
CV Reference Manual 

 

• Image Processing  

o Gradients, Edges and Corners  

o Sampling, Interpolation and Geometrical Transforms  

o Morphological Operations  

o Filters and Color Conversion  

o Pyramids and the Applications  

o Image Segmentation, Connected Components and Contour Retrieval  

o Image and Contour Moments  

o Special Image Transforms  

o Histograms  

o Matching  

• Structural Analysis  

o Contour Processing  

o Computational Geometry  

o Planar Subdivisions  

• Motion Analysis and Object Tracking  

o Accumulation of Background Statistics  

o Motion Templates  

o Object Tracking  

o Optical Flow  

o Estimators  

• Pattern Recognition  

o Object Detection  

• Camera Calibration and 3D Reconstruction  

o Camera Calibration  

o Pose Estimation  

o Epipolar Geometry  

• Alphabetical List of Functions  

• Bibliography  

 

Image Processing 

Note: 

The chapter describes functions for image processing and analysis. Most of the functions work with 2d arrays of pixels. 

We refer the arrays as "images" however they do not neccesserily have to be IplImage’s, they may be CvMat’s or 

CvMatND’s as well.  

 

Gradients, Edges and Corners 

 

Sobel 
Calculates first, second, third or mixed image derivatives using extended Sobel operator 

void cvSobel( const CvArr* src, CvArr* dst, int xorder, int yorder, int aperture_size=3 ); 
src  

Source image.  
dst  

Destination image.  
xorder  

Order of the derivative x .  
yorder  

Order of the derivative y .  



aperture_size  
Size of the extended Sobel kernel, must be 1, 3, 5 or 7. In all cases except 1, aperture_size ×aperture_size 

separable kernel will be used to calculate the derivative. For aperture_size=1 3x1 or 1x3 kernel is used 

(Gaussian smoothing is not done). There is also special value CV_SCHARR (=-1) that corresponds to 3x3 Scharr 

filter that may give more accurate results than 3x3 Sobel. Scharr aperture is:  

| -3 0  3| 

|-10 0 10| 

| -3 0  3| 

for x-derivative or transposed for y-derivative.  

The function cvSobel calculates the image derivative by convolving the image with the appropriate kernel: 

dst(x,y) = dxorder+yodersrc/dxxorder•dyyorder |(x,y) 

The Sobel operators combine Gaussian smoothing and differentiation so the result is more or less robust to the noise. 

Most often, the function is called with (xorder=1, yorder=0, aperture_size=3) or (xorder=0, yorder=1, aperture_size=3) to 

calculate first x- or y- image derivative. The first case corresponds to  

  |-1  0  1| 

  |-2  0  2| 

  |-1  0  1| 

kernel and the second one corresponds to 

  |-1 -2 -1| 

  | 0  0  0| 

  | 1  2  1| 

or 

  | 1  2  1| 

  | 0  0  0| 

  |-1 -2 -1| 

kernel, depending on the image origin (origin field of IplImage structure). No scaling is done, so the destination image 

usually has larger by absolute value numbers than the source image. To avoid overflow, the function requires 16-bit 

destination image if the source image is 8-bit. The result can be converted back to 8-bit using cvConvertScale or 

cvConvertScaleAbs functions. Besides 8-bit images the function can process 32-bit floating-point images. Both 

source and destination must be single-channel images of equal size or ROI size.  

 

Laplace 
Calculates Laplacian of the image 

void cvLaplace( const CvArr* src, CvArr* dst, int aperture_size=3 ); 
src  

Source image.  
dst  

Destination image.  
aperture_size  

Aperture size (it has the same meaning as in cvSobel).  

The function cvLaplace calculates Laplacian of the source image by summing second x- and y- derivatives calculated 

using Sobel operator: 

dst(x,y) = d2src/dx2 + d2src/dy2 

Specifying aperture_size=1 gives the fastest variant that is equal to convolving the image with the following kernel: 

|0  1  0| 

|1 -4  1| 

|0  1  0| 

Similar to cvSobel function, no scaling is done and the same combinations of input and output formats are supported.  

 



Canny 
Implements Canny algorithm for edge detection 

void cvCanny( const CvArr* image, CvArr* edges, double threshold1, 

              double threshold2, int aperture_size=3 ); 
image  

Input image.  
edges  

Image to store the edges found by the function.  
threshold1  

The first threshold.  
threshold2  

The second threshold.  
aperture_size  

Aperture parameter for Sobel operator (see cvSobel).  

The function cvCanny finds the edges on the input image image and marks them in the output image edges using the 

Canny algorithm. The smallest of threshold1 and threshold2 is used for edge linking, the largest - to find initial 

segments of strong edges. 

 

PreCornerDetect 
Calculates feature map for corner detection 

void cvPreCornerDetect( const CvArr* image, CvArr* corners, int aperture_size=3 ); 
image  

Input image.  
corners  

Image to store the corner candidates.  
aperture_size  

Aperture parameter for Sobel operator (see cvSobel).  

The function cvPreCornerDetect calculates the function Dx
2Dyy+Dy

2Dxx - 2DxDyDxy where D? denotes one of the first image 

derivatives and D?? denotes a second image derivative. The corners can be found as local maximums of the function: 

// assume that the image is floating-point 

IplImage* corners = cvCloneImage(image); 

IplImage* dilated_corners = cvCloneImage(image); 

IplImage* corner_mask = cvCreateImage( cvGetSize(image), 8, 1 ); 

cvPreCornerDetect( image, corners, 3 ); 

cvDilate( corners, dilated_corners, 0, 1 ); 

cvSubS( corners, dilated_corners, corners ); 

cvCmpS( corners, 0, corner_mask, CV_CMP_GE ); 

cvReleaseImage( &corners ); 

cvReleaseImage( &dilated_corners ); 

 

CornerEigenValsAndVecs 
Calculates eigenvalues and eigenvectors of image blocks for corner detection 

void cvCornerEigenValsAndVecs( const CvArr* image, CvArr* eigenvv, 

                               int block_size, int aperture_size=3 ); 
image  

Input image.  
eigenvv  

Image to store the results. It must be 6 times wider than the input image.  
block_size  

Neighborhood size (see discussion).  
aperture_size  

Aperture parameter for Sobel operator (see cvSobel).  

For every pixel The function cvCornerEigenValsAndVecs considers block_size × block_size neigborhood S(p). It 

calcualtes covariation matrix of derivatives over the neigborhood as: 



    | sumS(p)(dI/dx)
2   sumS(p)(dI/dx•dI/dy)| 

M = |                                 | 

    | sumS(p)(dI/dx•dI/dy)  sumS(p)(dI/dy)
2 | 

After that it finds eigenvectors and eigenvalues of the matrix and stores them into destination image in form (λ1, λ2, x1, 

y1, x2, y2), where 

λ1, λ2 - eigenvalues of M; not sorted 

(x1, y1) - eigenvector corresponding to λ1 

(x2, y2) - eigenvector corresponding to λ2 

 

CornerMinEigenVal 
Calculates minimal eigenvalue of gradient matrices for corner detection 

void cvCornerMinEigenVal( const CvArr* image, CvArr* eigenval, int block_size, int aperture_size=3 ); 
image  

Input image.  
eigenval  

Image to store the minimal eigen values. Should have the same size as image  
block_size  

Neighborhood size (see discussion of cvCornerEigenValsAndVecs).  
aperture_size  

Aperture parameter for Sobel operator (see cvSobel). format. In the case of floating-point input format this 

parameter is the number of the fixed float filter used for differencing.  

The function cvCornerMinEigenVal is similar to cvCornerEigenValsAndVecs but it calculates and stores only the minimal 

eigen value of derivative covariation matrix for every pixel, i.e. min(λ1, λ2) in terms of the previous function.  

 

CornerHarris 
Harris edge detector 

void cvCornerHarris( const CvArr* image, CvArr* harris_responce, 

                     int block_size, int aperture_size=3, double k=0.04 ); 
image  

Input image.  
harris_responce  

Image to store the Harris detector responces. Should have the same size as image  
block_size  

Neighborhood size (see discussion of cvCornerEigenValsAndVecs).  
aperture_size  

Aperture parameter for Sobel operator (see cvSobel). format. In the case of floating-point input format this 

parameter is the number of the fixed float filter used for differencing.  
k  

Harris detector free parameter. See the formula below.  

The function cvCornerHarris runs the Harris edge detector on image. Similarly to cvCornerMinEigenVal and 

cvCornerEigenValsAndVecs, for each pixel it calculates 2x2 gradient covariation matrix M over block_size×block_size 

neighborhood. Then, it stores 

det(M) - k*trace(M)2 

to the destination image. Corners in the image can be found as local maxima of the destination image.  

 

FindCornerSubPix 
Refines corner locations 

void cvFindCornerSubPix( const CvArr* image, CvPoint2D32f* corners, 

                         int count, CvSize win, CvSize zero_zone, 

                         CvTermCriteria criteria ); 
image  



Input image.  
corners  

Initial coordinates of the input corners and refined coordinates on output.  
count  

Number of corners.  
win  

Half sizes of the search window. For example, if win=(5,5) then 5*2+1 × 5*2+1 = 11 × 11 search window is 

used.  
zero_zone  

Half size of the dead region in the middle of the search zone over which the summation in formulae below is 

not done. It is used sometimes to avoid possible singularities of the autocorrelation matrix. The value of (-1,-

1) indicates that there is no such size.  
criteria  

Criteria for termination of the iterative process of corner refinement. That is, the process of corner position 

refinement stops either after certain number of iteration or when a required accuracy is achieved. The 

criteria may specify either of or both the maximum number of iteration and the required accuracy.  

The function cvFindCornerSubPix iterates to find the sub-pixel accurate location of corners, or radial saddle points, as 

shown in on the picture below. 

 

Sub-pixel accurate corner locator is based on the observation that every vector from the center q to a point p located 

within a neighborhood of q is orthogonal to the image gradient at p subject to image and measurement noise. Consider 

the expression:  

εi=DIpi
T•(q-pi) 

where DIpi is the image gradient at the one of the points pi in a neighborhood of q. The value of q is to be found such 

that εi is minimized. A system of equations may be set up with εi' set to zero:  

sumi(DIpi•DIpi
T)•q - sumi(DIpi•DIpi

T•pi) = 0 

where the gradients are summed within a neighborhood ("search window") of q. Calling the first gradient term G and the 

second gradient term b gives: 

q=G-1•b 

The algorithm sets the center of the neighborhood window at this new center q and then iterates until the center keeps 

within a set threshold.  

 

GoodFeaturesToTrack 
Determines strong corners on image 

void cvGoodFeaturesToTrack( const CvArr* image, CvArr* eig_image, CvArr* temp_image, 

                            CvPoint2D32f* corners, int* corner_count, 

                            double quality_level, double min_distance, 

                            const CvArr* mask=NULL, int block_size=3, 



                            int use_harris=0, double k=0.04 ); 
image  

The source 8-bit or floating-point 32-bit, single-channel image.  
eig_image  

Temporary floating-point 32-bit image of the same size as image.  
temp_image  

Another temporary image of the same size and same format as eig_image.  
corners  

Output parameter. Detected corners.  
corner_count  

Output parameter. Number of detected corners.  
quality_level  

Multiplier for the maxmin eigenvalue; specifies minimal accepted quality of image corners.  
min_distance  

Limit, specifying minimum possible distance between returned corners; Euclidian distance is used.  
mask  

Region of interest. The function selects points either in the specified region or in the whole image if the mask 

is NULL.  
block_size  

Size of the averaging block, passed to underlying cvCornerMinEigenVal or cvCornerHarris used by the 

function.  
use_harris  

If nonzero, Harris operator (cvCornerHarris) is used instead of default cvCornerMinEigenVal.  
k  

Free parameter of Harris detector; used only if use_harris≠0  

The function cvGoodFeaturesToTrack finds corners with big eigenvalues in the image. The function first calculates the 

minimal eigenvalue for every source image pixel using cvCornerMinEigenVal function and stores them in eig_image. 

Then it performs non-maxima suppression (only local maxima in 3x3 neighborhood remain). The next step is rejecting 

the corners with the minimal eigenvalue less than quality_level•max(eig_image(x,y)). Finally, the function ensures that 

all the corners found are distanced enough one from another by considering the corners (the most strongest corners 

are considered first) and checking that the distance between the newly considered feature and the features considered 

earlier is larger than min_distance. So, the function removes the features than are too close to the stronger features. 

 

Sampling, Interpolation and Geometrical Transforms 

 

SampleLine 
Reads raster line to buffer 

int cvSampleLine( const CvArr* image, CvPoint pt1, CvPoint pt2, 

                  void* buffer, int connectivity=8 ); 
image  

Image to sample the line from.  
pt1  

Starting the line point.  
pt2  

Ending the line point.  
buffer  

Buffer to store the line points; must have enough size to store max( |pt2.x-pt1.x|+1, |pt2.y-pt1.y|+1 ) 

points in case of 8-connected line and |pt2.x-pt1.x|+|pt2.y-pt1.y|+1 in case of 4-connected line.  
connectivity  

The line connectivity, 4 or 8.  

The function cvSampleLine implements a particular case of application of line iterators. The function reads all the image 

points lying on the line between pt1 and pt2, including the ending points, and stores them into the buffer. 

 

GetRectSubPix 
Retrieves pixel rectangle from image with sub-pixel accuracy 



void cvGetRectSubPix( const CvArr* src, CvArr* dst, CvPoint2D32f center ); 
src  

Source image.  
dst  

Extracted rectangle.  
center  

Floating point coordinates of the extracted rectangle center within the source image. The center must be 

inside the image.  

The function cvGetRectSubPix extracts pixels from src: 

dst(x, y) = src(x + center.x - (width(dst)-1)*0.5, y + center.y - (height(dst)-1)*0.5) 

where the values of pixels at non-integer coordinates are retrieved using bilinear interpolation. Every channel of 

multiple-channel images is processed independently. Whereas the rectangle center must be inside the image, the 

whole rectangle may be partially occluded. In this case, the replication border mode is used to get pixel values beyond 

the image boundaries.  

 

GetQuadrangleSubPix 
Retrieves pixel quadrangle from image with sub-pixel accuracy 

void cvGetQuadrangleSubPix( const CvArr* src, CvArr* dst, const CvMat* map_matrix ); 
src  

Source image.  
dst  

Extracted quadrangle.  
map_matrix  

The transformation 2 × 3 matrix [A|b] (see the discussion).  

The function cvGetQuadrangleSubPix extracts pixels from src at sub-pixel accuracy and stores them to dst as follows: 

dst(x, y)= src( A11x'+A12y'+b1, A21x'+A22y'+b2), 

 

where A and b are taken from map_matrix 

             | A11 A12  b1 | 

map_matrix = |            | 

             | A21 A22  b2 |, 

 

x'=x-(width(dst)-1)*0.5, y'=y-(height(dst)-1)*0.5 

where the values of pixels at non-integer coordinates A•(x,y)T+b are retrieved using bilinear interpolation. When the 

function needs pixels outside of the image, it uses replication border mode to reconstruct the values. Every channel of 

multiple-channel images is processed independently. 

 

Resize 
Resizes image 

void cvResize( const CvArr* src, CvArr* dst, int interpolation=CV_INTER_LINEAR ); 
src  

Source image.  
dst  

Destination image.  
interpolation  

Interpolation method:  

• CV_INTER_NN - nearest-neigbor interpolation,  

• CV_INTER_LINEAR - bilinear interpolation (used by default)  



• CV_INTER_AREA - resampling using pixel area relation. It is preferred method for image decimation 

that gives moire-free results. In case of zooming it is similar to CV_INTER_NN method.  

• CV_INTER_CUBIC - bicubic interpolation.  

The function cvResize resizes image src so that it fits exactly to dst. If ROI is set, the function consideres the ROI as 

supported as usual. 

 

WarpAffine 
Applies affine transformation to the image 

void cvWarpAffine( const CvArr* src, CvArr* dst, const CvMat* map_matrix, 

                   int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS, 

                   CvScalar fillval=cvScalarAll(0) ); 
src  

Source image.  
dst  

Destination image.  
map_matrix  

2×3 transformation matrix.  
flags  

A combination of interpolation method and the following optional flags:  

• CV_WARP_FILL_OUTLIERS - fill all the destination image pixels. If some of them correspond to 

outliers in the source image, they are set to fillval.  

• CV_WARP_INVERSE_MAP - indicates that matrix is inverse transform from destination image to 

source and, thus, can be used directly for pixel interpolation. Otherwise, the function finds the 

inverse transform from map_matrix.  

fillval  
A value used to fill outliers.  

The function cvWarpAffine transforms source image using the specified matrix: 

dst(x’,y’)<-src(x,y) 

(x’,y’)T=map_matrix•(x,y,1)T+b if CV_WARP_INVERSE_MAP is not set, 

(x, y)T=map_matrix•(x’,y&apos,1)T+b otherwise 

The function is similar to cvGetQuadrangleSubPix but they are not exactly the same. cvWarpAffine requires input and 

output image have the same data type, has larger overhead (so it is not quite suitable for small images) and can leave 

part of destination image unchanged. While cvGetQuadrangleSubPix may extract quadrangles from 8-bit images into 

floating-point buffer, has smaller overhead and always changes the whole destination image content.  

To transform a sparse set of points, use cvTransform function from cxcore. 

 

GetAffineTransform 
Calculates affine transform from 3 corresponding points 

CvMat* cvGetAffineTransform( const CvPoint2D32f* src, const CvPoint2D32f* dst,  

                             CvMat* map_matrix ); 
src  

Coordinates of 3 triangle vertices in the source image.  
dst  

Coordinates of the 3 corresponding triangle vertices in the destination image.  
map_matrix  

Pointer to the destination 2×3 matrix.  

The function cvGetAffineTransform calculates the matrix of an affine transform such that: 



(x'i,y'i)
T=map_matrix•(xi,yi,1)

T 

where dst(i)=(x'i,y'i), src(i)=(xi,yi), i=0..2. 

 

2DRotationMatrix 
Calculates affine matrix of 2d rotation 

CvMat* cv2DRotationMatrix( CvPoint2D32f center, double angle, 

                           double scale, CvMat* map_matrix ); 
center  

Center of the rotation in the source image.  
angle  

The rotation angle in degrees. Positive values mean couter-clockwise rotation (the coordiate origin is 

assumed at top-left corner).  
scale  

Isotropic scale factor.  
map_matrix  

Pointer to the destination 2×3 matrix.  

The function cv2DRotationMatrix calculates matrix: 

[  α  β  |  (1-α)*center.x - β*center.y ] 

[ -β  α  |  β*center.x + (1-α)*center.y ] 

 

where α=scale*cos(angle), β=scale*sin(angle) 

The transformation maps the rotation center to itself. If this is not the purpose, the shift should be adjusted. 

 

WarpPerspective 
Applies perspective transformation to the image 

void cvWarpPerspective( const CvArr* src, CvArr* dst, const CvMat* map_matrix, 

                        int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS, 

                        CvScalar fillval=cvScalarAll(0) ); 
src  

Source image.  
dst  

Destination image.  
map_matrix  

3×3 transformation matrix.  
flags  

A combination of interpolation method and the following optional flags:  

• CV_WARP_FILL_OUTLIERS - fill all the destination image pixels. If some of them correspond to 

outliers in the source image, they are set to fillval.  

• CV_WARP_INVERSE_MAP - indicates that matrix is inverse transform from destination image to 

source and, thus, can be used directly for pixel interpolation. Otherwise, the function finds the 

inverse transform from map_matrix.  

fillval  
A value used to fill outliers.  

The function cvWarpPerspective transforms source image using the specified matrix: 

dst(x’,y’)<-src(x,y) 

(t•x’,t•y’,t)T=map_matrix•(x,y,1)T+b if CV_WARP_INVERSE_MAP is not set, 

(t•x, t•y, t)T=map_matrix•(x’,y&apos,1)T+b otherwise 



For a sparse set of points use cvPerspectiveTransform function from cxcore. 

 

GetPerspectiveTransform 
Calculates perspective transform from 4 corresponding points 

CvMat* cvGetPerspectiveTransform( const CvPoint2D32f* src, const CvPoint2D32f* dst, 

                                  CvMat* map_matrix ); 

 

#define cvWarpPerspectiveQMatrix cvGetPerspectiveTransform 
src  

Coordinates of 4 quadrangle vertices in the source image.  
dst  

Coordinates of the 4 corresponding quadrangle vertices in the destination image.  
map_matrix  

Pointer to the destination 3×3 matrix.  

The function cvGetPerspectiveTransform calculates matrix of perspective transform such that: 

(ti•x'i,ti•y'i,ti)
T=map_matrix•(xi,yi,1)

T 

where dst(i)=(x'i,y'i), src(i)=(xi,yi), i=0..3. 

 

Remap 
Applies generic geometrical transformation to the image 

void cvRemap( const CvArr* src, CvArr* dst, 

              const CvArr* mapx, const CvArr* mapy, 

              int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS, 

              CvScalar fillval=cvScalarAll(0) ); 
src  

Source image.  
dst  

Destination image.  
mapx  

The map of x-coordinates (32fC1 image).  
mapy  

The map of y-coordinates (32fC1 image).  
flags  

A combination of interpolation method and the following optional flag(s):  

• CV_WARP_FILL_OUTLIERS - fill all the destination image pixels. If some of them correspond to 

outliers in the source image, they are set to fillval.  

fillval  
A value used to fill outliers.  

The function cvRemap transforms source image using the specified map: 

dst(x,y)<-src(mapx(x,y),mapy(x,y)) 

Similar to other geometrical transformations, some interpolation method (specified by user) is used to extract pixels 

with non-integer coordinates.  

 

LogPolar 
Remaps image to log-polar space 



void cvLogPolar( const CvArr* src, CvArr* dst, 

                 CvPoint2D32f center, double M, 

                 int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS ); 
src  

Source image.  
dst  

Destination image.  
center  

The transformation center, where the output precision is maximal.  
M  

Magnitude scale parameter. See below.  
flags  

A combination of interpolation method and the following optional flags:  

• CV_WARP_FILL_OUTLIERS - fill all the destination image pixels. If some of them correspond to 

outliers in the source image, they are set to zeros.  

• CV_WARP_INVERSE_MAP - indicates that matrix is inverse transform from destination image to 

source and, thus, can be used directly for pixel interpolation. Otherwise, the function finds the 

inverse transform from map_matrix.  

fillval  
A value used to fill outliers.  

The function cvLogPolar transforms source image using the following transformation: 

Forward transformation (CV_WARP_INVERSE_MAP is not set): 

dst(phi,rho)<-src(x,y) 

 

Inverse transformation (CV_WARP_INVERSE_MAP is set): 

dst(x,y)<-src(phi,rho), 

 

where rho=M*log(sqrt(x2+y2)) 

      phi=atan(y/x) 

The function emulates the human "foveal" vision and can be used for fast scale and rotation-invariant template 

matching, for object tracking etc. 

Example. Log-polar transformation. 
#include <cv.h> 

#include <highgui.h> 

 

int main(int argc, char** argv) 

{ 

    IplImage* src; 

 

    if( argc == 2 && (src=cvLoadImage(argv[1],1) != 0 ) 

    { 

        IplImage* dst = cvCreateImage( cvSize(256,256), 8, 3 ); 

        IplImage* src2 = cvCreateImage( cvGetSize(src), 8, 3 ); 

        cvLogPolar( src, dst, cvPoint2D32f(src->width/2,src->height/2), 40, 

CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS ); 

        cvLogPolar( dst, src2, cvPoint2D32f(src->width/2,src->height/2), 40, 

CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS+CV_WARP_INVERSE_MAP ); 

        cvNamedWindow( "log-polar", 1 ); 

        cvShowImage( "log-polar", dst ); 

        cvNamedWindow( "inverse log-polar", 1 ); 

        cvShowImage( "inverse log-polar", src2 ); 

        cvWaitKey(); 

    } 

    return 0; 

} 

And this is what the program displays when opencv/samples/c/fruits.jpg is passed to it 



 

 

Morphological Operations 

 

CreateStructuringElementEx 
Creates structuring element 

IplConvKernel* cvCreateStructuringElementEx( int cols, int rows, int anchor_x, int anchor_y, 

                                             int shape, int* values=NULL ); 
cols  

Number of columns in the structuring element.  
rows  

Number of rows in the structuring element.  
anchor_x  

Relative horizontal offset of the anchor point.  
anchor_y  

Relative vertical offset of the anchor point.  
shape  

Shape of the structuring element; may have the following values:  

• CV_SHAPE_RECT, a rectangular element;  

• CV_SHAPE_CROSS, a cross-shaped element;  

• CV_SHAPE_ELLIPSE, an elliptic element;  

• CV_SHAPE_CUSTOM, a user-defined element. In this case the parameter values specifies the mask, that 

is, which neighbors of the pixel must be considered.  

values  
Pointer to the structuring element data, a plane array, representing row-by-row scanning of the element 

matrix. Non-zero values indicate points that belong to the element. If the pointer is NULL, then all values are 

considered non-zero, that is, the element is of a rectangular shape. This parameter is considered only if the 

shape is CV_SHAPE_CUSTOM .  

The function cv CreateStructuringElementEx allocates and fills the structure IplConvKernel, which can be used as a 

structuring element in the morphological operations. 

 

ReleaseStructuringElement 
Deletes structuring element 

void cvReleaseStructuringElement( IplConvKernel** element ); 



element  
Pointer to the deleted structuring element.  

The function cvReleaseStructuringElement releases the structure IplConvKernel that is no longer needed. If *element is 

NULL, the function has no effect. 

 

Erode 
Erodes image by using arbitrary structuring element 

void cvErode( const CvArr* src, CvArr* dst, IplConvKernel* element=NULL, int iterations=1 ); 
src  

Source image.  
dst  

Destination image.  
element  

Structuring element used for erosion. If it is NULL, a 3×3 rectangular structuring element is used.  
iterations  

Number of times erosion is applied.  

The function cvErode erodes the source image using the specified structuring element that determines the shape of a 

pixel neighborhood over which the minimum is taken: 

dst=erode(src,element):  dst(x,y)=min((x',y') in element))src(x+x',y+y') 

The function supports the in-place mode. Erosion can be applied several (iterations) times. In case of color image 

each channel is processed independently. 

 

Dilate 
Dilates image by using arbitrary structuring element 

void cvDilate( const CvArr* src, CvArr* dst, IplConvKernel* element=NULL, int iterations=1 ); 
src  

Source image.  
dst  

Destination image.  
element  

Structuring element used for erosion. If it is NULL, a 3×3 rectangular structuring element is used.  
iterations  

Number of times erosion is applied.  

