state of the error. A negative value for state defaults to 1.

argument

Is the parameters used in the substitution for variables defined in msg_str or the message corresponding to msg_id. There can be 0 or more substitution parameters; however, the total number of substitution parameters cannot exceed 20. Each substitution parameter can be a local variable or any of these data types: int1, int2, int4, char, varchar, binary, or varbinary. No other data types are supported.

option

Is a custom option for the error. option can be one of these values.

	PRIVATEValue
	Description

	LOG
	Logs the error in the server error log and the application log. Errors logged in the server error log are currently limited to a maximum of 440 bytes.

	NOWAIT
	Sends messages immediately to the client.

	SETERROR
	Sets @@ERROR value to msg_id or 50000, regardless of the severity level.

Remarks

If a sysmessages error is used and the message was created using the format shown for msg_str, the supplied arguments (argument1, argument2, and so on) are passed to the message of the supplied msg_id.

When you use RAISERROR to create and return user-defined error messages, use sp_addmessage to add user-defined error messages and sp_dropmessage to delete user-defined error messages.

When an error is raised, the error number is placed in the @@ERROR function, which stores the most recently generated error number. @@ERROR is set to 0 by default for messages with a severity of 1 through 10.

Appendix B: RAISERROR Example Code

Update Example:

UPDATE slsdb002.dbo.slstesk_prc

 SET REG_PRC = @lReg_prc,

 SKU_SRP_PRC = @lSku_Srp_Prc,

 CURR_PRC = @lCurr_prc,

 SKU_CURR_PRC = @lSku_Curr_Prc

 WHERE ESKU_ID = @lEsku_id

/*

** Check for an error. Note, it is very important that you save @@ERROR

** because it will be reset with the IF statement.

*/

SELECT @lError = @@ERROR, @lCnt = @@ROWCOUNT

IF @lError <> 0 OR @lCnt = 0

BEGIN

IF @lError <> 0

BEGIN

-- Ok, we encountered an error. Call raiserror using error number

-- 54321 which translates to: MyProc: updating ESKU_ID %d. Error No: %d

RAISERROR (54321, 16, 1, @lEsku_id, @lError) WITH NOWAIT

END

ELSE

BEGIN

IF @lCnt = 0

BEGIN

-- Since we got here, we tried to update an item in the database

-- that did not exist. Call raiserror using error number 54322

-- which translates to: MyProc: ESKU_ID %d not found during update

-- process.

RAISERROR (54322, 16, 1, @lEsku_id)

SET @lError = -101

END

END

RETURN @lError

END

Insert Example:

INSERT INTO slsdb002.dbo.slstfvp_avail_cd

 (

 esku_id,

 esku_avail_cd,

 aprvd_flg

)

 VALUES

 (

 @lEsku_id,

 @sEsku_avail_cd,

 @fAprvd_flg

)

SELECT @lError = @@ERROR, @lCnt = @@ROWCOUNT

IF @lError <> 0 OR @lCnt <> 1

BEGIN

-- We encountered an error. Call raiserror using error number 54322

-- which translates to: MyProc: could not insert avail record for

-- ESKU_ID %d. Error # = %d, rowcount = %d

RAISERROR (54323, 25, 1, @lEsku_id, @lError, @lCnt)

END

Delete Example:

DELETE FROM slsdb002.dbo.slstfvp_inv

 WHERE esku_id = @lEsku_id

SELECT @lError = @@ERROR, @lCnt = @@ROWCOUNT

IF @lError <> 0 OR @lCnt <> 1

BEGIN

-- Failed to delete record. Call raiserror using error # 54324 which

-- translates to csp_MyProc: failed to delete Esku_id %d from slstfvp_inv

-- table.

RAISERROR (54324, 25, 1, @lError, @lCnt)

END

Appendix C: Example stored procedure

/*++

<storedproc name="csp_CreateClientSession" version="1.3">

<summary>

This SP creates a new client session. It creates a new record in SLSTCSN table, gets its Identity and uses it to create a new record in CustomerHdr.

</summary>

<parameters>

<parameter name="@sSESSN_ID" type="char(64)" direction="in">

Internet Session ID
</parameter>

<parameter name="@sCHK_ID" type="varchar(64)" direction="in" default="">

This is the check id that is used to see if the user is trying to change the session id out from under us to get other user information.

