
ActionScript 3 optimization techniques

Joa Ebert∗

April 26, 2008

Abstract

This work is licensed under a Creative Commons Attribution-Share
Alike 3.0 Unported License1.

This document contains several optimization techniques for Action-
Script 3 (AS3). Most of these techniques have been discovered by mem-
bers of the Adobe Flash community. This paper is a comprehension of
existing techniques to achieve faster code execution. There are trivial op-
timiztions that one can follow during daily work and advanced techniques
that require more than just basic ActionScript 3 knowledge.

Contents

1 Introduction 2

1.1 Testing environment . 2

2 Basics 3

2.1 Native types . 3
2.2 Typing . 5
2.3 Casting . 6
2.4 Promoting issues . 6

3 Advanced 7

3.1 Instance re-using . 7
3.2 try..catch and null . 7
3.3 Pairs . 8
3.4 Lookup tables . 8
3.5 Bitwise operators . 8

∗With credits and thaks (in no particular order) to André Michelle, Nicolas Canasse,
Thibault Imbert, Claus Wahlers, Mario Klingemann, Ralf Bokelberg, Ralph Hauwert, John
Grden, Carlos Ulloa and Michael Baczynski

1http://creativecommons.org/licenses/by-sa/3.0/

1

4 More advanced 8

4.1 Constructor . 8
4.2 Constructor parameters . 8
4.3 Linked lists . 9
4.4 1D loops . 9
4.5 2D loops . 9
4.6 Type conversion . 10
4.7 14-bit integers . 10

5 Bytecode level 10

5.1 Registers . 10
5.2 Lookup storage . 10

1 Introduction

A lot of good optimization techniques have been found by a lot of developers.
The only problem is that they are located on a lot of di�erent places and get
lost. This document contains most of the tricks that have been found so far.

Because not all of these techniques require the same level of understanding
they are split into three categories. The "More advanced" category may be used
carefully. If you do it the wrong way you could get the opposite result which is
slower code execution.

1.1 Testing environment

There are a lot of tables in this documents that cover execution time. They were
done on a machine with a Intel Core2 CPU T7200 at 2GHz using 2GHz, 2GB
Ram with Windows XP Professional SP2. One important factor is the player
which is the release Flash player version 9.0.60.108. The tests were not done
using the debug player and they were not running in debug mode which is very
important in speci�c cases. Each test case was running ten times. The result
shown is always the average execution time of the ten runs. This way two tests
do not con�ict with the garbage collection and each test is just responsible for
its own memory usage. Before each run there is a ten seconds delay in order to
not con�ict with the Flash player starting procedure.

Here is an example of a test case and how it was executed. All the code that is
not necessary like the display of the results has been removed.

package

{

[SWF(frameRate='255')]

public class TestCase extends Sprite

{

private static const n: int = 1000000;

2

public function TestCase()

{

setTimeout(runTest, 10000);

}

private function runTest(): void

{

var a: Number = 0;

for (var i: int = 0; i < 10; ++i)

a += test00();

a /= 10;

showResults(a);

}

private function test00(): int

{

var t0: int;

var t1: int;

var i: int;

t0 = getTimer();

for (i = 0; i < n; ++i)

{

var a: Number = (1 as Number);

}

t1 = getTimer();

return (t1 - t0);

}

}

}

2 Basics

In this section you will �nd techniques that you can easily integrate in your
daily work�ow. Most of the tips are very common and should just help you
avoiding mistakes while migraing from ActionScript 2 to ActionScript 3.

2.1 Native types

There is one simple rule in ActionScript 3. Use integers for iterations. This
means if you were using Number in ActionScrpt 2 you want to use int now in

3

ActionScript 3.

Iterations int[ms] Number[ms]
102 0 0
103 0 0.1
104 0.1 0.4
105 1 3.2
106 9 24

4

Slow version:

for (var i: Number = 0; i < n; i++)

void;

Fast version:

for (var i: int = 0; i < n; i++)

void;

2.2 Typing

If you have to use objects do not forget to type them correct. An example could
be a simple three dimensional vector. Usually such an object has a x, y and z
property. Bad habit is to use the Object class. In ActionScript 3 the AVM2
can make use of de�ned objects that are not dynamic.

Iterations Vector[ms] Object[ms]
102 0.1 0.1
103 1.3 2.2
104 13.3 17.2
105 73.4 109.2
106 672.8 1033.7

Slow version:

for (;i<n;i++)

{

var v: Object = new Object;

v.x = 1;

v.y = 2;

v.z = 3;

}

Fast version:

class Vector3D

{

public var x: Number;

public var y: Number;

public var z: Number;

}

for (;i<n;i++)

{

var v: Vector3D = new Vector3D;

v.x = 1;

v.y = 2;

v.z = 3;

}

5

2.3 Casting

Array access can be speeded up by telling the Flash player what is inside the
array. Since arrays can contain any object the player has to �gure out what
type it is. This step can be eliminated by casting the object.