The function cvDilate dilates the source image using the specified structuring element that determines the shape of a 

pixel neighborhood over which the maximum is taken: 

dst=dilate(src,element):  dst(x,y)=max((x',y') in element))src(x+x',y+y') 

The function supports the in-place mode. Dilation can be applied several (iterations) times. In case of color image 

each channel is processed independently. 

 

MorphologyEx 
Performs advanced morphological transformations 

void cvMorphologyEx( const CvArr* src, CvArr* dst, CvArr* temp, 

                     IplConvKernel* element, int operation, int iterations=1 ); 
src  

Source image.  
dst  



Destination image.  
temp  

Temporary image, required in some cases.  
element  

Structuring element.  
operation  

Type of morphological operation, one of: 

CV_MOP_OPEN - opening 

CV_MOP_CLOSE - closing 

CV_MOP_GRADIENT - morphological gradient 

CV_MOP_TOPHAT - "top hat" 

CV_MOP_BLACKHAT - "black hat" 
iterations  

Number of times erosion and dilation are applied.  

The function cvMorphologyEx can perform advanced morphological transformations using erosion and dilation as basic 

operations. 

Opening: 

dst=open(src,element)=dilate(erode(src,element),element) 

 

Closing: 

dst=close(src,element)=erode(dilate(src,element),element) 

 

Morphological gradient: 

dst=morph_grad(src,element)=dilate(src,element)-erode(src,element) 

 

"Top hat": 

dst=tophat(src,element)=src-open(src,element) 

 

"Black hat": 

dst=blackhat(src,element)=close(src,element)-src 

The temporary image temp is required for morphological gradient and, in case of in-place operation, for "top hat" and 

"black hat".  

 

Filters and Color Conversion 

 

Smooth 
Smooths the image in one of several ways 

void cvSmooth( const CvArr* src, CvArr* dst, 

               int smoothtype=CV_GAUSSIAN, 

               int param1=3, int param2=0, double param3=0, double param4=0 ); 
src  

The source image.  
dst  

The destination image.  
smoothtype  

Type of the smoothing:  

• CV_BLUR_NO_SCALE (simple blur with no scaling) - summation over a pixel param1×param2 

neighborhood. If the neighborhood size may vary, one may precompute integral image with 

cvIntegral function.  

• CV_BLUR (simple blur) - summation over a pixel param1×param2 neighborhood with subsequent 

scaling by 1/(param1•param2).  

• CV_GAUSSIAN (gaussian blur) - convolving image with param1×param2 Gaussian kernel.  

• CV_MEDIAN (median blur) - finding median of param1×param1 neighborhood (i.e. the neighborhood 

is square).  



• CV_BILATERAL (bilateral filter) - applying bilateral 3x3 filtering with color sigma=param1 and space 

sigma=param2. Information about bilateral filtering can be found at 

http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html  

param1  
The first parameter of smoothing operation.  

param2  
The second parameter of smoothing operation. In case of simple scaled/non-scaled and Gaussian blur if 

param2 is zero, it is set to param1.  
param3  

In case of Gaussian kernel this parameter may specify Gaussian sigma (standard deviation). If it is zero, it is 

calculated from the kernel size: 

              sigma = (n/2 - 1)*0.3 + 0.8, where n=param1 for horizontal kernel, 

                                                 n=param2 for vertical kernel. 

               

With the standard sigma for small kernels (3×3 to 7×7) the performance is better. If param3 is not zero, while 

param1 and param2 are zeros, the kernel size is calculated from the sigma (to provide accurate enough 

operation).  
param4  

In case of non-square Gaussian kernel the parameter may be used to specify a different (from param3) sigma 

in the vertical direction.  

The function cvSmooth smooths image using one of several methods. Every of the methods has some features and 

restrictions listed below 

Blur with no scaling works with single-channel images only and supports accumulation of 8-bit to 16-bit format (similar 

to cvSobel and cvLaplace) and 32-bit floating point to 32-bit floating-point format. 

Simple blur and Gaussian blur support 1- or 3-channel, 8-bit and 32-bit floating point images. These two methods can 

process images in-place. 

Median and bilateral filters work with 1- or 3-channel 8-bit images and can not process images in-place. 

 

Filter2D 
Convolves image with the kernel 

void cvFilter2D( const CvArr* src, CvArr* dst, 

                 const CvMat* kernel, 

                 CvPoint anchor=cvPoint(-1,-1)); 
src  

The source image.  
dst  

The destination image.  
kernel  

Convolution kernel, single-channel floating point matrix. If you want to apply different kernels to different 

channels, split the image using cvSplit into separate color planes and process them individually.  
anchor  

The anchor of the kernel that indicates the relative position of a filtered point within the kernel. The anchor 

shoud lie within the kernel. The special default value (-1,-1) means that it is at the kernel center.  

The function cvFilter2D applies arbitrary linear filter to the image. In-place operation is supported. When the aperture is 

partially outside the image, the function interpolates outlier pixel values from the nearest pixels that is inside the image.  

 

CopyMakeBorder 
Copies image and makes border around it 

void cvCopyMakeBorder( const CvArr* src, CvArr* dst, CvPoint offset, 

                       int bordertype, CvScalar value=cvScalarAll(0) ); 
src  



The source image.  
dst  

The destination image.  
offset  

Coordinates of the top-left corner (or bottom-left in case of images with bottom-left origin) of the destination 

image rectangle where the source image (or its ROI) is copied. Size of the rectanlge matches the source 

image size/ROI size.  
bordertype  

Type of the border to create around the copied source image rectangle: 

IPL_BORDER_CONSTANT - border is filled with the fixed value, passed as last parameter of the function. 

IPL_BORDER_REPLICATE - the pixels from the top and bottom rows, the left-most and right-most columns are 

replicated to fill the border. 

(The other two border types from IPL, IPL_BORDER_REFLECT and IPL_BORDER_WRAP, are currently unsupported).  
value  

Value of the border pixels if bordertype=IPL_BORDER_CONSTANT.  

The function cvCopyMakeBorder copies the source 2D array into interior of destination array and makes a border of the 

specified type around the copied area. The function is useful when one needs to emulate border type that is different 

from the one embedded into a specific algorithm implementation. For example, morphological functions, as well as 

most of other filtering functions in OpenCV, internally use replication border type, while the user may need zero border 

or a border, filled with 1's or 255's.  

 

Integral 
Calculates integral images 

void cvIntegral( const CvArr* image, CvArr* sum, CvArr* sqsum=NULL, CvArr* tilted_sum=NULL ); 
image  

The source image, W×H, 8-bit or floating-point (32f or 64f) image.  
sum  

The integral image, W+1×H+1, 32-bit integer or double precision floating-point (64f).  
sqsum  

The integral image for squared pixel values, W+1×H+1, double precision floating-point (64f).  
tilted_sum  

The integral for the image rotated by 45 degrees, W+1×H+1, the same data type as sum.  

The function cvIntegral calculates one or more integral images for the source image as following: 

sum(X,Y)=sumx<X,y<Yimage(x,y) 

 

sqsum(X,Y)=sumx<X,y<Yimage(x,y)
2 

 

tilted_sum(X,Y)=sumy<Y,abs(x-X)<yimage(x,y) 

Using these integral images, one may calculate sum, mean, standard deviation over arbitrary up-right or rotated 

rectangular region of the image in a constant time, for example: 

sumx1<=x<x2,y1<=y<y2image(x,y)=sum(x2,y2)-sum(x1,y2)-sum(x2,y1)+sum(x1,x1) 

It makes possible to do a fast blurring or fast block correlation with variable window size etc. In case of multi-channel 

images sums for each channel are accumulated independently.  

 

CvtColor 
Converts image from one color space to another 

void cvCvtColor( const CvArr* src, CvArr* dst, int code ); 
src  

The source 8-bit (8u), 16-bit (16u) or single-precision floating-point (32f) image.  
dst  

The destination image of the same data type as the source one. The number of channels may be different.  



code  
Color conversion operation that can be specifed using CV_<src_color_space>2<dst_color_space> constants 

(see below).  

The function cvCvtColor converts input image from one color space to another. The function ignores colorModel and 

channelSeq fields of IplImage header, so the source image color space should be specified correctly (including order of 

the channels in case of RGB space, e.g. BGR means 24-bit format with B0 G0 R0 B1 G1 R1 ... layout, whereas RGB 

means 24-bit format with R0 G0 B0 R1 G1 B1 ... layout).  

The conventional range for R,G,B channel values is:  

• 0..255 for 8-bit images  

• 0..65535 for 16-bit images and  

• 0..1 for floating-point images.  

Of course, in case of linear transformations the range can be arbitrary, but in order to get correct results in case of 

non-linear transformations, the input image should be scaled if necessary.  

The function can do the following transformations:  

• Transformations within RGB space like adding/removing alpha channel, reversing the channel order, 

conversion to/from 16-bit RGB color (R5:G6:B5 or R5:G5:B5) color, as well as conversion to/from grayscale 

using:  

• RGB[A]->Gray: Y<-0.299*R + 0.587*G + 0.114*B 

• Gray->RGB[A]: R<-Y G<-Y B<-Y A<-0 

• RGB<=>CIE XYZ.Rec 709 with D65 white point (CV_BGR2XYZ, CV_RGB2XYZ, CV_XYZ2BGR, CV_XYZ2RGB):  

• |X|    |0.412453  0.357580  0.180423| |R| 

• |Y| <- |0.212671  0.715160  0.072169|*|G| 

• |Z|    |0.019334  0.119193  0.950227| |B| 

•  

• |R|    | 3.240479  -1.53715  -0.498535| |X| 

• |G| <- |-0.969256   1.875991  0.041556|*|Y| 

• |B|    | 0.055648  -0.204043  1.057311| |Z| 

•  

• X, Y and Z cover the whole value range (in case of floating-point images Z may exceed 1). 

• RGB<=>YCrCb JPEG (a.k.a. YCC) (CV_BGR2YCrCb, CV_RGB2YCrCb, CV_YCrCb2BGR, CV_YCrCb2RGB)  

• Y <- 0.299*R + 0.587*G + 0.114*B 

• Cr <- (R-Y)*0.713 + delta 

• Cb <- (B-Y)*0.564 + delta 

•  

• R <- Y + 1.403*(Cr - delta) 

• G <- Y - 0.344*(Cr - delta) - 0.714*(Cb - delta) 

• B <- Y + 1.773*(Cb - delta), 

•  

•               { 128 for 8-bit images, 

• where delta = { 32768 for 16-bit images 

•               { 0.5 for floating-point images 

•  

• Y, Cr and Cb cover the whole value range. 

• RGB<=>HSV (CV_BGR2HSV, CV_RGB2HSV, CV_HSV2BGR, CV_HSV2RGB)  

• // In case of 8-bit and 16-bit images 

• // R, G and B are converted to floating-point format and scaled to fit 0..1 range 

•  

• V <- max(R,G,B) 

• S <- (V-min(R,G,B))/V   if V≠0, 0 otherwise 

•  



•          (G - B)*60/S,  if V=R 

• H <- 180+(B - R)*60/S,  if V=G 

•      240+(R - G)*60/S,  if V=B 

•  

• if H<0 then H<-H+360 

•  

• On output 0≤V≤1, 0≤S≤1, 0≤H≤360. 

• The values are then converted to the destination data type: 

•     8-bit images: 

•         V <- V*255, S <- S*255, H <- H/2 (to fit to 0..255) 

•     16-bit images (currently not supported): 

•         V <- V*65535, S <- S*65535, H <- H 

•     32-bit images: 

•         H, S, V are left as is 

• RGB<=>HLS (CV_BGR2HLS, CV_RGB2HLS, CV_HLS2BGR, CV_HLS2RGB)  

• // In case of 8-bit and 16-bit images 

• // R, G and B are converted to floating-point format and scaled to fit 0..1 range 

•  

• Vmax <- max(R,G,B) 

• Vmin <- min(R,G,B) 

•  

• L <- (Vmax + Vmin)/2 

•  

• S <- (Vmax - Vmin)/(Vmax + Vmin)  if L < 0.5 

•      (Vmax - Vmin)/(2 - (Vmax + Vmin))  if L ≥ 0.5 

•  

•          (G - B)*60/S,  if Vmax=R 

• H <- 180+(B - R)*60/S,  if Vmax=G 

•      240+(R - G)*60/S,  if Vmax=B 

•  

• if H<0 then H<-H+360 

•  

• On output 0≤L≤1, 0≤S≤1, 0≤H≤360. 

• The values are then converted to the destination data type: 

•     8-bit images: 

•         L <- L*255, S <- S*255, H <- H/2 

•     16-bit images (currently not supported): 

•         L <- L*65535, S <- S*65535, H <- H 

•     32-bit images: 

•         H, L, S are left as is 

• RGB<=>CIE L*a*b* (CV_BGR2Lab, CV_RGB2Lab, CV_Lab2BGR, CV_Lab2RGB)  

• // In case of 8-bit and 16-bit images 

• // R, G and B are converted to floating-point format and scaled to fit 0..1 range 

•  

• // convert R,G,B to CIE XYZ 

• |X|    |0.412453  0.357580  0.180423| |R| 

• |Y| <- |0.212671  0.715160  0.072169|*|G| 

• |Z|    |0.019334  0.119193  0.950227| |B| 

•  

• X <- X/Xn, where Xn = 0.950456 

• Z <- Z/Zn, where Zn = 1.088754 

•  

• L <- 116*Y1/3      for Y>0.008856 

• L <- 903.3*Y      for Y<=0.008856 

•  



• a <- 500*(f(X)-f(Y)) + delta 

• b <- 200*(f(Y)-f(Z)) + delta 

• where f(t)=t1/3              for t>0.008856 

•       f(t)=7.787*t+16/116   for t<=0.008856 

•  

•  

• where delta = 128 for 8-bit images, 

•               0 for floating-point images 

•  

• On output 0≤L≤100, -127≤a≤127, -127≤b≤127 

• The values are then converted to the destination data type: 

•     8-bit images: 

•         L <- L*255/100, a <- a + 128, b <- b + 128 

•     16-bit images are currently not supported 

•     32-bit images: 

•         L, a, b are left as is 

• RGB<=>CIE L*u*v* (CV_BGR2Luv, CV_RGB2Luv, CV_Luv2BGR, CV_Luv2RGB)  

• // In case of 8-bit and 16-bit images 

• // R, G and B are converted to floating-point format and scaled to fit 0..1 range 

•  

• // convert R,G,B to CIE XYZ 

• |X|    |0.412453  0.357580  0.180423| |R| 

• |Y| <- |0.212671  0.715160  0.072169|*|G| 

• |Z|    |0.019334  0.119193  0.950227| |B| 

•  

• L <- 116*Y1/3-16   for Y>0.008856 

• L <- 903.3*Y      for Y<=0.008856 

•  

• u' <- 4*X/(X + 15*Y + 3*Z) 

• v' <- 9*Y/(X + 15*Y + 3*Z) 

•  

• u <- 13*L*(u' - un), where un=0.19793943 

• v <- 13*L*(v' - vn), where vn=0.46831096 

•  

• On output 0≤L≤100, -134≤u≤220, -140≤v≤122 

• The values are then converted to the destination data type: 

•     8-bit images: 

•         L <- L*255/100, u <- (u + 134)*255/354, v <- (v + 140)*255/256 

•     16-bit images are currently not supported 

•     32-bit images: 

•         L, u, v are left as is 

The above formulae for converting RGB to/from various color spaces have been taken from multiple sources 

on Web, primarily from Color Space Conversions ([Ford98]) document at Charles Poynton site.  

• Bayer=>RGB (CV_BayerBG2BGR, CV_BayerGB2BGR, CV_BayerRG2BGR, CV_BayerGR2BGR, 

CV_BayerBG2RGB, CV_BayerGB2RGB, CV_BayerRG2RGB, CV_BayerGR2RGB)  

Bayer pattern is widely used in CCD and CMOS cameras. It allows to get color picture out of a single plane 

where R,G and B pixels (sensors of a particular component) are interleaved like this: 

R G R G R 

G B G B G 

R G R G R 

G B G B G 



R G R G R 

G B G B G 

The output RGB components of a pixel are interpolated from 1, 2 or 4 neighbors of the pixel having the same 

color. There are several modifications of the above pattern that can be achieved by shifting the pattern one 

pixel left and/or one pixel up. The two letters C1 and C2 in the conversion constants 

CV_BayerC1C22{BGR|RGB} indicate the particular pattern type - these are components from the second row, 

second and third columns, respectively. For example, the above pattern has very popular "BG" type. 

 

Threshold 
Applies fixed-level threshold to array elements 

void cvThreshold( const CvArr* src, CvArr* dst, double threshold, 

                  double max_value, int threshold_type ); 
src  

Source array (single-channel, 8-bit of 32-bit floating point).  
dst  

Destination array; must be either the same type as src or 8-bit.  
threshold  

Threshold value.  
max_value  

Maximum value to use with CV_THRESH_BINARY and CV_THRESH_BINARY_INV thresholding types.  
threshold_type  

Thresholding type (see the discussion)  

The function cvThreshold applies fixed-level thresholding to single-channel array. The function is typically used to get 

bi-level (binary) image out of grayscale image (cvCmpS could be also used for this purpose) or for removing a noise, 

i.e. filtering out pixels with too small or too large values. There are several types of thresholding the function supports 

that are determined by threshold_type: 

threshold_type=CV_THRESH_BINARY: 

dst(x,y) = max_value, if src(x,y)>threshold 

           0, otherwise 

 

threshold_type=CV_THRESH_BINARY_INV: 

dst(x,y) = 0, if src(x,y)>threshold 

           max_value, otherwise 

 

threshold_type=CV_THRESH_TRUNC: 

dst(x,y) = threshold, if src(x,y)>threshold 

           src(x,y), otherwise 

 

threshold_type=CV_THRESH_TOZERO: 

dst(x,y) = src(x,y), if src(x,y)>threshold 

           0, otherwise 

 

threshold_type=CV_THRESH_TOZERO_INV: 

dst(x,y) = 0, if src(x,y)>threshold 

           src(x,y), otherwise 

And this is the visual description of thresholding types: 



 

 

AdaptiveThreshold 
Applies adaptive threshold to array 

void cvAdaptiveThreshold( const CvArr* src, CvArr* dst, double max_value, 

                          int adaptive_method=CV_ADAPTIVE_THRESH_MEAN_C, 

                          int threshold_type=CV_THRESH_BINARY, 

                          int block_size=3, double param1=5 ); 
src  

Source image.  
dst  

Destination image.  
max_value  

Maximum value that is used with CV_THRESH_BINARY and CV_THRESH_BINARY_INV.  
adaptive_method  



Adaptive thresholding algorithm to use: CV_ADAPTIVE_THRESH_MEAN_C or CV_ADAPTIVE_THRESH_GAUSSIAN_C (see the 

discussion).  
threshold_type  

Thresholding type; must be one of  

• CV_THRESH_BINARY,  

• CV_THRESH_BINARY_INV  

block_size  
The size of a pixel neighborhood that is used to calculate a threshold value for the pixel: 3, 5, 7, ...  

param1  
The method-dependent parameter. For the methods CV_ADAPTIVE_THRESH_MEAN_C and 

CV_ADAPTIVE_THRESH_GAUSSIAN_C it is a constant subtracted from mean or weighted mean (see the discussion), 

though it may be negative.  

The function cvAdaptiveThreshold transforms grayscale image to binary image according to the formulae: 

threshold_type=CV_THRESH_BINARY: 

dst(x,y) = max_value, if src(x,y)>T(x,y) 

           0, otherwise 

 

threshold_type=CV_THRESH_BINARY_INV: 

dst(x,y) = 0, if src(x,y)>T(x,y) 

           max_value, otherwise 

where TI is a threshold calculated individually for each pixel. 

For the method CV_ADAPTIVE_THRESH_MEAN_C it is a mean of block_size × block_size pixel neighborhood, subtracted by 

param1. 

For the method CV_ADAPTIVE_THRESH_GAUSSIAN_C it is a weighted sum (gaussian) of block_size × block_size pixel 

neighborhood, subtracted by param1. 

 

Pyramids and the Applications 

 

PyrDown 
Downsamples image 

void cvPyrDown( const CvArr* src, CvArr* dst, int filter=CV_GAUSSIAN_5x5 ); 
src  

The source image.  
dst  

The destination image, should have 2x smaller width and height than the source.  
filter  

Type of the filter used for convolution; only CV_GAUSSIAN_5x5 is currently supported.  

The function cvPyrDown performs downsampling step of Gaussian pyramid decomposition. First it convolves source 

image with the specified filter and then downsamples the image by rejecting even rows and columns. 

 

PyrUp 
Upsamples image 

void cvPyrUp( const CvArr* src, CvArr* dst, int filter=CV_GAUSSIAN_5x5 ); 
src  

The source image.  



dst  
The destination image, should have 2x smaller width and height than the source.  

filter  
Type of the filter used for convolution; only CV_GAUSSIAN_5x5 is currently supported.  

The function cvPyrUp performs up-sampling step of Gaussian pyramid decomposition. First it upsamples the source 

image by injecting even zero rows and columns and then convolves result with the specified filter multiplied by 4 for 

interpolation. So the destination image is four times larger than the source image. 

 

Image Segmentation, Connected Components and Contour Retrieval 

 

CvConnectedComp 
Connected component 

    typedef struct CvConnectedComp 

    { 

        double area; /* area of the segmented component */ 

        float value; /* gray scale value of the segmented component */ 

        CvRect rect; /* ROI of the segmented component */ 

    } CvConnectedComp; 

 

FloodFill 
Fills a connected component with given color 

void cvFloodFill( CvArr* image, CvPoint seed_point, CvScalar new_val, 

                  CvScalar lo_diff=cvScalarAll(0), CvScalar up_diff=cvScalarAll(0), 

                  CvConnectedComp* comp=NULL, int flags=4, CvArr* mask=NULL ); 

#define CV_FLOODFILL_FIXED_RANGE (1 << 16) 

#define CV_FLOODFILL_MASK_ONLY   (1 << 17) 
image  

Input 1- or 3-channel, 8-bit or floating-point image. It is modified by the function unless 

CV_FLOODFILL_MASK_ONLY flag is set (see below).  
seed_point  

The starting point.  
new_val  

New value of repainted domain pixels.  
lo_diff  

Maximal lower brightness/color difference between the currently observed pixel and one of its neighbor 

belong to the component or seed pixel to add the pixel to component. In case of 8-bit color images it is 

packed value.  
up_diff  

Maximal upper brightness/color difference between the currently observed pixel and one of its neighbor 

belong to the component or seed pixel to add the pixel to component. In case of 8-bit color images it is 

packed value.  
comp  

Pointer to structure the function fills with the information about the repainted domain.  
flags  

The operation flags. Lower bits contain connectivity value, 4 (by default) or 8, used within the function. 

Connectivity determines which neighbors of a pixel are considered. Upper bits can be 0 or combination of the 

following flags:  

• CV_FLOODFILL_FIXED_RANGE - if set the difference between the current pixel and seed pixel is 

considered, otherwise difference between neighbor pixels is considered (the range is floating).  

• CV_FLOODFILL_MASK_ONLY - if set, the function does not fill the image (new_val is ignored), but 

the fills mask (that must be non-NULL in this case).  

mask  



Operation mask, should be singe-channel 8-bit image, 2 pixels wider and 2 pixels taller than image. If not 

NULL, the function uses and updates the mask, so user takes responsibility of initializing mask content. 

Floodfilling can't go across non-zero pixels in the mask, for example, an edge detector output can be used 

as a mask to stop filling at edges. Or it is possible to use the same mask in multiple calls to the function to 

make sure the filled area do not overlap. Note: because mask is larger than the filled image, pixel in mask that 

corresponds to (x,y) pixel in image will have coordinates (x+1,y+1).  

The function cvFloodFill fills a connected component starting from the seed point with the specified color. The 

connectivity is determined by the closeness of pixel values. The pixel at (x, y) is considered to belong to the repainted 

domain if: 

src(x',y')-lo_diff<=src(x,y)<=src(x',y')+up_diff,     grayscale image, floating range 

src(seed.x,seed.y)-lo<=src(x,y)<=src(seed.x,seed.y)+up_diff, grayscale image, fixed range 

 

src(x',y')r-lo_diffr<=src(x,y)r<=src(x',y')r+up_diffr and 

src(x',y')g-lo_diffg<=src(x,y)g<=src(x',y')g+up_diffg and 

src(x',y')b-lo_diffb<=src(x,y)b<=src(x',y')b+up_diffb, color image, floating range 

 

src(seed.x,seed.y)r-lo_diffr<=src(x,y)r<=src(seed.x,seed.y)r+up_diffr and 

src(seed.x,seed.y)g-lo_diffg<=src(x,y)g<=src(seed.x,seed.y)g+up_diffg and 

src(seed.x,seed.y)b-lo_diffb<=src(x,y)b<=src(seed.x,seed.y)b+up_diffb, color image, fixed range 

where src(x',y') is value of one of pixel neighbors. That is, to be added to the connected component, a pixel’s 

color/brightness should be close enough to:  

• color/brightness of one of its neighbors that are already referred to the connected component in case of 

floating range  

• color/brightness of the seed point in case of fixed range.  

 

FindContours 
Finds contours in binary image 

int cvFindContours( CvArr* image, CvMemStorage* storage, CvSeq** first_contour, 

                    int header_size=sizeof(CvContour), int mode=CV_RETR_LIST, 

                    int method=CV_CHAIN_APPROX_SIMPLE, CvPoint offset=cvPoint(0,0) ); 
image  

The source 8-bit single channel image. Non-zero pixels are treated as 1’s, zero pixels remain 0’s - that is 

image treated as binary. To get such a binary image from grayscale, one may use cvThreshold, 

cvAdaptiveThreshold or cvCanny. The function modifies the source image content.  
storage  

Container of the retrieved contours.  
first_contour  

Output parameter, will contain the pointer to the first outer contour.  
header_size  

Size of the sequence header, >=sizeof(CvChain) if method=CV_CHAIN_CODE, and >=sizeof(CvContour) 

otherwise.  
mode  

Retrieval mode.  