</parameter>

<parameters>

<returns type="long">

A single record gets returned to the caller with the SessionID and CustHdrID. Note that both of these are identity columns. The return values from this stored proc are:

<return value="0">Success</return>

<return value="1">Could not insert new record into SLSTCSN</return>

<return value="2">Could not insert new record into CustomerHdr</return>

</returns>

<histories>

 <history author="George Huey" date="02/14/2000">Original Creation</history>

</histories>

<example>This code is an example from ASP
 <code>

 SetConnectionString _

 "DRIVER={SQL Server};SERVER=(local);DATABASE=rag_mid;UID=sa;PWD="

 vtParams = Array(_

 Array("@sCHK_ID", cLng(adChar), adParamInput, 64, vID), _

 Array("@sCHK_ID", cLng(adVarChar), adParamInput, 64, vCK) _

)

 Set rs = RunSPReturnRS("rag_mid.. csp_CreateClientSession", nSpRetVal, vtParams)

 Response.Write rs("SessionID")

 rs.Close

Set rs = Nothing

</code>

</example>

<remarks></remarks>

</storedproc>

--*/

CREATE PROCEDURE csp_CreateClientSession

(

 @sSESSN_ID char(64),

 @sCHK_ID varchar(64) = ''

)

AS

SET NOCOUNT ON

DECLARE @lSessn_Idx int

DECLARE @lCust_Hdr_Id int

DECLARE @dAccess datetime

DECLARE @lError int

DECLARE @lCnt int

SET @dAccess = GetDate()

-- Ok, the first thing we need to do is insert a new client session record.

INSERT INTO SLSTCSN (SESSN_ID,

CHK_ID,

CUST_ID,

TABL_ACCESS_CNT,

SSL_SEL_FLG,

REC_CREATE_TS,

REC_UPD_TS)

VALUES

(@sSESSN_ID,

@sCHK_ID,

0,

0,

'N',

@dAccess,

@dAccess)

-- Always check for an error.

-- Note, you MUST save @@ERROR into a local variable because it

-- Gets reset back to 0 on the IF statement

SELECT @lError = @@ERROR, @lCnt = @@ROWCOUNT

IF @lError <> 0 OR @lCnt = 0

BEGIN

RAISERROR ('Could not insert new record into SLSTCSN', 16, 1) WITH NOWAIT

IF @lError = 0

BEGIN

SET @lError = -101

END

RETURN @lError

END

-- Get SESSN_IDX (which is held in @@IDENTITY). We will use this value to create

-- a relationship with the CustomerHdr table and to return to the caller.

SELECT @lSessn_Idx = @@IDENTITY

INSERT INTO CustomerHdr (SESSN_IDX,

CUST_ID,

CUST_FULL_NM)

VALUES

(@lSessn_Idx,

0,

'')

-- Always check for an error.

-- Note, you MUST save @@ERROR into a local variable because it

-- Gets reset back to 0 on the IF statement

SELECT @lError = @@ERROR, @lCnt = @@ROWCOUNT

IF @lError <> 0 OR @lCnt = 0

BEGIN

RAISERROR ('Could not insert new record into CustomerHdr', 16, 1) WITH NOWAIT

IF @lError = 0

BEGIN

SET @lError = -102

END

RETURN @lError

END

-- Get Cust_Hdr_Id (which is also an identity column). We will be returning this

-- value to the caller.

SELECT @lCust_Hdr_Id = @@IDENTITY

-- Return the two new IDs to the caller.

SELECT SessionID = @lSessn_Idx, CustHdrID = @lCust_Hdr_Id

RETURN 0
� A set of SQL Server-supplied stored procedures that can be used for actions such as retrieving information from the system catalog or performing administration tasks.

� While NOLOCK is a useful and valid mechanism for improving performance for most queries, this rule may be dangerous for the sake of transactional integrity. For instance, if there is any set of statements that need to be executed within a transaction, NOLOCK may not be appropriate to use. Transactional and data integrity is one of the key reasons why we use relational database technology, and we should be careful before discouraging its use.

Last Updated: May 29, 2008
Version 1.7
Page 5 of 5