Iterations Cast[ms] Without cast[ms]
102 0 0
103 0.3 0.5
104 3.3 3.3
105 23.5 25.3
106 173.3 180.9

Slow version:

for (;i<n;i++)

array[i].x = 2;

Fast version:

for (;i<n;i++)

Vector3D(array[i]).x = 2;

2.4 Promoting issues

If you do something like i * 2 the expression will be promoted as a Number.
Array access has been optimized for integer numbers. So whenever you do some
calculations make sure that you keep the int type by casting again as an integer.

Iterations Cast[ms] Without cast[ms]
102 0 0
103 0.1 0.2
104 1.3 1.3
105 12.8 14.7
106 69.1 77.2

Slow version:

for (;i<n2;i++)

Vector3D(array[i*2]).x = 2;

Fast version:

for (;i<n2;i++)

Vector3D(array[int(i*2)]).x = 2;

6

3 Advanced

3.1 Instance re-using

Using a lot of uneeded istances slows the Flash player down in two ways. The
�rst is that a lot of garbage is created which means the garbage collection has
to do extra work. The second argument against a lot of unneeded instances is
simply that you have to create them which takes an extra amount of time.

Iterations GC friendly[ms] Using new[ms]
102 0 0.1
103 0 1.3
104 0.3 12.8
105 2.7 135.6
106 28.3 1299.3

Slow version:

for (;i<n;i++)

p = new Point(i, i);

Fast version:

for (;i<n;i++)

{

p.x = i;

p.y = i;

}

3.2 try..catch and null

Never use try..catch if you can use null. It is way slower than the comparison
if something is null or not.

Iterations null[ms] try..catch[ms]
102 0 2.8
103 0.1 29.7
104 0.2 301.9
105 1.1 3022.9
106 10.6 30740.3

Slow version:

var o: Sprite;

for (;i<n;i++)

{

try

7

{

o.blendMode = BlendMode.ADD;

}

catch (error: Error) {}

}

Fast version:

var o: Sprite;

for (;i<n;i++)

if (o != null)

o.blendMode = BlendMode.ADD;

3.3 Pairs

TODO

3.4 Lookup tables

TODO

3.5 Bitwise operators

TODO

4 More advanced

4.1 Constructor

Code inside the constructor is not optimized by the Just-in-time compiler (JIT).
To use JIT optimized code there is the possibility to call a function out of the
constructor. The code inside that function is then optimized again.

The reason why there are no test results here is that I could not �nd a
real rule when it makes sense to do this or not. Usually you expect a faster
code executin but if there is no di�erence because the JIT is not used at all
which could happen you have an even slower code executon because of one
extra function call which is your initializing function.

4.2 Constructor parameters

TODO

8

4.3 Linked lists

TODO

4.4 1D loops

TODO

4.5 2D loops

Usually a way to loop through a two-dimensional array is always the same. This
array can either by an Array or a BitmapData. Unfortunately this is easy but
not very fast. There is always a jump once the itration by one dimension is
done and one value has to be reset.

Instead of jumping from the end point to the begining we just cycle through
the two-dimensional object. This has a big impact on performance for large
objects.

Make sure to use x and y careful since the value is only used once and not
more often. This example loops from top-left to bottom-right / bottom-left.
This depends on the height. If the height is odd you will end at the bottom-
right. If it is even you will end at the bottom-left.

As you can see the simple for-loop variant is actually faster until 5122

iterations. So you have to make the right decision when to use which method.

Iterations Cycle[ms] Simple for[ms]
1282 2.7 2.7
2562 11.1 10.3
5122 29.7 28.3
10242 95.4 106.3
20482 355.8 738.6

Slow version:

var color: int;

for (var y: int = 0; y < height; y++)

for (var x: int = 0; x < height; x++)

color = bitmapData.getPixel(x, y);

Fast version:

var color: int;

var y: int;

var x: int;

var m: Boolean = true;

9

while (true)

{

color = bitmapData.getPixel(m ? x++ : --x, y);

if (x == width || x == 0)

{

if (y++ == height)

break;

m = !m;

}

}

Note: Michael Baczynski2 found several issues I could not reproduce with this
code. If a simple for-loop is faster for you I would like to get a response in that
case.

4.6 Type conversion

TODO

4.7 14-bit integers

5 Bytecode level

When writing on a bytecode level even more optimizations can be achieved.
This is de�nitly not something for daily work and only important if you really
know what you are doing.

Bytecode is always shown in an asm block with pseudo-code notation.

5.1 Registers

TODO

5.2 Lookup storage

TODO Text and table
Slow version:

for(;i<n;++i)

Math.sin(1.0)

Fast version:

2http://lab.polygonal.de

10

__asm{

getlex Math

setlocal 1

}

for(;i<n;++i)

__asm{

getlocal 1

pushbyte 1

callProperty sin, 1

}

11