• CV_RETR_EXTERNAL - retrive only the extreme outer contours  

• CV_RETR_LIST - retrieve all the contours and puts them in the list  

• CV_RETR_CCOMP - retrieve all the contours and organizes them into two-level hierarchy: top level are 

external boundaries of the components, second level are bounda boundaries of the holes  

• CV_RETR_TREE - retrieve all the contours and reconstructs the full hierarchy of nested contours  

method  
Approximation method (for all the modes, except CV_RETR_RUNS, which uses built-in approximation).  

• CV_CHAIN_CODE - output contours in the Freeman chain code. All other methods output polygons 

(sequences of vertices).  

• CV_CHAIN_APPROX_NONE - translate all the points from the chain code into points;  



• CV_CHAIN_APPROX_SIMPLE - compress horizontal, vertical, and diagonal segments, that is, the function 

leaves only their ending points;  

• CV_CHAIN_APPROX_TC89_L1,  

CV_CHAIN_APPROX_TC89_KCOS - apply one of the flavors of Teh-Chin chain approximation algorithm.  

• CV_LINK_RUNS - use completely different contour retrieval algorithm via linking of horizontal segments 

of 1’s. Only CV_RETR_LIST retrieval mode can be used with this method.  

offset  
Offset, by which every contour point is shifted. This is useful if the contours are extracted from the image ROI 

and then they should be analyzed in the whole image context.  

The function cvFindContours retrieves contours from the binary image and returns the number of retrieved contours. The 

pointer first_contour is filled by the function. It will contain pointer to the first most outer contour or NULL if no 

contours is detected (if the image is completely black). Other contours may be reached from first_contour using 

h_next and v_next links. The sample in cvDrawContours discussion shows how to use contours for connected 

component detection. Contours can be also used for shape analysis and object recognition - see squares.c in OpenCV 

sample directory. 

 

StartFindContours 
Initializes contour scanning process 

CvContourScanner cvStartFindContours( CvArr* image, CvMemStorage* storage, 

                                      int header_size=sizeof(CvContour), 

                                      int mode=CV_RETR_LIST, 

                                      int method=CV_CHAIN_APPROX_SIMPLE, 

                                      CvPoint offset=cvPoint(0,0) ); 
image  

The source 8-bit single channel binary image.  
storage  

Container of the retrieved contours.  
header_size  

Size of the sequence header, >=sizeof(CvChain) if method=CV_CHAIN_CODE, and >=sizeof(CvContour) 

otherwise.  
mode  

Retrieval mode; see cvFindContours.  
method  

Approximation method. It has the same meaning as in cvFindContours, but CV_LINK_RUNS can not be used 

here.  
offset  

ROI offset; see cvFindContours.  

The function cvStartFindContours initializes and returns pointer to the contour scanner. The scanner is used further in 

cvFindNextContour to retrieve the rest of contours.  

 

FindNextContour 
Finds next contour in the image 

CvSeq* cvFindNextContour( CvContourScanner scanner ); 
scanner  

Contour scanner initialized by The function cvStartFindContours .  

The function cvFindNextContour locates and retrieves the next contour in the image and returns pointer to it. The 

function returns NULL, if there is no more contours. 

 



SubstituteContour 
Replaces retrieved contour 

void cvSubstituteContour( CvContourScanner scanner, CvSeq* new_contour ); 
scanner  

Contour scanner initialized by the function cvStartFindContours .  
new_contour  

Substituting contour.  

The function cvSubstituteContour replaces the retrieved contour, that was returned from the preceding call of The 

function cvFindNextContour and stored inside the contour scanner state, with the user-specified contour. The contour is 

inserted into the resulting structure, list, two-level hierarchy, or tree, depending on the retrieval mode. If the parameter 

new_contour=NULL, the retrieved contour is not included into the resulting structure, nor all of its children that might be 

added to this structure later.  

 

EndFindContours 
Finishes scanning process 

CvSeq* cvEndFindContours( CvContourScanner* scanner ); 
scanner  

Pointer to the contour scanner.  

The function cvEndFindContours finishes the scanning process and returns the pointer to the first contour on the highest 

level. 

 

PyrSegmentation 
Does image segmentation by pyramids 

void cvPyrSegmentation( IplImage* src, IplImage* dst, 

                        CvMemStorage* storage, CvSeq** comp, 

                        int level, double threshold1, double threshold2 ); 
src  

The source image.  
dst  

The destination image.  
storage  

Storage; stores the resulting sequence of connected components.  
comp  

Pointer to the output sequence of the segmented components.  
level  

Maximum level of the pyramid for the segmentation.  
threshold1  

Error threshold for establishing the links.  
threshold2  

Error threshold for the segments clustering.  

The function cvPyrSegmentation implements image segmentation by pyramids. The pyramid builds up to the level level. 

The links between any pixel a on level i and its candidate father pixel b on the adjacent level are established if  

p(c(a),c(b))<threshold1. After the connected components are defined, they are joined into several clusters. Any two 

segments A and B belong to the same cluster, if  

p(c(A),c(B))<threshold2. The input image has only one channel, then  

p(c¹,c²)=|c¹-c²|. If the input image has three channels (red, green and blue), then  

p(c¹,c²)=0,3·(c¹r-c²r)+0,59·(c¹g-c²g)+0,11·(c¹b-c²b) . There may be more than one connected component 

per a cluster.  

The images src and dst should be 8-bit single-channel or 3-channel images or equal size  

 

PyrMeanShiftFiltering 



Does meanshift image segmentation 

void cvPyrMeanShiftFiltering( const CvArr* src, CvArr* dst, 

     double sp, double sr, int max_level=1, 

     CvTermCriteria termcrit=cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,5,1)); 
src  

The source 8-bit 3-channel image.  
dst  

The destination image of the same format and the same size as the source.  
sp  

The spatial window radius.  
sr  

The color window radius.  
max_level  

Maximum level of the pyramid for the segmentation.  
termcrit  

Termination criteria: when to stop meanshift iterations.  

The function cvPyrMeanShiftFiltering implements the filtering stage of meanshift segmentation, that is, the output of 

the function is the filtered "posterized" image with color gradients and fine-grain texture flattened. At every pixel (X,Y) 

of the input image (or down-sized input image, see below) the function executes meanshift iterations, that is, the pixel 

(X,Y) neighborhood in the joint space-color hyperspace is considered:  

{(x,y): X-sp≤x≤X+sp && Y-sp≤y≤Y+sp && ||(R,G,B)-(r,g,b)|| ≤ sr}, 

where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively (though, the algorithm 

does not depend on the color space used, so any 3-component color space can be used instead). Over the 

neighborhood the average spatial value (X',Y') and average color vector (R',G',B') are found and they act as the 

neighborhood center on the next iteration:  

(X,Y)~(X',Y'), (R,G,B)~(R',G',B'). 

After the iterations over, the color components of the initial pixel (that is, the pixel from where the iterations started) are 

set to the final value (average color at the last iteration):  

I(X,Y) <- (R*,G*,B*). 

Then max_level>0, the gaussian pyramid of max_level+1 levels is built, and the above procedure is run on the smallest 

layer. After that, the results are propagated to the larger layer and the iterations are run again only on those pixels 

where the layer colors differ much (>sr) from the lower-resolution layer, that is, the boundaries of the color regions are 

clarified. Note, that the results will be actually different from the ones obtained by running the meanshift procedure on 

the whole original image (i.e. when max_level==0). 

 

Watershed 
Does watershed segmentation 

void cvWatershed( const CvArr* image, CvArr* markers ); 
image  

The input 8-bit 3-channel image.  
markers  

The input/output 32-bit single-channel image (map) of markers.  

The function cvWatershed implements one of the variants of watershed, non-parametric marker-based segmentation 

algorithm, described in [Meyer92] Before passing the image to the function, user has to outline roughly the desired 

regions in the image markers with positive (>0) indices, i.e. every region is represented as one or more connected 

components with the pixel values 1, 2, 3 etc. Those components will be "seeds" of the future image regions. All the 

other pixels in markers, which relation to the outlined regions is not known and should be defined by the algorithm, 

should be set to 0's. On the output of the function, each pixel in markers is set to one of values of the "seed" 

components, or to -1 at boundaries between the regions. 

Note, that it is not necessary that every two neighbor connected components are separated by a watershed boundary 

(-1's pixels), for example, in case when such tangent components exist in the initial marker image. Visual 

demonstration and usage example of the function can be found in OpenCV samples directory; see watershed.cpp demo. 

 



Image and Contour moments 

 

Moments 
Calculates all moments up to third order of a polygon or rasterized shape 

void cvMoments( const CvArr* arr, CvMoments* moments, int binary=0 ); 
arr  

Image (1-channel or 3-channel with COI set) or polygon (CvSeq of points or a vector of points).  
moments  

Pointer to returned moment state structure.  
binary  

(For images only) If the flag is non-zero, all the zero pixel values are treated as zeroes, all the others are 

treated as 1’s.  

The function cvMoments calculates spatial and central moments up to the third order and writes them to moments. The 

moments may be used then to calculate gravity center of the shape, its area, main axises and various shape 

characeteristics including 7 Hu invariants. 

 

GetSpatialMoment 
Retrieves spatial moment from moment state structure 

double cvGetSpatialMoment( CvMoments* moments, int x_order, int y_order ); 
moments  

The moment state, calculated by cvMoments.  
x_order  

x order of the retrieved moment, x_order >= 0.  
y_order  

y order of the retrieved moment, y_order >= 0 and x_order + y_order <= 3.  

The function cvGetSpatialMoment retrieves the spatial moment, which in case of image moments is defined as: 

Mx_order,y_order=sumx,y(I(x,y)•x
x_order•yy_order) 

where I(x,y) is the intensity of the pixel (x, y).  

 

GetCentralMoment 
Retrieves central moment from moment state structure 

double cvGetCentralMoment( CvMoments* moments, int x_order, int y_order ); 
moments  

Pointer to the moment state structure.  
x_order  

x order of the retrieved moment, x_order >= 0.  
y_order  

y order of the retrieved moment, y_order >= 0 and x_order + y_order <= 3.  

The function cvGetCentralMoment retrieves the central moment, which in case of image moments is defined as: 

μx_order,y_order=sumx,y(I(x,y)•(x-xc)
x_order•(y-yc)

y_order), 

where xc=M10/M00, yc=M01/M00 - coordinates of the gravity center 

 

GetNormalizedCentralMoment 



Retrieves normalized central moment from moment state structure 

double cvGetNormalizedCentralMoment( CvMoments* moments, int x_order, int y_order ); 
moments  

Pointer to the moment state structure.  
x_order  

x order of the retrieved moment, x_order >= 0.  
y_order  

y order of the retrieved moment, y_order >= 0 and x_order + y_order <= 3.  

The function cvGetNormalizedCentralMoment retrieves the normalized central moment: 

ηx_order,y_order= μx_order,y_order/M00
((y_order+x_order)/2+1) 

 

GetHuMoments 
Calculates seven Hu invariants 

void cvGetHuMoments( CvMoments* moments, CvHuMoments* hu_moments ); 
moments  

Pointer to the moment state structure.  
hu_moments  

Pointer to Hu moments structure.  

The function cvGetHuMoments calculates seven Hu invariants that are defined as:  

 h1=η20+η02 

 

 h2=(η20-η02)²+4η11² 

 

 h3=(η30-3η12)²+ (3η21-η03)² 

 

 h4=(η30+η12)²+ (η21+η03)² 

 

 h5=(η30-3η12)(η30+η12)[(η30+η12)²-3(η21+η03)²]+(3η21-η03)(η21+η03)[3(η30+η12)²-(η21+η03)²] 

 

 h6=(η20-η02)[(η30+η12)²- (η21+η03)²]+4η11(η30+η12)(η21+η03) 

 

 h7=(3η21-η03)(η21+η03)[3(η30+η12)²-(η21+η03)²]-(η30-3η12)(η21+η03)[3(η30+η12)²-(η21+η03)²] 

where ηi,j are normalized central moments of 2-nd and 3-rd orders. The computed values are proved to be invariant 

to the image scaling, rotation, and reflection except the seventh one, whose sign is changed by reflection.  

 

Special Image Transforms 

 

HoughLines2 
Finds lines in binary image using Hough transform 

CvSeq* cvHoughLines2( CvArr* image, void* line_storage, int method, 

                      double rho, double theta, int threshold, 

                      double param1=0, double param2=0 ); 
image  

The input 8-bit single-channel binary image. In case of probabilistic method the image is modified by the 

function.  
line_storage  

The storage for the lines detected. It can be a memory storage (in this case a sequence of lines is created in 

the storage and returned by the function) or single row/single column matrix (CvMat*) of a particular type (see 

below) to which the lines' parameters are written. The matrix header is modified by the function so its cols or 



rows will contain a number of lines detected. If line_storage is a matrix and the actual number of lines 

exceeds the matrix size, the maximum possible number of lines is returned (in case of standard hough 

transform the lines are sorted by the accumulator value).  
method  

The Hough transform variant, one of:  

• CV_HOUGH_STANDARD - classical or standard Hough transform. Every line is represented by two 

floating-point numbers (ρ, θ), where ρ is a distance between (0,0) point and the line, and θ is the 

angle between x-axis and the normal to the line. Thus, the matrix must be (the created sequence 

will be) of CV_32FC2 type.  

• CV_HOUGH_PROBABILISTIC - probabilistic Hough transform (more efficient in case if picture contains a 

few long linear segments). It returns line segments rather than the whole lines. Every segment is 

represented by starting and ending points, and the matrix must be (the created sequence will be) of 

CV_32SC4 type.  

• CV_HOUGH_MULTI_SCALE - multi-scale variant of classical Hough transform. The lines are encoded the 

same way as in CV_HOUGH_STANDARD.  

rho  
Distance resolution in pixel-related units.  

theta  
Angle resolution measured in radians.  

threshold  
Threshold parameter. A line is returned by the function if the corresponding accumulator value is greater than 

threshold.  
param1  

The first method-dependent parameter:  

• For classical Hough transform it is not used (0).  

• For probabilistic Hough transform it is the minimum line length.  

• For multi-scale Hough transform it is divisor for distance resolution rho. (The coarse distance 

resolution will be rho and the accurate resolution will be (rho / param1)).  

param2  
The second method-dependent parameter:  

• For classical Hough transform it is not used (0).  

• For probabilistic Hough transform it is the maximum gap between line segments lieing on the same 

line to treat them as the single line segment (i.e. to join them).  

• For multi-scale Hough transform it is divisor for angle resolution theta. (The coarse angle resolution 

will be theta and the accurate resolution will be (theta / param2)).  

The function cvHoughLines2 implements a few variants of Hough transform for line detection. 

Example. Detecting lines with Hough transform. 
/* This is a standalone program. Pass an image name as a first parameter of the program. 

   Switch between standard and probabilistic Hough transform by changing "#if 1" to "#if 0" and back */ 

#include <cv.h> 

#include <highgui.h> 

#include <math.h> 

 

int main(int argc, char** argv) 

{ 

    IplImage* src; 

    if( argc == 2 && (src=cvLoadImage(argv[1], 0))!= 0) 

    { 

        IplImage* dst = cvCreateImage( cvGetSize(src), 8, 1 ); 

        IplImage* color_dst = cvCreateImage( cvGetSize(src), 8, 3 ); 

        CvMemStorage* storage = cvCreateMemStorage(0); 

        CvSeq* lines = 0; 

        int i; 

        cvCanny( src, dst, 50, 200, 3 ); 

        cvCvtColor( dst, color_dst, CV_GRAY2BGR ); 



#if 1 

        lines = cvHoughLines2( dst, storage, CV_HOUGH_STANDARD, 1, CV_PI/180, 100, 0, 0 ); 

 

        for( i = 0; i < MIN(lines->total,100); i++ ) 

        { 

            float* line = (float*)cvGetSeqElem(lines,i); 

            float rho = line[0]; 

            float theta = line[1]; 

            CvPoint pt1, pt2; 

            double a = cos(theta), b = sin(theta); 

            double x0 = a*rho, y0 = b*rho; 

            pt1.x = cvRound(x0 + 1000*(-b)); 

            pt1.y = cvRound(y0 + 1000*(a)); 

            pt2.x = cvRound(x0 - 1000*(-b)); 

            pt2.y = cvRound(y0 - 1000*(a)); 

            cvLine( color_dst, pt1, pt2, CV_RGB(255,0,0), 3, 8 ); 

        } 

#else 

        lines = cvHoughLines2( dst, storage, CV_HOUGH_PROBABILISTIC, 1, CV_PI/180, 50, 50, 10 ); 

        for( i = 0; i < lines->total; i++ ) 

        { 

            CvPoint* line = (CvPoint*)cvGetSeqElem(lines,i); 

            cvLine( color_dst, line[0], line[1], CV_RGB(255,0,0), 3, 8 ); 

        } 

#endif 

        cvNamedWindow( "Source", 1 ); 

        cvShowImage( "Source", src ); 

 

        cvNamedWindow( "Hough", 1 ); 

        cvShowImage( "Hough", color_dst ); 

 

        cvWaitKey(0); 

    } 

} 

This is the sample picture the function parameters have been tuned for: 

 

And this is the output of the above program in case of probabilistic Hough transform ("#if 0" case):  



 

 

HoughCircles 
Finds circles in grayscale image using Hough transform 

CvSeq* cvHoughCircles( CvArr* image, void* circle_storage, 

                       int method, double dp, double min_dist, 

                       double param1=100, double param2=100, 

                       int min_radius=0, int max_radius=0 ); 
image  

The input 8-bit single-channel grayscale image.  
circle_storage  

The storage for the circles detected. It can be a memory storage (in this case a sequence of circles is 

created in the storage and returned by the function) or single row/single column matrix (CvMat*) of type 

CV_32FC3, to which the circles' parameters are written. The matrix header is modified by the function so its 

cols or rows will contain a number of lines detected. If circle_storage is a matrix and the actual number of 

lines exceeds the matrix size, the maximum possible number of circles is returned. Every circle is encoded as 

3 floating-point numbers: center coordinates (x,y) and the radius.  
method  

Currently, the only implemented method is CV_HOUGH_GRADIENT, which is basically 21HT, described in [Yuen03].  
dp  

Resolution of the accumulator used to detect centers of the circles. For example, if it is 1, the accumulator 

will have the same resolution as the input image, if it is 2 - accumulator will have twice smaller width and 

height, etc.  
min_dist  

Minimum distance between centers of the detected circles. If the parameter is too small, multiple neighbor 

circles may be falsely detected in addition to a true one. If it is too large, some circles may be missed.  
param1  

The first method-specific parameter. In case of CV_HOUGH_GRADIENT it is the higher threshold of the two passed 

to Canny edge detector (the lower one will be twice smaller).  
param2  

The second method-specific parameter. In case of CV_HOUGH_GRADIENT it is accumulator threshold at the 

center detection stage. The smaller it is, the more false circles may be detected. Circles, corresponding to the 

larger accumulator values, will be returned first.  
min_radius  

Minimal radius of the circles to search for.  
max_radius  

Maximal radius of the circles to search for. By default the maximal radius is set to max(image_width, 

image_height).  

The function cvHoughCircles finds circles in grayscale image using some modification of Hough transform. 

Example. Detecting circles with Hough transform. 
#include <cv.h> 

#include <highgui.h> 

#include <math.h> 

 



int main(int argc, char** argv) 

{ 

    IplImage* img; 

    if( argc == 2 && (img=cvLoadImage(argv[1], 1))!= 0) 

    { 

        IplImage* gray = cvCreateImage( cvGetSize(img), 8, 1 ); 

        CvMemStorage* storage = cvCreateMemStorage(0); 

        cvCvtColor( img, gray, CV_BGR2GRAY ); 

        cvSmooth( gray, gray, CV_GAUSSIAN, 9, 9 ); // smooth it, otherwise a lot of false circles may be 

detected 

        CvSeq* circles = cvHoughCircles( gray, storage, CV_HOUGH_GRADIENT, 2, gray->height/4, 200, 100 ); 

        int i; 

        for( i = 0; i < circles->total; i++ ) 

        { 

             float* p = (float*)cvGetSeqElem( circles, i ); 

             cvCircle( img, cvPoint(cvRound(p[0]),cvRound(p[1])), 3, CV_RGB(0,255,0), -1, 8, 0 ); 

             cvCircle( img, cvPoint(cvRound(p[0]),cvRound(p[1])), cvRound(p[2]), CV_RGB(255,0,0), 3, 8, 0 ); 

        } 

        cvNamedWindow( "circles", 1 ); 

        cvShowImage( "circles", img ); 

    } 

    return 0; 

} 

 

DistTransform 
Calculates distance to closest zero pixel for all non-zero pixels of source image 

void cvDistTransform( const CvArr* src, CvArr* dst, int distance_type=CV_DIST_L2, 

                      int mask_size=3, const float* mask=NULL, CvArr* labels=NULL ); 
src  

Source 8-bit single-channel (binary) image.  
dst  

Output image with calculated distances (32-bit floating-point, single-channel).  
distance_type  

Type of distance; can be CV_DIST_L1, CV_DIST_L2, CV_DIST_C or CV_DIST_USER.  
mask_size  

Size of distance transform mask; can be 3, 5 or 0. In case of CV_DIST_L1 or CV_DIST_C the parameter is forced 

to 3, because 3×3 mask gives the same result as 5×5 yet it is faster. When mask_size==0, a different non-

approximate algorithm is used to calculate distances.  
mask  

User-defined mask in case of user-defined distance, it consists of 2 numbers (horizontal/vertical shift cost, 

diagonal shift cost) in case of 3×3 mask and 3 numbers (horizontal/vertical shift cost, diagonal shift cost, 

knight’s move cost) in case of 5×5 mask.  
labels  

The optional output 2d array of labels of integer type and the same size as src and dst, can now be used only 

with mask_size==3 or 5.  

The function cvDistTransform calculates the approximated or exact distance from every binary image pixel to the 

nearest zero pixel. When mask_size==0, the function uses the accurate algorithm [Felzenszwalb04]. When 

mask_size==3 or 5, the function uses the approximate algorithm [Borgefors86]. 

Here is how the approximate algorithm works. For zero pixels the function sets the zero distance. For others it finds the 

shortest path to a zero pixel, consisting of basic shifts: horizontal, vertical, diagonal or knight’s move (the latest is 

available for 5×5 mask). The overal distance is calculated as a sum of these basic distances. Because the distance 

function should be symmetric, all the horizontal and vertical shifts must have the same cost (that is denoted as a), all 

the diagonal shifts must have the same cost (denoted b), and all knight’s moves must have the same cost (denoted c). 

For CV_DIST_C and CV_DIST_L1 types the distance is calculated precisely, whereas for CV_DIST_L2 (Euclidian distance) the 

distance can be calculated only with some relative error (5×5 mask gives more accurate results), OpenCV uses the 

values suggested in [Borgefors86]: 

CV_DIST_C (3×3): 

a=1, b=1 

 

CV_DIST_L1 (3×3): 



a=1, b=2 

 

CV_DIST_L2 (3×3): 

a=0.955, b=1.3693 

 

CV_DIST_L2 (5×5): 

a=1, b=1.4, c=2.1969 

And below are samples of distance field (black (0) pixel is in the middle of white square) in case of user-defined 

distance:  

User-defined 3×3 mask (a=1, b=1.5) 

4.5 4 3.5 3 3.5 4 4.5 

4 3 2.5 2 2.5 3 4 

3.5 2.5 1.5 1 1.5 2.5 3.5 

3 2 1 0 1 2 3 

3.5 2.5 1.5 1 1.5 2.5 3.5 

4 3 2.5 2 2.5 3 4 

4.5 4 3.5 3 3.5 4 4.5 

User-defined 5×5 mask (a=1, b=1.5, c=2) 

4.5 3.5 3 3 3 3.5 4.5 

3.5 3 2 2 2 3 3.5 

3 2 1.5 1 1.5 2 3 

3 2 1 0 1 2 3 

3 2 1.5 1 1.5 2 3 

3.5 3 2 2 2 3 3.5 

4 3.5 3 3 3 3.5 4 

Typically, for fast coarse distance estimation CV_DIST_L2, 3×3 mask is used, and for more accurate distance 

estimation CV_DIST_L2, 5×5 mask is used. 

When the output parameter labels is not NULL, for every non-zero pixel the function also finds the nearest connected 

component consisting of zero pixels. The connected components themselves are found as contours in the beginning of 

the function. 

In this mode the processing time is still O(N), where N is the number of pixels. Thus, the function provides a very fast 

way to compute approximate Voronoi diagram for the binary image. 

 

Inpaint 
Inpaints the selected region in the image 

void cvInpaint( const CvArr* src, const CvArr* mask, CvArr* dst, 

                int flags, double inpaintRadius ); 
src  

The input 8-bit 1-channel or 3-channel image.  



mask  
The inpainting mask, 8-bit 1-channel image. Non-zero pixels indicate the area that needs to be inpainted.  

dst  
The output image of the same format and the same size as input.  

flags  
The inpainting method, one of the following: 

CV_INPAINT_NS - Navier-Stokes based method. 

CV_INPAINT_TELEA - The method by Alexandru Telea [Telea04]  
inpaintRadius  

The radius of circlular neighborhood of each point inpainted that is considered by the algorithm.  

The function cvInpaint reconstructs the selected image area from the pixel near the area boundary. The function may 

be used to remove dust and scratches from a scanned photo, or to remove undesirable objects from still images or 

video. 

 

Histograms 

 

CvHistogram 
Muti-dimensional histogram 

typedef struct CvHistogram 

{ 

    int     type; 

    CvArr*  bins; 

    float   thresh[CV_MAX_DIM][2]; /* for uniform histograms */ 

    float** thresh2; /* for non-uniform histograms */ 

    CvMatND mat; /* embedded matrix header for array histograms */ 

} 

CvHistogram; 

 

CreateHist 
Creates histogram 

CvHistogram* cvCreateHist( int dims, int* sizes, int type, 

                           float** ranges=NULL, int uniform=1 ); 
dims  

Number of histogram dimensions.  
sizes  

Array of histogram dimension sizes.  
type  

Histogram representation format: CV_HIST_ARRAY means that histogram data is represented as an multi-

dimensional dense array CvMatND; CV_HIST_SPARSE means that histogram data is represented as a multi-

dimensional sparse array CvSparseMat.  
ranges  

Array of ranges for histogram bins. Its meaning depends on the uniform parameter value. The ranges are used 

for when histogram is calculated or backprojected to determine, which histogram bin corresponds to which 

value/tuple of values from the input image[s].  
uniform  

Uniformity flag; if not 0, the histogram has evenly spaced bins and for every 0<=i<cDims ranges[i] is array of 

two numbers: lower and upper boundaries for the i-th histogram dimension. The whole range [lower,upper] is 

split then into dims[i] equal parts to determine i-th input tuple value ranges for every histogram bin. And if 

uniform=0, then i-th element of ranges array contains dims[i]+1 elements: lower0, upper0, lower1, upper1 == 

lower2, ..., upperdims[i]-1, where lowerj and upperj are lower and upper boundaries of i-th input tuple value 

for j-th bin, respectively. In either case, the input values that are beyond the specified range for a histogram 

bin, are not counted by cvCalcHist and filled with 0 by cvCalcBackProject.  

The function cvCreateHist creates a histogram of the specified size and returns the pointer to the created histogram. If 

the array ranges is 0, the histogram bin ranges must be specified later via The function cvSetHistBinRanges, though 



cvCalcHist and cvCalcBackProject may process 8-bit images without setting bin ranges, they assume equally spaced in 

0..255 bins. 

 

SetHistBinRanges 
Sets bounds of histogram bins 

void cvSetHistBinRanges( CvHistogram* hist, float** ranges, int uniform=1 ); 
hist  

Histogram.  
ranges  

Array of bin ranges arrays, see cvCreateHist.  
uniform  

Uniformity flag, see cvCreateHist.  

The function cvSetHistBinRanges is a stand-alone function for setting bin ranges in the histogram. For more detailed 

description of the parameters ranges and uniform see cvCalcHist function, that can initialize the ranges as well. Ranges 

for histogram bins must be set before the histogram is calculated or backproject of the histogram is calculated.  

 

ReleaseHist 
Releases histogram 

void cvReleaseHist( CvHistogram** hist ); 
hist  

Double pointer to the released histogram.  

The function cvReleaseHist releases the histogram (header and the data). The pointer to histogram is cleared by the 

function. If *hist pointer is already NULL, the function does nothing. 

 

ClearHist 
Clears histogram 

void cvClearHist( CvHistogram* hist ); 
hist  

Histogram.  

The function cvClearHist sets all histogram bins to 0 in case of dense histogram and removes all histogram bins in 

case of sparse array. 

 

MakeHistHeaderForArray 
Makes a histogram out of array 

CvHistogram*  cvMakeHistHeaderForArray( int dims, int* sizes, CvHistogram* hist, 

                                        float* data, float** ranges=NULL, int uniform=1 ); 
dims  

Number of histogram dimensions.  
sizes  

Array of histogram dimension sizes.  
hist  

The histogram header initialized by the function.  
data  

Array that will be used to store histogram bins.  
ranges  

Histogram bin ranges, see cvCreateHist.  
uniform  



Uniformity flag, see cvCreateHist.  

The function cvMakeHistHeaderForArray initializes the histogram, which header and bins are allocated by user. No 

cvReleaseHist need to be called afterwards. Only dense histograms can be initialized this way. The function returns 

hist.  

 

QueryHistValue_*D 
Queries value of histogram bin 

#define cvQueryHistValue_1D( hist, idx0 ) ₩ 

    cvGetReal1D( (hist)->bins, (idx0) ) 

#define cvQueryHistValue_2D( hist, idx0, idx1 ) ₩ 

    cvGetReal2D( (hist)->bins, (idx0), (idx1) ) 

#define cvQueryHistValue_3D( hist, idx0, idx1, idx2 ) ₩ 

    cvGetReal3D( (hist)->bins, (idx0), (idx1), (idx2) ) 

#define cvQueryHistValue_nD( hist, idx ) ₩ 

    cvGetRealND( (hist)->bins, (idx) ) 
hist  

Histogram.  
idx0, idx1, idx2, idx3  

Indices of the bin.  
idx  

Array of indices  

The macros cvQueryHistValue_*D return the value of the specified bin of 1D, 2D, 3D or N-D histogram. In case of 

sparse histogram the function returns 0, if the bin is not present in the histogram, and no new bin is created.  

 

GetHistValue_*D 
Returns pointer to histogram bin 

#define cvGetHistValue_1D( hist, idx0 ) ₩ 

    ((float*)(cvPtr1D( (hist)->bins, (idx0), 0 )) 

#define cvGetHistValue_2D( hist, idx0, idx1 ) ₩ 

    ((float*)(cvPtr2D( (hist)->bins, (idx0), (idx1), 0 )) 

#define cvGetHistValue_3D( hist, idx0, idx1, idx2 ) ₩ 

    ((float*)(cvPtr3D( (hist)->bins, (idx0), (idx1), (idx2), 0 )) 

#define cvGetHistValue_nD( hist, idx ) ₩ 

    ((float*)(cvPtrND( (hist)->bins, (idx), 0 )) 
hist  

Histogram.  
idx0, idx1, idx2, idx3  

Indices of the bin.  
idx  

Array of indices  

The macros cvGetHistValue_*D return pointer to the specified bin of 1D, 2D, 3D or N-D histogram. In case of sparse 

histogram the function creates a new bin and sets it to 0, unless it exists already.  

 

GetMinMaxHistValue 
Finds minimum and maximum histogram bins 

void cvGetMinMaxHistValue( const CvHistogram* hist, 

                           float* min_value, float* max_value, 

                           int* min_idx=NULL, int* max_idx=NULL ); 
hist  

Histogram.  
min_value  



Pointer to the minimum value of the histogram  
max_value  

Pointer to the maximum value of the histogram  
min_idx  

Pointer to the array of coordinates for minimum  
max_idx  

Pointer to the array of coordinates for maximum  

The function cvGetMinMaxHistValue finds the minimum and maximum histogram bins and their positions. Any of output 

arguments is optional. Among several extremums with the same value the ones with minimum index (in lexicographical 

order) In case of several maximums or minimums the earliest in lexicographical order extrema locations are returned. 

 

NormalizeHist 
Normalizes histogram 

void cvNormalizeHist( CvHistogram* hist, double factor ); 
hist  

Pointer to the histogram.  
factor  

Normalization factor.  

The function cvNormalizeHist normalizes the histogram bins by scaling them, such that the sum of the bins becomes 

equal to factor. 

 

ThreshHist 
Thresholds histogram 

void cvThreshHist( CvHistogram* hist, double threshold ); 
hist  

Pointer to the histogram.  
threshold  

Threshold level.  

The function cvThreshHist clears histogram bins that are below the specified threshold. 

 

CompareHist 
Compares two dense histograms 

double cvCompareHist( const CvHistogram* hist1, const CvHistogram* hist2, int method ); 
hist1  

The first dense histogram.  
hist2  

The second dense histogram.  
method  

Comparison method, one of:  

• CV_COMP_CORREL  

• CV_COMP_CHISQR  

• CV_COMP_INTERSECT  

• CV_COMP_BHATTACHARYYA  

The function cvCompareHist compares two dense histograms using the specified method as following (H1 denotes the 

first histogram, H2 - the second): 

Correlation (method=CV_COMP_CORREL): 



d(H1,H2)=sumI(H'1(I)•H'2(I))/sqrt(sumI[H'1(I)
2]•sumI[H'2(I)

2]) 

where 

H'k(I)=Hk(I)-1/N•sumJHk(J) (N=number of histogram bins) 

 

Chi-Square (method=CV_COMP_CHISQR): 

d(H1,H2)=sumI[(H1(I)-H2(I))/(H1(I)+H2(I))] 

 

Intersection (method=CV_COMP_INTERSECT): 

d(H1,H2)=sumImin(H1(I),H2(I)) 

 

Bhattacharyya distance (method=CV_COMP_BHATTACHARYYA): 

d(H1,H2)=sqrt(1-sumI(sqrt(H1(I)•H2(I)))) 

The function returns d(H1,H2) value. 

Note: the method CV_COMP_BHATTACHARYYA only works with normalized histograms.  

To compare sparse histogram or more general sparse configurations of weighted points, consider using cvCalcEMD2 

function. 

 

CopyHist 
Copies histogram 

void cvCopyHist( const CvHistogram* src, CvHistogram** dst ); 
src  

Source histogram.  
dst  

Pointer to destination histogram.  

The function cvCopyHist makes a copy of the histogram. If the second histogram pointer *dst is NULL, a new histogram 

of the same size as src is created. Otherwise, both histograms must have equal types and sizes. Then the function 

copies the source histogram bins values to destination histogram and sets the same bin values ranges as in src. 

 

CalcHist 
Calculates histogram of image(s) 

void cvCalcHist( IplImage** image, CvHistogram* hist, 

                 int accumulate=0, const CvArr* mask=NULL ); 
image  

Source images (though, you may pass CvMat** as well), all are of the same size and type  
hist  

Pointer to the histogram.  
accumulate  

Accumulation flag. If it is set, the histogram is not cleared in the beginning. This feature allows user to 

compute a single histogram from several images, or to update the histogram online.  
mask  

The operation mask, determines what pixels of the source images are counted.  

The function cvCalcHist calculates the histogram of one or more single-channel images. The elements of a tuple that is 

used to increment a histogram bin are taken at the same location from the corresponding input images. 

Sample. Calculating and displaying 2D Hue-Saturation histogram of a color image 
#include <cv.h> 

#include <highgui.h> 

 

int main( int argc, char** argv ) 

{ 

    IplImage* src; 

    if( argc == 2 && (src=cvLoadImage(argv[1], 1))!= 0) 



    { 

        IplImage* h_plane = cvCreateImage( cvGetSize(src), 8, 1 ); 

        IplImage* s_plane = cvCreateImage( cvGetSize(src), 8, 1 ); 

        IplImage* v_plane = cvCreateImage( cvGetSize(src), 8, 1 ); 

        IplImage* planes[] = { h_plane, s_plane }; 

        IplImage* hsv = cvCreateImage( cvGetSize(src), 8, 3 ); 

        int h_bins = 30, s_bins = 32; 

        int hist_size[] = {h_bins, s_bins}; 

        float h_ranges[] = { 0, 180 }; /* hue varies from 0 (~0°red) to 180 (~360°red again) */ 

        float s_ranges[] = { 0, 255 }; /* saturation varies from 0 (black-gray-white) to 255 (pure spectrum 

color) */ 

        float* ranges[] = { h_ranges, s_ranges }; 

        int scale = 10; 

        IplImage* hist_img = cvCreateImage( cvSize(h_bins*scale,s_bins*scale), 8, 3 ); 

        CvHistogram* hist; 

        float max_value = 0; 

        int h, s; 

 

        cvCvtColor( src, hsv, CV_BGR2HSV ); 

        cvCvtPixToPlane( hsv, h_plane, s_plane, v_plane, 0 ); 

        hist = cvCreateHist( 2, hist_size, CV_HIST_ARRAY, ranges, 1 ); 

        cvCalcHist( planes, hist, 0, 0 ); 

        cvGetMinMaxHistValue( hist, 0, &max_value, 0, 0 ); 

        cvZero( hist_img ); 

 

        for( h = 0; h < h_bins; h++ ) 

        { 

            for( s = 0; s < s_bins; s++ ) 

            { 

                float bin_val = cvQueryHistValue_2D( hist, h, s ); 

                int intensity = cvRound(bin_val*255/max_value); 

                cvRectangle( hist_img, cvPoint( h*scale, s*scale ), 

                             cvPoint( (h+1)*scale - 1, (s+1)*scale - 1), 

                             CV_RGB(intensity,intensity,intensity), /* graw a grayscale histogram. 

                                                                       if you have idea how to do it 

                                                                       nicer let us know */ 

                             CV_FILLED ); 

            } 

        } 

 

        cvNamedWindow( "Source", 1 ); 

        cvShowImage( "Source", src ); 

 

        cvNamedWindow( "H-S Histogram", 1 ); 

        cvShowImage( "H-S Histogram", hist_img ); 

 

        cvWaitKey(0); 

    } 

} 

 

CalcBackProject 
Calculates back projection 

void cvCalcBackProject( IplImage** image, CvArr* back_project, const CvHistogram* hist ); 
image  

Source images (though you may pass CvMat** as well), all are of the same size and type  
back_project  

Destination back projection image of the same type as the source images.  
hist  

Histogram.  

The function cvCalcBackProject calculates the back project of the histogram. For each tuple of pixels at the same 

position of all input single-channel images the function puts the value of the histogram bin, corresponding to the tuple, 



to the destination image. In terms of statistics, the value of each output image pixel is probability of the observed tuple 

given the distribution (histogram). For example, to find a red object in the picture, one may do the following:  

1. Calculate a hue histogram for the red object assuming the image contains only this object. The histogram is 

likely to have a strong maximum, corresponding to red color.  

2. Calculate back projection of a hue plane of input image where the object is searched, using the histogram. 

Threshold the image.  

3. Find connected components in the resulting picture and choose the right component using some additional 

criteria, for example, the largest connected component.  

That is the approximate algorithm of Camshift color object tracker, except for the 3rd step, instead of which CAMSHIFT 

algorithm is used to locate the object on the back projection given the previous object position.  

 

CalcBackProjectPatch 
Locates a template within image by histogram comparison 

void cvCalcBackProjectPatch( IplImage** images, CvArr* dst, 

                             CvSize patch_size, CvHistogram* hist, 

                             int method, float factor ); 
images  

Source images (though, you may pass CvMat** as well), all of the same size  
dst  

Destination image.  
patch_size  

Size of patch slid though the source images.  
hist  

Histogram  
method  

Compasion method, passed to cvCompareHist (see description of that function).  
factor  

Normalization factor for histograms, will affect normalization scale of destination image, pass 1. if unsure.  

The function cvCalcBackProjectPatch compares histogram, computed over each possible rectangular patch of the 

specfied size in the input images, and stores the results to the output map dst. 

In pseudo-code the operation may be written as:  

for (x,y) in images (until (x+patch_size.width-1,y+patch_size.height-1) is inside the images) do 

    compute histogram over the ROI (x,y,x+patch_size.width,y+patch_size.height) in images 

       (see cvCalcHist) 

    normalize the histogram using the factor 

       (see cvNormalizeHist) 

    compare the normalized histogram with input histogram hist using the specified method 

       (see cvCompareHist) 

    store the result to dst(x,y) 

end for 

See also a similar function cvMatchTemplate.  

Back Project Calculation by Patches 



 

 

CalcProbDensity 
Divides one histogram by another 

void  cvCalcProbDensity( const CvHistogram* hist1, const CvHistogram* hist2, 

                         CvHistogram* dst_hist, double scale=255 ); 
hist1  

first histogram (the divisor).  
hist2  

second histogram.  
dst_hist  

destination histogram.  
scale  

scale factor for the destination histogram.  

The function cvCalcProbDensity calculates the object probability density from the two histograms as: 

dist_hist(I)=0      if hist1(I)==0 

             scale  if hist1(I)!=0 && hist2(I)>hist1(I) 

             hist2(I)*scale/hist1(I) if hist1(I)!=0 && hist2(I)<=hist1(I) 

So the destination histogram bins are within less than scale.  

 

EqualizeHist 
Equalizes histogram of grayscale image 

void  cvEqualizeHist( const CvArr* src, CvArr* dst ); 
src  

The input 8-bit single-channel image.  
dst  

The output image of the same size and the same data type as src.  



The function cvEqualizeHist equalizes histogram of the input image using the following algorithm: 

1. calculate histogram H for src. 

2. normalize histogram, so that the sum of histogram bins is 255. 

3. compute integral of the histogram: 

   H’(i) = sum0≤j≤iH(j) 

4. transform the image using H’ as a look-up table: dst(x,y)=H’(src(x,y)) 

The algorithm normalizes brightness and increases contrast of the image. 

 

Matching 

 

MatchTemplate 
Compares template against overlapped image regions 

void cvMatchTemplate( const CvArr* image, const CvArr* templ, 

                      CvArr* result, int method ); 
image  

Image where the search is running. It should be 8-bit or 32-bit floating-point.  
templ  

Searched template; must be not greater than the source image and the same data type as the image.  
result  

A map of comparison results; single-channel 32-bit floating-point. If image is W×H and templ is w×h then 

result must be W-w+1×H-h+1.  
method  

Specifies the way the template must be compared with image regions (see below).  

The function cvMatchTemplate is similiar to cvCalcBackProjectPatch. It slids through image, compares overlapped 

patches of size w×h with templ using the specified method and stores the comparison results to result. Here are the 

formulae for the different comparison methods one may use (I denotes image, T - template, R - result. The summation 

is done over template and/or the image patch: x'=0..w-1, y'=0..h-1): 

method=CV_TM_SQDIFF: 

R(x,y)=sumx',y'[T(x',y')-I(x+x',y+y')]
2 

 

method=CV_TM_SQDIFF_NORMED: 

R(x,y)=sumx',y'[T(x',y')-I(x+x',y+y')]
2/sqrt[sumx',y'T(x',y')

2•sumx',y'I(x+x',y+y')
2] 

 

method=CV_TM_CCORR: 

R(x,y)=sumx',y'[T(x',y')•I(x+x',y+y')] 

 

method=CV_TM_CCORR_NORMED: 

R(x,y)=sumx',y'[T(x',y')•I(x+x',y+y')]/sqrt[sumx',y'T(x',y')
2•sumx',y'I(x+x',y+y')

2] 

 

method=CV_TM_CCOEFF: 

R(x,y)=sumx',y'[T'(x',y')•I'(x+x',y+y')], 

 

where T'(x',y')=T(x',y') - 1/(w•h)•sumx",y"T(x",y") 

      I'(x+x',y+y')=I(x+x',y+y') - 1/(w•h)•sumx",y"I(x+x",y+y") 

 

method=CV_TM_CCOEFF_NORMED: 

R(x,y)=sumx',y'[T'(x',y')•I'(x+x',y+y')]/sqrt[sumx',y'T'(x',y')
2•sumx',y'I'(x+x',y+y')

2] 

 

After the function finishes comparison, the best matches can be found as global minimums (CV_TM_SQDIFF*) or 

maximums (CV_TM_CCORR* and CV_TM_CCOEFF*) using cvMinMaxLoc function. In case of color image and template 

summation in both numerator and each sum in denominator is done over all the channels (and separate mean values 

are used for each channel).  

 



MatchShapes 
Compares two shapes 

double cvMatchShapes( const void* object1, const void* object2, 

                      int method, double parameter=0 ); 
object1  

First contour or grayscale image  
object2  

Second contour or grayscale image  
method  

Comparison method, one of CV_CONTOUR_MATCH_I1, CV_CONTOURS_MATCH_I2 or 

CV_CONTOURS_MATCH_I3.  
parameter  

Method-specific parameter (is not used now).  

The function cvMatchShapes compares two shapes. The 3 implemented methods all use Hu moments (see 

cvGetHuMoments) (A ~ object1, B - object2): 

method=CV_CONTOUR_MATCH_I1: 

I1(A,B)=sumi=1..7abs(1/m
A
i - 1/m

B
i) 

 

method=CV_CONTOUR_MATCH_I2: 

I2(A,B)=sumi=1..7abs(m
A
i - m

B
i) 

 

method=CV_CONTOUR_MATCH_I3: 

I3(A,B)=sumi=1..7abs(m
A
i - m

B
i)/abs(m

A
i) 

 

where 

mAi=sign(h
A
i)•log(h

A
i), 

mBi=sign(h
B
i)•log(h

B
i), 

hAi, h
B
i - Hu moments of A and B, respectively. 

 

CalcEMD2 
Computes "minimal work" distance between two weighted point configurations 

float cvCalcEMD2( const CvArr* signature1, const CvArr* signature2, int distance_type, 

                  CvDistanceFunction distance_func=NULL, const CvArr* cost_matrix=NULL, 

                  CvArr* flow=NULL, float* lower_bound=NULL, void* userdata=NULL ); 

typedef float (*CvDistanceFunction)(const float* f1, const float* f2, void* userdata); 
signature1  

First signature, size1×dims+1 floating-point matrix. Each row stores the point weight followed by the point 

coordinates. The matrix is allowed to have a single column (weights only) if the user-defined cost matrix is 

used.  
signature2  

Second signature of the same format as signature1, though the number of rows may be different. The total 

weights may be different, in this case an extra "dummy" point is added to either signature1 or signature2.  
distance_type  

Metrics used; CV_DIST_L1, CV_DIST_L2, and CV_DIST_C stand for one of the standard metrics; CV_DIST_USER 

means that a user-defined function distance_func or pre-calculated cost_matrix is used.  
distance_func  

The user-defined distance function. It takes coordinates of two points and returns the distance between the 

points.  
cost_matrix  

The user-defined size1×size2 cost matrix. At least one of cost_matrix and distance_func must be NULL. Also, 

if a cost matrix is used, lower boundary (see below) can not be calculated, because it needs a metric function.  
flow  

The resultant size1×size2 flow matrix: flowij is a flow from i-th point of signature1 to j-th point of signature2  
lower_bound  

Optional input/output parameter: lower boundary of distance between the two signatures that is a distance 

between mass centers. The lower boundary may not be calculated if the user-defined cost matrix is used, the 

total weights of point configurations are not equal, or there is the signatures consist of weights only (i.e. the 

signature matrices have a single column). User must initialize *lower_bound. If the calculated distance between 

mass centers is greater or equal to *lower_bound (it means that the signatures are far enough) the function 

does not calculate EMD. In any case *lower_bound is set to the calculated distance between mass centers on 



return. Thus, if user wants to calculate both distance between mass centers and EMD, *lower_bound should be 

set to 0.  
userdata  

Pointer to optional data that is passed into the user-defined distance function.  

The function cvCalcEMD2 computes earth mover distance and/or a lower boundary of the distance between the two 

weighted point configurations. One of the application desctibed in [RubnerSept98] is multi-dimensional histogram 

comparison for image retrieval. EMD is a transportation problem that is solved using some modification of simplex 

algorithm, thus the complexity is exponential in the worst case, though, it is much faster in average. In case of a real 

metric the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used to determine 

roughly whether the two signatures are far enough so that they cannot relate to the same object.  

 

Structural Analysis 

 

Contour Processing Functions 

 

ApproxChains 
Approximates Freeman chain(s) with polygonal curve 

CvSeq* cvApproxChains( CvSeq* src_seq, CvMemStorage* storage, 

                       int method=CV_CHAIN_APPROX_SIMPLE, 

                       double parameter=0, int minimal_perimeter=0, int recursive=0 ); 
src_seq  

Pointer to the chain that can refer to other chains.  
storage  

Storage location for the resulting polylines.  
method  

Approximation method (see the description of the function cvFindContours).  
parameter  

Method parameter (not used now).  
minimal_perimeter  

Approximates only those contours whose perimeters are not less than minimal_perimeter. Other chains are 

removed from the resulting structure.  
recursive  

If not 0, the function approximates all chains that access can be obtained to from src_seq by h_next or v_next 

links. If 0, the single chain is approximated.  

This is a stand-alone approximation routine. The function cvApproxChains works exactly in the same way as 

cvFindContours with the corresponding approximation flag. The function returns pointer to the first resultant contour. 

Other approximated contours, if any, can be accessed via v_next or h_next fields of the returned structure.  

 

StartReadChainPoints 
Initializes chain reader 

void cvStartReadChainPoints( CvChain* chain, CvChainPtReader* reader ); 

chain Pointer to chain. reader Chain reader state.  

The function cvStartReadChainPoints initializes a special reader (see Dynamic Data Structures for more information on 

sets and sequences).  

 

ReadChainPoint 
Gets next chain point 



CvPoint cvReadChainPoint( CvChainPtReader* reader ); 
reader  

Chain reader state.  

The function cvReadChainPoint returns the current chain point and updates the reader position. 

 

ApproxPoly 
Approximates polygonal curve(s) with desired precision 

CvSeq* cvApproxPoly( const void* src_seq, int header_size, CvMemStorage* storage, 

                     int method, double parameter, int parameter2=0 ); 
src_seq  

Sequence of array of points.  
header_size  

Header size of approximated curve[s].  
storage  

Container for approximated contours. If it is NULL, the input sequences' storage is used.  
method  

Approximation method; only CV_POLY_APPROX_DP is supported, that corresponds to Douglas-Peucker algorithm.  
parameter  

Method-specific parameter; in case of CV_POLY_APPROX_DP it is a desired approximation accuracy.  
parameter2  

If case if src_seq is sequence it means whether the single sequence should be approximated or all sequences 

on the same level or below src_seq (see cvFindContours for description of hierarchical contour structures). 

And if src_seq is array (CvMat*) of points, the parameter specifies whether the curve is closed (parameter2!=0) 

or not (parameter2=0).  

The function cvApproxPoly approximates one or more curves and returns the approximation result[s]. In case of multiple 

curves approximation the resultant tree will have the same structure as the input one (1:1 correspondence).  

 

BoundingRect 
Calculates up-right bounding rectangle of point set 

CvRect cvBoundingRect( CvArr* points, int update=0 ); 
points  

Either a 2D point set, represented as a sequence (CvSeq*, CvContour*) or vector (CvMat*) of points, or 8-bit 

single-channel mask image (CvMat*, IplImage*), in which non-zero pixels are considered.  
update  

The update flag. Here is list of possible combination of the flag values and type of contour:  

• points is CvContour*, update=0: the bounding rectangle is not calculated, but it is read from rect 

field of the contour header.  

• points is CvContour*, update=1: the bounding rectangle is calculated and written to rect field of the 

contour header. For example, this mode is used by cvFindContours.  

• points is CvSeq* or CvMat*: update is ignored, the bounding rectangle is calculated and returned.  

The function cvBoundingRect returns the up-right bounding rectangle for 2d point set.  

 

ContourArea 
Calculates area of the whole contour or contour section 

double cvContourArea( const CvArr* contour, CvSlice slice=CV_WHOLE_SEQ ); 
contour  

Contour (sequence or array of vertices).  
slice  



Starting and ending points of the contour section of interest, by default area of the whole contour is 

calculated.  

The function cvContourArea calculates area of the whole contour or contour section. In the latter case the total area 

bounded by the contour arc and the chord connecting the 2 selected points is calculated as shown on the picture 

below: 

 

NOTE: Orientation of the contour affects the area sign, thus the function may return negative result. Use fabs() function 

from C runtime to get the absolute value of area. 

 

ArcLength 
Calculates contour perimeter or curve length 

double cvArcLength( const void* curve, CvSlice slice=CV_WHOLE_SEQ, int is_closed=-1 ); 
curve  

Sequence or array of the curve points.  
slice  

Starting and ending points of the curve, by default the whole curve length is calculated.  
is_closed  

Indicates whether the curve is closed or not. There are 3 cases:  

• is_closed=0 - the curve is assumed to be unclosed.  

• is_closed>0 - the curve is assumed to be closed.  

• is_closed<0 - if curve is sequence, the flag CV_SEQ_FLAG_CLOSED of ((CvSeq*)curve)->flags is 

checked to determine if the curve is closed or not, otherwise (curve is represented by array (CvMat*) 

of points) it is assumed to be unclosed.  

The function cvArcLength calculates length or curve as sum of lengths of segments between subsequent points 

 

CreateContourTree 
Creates hierarchical representation of contour 

CvContourTree* cvCreateContourTree( const CvSeq* contour, CvMemStorage* storage, double threshold ); 
contour  

Input contour.  
storage  

Container for output tree.  
threshold  

Approximation accuracy.  

The function cvCreateContourTree creates binary tree representation for the input contour and returns the pointer to its 

root. If the parameter threshold is less than or equal to 0, the function creates full binary tree representation. If the 

threshold is greater than 0, the function creates representation with the precision threshold: if the vertices with the 

interceptive area of its base line are less than threshold, the tree should not be built any further. The function returns 

the created tree.  



 

ContourFromContourTree 
Restores contour from tree 

CvSeq* cvContourFromContourTree( const CvContourTree* tree, CvMemStorage* storage, 

                                 CvTermCriteria criteria ); 
tree  

Contour tree.  
storage  

Container for the reconstructed contour.  
criteria  

Criteria, where to stop reconstruction.  

The function cvContourFromContourTree restores the contour from its binary tree representation. The parameter criteria 

determines the accuracy and/or the number of tree levels used for reconstruction, so it is possible to build 

approximated contour. The function returns reconstructed contour.  

 

MatchContourTrees 
Compares two contours using their tree representations 

double cvMatchContourTrees( const CvContourTree* tree1, const CvContourTree* tree2, 

                            int method, double threshold ); 
tree1  

First contour tree.  
tree2  

Second contour tree.  
method  

Similarity measure, only CV_CONTOUR_TREES_MATCH_I1 is supported.  
threshold  

Similarity threshold.  

The function cvMatchContourTrees calculates the value of the matching measure for two contour trees. The similarity 

measure is calculated level by level from the binary tree roots. If at the certain level difference between contours 

becomes less than threshold, the reconstruction process is interrupted and the current difference is returned.  

 

Computational Geometry 

 

MaxRect 
Finds bounding rectangle for two given rectangles 

CvRect cvMaxRect( const CvRect* rect1, const CvRect* rect2 ); 
rect1  

First rectangle  
rect2  

Second rectangle  

The function cvMaxRect finds minimum area rectangle that contains both input rectangles inside: 



 

 

CvBox2D 
Rotated 2D box 

typedef struct CvBox2D 

{ 

    CvPoint2D32f center;  /* center of the box */ 

    CvSize2D32f  size;    /* box width and length */ 

    float angle;          /* angle between the horizontal axis 

                             and the first side (i.e. length) in degrees */ 

} 

CvBox2D; 

 

PointSeqFromMat 
Initializes point sequence header from a point vector 

CvSeq* cvPointSeqFromMat( int seq_kind, const CvArr* mat, 

                          CvContour* contour_header, 

                          CvSeqBlock* block ); 
seq_kind  

Type of the point sequence: point set (0), a curve (CV_SEQ_KIND_CURVE), closed curve 

(CV_SEQ_KIND_CURVE+CV_SEQ_FLAG_CLOSED) etc.  
mat  

Input matrix. It should be continuous 1-dimensional vector of points, that is, it should have type CV_32SC2 or 

CV_32FC2.  
contour_header  

Contour header, initialized by the function.  
block  

Sequence block header, initialized by the function.  

The function cvPointSeqFromMat initializes sequence header to create a "virtual" sequence which elements reside in the 

specified matrix. No data is copied. The initialized sequence header may be passed to any function that takes a point 

sequence on input. No extra elements could be added to the sequence, but some may be removed. The function is a 

specialized variant of cvMakeSeqHeaderForArray and uses the latter internally. It returns pointer to the initialized contour 

header. Note that the bounding rectangle (field rect of CvContour strucuture is not initialized by the function. If you need 

one, use cvBoundingRect.  

Here is the simple usage example. 

CvContour header; 

CvSeqBlock block; 

CvMat* vector = cvCreateMat( 1, 3, CV_32SC2 ); 

 

CV_MAT_ELEM( *vector, CvPoint, 0, 0 ) = cvPoint(100,100); 

CV_MAT_ELEM( *vector, CvPoint, 0, 1 ) = cvPoint(100,200); 

CV_MAT_ELEM( *vector, CvPoint, 0, 2 ) = cvPoint(200,100); 

 

IplImage* img = cvCreateImage( cvSize(300,300), 8, 3 ); 

cvZero(img); 



 

cvDrawContours( img, cvPointSeqFromMat(CV_SEQ_KIND_CURVE+CV_SEQ_FLAG_CLOSED, 

   vector, &header, &block), CV_RGB(255,0,0), CV_RGB(255,0,0), 0, 3, 8, cvPoint(0,0)); 

 

BoxPoints 
Finds box vertices 

void cvBoxPoints( CvBox2D box, CvPoint2D32f pt[4] ); 
box  

Box  
pt  

Array of vertices  

The function cvBoxPoints calculates vertices of the input 2d box. Here is the function code: 

void cvBoxPoints( CvBox2D box, CvPoint2D32f pt[4] ) 

{ 

    double angle = box.angle*CV_PI/180. 

    float a = (float)cos(angle)*0.5f; 

    float b = (float)sin(angle)*0.5f; 

 

    pt[0].x = box.center.x - a*box.size.height - b*box.size.width; 

    pt[0].y = box.center.y + b*box.size.height - a*box.size.width; 

    pt[1].x = box.center.x + a*box.size.height - b*box.size.width; 

    pt[1].y = box.center.y - b*box.size.height - a*box.size.width; 

    pt[2].x = 2*box.center.x - pt[0].x; 

    pt[2].y = 2*box.center.y - pt[0].y; 

    pt[3].x = 2*box.center.x - pt[1].x; 

    pt[3].y = 2*box.center.y - pt[1].y; 

} 

 

FitEllipse 
Fits ellipse to set of 2D points 

CvBox2D cvFitEllipse2( const CvArr* points ); 
points  

Sequence or array of points.  

The function cvFitEllipse calculates ellipse that fits best (in least-squares sense) to a set of 2D points. The meaning 

of the returned structure fields is similar to those in cvEllipse except that size stores the full lengths of the ellipse axises, 

not half-lengths 

 

FitLine 
Fits line to 2D or 3D point set 

void  cvFitLine( const CvArr* points, int dist_type, double param, 

                 double reps, double aeps, float* line ); 
points  

Sequence or array of 2D or 3D points with 32-bit integer or floating-point coordinates.  
dist_type  

The distance used for fitting (see the discussion).  
param  

Numerical parameter (C) for some types of distances, if 0 then some optimal value is chosen.  
reps, aeps  

Sufficient accuracy for radius (distance between the coordinate origin and the line) and angle, respectively, 

0.01 would be a good defaults for both.  
line  

The output line parameters. In case of 2d fitting it is array of 4 floats (vx, vy, x0, y0) where (vx, vy) is a 

normalized vector collinear to the line and (x0, y0) is some point on the line. In case of 3D fitting it is array of 



6 floats (vx, vy, vz, x0, y0, z0) where (vx, vy, vz) is a normalized vector collinear to the line and (x0, y0, 

z0) is some point on the line.  

The function cvFitLine fits line to 2D or 3D point set by minimizing sumiρ(ri), where ri is distance between i-th point 

and the line and ρ(r) is a distance function, one of: 

dist_type=CV_DIST_L2 (L2): 

ρ(r)=r2/2 (the simplest and the fastest least-squares method) 

 

dist_type=CV_DIST_L1 (L1): 

ρ(r)=r 

 

dist_type=CV_DIST_L12 (L1-L2): 

ρ(r)=2•[sqrt(1+r2/2) - 1] 

 

dist_type=CV_DIST_FAIR (Fair): 

ρ(r)=C2•[r/C - log(1 + r/C)],  C=1.3998 

 

dist_type=CV_DIST_WELSCH (Welsch): 

ρ(r)=C2/2•[1 - exp(-(r/C)2)],  C=2.9846 

 

dist_type=CV_DIST_HUBER (Huber): 

ρ(r)= r2/2,   if r < C 

      C•(r-C/2),   otherwise;   C=1.345 

 

 

ConvexHull2 
Finds convex hull of point set 

CvSeq* cvConvexHull2( const CvArr* input, void* hull_storage=NULL, 

                      int orientation=CV_CLOCKWISE, int return_points=0 ); 
points  

Sequence or array of 2D points with 32-bit integer or floating-point coordinates.  
hull_storage  

The destination array (CvMat*) or memory storage (CvMemStorage*) that will store the convex hull. If it is 

array, it should be 1d and have the same number of elements as the input array/sequence. On output the 

header is modified so to truncate the array downto the hull size.  
orientation  

Desired orientation of convex hull: CV_CLOCKWISE or CV_COUNTER_CLOCKWISE.  
return_points  

If non-zero, the points themselves will be stored in the hull instead of indices if hull_storage is array, or 

pointers if hull_storage is memory storage.  

The function cvConvexHull2 finds convex hull of 2D point set using Sklansky’s algorithm. If hull_storage is memory 

storage, the function creates a sequence containing the hull points or pointers to them, depending on return_points 

value and returns the sequence on output.  

Example. Building convex hull for a sequence or array of points 
#include "cv.h" 

#include "highgui.h" 

#include <stdlib.h> 

 

#define ARRAY  0 /* switch between array/sequence method by replacing 0<=>1 */ 

 

void main( int argc, char** argv ) 

{ 

    IplImage* img = cvCreateImage( cvSize( 500, 500 ), 8, 3 ); 

    cvNamedWindow( "hull", 1 ); 

 

#if !ARRAY 

        CvMemStorage* storage = cvCreateMemStorage(); 

#endif 

 



    for(;;) 

    { 

        int i, count = rand()%100 + 1, hullcount; 

        CvPoint pt0; 

#if !ARRAY 

        CvSeq* ptseq = cvCreateSeq( CV_SEQ_KIND_GENERIC|CV_32SC2, sizeof(CvContour), 

                                     sizeof(CvPoint), storage ); 

        CvSeq* hull; 

 

        for( i = 0; i < count; i++ ) 

        { 

            pt0.x = rand() % (img->width/2) + img->width/4; 

            pt0.y = rand() % (img->height/2) + img->height/4; 

            cvSeqPush( ptseq, &pt0 ); 

        } 

        hull = cvConvexHull2( ptseq, 0, CV_CLOCKWISE, 0 ); 

        hullcount = hull->total; 

#else 

        CvPoint* points = (CvPoint*)malloc( count * sizeof(points[0])); 

        int* hull = (int*)malloc( count * sizeof(hull[0])); 

        CvMat point_mat = cvMat( 1, count, CV_32SC2, points ); 

        CvMat hull_mat = cvMat( 1, count, CV_32SC1, hull ); 

 

        for( i = 0; i < count; i++ ) 

        { 

            pt0.x = rand() % (img->width/2) + img->width/4; 

            pt0.y = rand() % (img->height/2) + img->height/4; 

            points[i] = pt0; 

        } 

        cvConvexHull2( &point_mat, &hull_mat, CV_CLOCKWISE, 0 ); 

        hullcount = hull_mat.cols; 

#endif 

        cvZero( img ); 

        for( i = 0; i < count; i++ ) 

        { 

#if !ARRAY 

            pt0 = *CV_GET_SEQ_ELEM( CvPoint, ptseq, i ); 

#else 

            pt0 = points[i]; 

#endif 

            cvCircle( img, pt0, 2, CV_RGB( 255, 0, 0 ), CV_FILLED ); 

        } 

 

#if !ARRAY 

        pt0 = **CV_GET_SEQ_ELEM( CvPoint*, hull, hullcount - 1 ); 

#else 

        pt0 = points[hull[hullcount-1]]; 

#endif 

 

        for( i = 0; i < hullcount; i++ ) 

        { 

#if !ARRAY 

            CvPoint pt = **CV_GET_SEQ_ELEM( CvPoint*, hull, i ); 

#else 

            CvPoint pt = points[hull[i]]; 

#endif 

            cvLine( img, pt0, pt, CV_RGB( 0, 255, 0 )); 

            pt0 = pt; 

        } 

 

        cvShowImage( "hull", img ); 

 

        int key = cvWaitKey(0); 

        if( key == 27 ) // 'ESC' 

            break; 



 

#if !ARRAY 

        cvClearMemStorage( storage ); 

#else 

        free( points ); 

        free( hull ); 

#endif 

    } 

} 

 

CheckContourConvexity 
Tests contour convex 

int cvCheckContourConvexity( const CvArr* contour ); 
contour  

Tested contour (sequence or array of points).  

The function cvCheckContourConvexity tests whether the input contour is convex or not. The contour must be simple, i.e. 

without self-intersections.  

 

CvConvexityDefect 
Structure describing a single contour convexity detect 

typedef struct CvConvexityDefect 

{ 

    CvPoint* start; /* point of the contour where the defect begins */ 

    CvPoint* end; /* point of the contour where the defect ends */ 

    CvPoint* depth_point; /* the farthest from the convex hull point within the defect */ 

    float depth; /* distance between the farthest point and the convex hull */ 

} CvConvexityDefect; 

Picture. Convexity defects of hand contour. 

 

 

ConvexityDefects 
Finds convexity defects of contour 

CvSeq* cvConvexityDefects( const CvArr* contour, const CvArr* convexhull, 

                           CvMemStorage* storage=NULL ); 
contour  

Input contour.  
convexhull  



Convex hull obtained using cvConvexHull2 that should contain pointers or indices to the contour points, not 

the hull points themselves, i.e. return_points parameter in cvConvexHull2 should be 0.  
storage  

Container for output sequence of convexity defects. If it is NULL, contour or hull (in that order) storage is 

used.  

The function cvConvexityDefects finds all convexity defects of the input contour and returns a sequence of the 

CvConvexityDefect structures.  

 

PointPolygonTest 
Point in contour test 

double cvPointPolygonTest( const CvArr* contour, 

                           CvPoint2D32f pt, int measure_dist ); 
contour  

Input contour.  
pt  

The point tested against the contour.  
measure_dist  

If it is non-zero, the function estimates distance from the point to the nearest contour edge.  

The function cvPointPolygonTest determines whether the point is inside contour, outside, or lies on an edge (or 

coinsides with a vertex). It returns positive, negative or zero value, correspondingly. When measure_dist=0, the return 

value is +1, -1 and 0, respectively. When measure_dist≠0, it is a signed distance between the point and the nearest 

contour edge.  

Here is the sample output of the function, where each image pixel is tested against the contour. 

 

 

MinAreaRect2 
Finds circumscribed rectangle of minimal area for given 2D point set 

CvBox2D  cvMinAreaRect2( const CvArr* points, CvMemStorage* storage=NULL ); 
points  

Sequence or array of points.  
storage  

Optional temporary memory storage.  

The function cvMinAreaRect2 finds a circumscribed rectangle of the minimal area for 2D point set by building convex hull 

for the set and applying rotating calipers technique to the hull. 

Picture. Minimal-area bounding rectangle for contour 



 

 

MinEnclosingCircle 
Finds circumscribed circle of minimal area for given 2D point set 

int cvMinEnclosingCircle( const CvArr* points, CvPoint2D32f* center, float* radius ); 
points  

Sequence or array of 2D points.  
center  

Output parameter. The center of the enclosing circle.  
radius  

Output parameter. The radius of the enclosing circle.  

The function cvMinEnclosingCircle finds the minimal circumscribed circle for 2D point set using iterative algorithm. It 

returns nonzero if the resultant circle contains all the input points and zero otherwise (i.e. algorithm failed).  

 

CalcPGH 
Calculates pair-wise geometrical histogram for contour 

void cvCalcPGH( const CvSeq* contour, CvHistogram* hist ); 
contour  

Input contour. Currently, only integer point coordinates are allowed.  
hist  

Calculated histogram; must be two-dimensional.  

The function cvCalcPGH calculates 2D pair-wise geometrical histogram (PGH), described in [Iivarinen97], for the 

contour. The algorithm considers every pair of the contour edges. The angle between the edges and the 

minimum/maximum distances are determined for every pair. To do this each of the edges in turn is taken as the base, 

while the function loops through all the other edges. When the base edge and any other edge are considered, the 

minimum and maximum distances from the points on the non-base edge and line of the base edge are selected. The 

angle between the edges defines the row of the histogram in which all the bins that correspond to the distance between 

the calculated minimum and maximum distances are incremented (that is, the histogram is transposed relatively to 

[Iivarninen97] definition). The histogram can be used for contour matching.  

 

Planar Subdivisions 

 

CvSubdiv2D 
Planar subdivision 

#define CV_SUBDIV2D_FIELDS()    ₩ 

    CV_GRAPH_FIELDS()           ₩ 

    int  quad_edges;            ₩ 

    int  is_geometry_valid;     ₩ 

    CvSubdiv2DEdge recent_edge; ₩ 

    CvPoint2D32f  topleft;      ₩ 

    CvPoint2D32f  bottomright; 



 

typedef s

{ 

    CV_SU

} 

CvSubdiv2

Planar sub

The above

planar gra

infinity, su

For every 

a facet is 

become f

OpenCV s

dummy tr

input 2d p

of points 

CvQuadE
Quad-edg

/* one of

   and up

typedef l

 

/* quad-e

#define C

    int f

    struc

    CvSub

 

typedef s

{ 

    CV_QU

} 

CvQuadEdg

Quad-edg

struct CvSubdiv

UBDIV2D_FIELDS(

2D; 

bdivision is a s

e structure des

aph, which, tog

ubdivides a pla

subdivision th

treated as a ve

acets. On the 

subdivides plan

iangle that incl

point set. The s

on the plane, b

Edge2D 
ge of planar su

 edges within 

pper bits are q

ong CvSubdiv2D

edge structure 

CV_QUADEDGE2D_F

lags;         

ct CvSubdiv2DPo

bdiv2DEdge  nex

struct CvQuadEd

UADEDGE2D_FIELD

ge2D; 

ge is a basic e

v2D 

() 

subdivision of a

scribes a subdi

gether with a fe

ane into facets 

ere exists dual

ertex (called vi

picture below o

ne into triangle

udes all the su

subdivisions ca

building specia

ubdivision 

quad-edge, lo

quad-edge poin

DEdge; 

fields */ 

FIELDS()     ₩

            ₩

oint* pt[4]; ₩

xt[4]; 

dge2D 

DS() 

element of subd

a plane into a s

ivision built on 

ew edges conn

by its edges. 

l subdivision th

rtual point belo

original subdiv

s using Delaun

ubdivision poin

an be used for 

al graphs (such

ower 2 bits is 

nter */ 

₩ 

₩ 

₩ 

division, it cont

set of non-ove

2d point set, w

necting exterior

 

here facets and

ow) of dual sub

ision is marked

nay’s algorithm

ts for sure. In t

3d piece-wise

h as NNG,RNG)

index (0..3)

tains four edge

erlapped region

where the poin

r subdivision po

d points (subdi

bdivision and t

d with solid line

 

. Subdivision i

this case the d

e transformatio

) etc. 

es (e, eRot (in 

ns (facets) that

ts are linked to

oints (namely, 

vision vertices

he original sub

es and dual sub

s built iterative

dual subdivision

on of a plane, m

red) and revers

t cover the who

ogether and for

convex hull po

) swap their ro

bdivision vertice

bdivision with d

ly starting from

n is Voronoi dia

morphing, fast 

sed e & eRot (

ole plane. 

rm a 

oints) with 

les, that is, 

es 

dot lines 

m a 

agram of 

location 

 

in green)):  



 

 

CvSubdiv2DPoint 
Point of original or dual subdivision 

#define CV_SUBDIV2D_POINT_FIELDS()₩ 

    int            flags;      ₩ 

    CvSubdiv2DEdge first;      ₩ 

    CvPoint2D32f   pt; 

 

#define CV_SUBDIV2D_VIRTUAL_POINT_FLAG (1 << 30) 

 

typedef struct CvSubdiv2DPoint 

{ 

    CV_SUBDIV2D_POINT_FIELDS() 

} 

CvSubdiv2DPoint; 

 

Subdiv2DGetEdge 
Returns one of edges related to given 

CvSubdiv2DEdge  cvSubdiv2DGetEdge( CvSubdiv2DEdge edge, CvNextEdgeType type ); 

#define cvSubdiv2DNextEdge( edge ) cvSubdiv2DGetEdge( edge, CV_NEXT_AROUND_ORG ) 
edge  

Subdivision edge (not a quad-edge)  
type  

Specifies, which of related edges to return, one of:  

• CV_NEXT_AROUND_ORG - next around the edge origin (eOnext on the picture above if e is the input 

edge)  

• CV_NEXT_AROUND_DST - next around the edge vertex (eDnext)  

• CV_PREV_AROUND_ORG - previous around the edge origin (reversed eRnext)  

• CV_PREV_AROUND_DST - previous around the edge destination (reversed eLnext)  

• CV_NEXT_AROUND_LEFT - next around the left facet (eLnext)  

• CV_NEXT_AROUND_RIGHT - next around the right facet (eRnext)  

• CV_PREV_AROUND_LEFT - previous around the left facet (reversed eOnext)  

• CV_PREV_AROUND_RIGHT - previous around the right facet (reversed eDnext)  

The function cvSubdiv2DGetEdge returns one the edges related to the input edge.  

 

Subdiv2DRotateEdge 
Returns another edge of the same quad-edge 



CvSubdiv2DEdge  cvSubdiv2DRotateEdge( CvSubdiv2DEdge edge, int rotate ); 
edge  

Subdivision edge (not a quad-edge)  
type  

Specifies, which of edges of the same quad-edge as the input one to return, one of:  

• 0 - the input edge (e on the picture above if e is the input edge)  

• 1 - the rotated edge (eRot)  

• 2 - the reversed edge (reversed e (in green))  

• 3 - the reversed rotated edge (reversed eRot (in green))  

The function cvSubdiv2DRotateEdge returns one the edges of the same quad-edge as the input edge.  

 

Subdiv2DEdgeOrg 
Returns edge origin 

CvSubdiv2DPoint* cvSubdiv2DEdgeOrg( CvSubdiv2DEdge edge ); 
edge  

Subdivision edge (not a quad-edge)  

The function cvSubdiv2DEdgeOrg returns the edge origin. The returned pointer may be NULL if the edge is from dual 

subdivision and the virtual point coordinates are not calculated yet. The virtual points can be calculated using function 

cvCalcSubdivVoronoi2D.  

 

Subdiv2DEdgeDst 
Returns edge destination 

CvSubdiv2DPoint* cvSubdiv2DEdgeDst( CvSubdiv2DEdge edge ); 
edge  

Subdivision edge (not a quad-edge)  

The function cvSubdiv2DEdgeDst returns the edge destination. The returned pointer may be NULL if the edge is from dual 

subdivision and the virtual point coordinates are not calculated yet. The virtual points can be calculated using function 

cvCalcSubdivVoronoi2D.  

 

CreateSubdivDelaunay2D 
Creates empty Delaunay triangulation 

CvSubdiv2D* cvCreateSubdivDelaunay2D( CvRect rect, CvMemStorage* storage ); 
rect  

Rectangle that includes all the 2d points that are to be added to subdivision.  
storage  

Container for subdivision.  

The function cvCreateSubdivDelaunay2D creates an empty Delaunay subdivision, where 2d points can be added further 

using function cvSubdivDelaunay2DInsert. All the points to be added must be within the specified rectangle, otherwise 

a runtime error will be raised.  

 

SubdivDelaunay2DInsert 
Inserts a single point to Delaunay triangulation 

CvSubdiv2DPoint*  cvSubdivDelaunay2DInsert( CvSubdiv2D* subdiv, CvPoint2D32f pt); 
subdiv  



Delaunay subdivision created by function cvCreateSubdivDelaunay2D.  
pt  

Inserted point.  

The function cvSubdivDelaunay2DInsert inserts a single point to subdivision and modifies the subdivision topology 

appropriately. If a points with same coordinates exists already, no new points is added. The function returns pointer to 

the allocated point. No virtual points coordinates is calculated at this stage.  

 

Subdiv2DLocate 
Inserts a single point to Delaunay triangulation 

CvSubdiv2DPointLocation  cvSubdiv2DLocate( CvSubdiv2D* subdiv, CvPoint2D32f pt, 

                                           CvSubdiv2DEdge* edge, 

                                           CvSubdiv2DPoint** vertex=NULL ); 
subdiv  

Delaunay or another subdivision.  
pt  

The point to locate.  
edge  

The output edge the point falls onto or right to.  
vertex  

Optional output vertex double pointer the input point coinsides with.  

The function cvSubdiv2DLocate locates input point within subdivision. There are 5 cases:  

• point falls into some facet. The function returns CV_PTLOC_INSIDE and *edge will contain one of edges of the 

facet.  

• point falls onto the edge. The function returns CV_PTLOC_ON_EDGE and *edge will contain this edge.  

• point coinsides with one of subdivision vertices. The function returns CV_PTLOC_VERTEX and *vertex will 

contain pointer to the vertex.  

• point is outside the subdivsion reference rectangle. The function returns CV_PTLOC_OUTSIDE_RECT and no 

pointers is filled.  

• one of input arguments is invalid. Runtime error is raised or, if silent or "parent" error processing mode is 

selected, CV_PTLOC_ERROR is returnd.  

 

FindNearestPoint2D 
Finds the closest subdivision vertex to given point 

CvSubdiv2DPoint* cvFindNearestPoint2D( CvSubdiv2D* subdiv, CvPoint2D32f pt ); 
subdiv  

Delaunay or another subdivision.  
pt  

Input point.  

The function cvFindNearestPoint2D is another function that locates input point within subdivision. It finds subdivision 

vertex that is the closest to the input point. It is not necessarily one of vertices of the facet containing the input point, 

though the facet (located using cvSubdiv2DLocate) is used as a starting point. The function returns pointer to the found 

subdivision vertex  

 

CalcSubdivVoronoi2D 
Calculates coordinates of Voronoi diagram cells 

void cvCalcSubdivVoronoi2D( CvSubdiv2D* subdiv ); 
subdiv  

Delaunay subdivision, where all the points are added already.  



The function cvCalcSubdivVoronoi2D calculates coordinates of virtual points. All virtual points corresponding to some 

vertex of original subdivision form (when connected together) a boundary of Voronoi cell of that point.  

 

ClearSubdivVoronoi2D 
Removes all virtual points 

void cvClearSubdivVoronoi2D( CvSubdiv2D* subdiv ); 
subdiv  

Delaunay subdivision.  

The function cvClearSubdivVoronoi2D removes all virtual points. It is called internally in cvCalcSubdivVoronoi2D if the 

subdivision was modified after previous call to the function.  

 

There are a few other lower-level functions that work with planar subdivisions, see cv.h and the sources. Demo script 

delaunay.c that builds Delaunay triangulation and Voronoi diagram of random 2d point set can be found at 

opencv/samples/c.  

 

Motion Analysis and Object Tracking Reference 

 

Accumulation of Background Statistics 

 

Acc 
Adds frame to accumulator 

void cvAcc( const CvArr* image, CvArr* sum, const CvArr* mask=NULL ); 
image  

Input image, 1- or 3-channel, 8-bit or 32-bit floating point. (each channel of multi-channel image is 

processed independently).  
sum  

Accumulator of the same number of channels as input image, 32-bit or 64-bit floating-point.  
mask  

Optional operation mask.  

The function cvAcc adds the whole image image or its selected region to accumulator sum: 

sum(x,y)=sum(x,y)+image(x,y) if mask(x,y)!=0 

 

SquareAcc 
Adds the square of source image to accumulator 

void cvSquareAcc( const CvArr* image, CvArr* sqsum, const CvArr* mask=NULL ); 
image  

Input image, 1- or 3-channel, 8-bit or 32-bit floating point (each channel of multi-channel image is 

processed independently).  
sqsum  

Accumulator of the same number of channels as input image, 32-bit or 64-bit floating-point.  
mask  

Optional operation mask.  

The function cvSquareAcc adds the input image image or its selected region, raised to power 2, to the accumulator sqsum: 



sqsum(x,y)=sqsum(x,y)+image(x,y)2 if mask(x,y)!=0 

 

MultiplyAcc 
Adds product of two input images to accumulator 

void cvMultiplyAcc( const CvArr* image1, const CvArr* image2, CvArr* acc, const CvArr* mask=NULL ); 
image1  

First input image, 1- or 3-channel, 8-bit or 32-bit floating point (each channel of multi-channel image is 

processed independently).  
image2  

Second input image, the same format as the first one.  
acc  

Accumulator of the same number of channels as input images, 32-bit or 64-bit floating-point.  
mask  

Optional operation mask.  

The function cvMultiplyAcc adds product of 2 images or thier selected regions to accumulator acc: 

acc(x,y)=acc(x,y) + image1(x,y)•image2(x,y) if mask(x,y)!=0 

 

RunningAvg 
Updates running average 

void cvRunningAvg( const CvArr* image, CvArr* acc, double alpha, const CvArr* mask=NULL ); 
image  

Input image, 1- or 3-channel, 8-bit or 32-bit floating point (each channel of multi-channel image is 

processed independently).  
acc  

Accumulator of the same number of channels as input image, 32-bit or 64-bit floating-point.  
alpha  

Weight of input image.  
mask  

Optional operation mask.  

The function cvRunningAvg calculates weighted sum of input image image and the accumulator acc so that acc becomes 

a running average of frame sequence: 

acc(x,y)=(1-α)•acc(x,y) + α•image(x,y) if mask(x,y)!=0 

where α (alpha) regulates update speed (how fast accumulator forgets about previous frames).  

 

Motion Templates 

 

UpdateMotionHistory 
Updates motion history image by moving silhouette 

void cvUpdateMotionHistory( const CvArr* silhouette, CvArr* mhi, 

                            double timestamp, double duration ); 
silhouette  

Silhouette mask that has non-zero pixels where the motion occurs.  
mhi  

Motion history image, that is updated by the function (single-channel, 32-bit floating-point)  
timestamp  

Current time in milliseconds or other units.  
duration  

Maximal duration of motion track in the same units as timestamp.  



The function cvUpdateMotionHistory updates the motion history image as following: 

mhi(x,y)=timestamp  if silhouette(x,y)!=0 

         0          if silhouette(x,y)=0 and mhi(x,y)<timestamp-duration 

         mhi(x,y)   otherwise 

That is, MHI pixels where motion occurs are set to the current timestamp, while the pixels where motion happened far 

ago are cleared.  

 

CalcMotionGradient 
Calculates gradient orientation of motion history image 

void cvCalcMotionGradient( const CvArr* mhi, CvArr* mask, CvArr* orientation, 

                           double delta1, double delta2, int aperture_size=3 ); 
mhi  

Motion history image.  
mask  

Mask image; marks pixels where motion gradient data is correct. Output parameter.  
orientation  

Motion gradient orientation image; contains angles from 0 to ~360°.  
delta1, delta2  

The function finds minimum (m(x,y)) and maximum (M(x,y)) mhi values over each pixel (x,y) neihborhood and 

assumes the gradient is valid only if  

min(delta1,delta2) <= M(x,y)-m(x,y) <= max(delta1,delta2). 
aperture_size  

Aperture size of derivative operators used by the function: CV_SCHARR, 1, 3, 5 or 7 (see cvSobel).  

The function cvCalcMotionGradient calculates the derivatives Dx and Dy of mhi and then calculates gradient orientation 

as: 

orientation(x,y)=arctan(Dy(x,y)/Dx(x,y)) 

where both Dx(x,y)' and Dy(x,y)' signs are taken into account (as in cvCartToPolar function). After that mask is filled to 

indicate where the orientation is valid (see delta1 and delta2 description).  

 

CalcGlobalOrientation 
Calculates global motion orientation of some selected region 

double cvCalcGlobalOrientation( const CvArr* orientation, const CvArr* mask, const CvArr* mhi, 

                                double timestamp, double duration ); 
orientation  

Motion gradient orientation image; calculated by the function cvCalcMotionGradient.  
mask  

Mask image. It may be a conjunction of valid gradient mask, obtained with cvCalcMotionGradient and mask of 

the region, whose direction needs to be calculated.  
mhi  

Motion history image.  
timestamp  

Current time in milliseconds or other units, it is better to store time passed to cvUpdateMotionHistory before 

and reuse it here, because running cvUpdateMotionHistory and cvCalcMotionGradient on large images may 

take some time.  
duration  

Maximal duration of motion track in milliseconds, the same as in cvUpdateMotionHistory.  

The function cvCalcGlobalOrientation calculates the general motion direction in the selected region and returns the 

angle between 0° and 360°. At first the function builds the orientation histogram and finds the basic orientation as a 

coordinate of the histogram maximum. After that the function calculates the shift relative to the basic orientation as a 

weighted sum of all orientation vectors: the more recent is the motion, the greater is the weight. The resultant angle is a 

circular sum of the basic orientation and the shift.  



 

SegmentMotion 
Segments whole motion into separate moving parts 

CvSeq* cvSegmentMotion( const CvArr* mhi, CvArr* seg_mask, CvMemStorage* storage, 

                        double timestamp, double seg_thresh ); 
mhi  

Motion history image.  
seg_mask  

Image where the mask found should be stored, single-channel, 32-bit floating-point.  
storage  

Memory storage that will contain a sequence of motion connected components.  
timestamp  

Current time in milliseconds or other units.  
seg_thresh  

Segmentation threshold; recommended to be equal to the interval between motion history "steps" or greater.  

The function cvSegmentMotion finds all the motion segments and marks them in seg_mask with individual values each 

(1,2,...). It also returns a sequence of CvConnectedComp structures, one per each motion components. After than the 

motion direction for every component can be calculated with cvCalcGlobalOrientation using extracted mask of the 

particular component (using cvCmp)  

 

Object Tracking 

 

MeanShift 
Finds object center on back projection 

int cvMeanShift( const CvArr* prob_image, CvRect window, 

                 CvTermCriteria criteria, CvConnectedComp* comp ); 
prob_image  

Back projection of object histogram (see cvCalcBackProject).  
window  

Initial search window.  
criteria  

Criteria applied to determine when the window search should be finished.  
comp  

Resultant structure that contains converged search window coordinates (comp->rect field) and sum of all 

pixels inside the window (comp->area field).  

The function cvMeanShift iterates to find the object center given its back projection and initial position of search window. 

The iterations are made until the search window center moves by less than the given value and/or until the function has 

done the maximum number of iterations. The function returns the number of iterations made.  

 

CamShift 
Finds object center, size, and orientation 

int cvCamShift( const CvArr* prob_image, CvRect window, CvTermCriteria criteria, 

                CvConnectedComp* comp, CvBox2D* box=NULL ); 
prob_image  

Back projection of object histogram (see cvCalcBackProject).  
window  

Initial search window.  
criteria  

Criteria applied to determine when the window search should be finished.  
comp  

Resultant structure that contains converged search window coordinates (comp->rect field) and sum of all 

pixels inside the window (comp->area field).  



box  
Circumscribed box for the object. If not NULL, contains object size and orientation.  

The function cvCamShift implements CAMSHIFT object tracking algrorithm ([Bradski98]). First, it finds an object center 

using cvMeanShift and, after that, calculates the object size and orientation. The function returns number of iterations 

made within cvMeanShift.  

CvCamShiftTracker class declared in cv.hpp implements color object tracker that uses the function.  

 

SnakeImage 
Changes contour position to minimize its energy 

void cvSnakeImage( const IplImage* image, CvPoint* points, int length, 

                   float* alpha, float* beta, float* gamma, int coeff_usage, 

                   CvSize win, CvTermCriteria criteria, int calc_gradient=1 ); 
image  

The source image or external energy field.  
points  

Contour points (snake).  
length  

Number of points in the contour.  
alpha  

Weight[s] of continuity energy, single float or array of length floats, one per each contour point.  
beta  

Weight[s] of curvature energy, similar to alpha.  
gamma  

Weight[s] of image energy, similar to alpha.  
coeff_usage  

Variant of usage of the previous three parameters:  

• CV_VALUE indicates that each of alpha, beta, gamma is a pointer to a single value to be used for all 

points;  

• CV_ARRAY indicates that each of alpha, beta, gamma is a pointer to an array of coefficients different 

for all the points of the snake. All the arrays must have the size equal to the contour size.  

win  
Size of neighborhood of every point used to search the minimum, both win.width and win.height must be odd.  

criteria  
Termination criteria.  

calc_gradient  
Gradient flag. If not 0, the function calculates gradient magnitude for every image pixel and consideres it as 

the energy field, otherwise the input image itself is considered.  

The function cvSnakeImage updates snake in order to minimize its total energy that is a sum of internal energy that 

depends on contour shape (the smoother contour is, the smaller internal energy is) and external energy that depends 

on the energy field and reaches minimum at the local energy extremums that correspond to the image edges in case of 

image gradient. 

The parameter criteria.epsilon is used to define the minimal number of points that must be moved during any iteration 

to keep the iteration process running.  

If at some iteration the number of moved points is less than criteria.epsilon or the function performed 

criteria.max_iter iterations, the function terminates.  

 

Optical Flow 

 



CalcOpticalFlowHS 
Calculates optical flow for two images 

void cvCalcOpticalFlowHS( const CvArr* prev, const CvArr* curr, int use_previous, 

                          CvArr* velx, CvArr* vely, double lambda, 

                          CvTermCriteria criteria ); 
prev  

First image, 8-bit, single-channel.  
curr  

Second image, 8-bit, single-channel.  
use_previous  

Uses previous (input) velocity field.  
velx  

Horizontal component of the optical flow of the same size as input images, 32-bit floating-point, single-

channel.  
vely  

Vertical component of the optical flow of the same size as input images, 32-bit floating-point, single-channel.  
lambda  

Lagrangian multiplier.  
criteria  

Criteria of termination of velocity computing.  

The function cvCalcOpticalFlowHS computes flow for every pixel of the first input image using Horn & Schunck algorithm 

[Horn81].  

 

CalcOpticalFlowLK 
Calculates optical flow for two images 

void cvCalcOpticalFlowLK( const CvArr* prev, const CvArr* curr, CvSize win_size, 

                          CvArr* velx, CvArr* vely ); 
prev  

First image, 8-bit, single-channel.  
curr  

Second image, 8-bit, single-channel.  
win_size  

Size of the averaging window used for grouping pixels.  
velx  

Horizontal component of the optical flow of the same size as input images, 32-bit floating-point, single-

channel.  
vely  

Vertical component of the optical flow of the same size as input images, 32-bit floating-point, single-channel.  

The function cvCalcOpticalFlowLK computes flow for every pixel of the first input image using Lucas & Kanade algorithm 

[Lucas81].  

 

CalcOpticalFlowBM 
Calculates optical flow for two images by block matching method 

void cvCalcOpticalFlowBM( const CvArr* prev, const CvArr* curr, CvSize block_size, 

                          CvSize shift_size, CvSize max_range, int use_previous, 

                          CvArr* velx, CvArr* vely ); 
prev  

First image, 8-bit, single-channel.  
curr  

Second image, 8-bit, single-channel.  
block_size  

Size of basic blocks that are compared.  
shift_size  

Block coordinate increments.  
max_range  

Size of the scanned neighborhood in pixels around block.  



use_previous  
Uses previous (input) velocity field.  

velx  
Horizontal component of the optical flow of 

floor((prev->width - block_size.width)/shiftSize.width) × floor((prev->height - 

block_size.height)/shiftSize.height) size, 32-bit floating-point, single-channel.  
vely  

Vertical component of the optical flow of the same size velx, 32-bit floating-point, single-channel.  

The function cvCalcOpticalFlowBM calculates optical flow for overlapped blocks block_size.width×block_size.height 

pixels each, thus the velocity fields are smaller than the original images. For every block in prev the functions tries to 

find a similar block in curr in some neighborhood of the original block or shifted by (velx(x0,y0),vely(x0,y0)) block as 

has been calculated by previous function call (if use_previous=1)  

 

CalcOpticalFlowPyrLK 
Calculates optical flow for a sparse feature set using iterative Lucas-Kanade method in pyramids 

void cvCalcOpticalFlowPyrLK( const CvArr* prev, const CvArr* curr, CvArr* prev_pyr, CvArr* curr_pyr, 

                             const CvPoint2D32f* prev_features, CvPoint2D32f* curr_features, 

                             int count, CvSize win_size, int level, char* status, 

                             float* track_error, CvTermCriteria criteria, int flags ); 
prev  

First frame, at time t.  
curr  

Second frame, at time t + dt .  
prev_pyr  

Buffer for the pyramid for the first frame. If the pointer is not NULL , the buffer must have a sufficient size to 

store the pyramid from level 1 to level #level ; the total size of (image_width+8)*image_height/3 bytes is 

sufficient.  
curr_pyr  

Similar to prev_pyr, used for the second frame.  
prev_features  

Array of points for which the flow needs to be found.  
curr_features  

Array of 2D points containing calculated new positions of input features in the second image.  
count  

Number of feature points.  
win_size  

Size of the search window of each pyramid level.  
level  

Maximal pyramid level number. If 0 , pyramids are not used (single level), if 1 , two levels are used, etc.  
status  

Array. Every element of the array is set to 1 if the flow for the corresponding feature has been found, 0 

otherwise.  
track_error  

Array of double numbers containing difference between patches around the original and moved points. 

Optional parameter; can be NULL .  
criteria  

Specifies when the iteration process of finding the flow for each point on each pyramid level should be 

stopped.  
flags  

Miscellaneous flags:  

• CV_LKFLOW_PYR_A_READY , pyramid for the first frame is precalculated before the call;  

• CV_LKFLOW_PYR_B_READY , pyramid for the second frame is precalculated before the call;  

• CV_LKFLOW_INITIAL_GUESSES , array B contains initial coordinates of features before the function call.  

The function cvCalcOpticalFlowPyrLK implements sparse iterative version of Lucas-Kanade optical flow in pyramids 

([Bouguet00]). It calculates coordinates of the feature points on the current video frame given their coordinates on the 

previous frame. The function finds the coordinates with sub-pixel accuracy.  

Both parameters prev_pyr and curr_pyr comply with the following rules: if the image pointer is 0, the function allocates 

the buffer internally, calculates the pyramid, and releases the buffer after processing. Otherwise, the function calculates 



the pyramid and stores it in the buffer unless the flag CV_LKFLOW_PYR_A[B]_READY is set. The image should be large 

enough to fit the Gaussian pyramid data. After the function call both pyramids are calculated and the readiness flag for 

the corresponding image can be set in the next call (i.e., typically, for all the image pairs except the very first one 

CV_LKFLOW_PYR_A_READY is set).  

 

Estimators 

 

CvKalman 
Kalman filter state 

typedef struct CvKalman 

{ 

    int MP;                     /* number of measurement vector dimensions */ 

    int DP;                     /* number of state vector dimensions */ 

    int CP;                     /* number of control vector dimensions */ 

 

    /* backward compatibility fields */ 

#if 1 

    float* PosterState;         /* =state_pre->data.fl */ 

    float* PriorState;          /* =state_post->data.fl */ 

    float* DynamMatr;           /* =transition_matrix->data.fl */ 

    float* MeasurementMatr;     /* =measurement_matrix->data.fl */ 

    float* MNCovariance;        /* =measurement_noise_cov->data.fl */ 

    float* PNCovariance;        /* =process_noise_cov->data.fl */ 

    float* KalmGainMatr;        /* =gain->data.fl */ 

    float* PriorErrorCovariance;/* =error_cov_pre->data.fl */ 

    float* PosterErrorCovariance;/* =error_cov_post->data.fl */ 

    float* Temp1;               /* temp1->data.fl */ 

    float* Temp2;               /* temp2->data.fl */ 

#endif 

 

    CvMat* state_pre;           /* predicted state (x'(k)): 

                                    x(k)=A*x(k-1)+B*u(k) */ 

    CvMat* state_post;          /* corrected state (x(k)): 

                                    x(k)=x'(k)+K(k)*(z(k)-H*x'(k)) */ 

    CvMat* transition_matrix;   /* state transition matrix (A) */ 

    CvMat* control_matrix;      /* control matrix (B) 

                                   (it is not used if there is no control)*/ 

    CvMat* measurement_matrix;  /* measurement matrix (H) */ 

    CvMat* process_noise_cov;   /* process noise covariance matrix (Q) */ 

    CvMat* measurement_noise_cov; /* measurement noise covariance matrix (R) */ 

    CvMat* error_cov_pre;       /* priori error estimate covariance matrix (P'(k)): 

                                    P'(k)=A*P(k-1)*At + Q)*/ 

    CvMat* gain;                /* Kalman gain matrix (K(k)): 

                                    K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)*/ 

    CvMat* error_cov_post;      /* posteriori error estimate covariance matrix (P(k)): 

                                    P(k)=(I-K(k)*H)*P'(k) */ 

    CvMat* temp1;               /* temporary matrices */ 

    CvMat* temp2; 

    CvMat* temp3; 

    CvMat* temp4; 

    CvMat* temp5; 

} 

CvKalman; 

The structure CvKalman is used to keep Kalman filter state. It is created by cvCreateKalman function, updated by 

cvKalmanPredict and cvKalmanCorrect functions and released by cvReleaseKalman functions. Normally, the structure is 

used for standard Kalman filter (notation and the formulae below are borrowed from the excellent Kalman tutorial 

[Welch95]): 



xk=A•xk-1+B•uk+wk 

zk=H•xk+vk, 

where: 

xk (xk-1) - state of the system at the moment k (k-1) 

zk - measurement of the system state at the moment k 

uk - external control applied at the moment k 

 

wk and vk are normally-distributed process and measurement noise, respectively: 

p(w) ~ N(0,Q) 

p(v) ~ N(0,R), 

 

that is, 

Q - process noise covariance matrix, constant or variable, 

R - measurement noise covariance matrix, constant or variable 

In case of standard Kalman filter, all the matrices: A, B, H, Q and R are initialized once after CvKalman structure is 

allocated via cvCreateKalman. However, the same structure and the same functions may be used to simulate extended 

Kalman filter by linearizing extended Kalman filter equation in the current system state neighborhood, in this case A, B, 

H (and, probably, Q and R) should be updated on every step.  

 

CreateKalman 
Allocates Kalman filter structure 

CvKalman* cvCreateKalman( int dynam_params, int measure_params, int control_params=0 ); 
dynam_params  

dimensionality of the state vector  
measure_params  

dimensionality of the measurement vector  
control_params  

dimensionality of the control vector  

The function cvCreateKalman allocates CvKalman and all its matrices and initializes them somehow.  

 

ReleaseKalman 
Deallocates Kalman filter structure 

void cvReleaseKalman( CvKalman** kalman ); 
kalman  

double pointer to the Kalman filter structure.  

The function cvReleaseKalman releases the structure CvKalman and all underlying matrices.  

 

KalmanPredict 
Estimates subsequent model state 

const CvMat* cvKalmanPredict( CvKalman* kalman, const CvMat* control=NULL ); 

#define cvKalmanUpdateByTime cvKalmanPredict 
kalman  

Kalman filter state.  
control  

Control vector (uk), should be NULL iff there is no external control (control_params=0).  

The function cvKalmanPredict estimates the subsequent stochastic model state by its current state and stores it at 

kalman->state_pre: 



    x'k=A•xk+B•uk 

    P'k=A•Pk-1*A
T + Q, 

where 

x'k is predicted state (kalman->state_pre), 

xk-1 is corrected state on the previous step (kalman->state_post) 

                (should be initialized somehow in the beginning, zero vector by default), 

uk is external control (control parameter), 

P'k is priori error covariance matrix (kalman->error_cov_pre) 

Pk-1 is posteriori error covariance matrix on the previous step (kalman->error_cov_post) 

                (should be initialized somehow in the beginning, identity matrix by default), 

The function returns the estimated state.  

 

KalmanCorrect 
Adjusts model state 

const CvMat* cvKalmanCorrect( CvKalman* kalman, const CvMat* measurement ); 

#define cvKalmanUpdateByMeasurement cvKalmanCorrect 
kalman  

Pointer to the structure to be updated.  
measurement  

Pointer to the structure CvMat containing the measurement vector.  

The function cvKalmanCorrect adjusts stochastic model state on the basis of the given measurement of the model state: 

Kk=P'k•H
T•(H•P'k•H

T+R)-1 

xk=x'k+Kk•(zk-H•x'k) 

Pk=(I-Kk•H)•P'k 

where 

zk - given measurement (mesurement parameter) 

Kk - Kalman "gain" matrix. 

The function stores adjusted state at kalman->state_post and returns it on output.  

Example. Using Kalman filter to track a rotating point 
#include "cv.h" 

#include "highgui.h" 

#include <math.h> 

 

int main(int argc, char** argv) 

{ 

    /* A matrix data */ 

    const float A[] = { 1, 1, 0, 1 }; 

 

    IplImage* img = cvCreateImage( cvSize(500,500), 8, 3 ); 

    CvKalman* kalman = cvCreateKalman( 2, 1, 0 ); 

    /* state is (phi, delta_phi) - angle and angle increment */ 

    CvMat* state = cvCreateMat( 2, 1, CV_32FC1 ); 

    CvMat* process_noise = cvCreateMat( 2, 1, CV_32FC1 ); 

    /* only phi (angle) is measured */ 

    CvMat* measurement = cvCreateMat( 1, 1, CV_32FC1 ); 

    CvRandState rng; 

    int code = -1; 

 

    cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI ); 

 

    cvZero( measurement ); 

    cvNamedWindow( "Kalman", 1 ); 

 

    for(;;) 

    { 

        cvRandSetRange( &rng, 0, 0.1, 0 ); 

        rng.disttype = CV_RAND_NORMAL; 

 



        cvRand( &rng, state ); 

 

        memcpy( kalman->transition_matrix->data.fl, A, sizeof(A)); 

        cvSetIdentity( kalman->measurement_matrix, cvRealScalar(1) ); 

        cvSetIdentity( kalman->process_noise_cov, cvRealScalar(1e-5) ); 

        cvSetIdentity( kalman->measurement_noise_cov, cvRealScalar(1e-1) ); 

        cvSetIdentity( kalman->error_cov_post, cvRealScalar(1)); 

        /* choose random initial state */ 

        cvRand( &rng, kalman->state_post ); 

 

        rng.disttype = CV_RAND_NORMAL; 

 

        for(;;) 

        { 

            #define calc_point(angle)                                      ₩ 

                cvPoint( cvRound(img->width/2 + img->width/3*cos(angle)),  ₩ 

                         cvRound(img->height/2 - img->width/3*sin(angle))) 

 

            float state_angle = state->data.fl[0]; 

            CvPoint state_pt = calc_point(state_angle); 

 

            /* predict point position */ 

            const CvMat* prediction = cvKalmanPredict( kalman, 0 ); 

            float predict_angle = prediction->data.fl[0]; 

            CvPoint predict_pt = calc_point(predict_angle); 

            float measurement_angle; 

            CvPoint measurement_pt; 

 

            cvRandSetRange( &rng, 0, sqrt(kalman->measurement_noise_cov->data.fl[0]), 0 ); 

            cvRand( &rng, measurement ); 

 

            /* generate measurement */ 

            cvMatMulAdd( kalman->measurement_matrix, state, measurement, measurement ); 

 

            measurement_angle = measurement->data.fl[0]; 

            measurement_pt = calc_point(measurement_angle); 

 

            /* plot points */ 

            #define draw_cross( center, color, d )                                 ₩ 

                cvLine( img, cvPoint( center.x - d, center.y - d ),                ₩ 

                             cvPoint( center.x + d, center.y + d ), color, 1, 0 ); ₩ 

                cvLine( img, cvPoint( center.x + d, center.y - d ),                ₩ 

                             cvPoint( center.x - d, center.y + d ), color, 1, 0 ) 

 

            cvZero( img ); 

            draw_cross( state_pt, CV_RGB(255,255,255), 3 ); 

            draw_cross( measurement_pt, CV_RGB(255,0,0), 3 ); 

            draw_cross( predict_pt, CV_RGB(0,255,0), 3 ); 

            cvLine( img, state_pt, predict_pt, CV_RGB(255,255,0), 3, 0 ); 

 

            /* adjust Kalman filter state */ 

            cvKalmanCorrect( kalman, measurement ); 

 

            cvRandSetRange( &rng, 0, sqrt(kalman->process_noise_cov->data.fl[0]), 0 ); 

            cvRand( &rng, process_noise ); 

            cvMatMulAdd( kalman->transition_matrix, state, process_noise, state ); 

 

            cvShowImage( "Kalman", img ); 

            code = cvWaitKey( 100 ); 

 

            if( code > 0 ) /* break current simulation by pressing a key */ 

                break; 

        } 

        if( code == 27 ) /* exit by ESCAPE */ 

            break; 



    } 

 

    return 0; 

} 

 

CvConDensation 
ConDenstation state 

    typedef struct CvConDensation 

    { 

        int MP;     //Dimension of measurement vector 

        int DP;     // Dimension of state vector 

        float* DynamMatr;       // Matrix of the linear Dynamics system 

        float* State;           // Vector of State 

        int SamplesNum;         // Number of the Samples 

        float** flSamples;      // array of the Sample Vectors 

        float** flNewSamples;   // temporary array of the Sample Vectors 

        float* flConfidence;    // Confidence for each Sample 

        float* flCumulative;    // Cumulative confidence 

        float* Temp;            // Temporary vector 

        float* RandomSample;    // RandomVector to update sample set 

        CvRandState* RandS;     // Array of structures to generate random vectors 

    } CvConDensation; 

The structure CvConDensation stores CONditional DENSity propagATION tracker state. The information about the 

algorithm can be found at http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/ISARD1/condensation.html  

 

CreateConDensation 
Allocates ConDensation filter structure 

CvConDensation* cvCreateConDensation( int dynam_params, int measure_params, int sample_count ); 
dynam_params  

Dimension of the state vector.  
measure_params  

Dimension of the measurement vector.  
sample_count  

Number of samples.  

The function cvCreateConDensation creates CvConDensation structure and returns pointer to the structure.  

 

ReleaseConDensation 
Deallocates ConDensation filter structure 

void cvReleaseConDensation( CvConDensation** condens ); 
condens  

Pointer to the pointer to the structure to be released.  

The function cvReleaseConDensation releases the structure CvConDensation (see cvConDensation) and frees all memory 

previously allocated for the structure.  

 

ConDensInitSampleSet 
Initializes sample set for ConDensation algorithm 

void cvConDensInitSampleSet( CvConDensation* condens, CvMat* lower_bound, CvMat* upper_bound ); 
condens  



Pointer to a structure to be initialized.  
lower_bound  

Vector of the lower boundary for each dimension.  
upper_bound  

Vector of the upper boundary for each dimension.  

The function cvConDensInitSampleSet fills the samples arrays in the structure CvConDensation with values within 

specified ranges.  

 

ConDensUpdateByTime 
Estimates subsequent model state 

void cvConDensUpdateByTime( CvConDensation* condens ); 
condens  

Pointer to the structure to be updated.  

The function cvConDensUpdateByTime estimates the subsequent stochastic model state from its current state.  

 

Pattern Recognition 

 

Object Detection 

The object detector described below has been initially proposed by Paul Viola [Viola01] and improved by Rainer 

Lienhart [Lienhart02]. First, a classifier (namely a cascade of boosted classifiers working with haar-like features) is 

trained with a few hundreds of sample views of a particular object (i.e., a face or a car), called positive examples, that 

are scaled to the same size (say, 20x20), and negative examples - arbitrary images of the same size.  

After a classifier is trained, it can be applied to a region of interest (of the same size as used during the training) in an 

input image. The classifier outputs a "1" if the region is likely to show the object (i.e., face/car), and "0" otherwise. To 

search for the object in the whole image one can move the search window across the image and check every location 

using the classifier. The classifier is designed so that it can be easily "resized" in order to be able to find the objects of 

interest at different sizes, which is more efficient than resizing the image itself. So, to find an object of an unknown size 

in the image the scan procedure should be done several times at different scales.  

The word "cascade" in the classifier name means that the resultant classifier consists of several simpler classifiers 

(stages) that are applied subsequently to a region of interest until at some stage the candidate is rejected or all the 

stages are passed. The word "boosted" means that the classifiers at every stage of the cascade are complex 

themselves and they are built out of basic classifiers using one of four different boosting techniques (weighted voting). 

Currently Discrete Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are 

decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic classifers, and are 

calculated as described below. The current algorithm uses the following Haar-like features: 



 

The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within the region of interest 

and the scale (this scale is not the same as the scale used at the detection stage, though these two scales are 

multiplied). For example, in case of the third line feature (2c) the response is calculated as the difference between the 

sum of image pixels under the rectangle covering the whole feature (including the two white stripes and the black stripe 

in the middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to compensate for the 

differences in the size of areas. The sums of pixel values over a rectangular regions are calculated rapidly using integral 

images (see below and cvIntegral description).  

To see the object detector at work, have a look at HaarFaceDetect demo.  

The following reference is for the detection part only. There is a separate application called haartraining that can train 

a cascade of boosted classifiers from a set of samples. See opencv/apps/haartraining for details.  

 

CvHaarFeature, CvHaarClassifier, CvHaarStageClassifier, CvHaarClassifierCascade 
Boosted Haar classifier structures 

#define CV_HAAR_FEATURE_MAX  3 

 

/* a haar feature consists of 2-3 rectangles with appropriate weights */ 

typedef struct CvHaarFeature 

{ 

    int  tilted;  /* 0 means up-right feature, 1 means 45--rotated feature */ 

     

    /* 2-3 rectangles with weights of opposite signs and 

       with absolute values inversely proportional to the areas of the rectangles. 

       if rect[2].weight !=0, then 

       the feature consists of 3 rectangles, otherwise it consists of 2 */ 

    struct 

    { 

        CvRect r; 

        float weight; 

    } rect[CV_HAAR_FEATURE_MAX]; 

} 

CvHaarFeature; 

 

/* a single tree classifier (stump in the simplest case) that returns the response for the feature 

   at the particular image location (i.e. pixel sum over subrectangles of the window) and gives out 

   a value depending on the responce */ 

typedef struct CvHaarClassifier 

{ 

    int count;  /* number of nodes in the decision tree */ 

 

    /* these are "parallel" arrays. Every index i 

       corresponds to a node of the decision tree (root has 0-th index). 

 



       left[i] - index of the left child (or negated index if the left child is a leaf) 

       right[i] - index of the right child (or negated index if the right child is a leaf) 

       threshold[i] - branch threshold. if feature responce is <= threshold, left branch 

                      is chosen, otherwise right branch is chosed. 

       alpha[i] - output value correponding to the leaf. */ 

    CvHaarFeature* haar_feature; 

    float* threshold; 

    int* left; 

    int* right; 

    float* alpha; 

} 

CvHaarClassifier; 

 

/* a boosted battery of classifiers(=stage classifier): 

   the stage classifier returns 1 

   if the sum of the classifiers' responces 

   is greater than threshold and 0 otherwise */ 

typedef struct CvHaarStageClassifier 

{ 

    int  count;  /* number of classifiers in the battery */ 

    float threshold; /* threshold for the boosted classifier */ 

    CvHaarClassifier* classifier; /* array of classifiers */ 

 

    /* these fields are used for organizing trees of stage classifiers, 

       rather than just stright cascades */ 

    int next; 

    int child; 

    int parent; 

} 

CvHaarStageClassifier; 

 

typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade; 

 

/* cascade or tree of stage classifiers */ 

typedef struct CvHaarClassifierCascade 

{ 

    int  flags; /* signature */ 

    int  count; /* number of stages */ 

    CvSize orig_window_size; /* original object size (the cascade is trained for) */ 

 

    /* these two parameters are set by cvSetImagesForHaarClassifierCascade */ 

    CvSize real_window_size; /* current object size */ 

    double scale; /* current scale */ 

    CvHaarStageClassifier* stage_classifier; /* array of stage classifiers */ 

    CvHidHaarClassifierCascade* hid_cascade; /* hidden optimized representation of the cascade, 

                                                created by cvSetImagesForHaarClassifierCascade */ 

} 

CvHaarClassifierCascade; 

 

All the structures are used for representing a cascaded of boosted Haar classifiers. The cascade has the following 

hierarchical structure: 

    Cascade: 

        Stage1: 

            Classifier11: 

                Feature11 

            Classifier12: 

                Feature12 

            ... 

        Stage2: 

            Classifier21: 

                Feature21 

            ... 

        ... 



The whole hierarchy can be constructed manually or loaded from a file using functions cvLoadHaarClassifierCascade or 

cvLoad.  

 

cvLoadHaarClassifierCascade 
Loads a trained cascade classifier from file or the classifier database embedded in OpenCV 

CvHaarClassifierCascade* cvLoadHaarClassifierCascade( 

                         const char* directory, 

                         CvSize orig_window_size ); 
directory  

Name of directory containing the description of a trained cascade classifier.  
orig_window_size  

Original size of objects the cascade has been trained on. Note that it is not stored in the cascade and 

therefore must be specified separately.  

The function cvLoadHaarClassifierCascade loads a trained cascade of haar classifiers from a file or the classifier 

database embedded in OpenCV. The base can be trained using haartraining application (see 

opencv/apps/haartraining for details). 

The function is obsolete. Nowadays object detection classifiers are stored in XML or YAML files, rather than in 

directories. To load cascade from a file, use cvLoad function.  

 

cvReleaseHaarClassifierCascade 
Releases haar classifier cascade 

void cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade ); 
cascade  

Double pointer to the released cascade. The pointer is cleared by the function.  

The function cvReleaseHaarClassifierCascade deallocates the cascade that has been created manually or loaded using 

cvLoadHaarClassifierCascade or cvLoad.  

 

cvHaarDetectObjects 
Detects objects in the image 

typedef struct CvAvgComp 

{ 

    CvRect rect; /* bounding rectangle for the object (average rectangle of a group) */ 

    int neighbors; /* number of neighbor rectangles in the group */ 

} 

CvAvgComp; 

 

CvSeq* cvHaarDetectObjects( const CvArr* image, CvHaarClassifierCascade* cascade, 

                            CvMemStorage* storage, double scale_factor=1.1, 

                            int min_neighbors=3, int flags=0, 

                            CvSize min_size=cvSize(0,0) ); 
image  

Image to detect objects in.  
cascade  

Haar classifier cascade in internal representation.  
storage  

Memory storage to store the resultant sequence of the object candidate rectangles.  
scale_factor  

The factor by which the search window is scaled between the subsequent scans, for example, 1.1 means 

increasing window by 10%.  
min_neighbors  



Minimum number (minus 1) of neighbor rectangles that makes up an object. All the groups of a smaller 

number of rectangles than min_neighbors-1 are rejected. If min_neighbors is 0, the function does not any 

grouping at all and returns all the detected candidate rectangles, which may be useful if the user wants to 

apply a customized grouping procedure.  
flags  

Mode of operation. Currently the only flag that may be specified is CV_HAAR_DO_CANNY_PRUNING. If it is set, the 

function uses Canny edge detector to reject some image regions that contain too few or too much edges and 

thus can not contain the searched object. The particular threshold values are tuned for face detection and in 

this case the pruning speeds up the processing.  
min_size  

Minimum window size. By default, it is set to the size of samples the classifier has been trained on (~20×20 

for face detection).  

The function cvHaarDetectObjects finds rectangular regions in the given image that are likely to contain objects the 

cascade has been trained for and returns those regions as a sequence of rectangles. The function scans the image 

several times at different scales (see cvSetImagesForHaarClassifierCascade). Each time it considers overlapping 

regions in the image and applies the classifiers to the regions using cvRunHaarClassifierCascade. It may also apply 

some heuristics to reduce number of analyzed regions, such as Canny prunning. After it has proceeded and collected 

the candidate rectangles (regions that passed the classifier cascade), it groups them and returns a sequence of 

average rectangles for each large enough group. The default parameters (scale_factor=1.1, min_neighbors=3, flags=0) 

are tuned for accurate yet slow object detection. For a faster operation on real video images the settings are: 

scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING, min_size=<minimum possible face size> 

(for example, ~1/4 to 1/16 of the image area in case of video conferencing).  

Example. Using cascade of Haar classifiers to find objects (e.g. faces). 
#include "cv.h" 

#include "highgui.h" 

 

CvHaarClassifierCascade* load_object_detector( const char* cascade_path ) 

{ 

    return (CvHaarClassifierCascade*)cvLoad( cascade_path ); 

} 

 

void detect_and_draw_objects( IplImage* image, 

                              CvHaarClassifierCascade* cascade, 

                              int do_pyramids ) 

{ 

    IplImage* small_image = image; 

    CvMemStorage* storage = cvCreateMemStorage(0); 

    CvSeq* faces; 

    int i, scale = 1; 

 

    /* if the flag is specified, down-scale the input image to get a 

       performance boost w/o loosing quality (perhaps) */ 

    if( do_pyramids ) 

    { 

        small_image = cvCreateImage( cvSize(image->width/2,image->height/2), IPL_DEPTH_8U, 3 ); 

        cvPyrDown( image, small_image, CV_GAUSSIAN_5x5 ); 

        scale = 2; 

    } 

 

    /* use the fastest variant */ 

    faces = cvHaarDetectObjects( small_image, cascade, storage, 1.2, 2, CV_HAAR_DO_CANNY_PRUNING ); 

 

    /* draw all the rectangles */ 

    for( i = 0; i < faces->total; i++ ) 

    { 

        /* extract the rectanlges only */ 

        CvRect face_rect = *(CvRect*)cvGetSeqElem( faces, i, 0 ); 

        cvRectangle( image, cvPoint(face_rect.x*scale,face_rect.y*scale), 

                     cvPoint((face_rect.x+face_rect.width)*scale, 

                             (face_rect.y+face_rect.height)*scale), 

                     CV_RGB(255,0,0), 3 ); 

    } 

 



    if( small_image != image ) 

        cvReleaseImage( &small_image ); 

    cvReleaseMemStorage( &storage ); 

} 

 

/* takes image filename and cascade path from the command line */ 

int main( int argc, char** argv ) 

{ 

    IplImage* image; 

    if( argc==3 && (image = cvLoadImage( argv[1], 1 )) != 0 ) 

    { 

        CvHaarClassifierCascade* cascade = load_object_detector(argv[2]); 

        detect_and_draw_objects( image, cascade, 1 ); 

        cvNamedWindow( "test", 0 ); 

        cvShowImage( "test", image ); 

        cvWaitKey(0); 

        cvReleaseHaarClassifierCascade( &cascade ); 

        cvReleaseImage( &image ); 

    } 

 

    return 0; 

} 

 

cvSetImagesForHaarClassifierCascade 
Assigns images to the hidden cascade 

void cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade, 

                                          const CvArr* sum, const CvArr* sqsum, 

                                          const CvArr* tilted_sum, double scale ); 
cascade  

Hidden Haar classifier cascade, created by cvCreateHidHaarClassifierCascade.  
sum  

Integral (sum) single-channel image of 32-bit integer format. This image as well as the two subsequent 

images are used for fast feature evaluation and brightness/contrast normalization. They all can be retrieved 

from input 8-bit or floating point single-channel image using The function cvIntegral.  
sqsum  

Square sum single-channel image of 64-bit floating-point format.  
tilted_sum  

Tilted sum single-channel image of 32-bit integer format.  
scale  

Window scale for the cascade. If scale=1, original window size is used (objects of that size are searched) - 

the same size as specified in cvLoadHaarClassifierCascade (24x24 in case of "<default_face_cascade>"), if 

scale=2, a two times larger window is used (48x48 in case of default face cascade). While this will speed-up 

search about four times, faces smaller than 48x48 cannot be detected.  

The function cvSetImagesForHaarClassifierCascade assigns images and/or window scale to the hidden classifier 

cascade. If image pointers are NULL, the previously set images are used further (i.e. NULLs mean "do not change 

images"). Scale parameter has no such a "protection" value, but the previous value can be retrieved by 

cvGetHaarClassifierCascadeScale function and reused again. The function is used to prepare cascade for detecting 

object of the particular size in the particular image. The function is called internally by cvHaarDetectObjects, but it can 

be called by user if there is a need in using lower-level function cvRunHaarClassifierCascade.  

 

cvRunHaarClassifierCascade 
Runs cascade of boosted classifier at given image location 

int cvRunHaarClassifierCascade( CvHaarClassifierCascade* cascade, 

                                CvPoint pt, int start_stage=0 ); 
cascade  

Haar classifier cascade.  
pt  

Top-left corner of the analyzed region. Size of the region is a original window size scaled by the currenly set 

scale. The current window size may be retrieved using cvGetHaarClassifierCascadeWindowSize function.  



start_stage  
Initial zero-based index of the cascade stage to start from. The function assumes that all the previous stages 

are passed. This feature is used internally by cvHaarDetectObjects for better processor cache utilization.  

The function cvRunHaarHaarClassifierCascade runs Haar classifier cascade at a single image location. Before using this 

function the integral images and the appropriate scale (=> window size) should be set using 

cvSetImagesForHaarClassifierCascade. The function returns positive value if the analyzed rectangle passed all the 

classifier stages (it is a candidate) and zero or negative value otherwise.  

 

Camera Calibration and 3D Reconstruction 

 

Pinhole Camera Model, Distortion 

The functions in this section use so-called pinhole camera model. That is, a scene view is formed by projecting 3D 

points into the image plane using perspective transformation.  

 

s*m' = A*[R|t]*M', or 

 

 [u]   [fx 0 cx] [r11 r12 r13 t1] [X] 

s[v] = [0 fy cy]*[r21 r22 r23 t2]*[Y] 

 [1]   [0  0  1] [r31 r32 r33 t2] [Z] 

                                 [1] 

Where (X, Y, Z) are coordinates of a 3D point in the world coordinate space, (u, v) are coordinates of point 

projection in pixels. A is called a camera matrix, or matrix of intrinsic parameters. (cx, cy) is a principal point (that is 

usually at the image center), and fx, fy are focal lengths expressed in pixel-related units. Thus, if an image from 

camera is up-sampled/down-sampled by some factor, all these parameters (fx, fy, cx and cy) should be scaled 

(multiplied/divided, respectively) by the same factor. The matrix of intrinsic parameters does not depend on the scene 

viewed and, once estimated, can be re-used (as long as the focal length is fixed (in case of zoom lens)). The joint 

rotation-translation matrix [R|t] is called a matrix of extrinsic parameters. It is used to describe the camera motion 

around a static scene, or vice versa, rigid motion of an object in front of still camera. That is, [R|t] translates 

coordinates of a point (X, Y, Z) to some coordinate system, fixed with respect to the camera. The transformation 

above is equivalent to the following (when z≠0):  

[x]     [X] 

[y] = R*[Y] + t 

[z]     [Z] 

 

x' = x/z 

y' = y/z 

 

u = fx*x' + cx 

v = fy*y' + cy 

Real lens usually have some distortion, which major components are radial distorion and slight tangential distortion. So, 

the above model is extended as:  

[x]     [X] 

[y] = R*[Y] + t 

[z]     [Z] 

 

x' = x/z 

y' = y/z 

 

x" = x'*(1 + k1r
2 + k2r

4) + 2*p1x'*y' + p2(r
2+2*x'2) 

y" = y'*(1 + k1r
2 + k2r

4) + p1(r
2+2*y'2) + 2*p2*x'*y' 

where r2 = x'2+y'2 

 

u = fx*x" + cx 

v = fy*y" + cy 



k1, k2 are radial distortion coefficients, p1, p2 are tangential distortion coefficients. Higher-order coefficients are not 

considered in OpenCV. The distortion coefficients also do not depend on the scene viewed, thus they are intrinsic 

camera parameters. And they remain the same regardless of the captured image resolution.  

The functions below use the above model to  

• Project 3D points to the image plane given intrinsic and extrinsic parameters  

• Compute extrinsic parameters given intrinsic parameters, a few 3D points and their projections.  

• Estimate intrinsic and extrinsic camera parameters from several views of a known calibration pattern (i.e. 

every view is described by several 3D-2D point correspodences).  

 

Camera Calibration 

 

ProjectPoints2 
Projects 3D points to image plane 

void cvProjectPoints2( const CvMat* object_points, const CvMat* rotation_vector, 

                       const CvMat* translation_vector, const CvMat* intrinsic_matrix, 

                       const CvMat* distortion_coeffs, CvMat* image_points, 

                       CvMat* dpdrot=NULL, CvMat* dpdt=NULL, CvMat* dpdf=NULL, 

                       CvMat* dpdc=NULL, CvMat* dpddist=NULL ); 
object_points  

The array of object points, 3xN or Nx3, where N is the number of points in the view.  
rotation_vector  

The rotation vector, 1x3 or 3x1.  
translation_vector  

The translation vector, 1x3 or 3x1.  
intrinsic_matrix  

The camera matrix (A) [fx 0 cx; 0 fy cy; 0 0 1].  
distortion_coeffs  

The vector of distortion coefficients, 4x1 or 1x4 [k1, k2, p1, p2]. If it is NULL, all distortion coefficients are 

considered 0's.  
image_points  

The output array of image points, 2xN or Nx2, where N is the total number of points in the view.  
dpdrot  

Optional Nx3 matrix of derivatives of image points with respect to components of the rotation vector.  
dpdt  

Optional Nx3 matrix of derivatives of image points w.r.t. components of the translation vector.  
dpdf  

Optional Nx2 matrix of derivatives of image points w.r.t. fx and fy.  
dpdc  

Optional Nx2 matrix of derivatives of image points w.r.t. cx and cy.  
dpddist  

Optional Nx4 matrix of derivatives of image points w.r.t. distortion coefficients.  

The function cvProjectPoints2 computes projections of 3D points to the image plane given intrinsic and extrinsic 

camera parameters. Optionally, the function computes jacobians - matrices of partial derivatives of image points as 

functions of all the input parameters w.r.t. the particular parameters, intrinsic and/or extrinsic. The jacobians are used 

during the global optimization in cvCalibrateCamera2 and cvFindExtrinsicCameraParams2. The function itself is also 

used to compute back-projection error for with current intrinsic and extrinsic parameters.  

Note, that with intrinsic and/or extrinsic parameters set to special values, the function can be used to compute just 

extrinsic transformation or just intrinsic transformation (i.e. distortion of a sparse set of points).  

 

FindHomography 
Finds perspective transformation between two planes 



void cvFindHomography( const CvMat* src_points, 

                       const CvMat* dst_points, 

                       CvMat* homography ); 
src_points  

Point coordinates in the original plane, 2xN, Nx2, 3xN or Nx3 array (the latter two are for representation in 

homogenious coordinates), where N is the number of points.  
dst_points  

Point coordinates in the destination plane, 2xN, Nx2, 3xN or Nx3 array (the latter two are for representation in 

homogenious coordinates)  
homography  

Output 3x3 homography matrix.  

The function cvFindHomography finds perspective transformation H=||hij|| between the source and the destination 

planes:  

  [x'i]   [xi] 

si[y'i]~H*[yi] 

  [1  ]  [ 1] 

So that the back-projection error is minimized:  

sum_i((x'i-(h11*xi + h12*yi + h13)/(h31*xi + h32*yi + h33))
2+ 

      (y'i-(h21*xi + h22*yi + h23)/(h31*xi + h32*yi + h33))
2) -> min 

The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is determined up to a scale, thus 

it is normalized to make h33=1.  

 

CalibrateCamera2 
Finds intrinsic and extrinsic camera parameters using calibration pattern 

void cvCalibrateCamera2( const CvMat* object_points, const CvMat* image_points, 

                         const CvMat* point_counts, CvSize image_size, 

                         CvMat* intrinsic_matrix, CvMat* distortion_coeffs, 

                         CvMat* rotation_vectors=NULL, CvMat* translation_vectors=NULL, 

                         int flags=0 ); 
object_points  

The joint matrix of object points, 3xN or Nx3, where N is the total number of points in all views.  
image_points  

The joint matrix of corresponding image points, 2xN or Nx2, where N is the total number of points in all views.  
point_counts  

Vector containing numbers of points in each particular view, 1xM or Mx1, where M is the number of a scene 

views.  
image_size  

Size of the image, used only to initialize intrinsic camera matrix.  
intrinsic_matrix  

The output camera matrix (A) [fx 0 cx; 0 fy cy; 0 0 1]. If CV_CALIB_USE_INTRINSIC_GUESS and/or 

CV_CALIB_FIX_ASPECT_RATION are specified, some or all of fx, fy, cx, cy must be initialized.  
distortion_coeffs  

The output 4x1 or 1x4 vector of distortion coefficients [k1, k2, p1, p2].  
rotation_vectors  

The output 3xM or Mx3 array of rotation vectors (compact representation of rotation matrices, see 

cvRodrigues2).  
translation_vectors  

The output 3xM or Mx3 array of translation vectors.  
flags  

Different flags, may be 0 or combination of the following values: 

CV_CALIB_USE_INTRINSIC_GUESS - intrinsic_matrix contains valid initial values of fx, fy, cx, cy that are 

optimized further. Otherwise, (cx, cy) is initially set to the image center (image_size is used here), and focal 

distances are computed in some least-squares fashion. Note, that if intrinsic parameters are known, there is 

no need to use this function. Use cvFindExtrinsicCameraParams2 instead. 

CV_CALIB_FIX_PRINCIPAL_POINT - The principal point is not changed during the global optimization, it stays at 

the center and at the other location specified (when CV_CALIB_USE_INTRINSIC_GUESS is set as well). 

CV_CALIB_FIX_ASPECT_RATIO - The optimization procedure consider only one of fx and fy as independent 

variable and keeps the aspect ratio fx/fy the same as it was set initially in intrinsic_matrix. In this case the 

actual initial values of (fx, fy) are either taken from the matrix (when CV_CALIB_USE_INTRINSIC_GUESS is set) or 

estimated somehow (in the latter case fx, fy may be set to arbitrary values, only their ratio is used). 

CV_CALIB_ZERO_TANGENT_DIST - Tangential distortion coefficients are set to zeros and do not change during the 

optimization. 



The function cvCalibrateCamera2 estimates intrinsic camera parameters and extrinsic parameters for each of the views. 

The coordinates of 3D object points and their correspondent 2D projections in each view must be specified. That may 

be achieved by using an object with known geometry and easily detectable feature points. Such an object is called a 

calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as a calibration rig (see 

cvFindChessboardCorners). Currently, initialization of inrtrinsic parameters (when CV_CALIB_USE_INTRINSIC_GUESS is not 

set) is only implemented for planar calibration rigs (z-coordinates of object points must be all 0's or all 1's). 3D rigs 

can still be used as long as initial intrinsic_matrix is provided. After the initial values of intrinsic and extrinsic 

parameters are computed, they are optimized to minimize the total back-projection error - the sum of squared 

differences between the actual coordinates of image points and the ones computed using cvProjectPoints2.  

 

FindExtrinsicCameraParams2 
Finds extrinsic camera parameters for particular view 

void cvFindExtrinsicCameraParams2( const CvMat* object_points, 

                                   const CvMat* image_points, 

                                   const CvMat* intrinsic_matrix, 

                                   const CvMat* distortion_coeffs, 

                                   CvMat* rotation_vector, 

                                   CvMat* translation_vector ); 
object_points  

The array of object points, 3xN or Nx3, where N is the number of points in the view.  
image_points  

The array of corresponding image points, 2xN or Nx2, where N is the number of points in the view.  
intrinsic_matrix  

The camera matrix (A) [fx 0 cx; 0 fy cy; 0 0 1].  
distortion_coeffs  

The vector of distortion coefficients, 4x1 or 1x4 [k1, k2, p1, p2]. If it is NULL, all distortion coefficients are 

considered 0's.  
rotation_vector  

The output 3x1 or 1x3 rotation vector (compact representation of a rotation matrix, see cvRodrigues2).  
translation_vector  

The output 3x1 or 1x3 translation vector.  

The function cvFindExtrinsicCameraParams2 estimates extrinsic camera parameters using known intrinsic parameters and 

and extrinsic parameters for each view. The coordinates of 3D object points and their correspondent 2D projections 

must be specified. This function also minimizes back-projection error.  

 

Rodrigues2 
Converts rotation matrix to rotation vector or vice versa 

int  cvRodrigues2( const CvMat* src, CvMat* dst, CvMat* jacobian=0 ); 
src  

The input rotation vector (3x1 or 1x3) or rotation matrix (3x3).  
dst  

The output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.  
jacobian  

Optional output Jacobian matrix, 3x9 or 9x3 - partial derivatives of the output array components w.r.t the 

input array components.  

The function cvRodrigues2 converts a rotation vector to rotation matrix or vice versa. Rotation vector is a compact 

representation of rotation matrix. Direction of the rotation vector is the rotation axis and the length of the vector is the 

rotation angle around the axis. The rotation matrix R, corresponding to the rotation vector r, is computed as following:  

theta <- norm(r) 

r <- r/theta 

                                                   [0 -rz ry] 

R = cos(theta)*I + (1-cos(theta))*rrT + sin(theta)*[rz 0 -rx] 

                                                   [ry rx 0] 

Inverse transformation can also be done easily as  

 



[0 -rz ry] 

sin(theta)*[rz 0 -rx] = (R - R
T)/2 

[ry rx 0] 

 

Rotation vector is a convenient representation of a rotation matrix as a matrix with only 3 degrees of freedom. The 

representation is used in the global optimization procedures inside cvFindExtrinsicCameraParams2 and 

cvCalibrateCamera2.  

 

Undistort2 
Transforms image to compensate lens distortion 

void cvUndistort2( const CvArr* src, CvArr* dst, 

                   const CvMat* intrinsic_matrix, 

                   const CvMat* distortion_coeffs ); 
src  

The input (distorted) image.  
dst  

The output (corrected) image.  
intrinsic_matrix  

The camera matrix (A) [fx 0 cx; 0 fy cy; 0 0 1].  
distortion_coeffs  

The vector of distortion coefficients, 4x1 or 1x4 [k1, k2, p1, p2].  

The function cvUndistort2 transforms the image to compensate radial and tangential lens distortion. The camera matrix 

and distortion parameters can be determined using cvCalibrateCamera2. For every pixel in the output image the 

function computes coordinates of the corresponding location in the input image using the formulae in the section 

beginning. Then, the pixel value is computed using bilinear interpolation. If the resolution of images is different from 

what was used at the calibration stage, fx, fy, cx and cy need to be adjusted appropriately, while the distortion 

coefficients remain the same.  

 

InitUndistortMap 
Computes undistorion map 

void cvInitUndistortMap( const CvMat* intrinsic_matrix, 

                         const CvMat* distortion_coeffs, 

                         CvArr* mapx, CvArr* mapy ); 
intrinsic_matrix  

The camera matrix (A) [fx 0 cx; 0 fy cy; 0 0 1].  
distortion_coeffs  

The vector of distortion coefficients, 4x1 or 1x4 [k1, k2, p1, p2].  
mapx  

The output array of x-coordinates of the map.  
mapy  

The output array of y-coordinates of the map.  

The function cvInitUndistortMap pre-computes the undistortion map - coordinates of the corresponding pixel in the 

distorted image for every pixel in the corrected image. Then, the map (together with input and output images) can be 

passed to cvRemap function.  

 

FindChessboardCorners 
Finds positions of internal corners of the chessboard 

int cvFindChessboardCorners( const void* image, CvSize pattern_size, 

                             CvPoint2D32f* corners, int* corner_count=NULL, 

                             int flags=CV_CALIB_CB_ADAPTIVE_THRESH ); 
image  

Source chessboard view; it must be 8-bit grayscale or color image.  
pattern_size  

The number of inner corners per chessboard row and column.  



corners  
The output array of corners detected.  

corner_count  
The output corner counter. If it is not NULL, the function stores there the number of corners found.  

flags  
Various operation flags, can be 0 or a combination of the following values: 

CV_CALIB_CB_ADAPTIVE_THRESH - use adaptive thresholding to convert the image to black-n-white, rather than a 

fixed threshold level (computed from the average image brightness). 

CV_CALIB_CB_NORMALIZE_IMAGE - normalize the image using cvNormalizeHist before applying fixed or adaptive 

thresholding. 

CV_CALIB_CB_FILTER_QUADS - use additional criteria (like contour area, perimeter, square-like shape) to filter 

out false quads that are extracted at the contour retrieval stage. 

The function cvFindChessboardCorners attempts to determine whether the input image is a view of the chessboard 

pattern and locate internal chessboard corners. The function returns non-zero value if all the corners have been found 

and they have been placed in a certain order (row by row, left to right in every row), otherwise, if the function fails to 

find all the corners or reorder them, it returns 0. For example, a regular chessboard has 8 x 8 squares and 7 x 7 internal 

corners, that is, points, where the black squares touch each other. The coordinates detected are approximate, and to 

determine their position more accurately, the user may use the function cvFindCornerSubPix.  

 

DrawChessBoardCorners 
Renders the detected chessboard corners 

void cvDrawChessboardCorners( CvArr* image, CvSize pattern_size, 

                              CvPoint2D32f* corners, int count, 

                              int pattern_was_found ); 
image  

The destination image; it must be 8-bit color image.  
pattern_size  

The number of inner corners per chessboard row and column.  
corners  

The array of corners detected.  
count  

The number of corners.  
pattern_was_found  

Indicates whether the complete board was found (≠0) or not (=0). One may just pass the return value 

cvFindChessboardCorners here.  

The function cvDrawChessboardCorners draws the individual chessboard corners detected (as red circles) in case if the 

board was not found (pattern_was_found=0) or the colored corners connected with lines when the board was found 

(pattern_was_found≠0).  

 

Pose Estimation 

 

CreatePOSITObject 
Initializes structure containing object information 

CvPOSITObject* cvCreatePOSITObject( CvPoint3D32f* points, int point_count ); 
points  

Pointer to the points of the 3D object model.  
point_count  

Number of object points.  

The function cvCreatePOSITObject allocates memory for the object structure and computes the object inverse matrix.  

The preprocessed object data is stored in the structure CvPOSITObject, internal for OpenCV, which means that the user 

cannot directly access the structure data. The user may only create this structure and pass its pointer to the function.  



Object is defined as a set of points given in a coordinate system. The function cvPOSIT computes a vector that begins 

at a camera-related coordinate system center and ends at the points[0] of the object.  

Once the work with a given object is finished, the function cvReleasePOSITObject must be called to free memory.  

 

POSIT 
Implements POSIT algorithm 

void cvPOSIT( CvPOSITObject* posit_object, CvPoint2D32f* image_points, double focal_length, 

              CvTermCriteria criteria, CvMatr32f rotation_matrix, CvVect32f translation_vector ); 
posit_object  

Pointer to the object structure.  
image_points  

Pointer to the object points projections on the 2D image plane.  
focal_length  

Focal length of the camera used.  
criteria  

Termination criteria of the iterative POSIT algorithm.  
rotation_matrix  

Matrix of rotations.  
translation_vector  

Translation vector.  

The function cvPOSIT implements POSIT algorithm. Image coordinates are given in a camera-related coordinate system. 

The focal length may be retrieved using camera calibration functions. At every iteration of the algorithm new perspective 

projection of estimated pose is computed.  

Difference norm between two projections is the maximal distance between corresponding points. The parameter 

criteria.epsilon serves to stop the algorithm if the difference is small.  

 

ReleasePOSITObject 
Deallocates 3D object structure 

void cvReleasePOSITObject( CvPOSITObject** posit_object ); 
posit_object  

Double pointer to CvPOSIT structure.  

The function cvReleasePOSITObject releases memory previously allocated by the function cvCreatePOSITObject.  

 

CalcImageHomography 
Calculates homography matrix for oblong planar object (e.g. arm) 

void cvCalcImageHomography( float* line, CvPoint3D32f* center, 

                            float* intrinsic, float* homography ); 
line  

the main object axis direction (vector (dx,dy,dz)).  
center  

object center ((cx,cy,cz)).  
intrinsic  

intrinsic camera parameters (3x3 matrix).  
homography  

output homography matrix (3x3).  

The function cvCalcImageHomography calculates the homography matrix for the initial image transformation from image 

plane to the plane, defined by 3D oblong object line (See Figure 6-10 in OpenCV Guide 3D Reconstruction Chapter).  

 



Epipolar Geometry 

 

FindFundamentalMat 
Calculates fundamental matrix from corresponding points in two images 

int cvFindFundamentalMat( const CvMat* points1, 

                          const CvMat* points2, 

                          CvMat* fundamental_matrix, 

                          int    method=CV_FM_RANSAC, 

                          double param1=1., 

                          double param2=0.99, 

                          CvMat* status=NULL); 
points1  

Array of the first image points of 2xN, Nx2, 3xN or Nx3 size (where N is number of points). Multi-channel 1xN or 

Nx1 array is also acceptable. The point coordinates should be floating-point (single or double precision)  
points2  

Array of the second image points of the same size and format as points1  
fundamental_matrix  

The output fundamental matrix or matrices. The size should be 3x3 or 9x3 (7-point method may return up to 3 

matrices).  
method  

Method for computing the fundamental matrix  

CV_FM_7POINT - for 7-point algorithm. N == 7  

CV_FM_8POINT - for 8-point algorithm. N >= 8  

CV_FM_RANSAC - for RANSAC algorithm. N >= 8  

CV_FM_LMEDS - for LMedS algorithm. N >= 8  
param1  

The parameter is used for RANSAC or LMedS methods only. It is the maximum distance from point to epipolar 

line in pixels, beyond which the point is considered an outlier and is not used for computing the final 

fundamental matrix. Usually it is set to 0.5 or 1.0.  
param2  

The parameter is used for RANSAC or LMedS methods only. It denotes the desirable level of confidence that 

the matrix is correct.  
status  

The optional output array of N elements, every element of which is set to 0 for outliers and to 1 for the other 

points. The array is computed only in RANSAC and LMedS methods. For other methods it is set to all 1’s.  

The epipolar geometry is described by the following equation:  

p2
T*F*p1=0, 

where F is fundamental matrix, p1 and p2 are corresponding points in the first and the second images, respectively.  

The function cvFindFundamentalMat calculates fundamental matrix using one of four methods listed above and returns 

the number of fundamental matrices found (1 or 3) and 0, if no matrix is found.  

The calculated fundamental matrix may be passed further to cvComputeCorrespondEpilines that finds epipolar lines 

corresponding to the specified points. 

Example. Estimation of fundamental matrix using RANSAC algorithm 
int point_count = 100; 

CvMat* points1; 

CvMat* points2; 

CvMat* status; 

CvMat* fundamental_matrix; 

 

points1 = cvCreateMat(1,point_count,CV_32FC2); 

points2 = cvCreateMat(1,point_count,CV_32FC2); 

status = cvCreateMat(1,point_count,CV_8UC1); 

 

/* Fill the points here ... */ 



for( i = 0; i < point_count; i++ ) 

{ 

    points1->data.db[i*2] = <x1,i>; 

    points1->data.db[i*2+1] = <y1,i>; 

    points2->data.db[i*2] = <x2,i>; 

    points2->data.db[i*2+1] = <y2,i>; 

} 

 

fundamental_matrix = cvCreateMat(3,3,CV_32FC1); 

int fm_count = cvFindFundamentalMat( points1,points2,fundamental_matrix, 

                                     CV_FM_RANSAC,1.0,0.99,status ); 

 

ComputeCorrespondEpilines 
For points in one image of stereo pair computes the corresponding epilines in the other image 

void cvComputeCorrespondEpilines( const CvMat* points, 

                                  int which_image, 

                                  const CvMat* fundamental_matrix, 

                                  CvMat* correspondent_lines); 
points  

The input points. 2xN, Nx2, 3xN or Nx3 array (where N number of points). Multi-channel 1xN or Nx1 array is also 

acceptable.  
which_image  

Index of the image (1 or 2) that contains the points  
fundamental_matrix  

Fundamental matrix  
correspondent_lines  

Computed epilines, 3xN or Nx3 array  

For every point in one of the two images of stereo-pair the function cvComputeCorrespondEpilines finds equation of a 

line that contains the corresponding point (i.e. projection of the same 3D point) in the other image. Each line is 

encoded by a vector of 3 elements l=[a,b,c]T, so that:  

 

lT*[x, y, 1]T=0, or 

a*x + b*y + c = 0 

 

From the fundamental matrix definition (see cvFindFundamentalMatrix discussion), line l2 for a point p1 in the first image 

(which_image=1) can be computed as:  

l2=F*p1 

and the line l1 for a point p2 in the second image (which_image=1) can be computed as:  

l1=F
T*p2 

Line coefficients are defined up to a scale. They are normalized (a2+b2=1) are stored into correspondent_lines.  

 

ConvertPointsHomogenious 
Convert points to/from homogenious coordinates 

void cvConvertPointsHomogenious( const CvMat* src, CvMat* dst ); 
src  

The input point array, 2xN, Nx2, 3xN, Nx3, 4xN or Nx4 (where N is the number of points). Multi-channel 1xN or 

Nx1 array is also acceptable.  
dst  

The output point array, must contain the same number of points as the input; The dimensionality must be the 

same, 1 less or 1 more than the input, and also within 2..4.  

The function cvConvertPointsHomogenious converts 2D or 3D points from/to homogenious coordinates, or simply copies 

or transposes the array. In case if the input array dimensionality is larger than the output, each point coordinates are 

divided by the last coordinate:  



(x,y[,z],w) -> (x',y'[,z']): 

 

x' = x/w 

y' = y/w 

z' = z/w (if output is 3D) 

If the output array dimensionality is larger, an extra 1 is appended to each point.  

(x,y[,z]) -> (x,y[,z],1) 

Otherwise, the input array is simply copied (with optional tranposition) to the output. Note that, because the function 

accepts a large variety of array layouts, it may report an error when input/output array dimensionality is ambiguous. It is 

always safe to use the function with number of points N>=5, or to use multi-channel Nx1 or 1xN arrays.  

 

Alphabetical List of Functions 

 

2 
2DRotationMatrix 

 

A 
Acc ApproxChains ArcLength 

AdaptiveThreshold ApproxPoly 

 

B 
BoundingRect BoxPoints 

 

C 
CalcBackProject CalibrateCamera2 ConvexityDefects 

CalcBackProjectPatch CamShift CopyHist 

CalcEMD2 Canny CopyMakeBorder 

CalcGlobalOrientation CheckContourConvexity CornerEigenValsAndVecs 

CalcHist ClearHist CornerHarris 

CalcImageHomography ClearSubdivVoronoi2D CornerMinEigenVal 

CalcMotionGradient CompareHist CreateConDensation 

CalcOpticalFlowBM ComputeCorrespondEpilines CreateContourTree 

CalcOpticalFlowHS ConDensInitSampleSet CreateHist 

CalcOpticalFlowLK ConDensUpdateByTime CreateKalman 

CalcOpticalFlowPyrLK ContourArea CreatePOSITObject 

CalcPGH ContourFromContourTree CreateStructuringElementEx 

CalcProbDensity ConvertPointsHomogenious CreateSubdivDelaunay2D 

CalcSubdivVoronoi2D ConvexHull2 CvtColor 

 

D 
Dilate DistTransform DrawChessBoardCorners 

 

E 
EndFindContours EqualizeHist Erode 

 

F 
Filter2D FindExtrinsicCameraParams2 FindNextContour 



FindChessboardCorners FindFundamentalMat FitEllipse 

FindContours FindHomography FitLine2D 

FindCornerSubPix FindNearestPoint2D FloodFill 

 

G 
GetAffineTransform GetMinMaxHistValue GetRectSubPix 

GetCentralMoment GetNormalizedCentralMoment GetSpatialMoment 

GetHistValue_*D GetPerspectiveTransform GoodFeaturesToTrack 

GetHuMoments GetQuadrangleSubPix 

 

H 
HaarDetectObjects HoughCircles HoughLines2 

 

I 
InitUndistortMap Inpaint Integral 

 

K 
KalmanCorrect KalmanPredict 

 

L 
Laplace LoadHaarClassifierCascade LogPolar 

 

M 
MakeHistHeaderForArray MaxRect Moments 

MatchContourTrees MeanShift MorphologyEx 

MatchShapes MinAreaRect2 MultiplyAcc 

MatchTemplate MinEnclosingCircle 

 

N 
NormalizeHist 

 

P 
POSIT PreCornerDetect PyrMeanShiftFiltering 

PointPolygonTest ProjectPoints2 PyrSegmentation 

PointSeqFromMat PyrDown PyrUp 

 

Q 
QueryHistValue_*D 

 

R 
ReadChainPoint ReleaseKalman Resize 

ReleaseConDensation ReleasePOSITObject Rodrigues2 

ReleaseHaarClassifierCascade ReleaseStructuringElement RunHaarClassifierCascade 

ReleaseHist Remap RunningAvg 

 



S 
SampleLine Sobel Subdiv2DGetEdge 

SegmentMotion SquareAcc Subdiv2DLocate 

SetHistBinRanges StartFindContours Subdiv2DRotateEdge 

SetImagesForHaarClassifierCascade StartReadChainPoints SubdivDelaunay2DInsert 

Smooth Subdiv2DEdgeDst SubstituteContour 

SnakeImage Subdiv2DEdgeOrg 

 

T 
ThreshHist Threshold 

 

U 
Undistort2 UpdateMotionHistory 

 

W 
WarpAffine WarpPerspective Watershed 

 

Bibliography 

This bibliography provides a list of publications that were might be useful to the OpenCV users. This list is not complete; 

it serves only as a starting point.  

1. [Borgefors86] Gunilla Borgefors, "Distance Transformations in Digital Images". Computer Vision, Graphics and 

Image Processing 34, 344-371 (1986).  

2. [Bouguet00] Jean-Yves Bouguet. Pyramidal Implementation of the Lucas Kanade Feature Tracker. 

The paper is included into OpenCV distribution (algo_tracking.pdf)  

3. [Bradski98] G.R. Bradski. Computer vision face tracking as a component of a perceptual user interface. In 

Workshop on Applications of Computer Vision, pages 214?19, Princeton, NJ, Oct. 1998. 

Updated version can be found at http://www.intel.com/technology/itj/q21998/articles/art_2.htm. 

Also, it is included into OpenCV distribution (camshift.pdf)  

4. [Bradski00] G. Bradski and J. Davis. Motion Segmentation and Pose Recognition with Motion History 

Gradients. IEEE WACV'00, 2000.  

5. [Burt81] P. J. Burt, T. H. Hong, A. Rosenfeld. Segmentation and Estimation of Image Region Properties 

Through Cooperative Hierarchical Computation. IEEE Tran. On SMC, Vol. 11, N.12, 1981, pp. 802-809.  

6. [Canny86] J. Canny. A Computational Approach to Edge Detection, IEEE Trans. on Pattern Analysis and 

Machine Intelligence, 8(6), pp. 679-698 (1986).  

7. [Davis97] J. Davis and Bobick. The Representation and Recognition of Action Using Temporal Templates. MIT 

Media Lab Technical Report 402, 1997.  

8. [DeMenthon92] Daniel F. DeMenthon and Larry S. Davis. Model-Based Object Pose in 25 Lines of Code. In 

Proceedings of ECCV '92, pp. 335-343, 1992.  

9. [Felzenszwalb04] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Distance Transforms of Sampled 

Functions. Cornell Computing and Information Science TR2004-1963.  

10. [Fitzgibbon95] Andrew W. Fitzgibbon, R.B.Fisher. A Buyer’s Guide to Conic Fitting. Proc.5th British Machine 

Vision Conference, Birmingham, pp. 513-522, 1995.  

11. [Ford98] Adrian Ford, Alan Roberts. Colour Space Conversions. http://www.poynton.com/PDFs/coloureq.pdf  

12. [Horn81] Berthold K.P. Horn and Brian G. Schunck. Determining Optical Flow. Artificial Intelligence, 17, pp. 

185-203, 1981.  

13. [Hu62] M. Hu. Visual Pattern Recognition by Moment Invariants, IRE Transactions on Information Theory, 8:2, 

pp. 179-187, 1962.  

14. [Iivarinen97] Jukka Iivarinen, Markus Peura, Jaakko Srel, and Ari Visa. Comparison of Combined Shape 

Descriptors for Irregular Objects, 8th British Machine Vision Conference, BMVC'97. 

http://www.cis.hut.fi/research/IA/paper/publications/bmvc97/bmvc97.html  

15. [Jahne97] B. Jahne. Digital Image Processing. Springer, New York, 1997.  

16. [Lucas81] Lucas, B., and Kanade, T. An Iterative Image Registration Technique with an Application to Stereo 

Vision, Proc. of 7th International Joint Conference on Artificial Intelligence (IJCAI), pp. 674-679.  

17. [Kass88] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models, International Journal of 

Computer Vision, pp. 321-331, 1988.  



18. [Lienhart02] Rainer Lienhart and Jochen Maydt. An Extended Set of Haar-like Features for Rapid Object 

Detection. IEEE ICIP 2002, Vol. 1, pp. 900-903, Sep. 2002. 

This paper, as well as the extended technical report, can be retrieved at 

http://www.lienhart.de/Publications/publications.html  

19. [Matas98] J.Matas, C.Galambos, J.Kittler. Progressive Probabilistic Hough Transform. British Machine Vision 

Conference, 1998.  

20. [Meyer92] Meyer, F. (1992). Color image segmentation. In Proceedings of the International Conference on 

Image Processing and its Applications, pages 303--306.  

21. [Rosenfeld73] A. Rosenfeld and E. Johnston. Angle Detection on Digital Curves. IEEE Trans. Computers, 

22:875-878, 1973.  

22. [RubnerJan98] Y. Rubner. C. Tomasi, L.J. Guibas. Metrics for Distributions with Applications to Image 

Databases. Proceedings of the 1998 IEEE International Conference on Computer Vision, Bombay, India, 

January 1998, pp. 59-66.  

23. [RubnerSept98] Y. Rubner. C. Tomasi, L.J. Guibas. The Earth Mover’s Distance as a Metric for Image 

Retrieval. Technical Report STAN-CS-TN-98-86, Department of Computer Science, Stanford University, 

September 1998.  

24. [RubnerOct98] Y. Rubner. C. Tomasi. Texture Metrics. Proceeding of the IEEE International Conference on 

Systems, Man, and Cybernetics, San-Diego, CA, October 1998, pp. 4601-4607. 

http://robotics.stanford.edu/~rubner/publications.html  

25. [Serra82] J. Serra. Image Analysis and Mathematical Morphology. Academic Press, 1982.  

26. [Schiele00] Bernt Schiele and James L. Crowley. Recognition without Correspondence Using Multidimensional 

Receptive Field Histograms. In International Journal of Computer Vision 36 (1), pp. 31-50, January 2000.  

27. [Suzuki85] S. Suzuki, K. Abe. Topological Structural Analysis of Digital Binary Images by Border Following. 

CVGIP, v.30, n.1. 1985, pp. 32-46.  

28. [Teh89] C.H. Teh, R.T. Chin. On the Detection of Dominant Points on Digital Curves. - IEEE Tr. PAMI, 1989, 

v.11, No.8, p. 859-872.  

29. [Telea04] A. Telea, "An image inpainting technique based on the fast marching method," J. Graphics Tools, 

vol.9, no.1, pp.25?6, 2004. 

30. [Trucco98] Emanuele Trucco, Alessandro Verri. Introductory Techniques for 3-D Computer Vision. Prentice 

Hall, Inc., 1998.  

31. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection using a Boosted Cascade of Simple 

Features. IEEE CVPR, 2001. 

The paper is available online at http://www.ai.mit.edu/people/viola/  

32. [Welch95] Greg Welch, Gary Bishop. An Introduction To the Kalman Filter. Technical Report TR95-041, 

University of North Carolina at Chapel Hill, 1995. 

Online version is available at http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html  

33. [Williams92] D. J. Williams and M. Shah. A Fast Algorithm for Active Contours and Curvature Estimation. 

CVGIP: Image Understanding, Vol. 55, No. 1, pp. 14-26, Jan., 1992. 

http://www.cs.ucf.edu/~vision/papers/shah/92/WIS92A.pdf.  

34. [Yuen03] H.K. Yuen, J. Princen, J. Illingworth and J. Kittler. Comparative study of Hough Transform methods 

for circle finding. 

http://www.sciencedirect.com/science/article/B6V09-48TCV4N-5Y/2/91f551d124777f7a4cf7b18325235673  

35. [Yuille89] A.Y.Yuille, D.S.Cohen, and P.W.Hallinan. Feature Extraction from Faces Using Deformable 

Templates in CVPR, pp. 104-109, 1989.  

36. [Zhang96] Z. Zhang. Parameter Estimation Techniques: A Tutorial with Application to Conic Fitting, Image and 

Vision Computing Journal, 1996.  

37. [Zhang99] Z. Zhang. Flexible Camera Calibration By Viewing a Plane From Unknown Orientations. 

International Conference on Computer Vision (ICCV'99), Corfu, Greece, pages 666-673, September 1999.  

38. [Zhang00] Z. Zhang. A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 22(11):1330-1334, 2000.  

 


