Lagrange Multipliers without Permanent Scarring

Dan Klein

1 Intr oduction

Thistutorialassumethatyouwantto know whatLagrangemultipliersare,but aremoreinterestedn gettingthe

intuitionsandcentralideas.It containsnothingwhich would qualify asa formal proof, but the key ideasneed
to reador reconstructhe relevantformal resultsare provided. If you don't understand.agrangemultipliers,

that'sfine. If youdon't understandrectorcalculusatall, in particulargradientsof functionsandsurfacenormal

vectors,the majority of thetutorial is likely to be somevhat unpleasantUnderstandingaboutvectorspaces,
spannedsubspacesndlinear combinationds a bonus(a few sectionswill be somavhat mysteriousf these
conceptsareunclear).

Lagrangemultipliersarea mathematicatool for constrainedptimizationof differentiablefunctions.In the
basic,unconstrainedersion,we have some(differentiable)function f (z1, ... z,) : R* — R thatwe wantto
maximize(or minimize). We cando this by first find extremepointsof f, which arepointswherethe gradient
V f is zero,or, equilantly, eachof the partial derivativesis zero. If we're lucky, pointslik e this thatwe find
will turnoutto be (local) maxima,but they canalsobe minimaor saddlepoints. We cantell the differentcases
apartby a variety of meansjncluding checkingpropertiesof the secondderivativesor simpleinspectingthe
function values. Hopefully this is all familiar from calculus,thoughmaybeit’s more concretelyclearwhen
dealingwith functionsof just onevariable.

All kinds of practicalproblemscan crop up in unconstraineaptimization, which we won’t worry about
here.Oneis that f andits derivative canbe expensve to compute causingpeopleto worry abouthow mary
evaluationsare neededto find a maximum. A secondproblemis that there can be (infinitely) mary local
maximawhich arenotglobalmaxima,causingoeopleto despair We're goingto ignoretheseassueswhich are
asbig or biggerproblemsfor the constrainectase.

In constrainedptimization,we have the samefunction f to maximizeasbefore. However, we also have
somerestrictionson which pointsin R™ we are interestedn. The pointswhich satisfy our constraintsare
referedto asthe feasibleregion. A simple constrainton the feasibleregion is to add boundariessuchas
insistingthat eachz; be positive. Boundariescomplicatemattersbecausextremepoints on the boundaries
will not,in generalmeetthezero-denative criterion,andsomustbe searchedor in otherways. You probably
hadto dealwith boundariesn calculusclass.Boundariesorrespondo inequalityconstraintsyhich we will
sayrelatively little aboutin thistutorial.

Lagranganultiplierscanhelpdealwith bothequalityconstraintsaindinequalityconstraints For themajority
of thetutorial, we will be concernednly with equalityconstraintswhich restrictthe feasibleregionto points
lying on somesurfaceinside R™. Eachconstraintwill begivenby a functiong(z1, - . . z,), andwe will only
beinterestedn pointsz whereg(z) = 0.

1if youwantag(z) = ¢ constraintyou canjustmove thec to theleft: g(z) — ¢ = 0.
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Figure 1: A one-dimensionatiomain... with a constraint. Maximize the value of 2 — z? while satisfying
z—1=0.
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Figure2: Theparaboloid2 — z2 — 2y2.

2 Trial by Example

Let's do someexamplemaximizations First,we’ll have anexampleof notusingLagrangemultipliers.

2.1 A No-Brainer

Let's sayyou wantto know the maximumvalueof f(z) = 2 — 2?2 subjectto the constraintz — 1 = 0 (see
figure 1). Herewe canjust substituteour valuefor z (1) into f, andgetour maximumvalueof 2 — 12 = 1. It
isn't themostchallengingexample but we’ll comebackto it oncethe Lagrangemultipliersshav up. However,
it highlightsa basicway thatwe might go aboutdealingwith constraintssubstitution.

2.2 Substitution

Let f(z,y) = 2 — 22 — 2y, Thisis thedownward cuppingparaboloidshavn in figure 5. The unconstrained
maximumis clearlyatz = y = 0, while the unconstraineaninimumis not evendefined(you canfind points
with f aslow asyou like). Now let's saywe constrainz andy to lie on the unit circle. To do this, we add
the constraintg(z,y) = 2? + y* — 1 = 0. Then,we maximize(or minimize) by first solving for oneof the
variablesexplicitly:

I
o

224y -1 (1)
2

@ = 1-y° )
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Figure3: Theparaboloid — 2?2 — 2y? alongwith two differentconstraintsLeft is theunit circle 2% + % = 1,
rightisthelinexz + y = 1.

3)
andsubstitutanto f
flzy) = 2-2"+2° 4)
= 2-(1-y") -2 (5)
1—y? (6)

Then,we're backto a one-dimensionainconstrainegroblem whichhasamaximumaty = 0, wherez = £1
andf = 1. This shouldnt be too surprising;we're stuckon a circle which tradesz? for 2 linearly, while y?2
coststwice asmuchfrom f.

Finding the constrainedninimum hereis slightly more comple, and highlights one weaknes®f this ap-
proach;the one-dimensiongbroblemis still actuallysomavhatconstrainedn thaty mustbein [—1,1]. The
minimum f valueoccursat boththeseboundarypoints,wherez = 0 and f = 0.

2.3 Inflating Balloons

The main problemwith substitutionis that, despiteour stunningsuccessn the last section,it’s usuallyvery
hardto do. Ratherthaninventinga new problemanddiscoveringthis the hardway, let’s stick with the f from
thelastsectionandconsidetow the Lagrangemultiplier methodwould work. Figure3(left) shavs a contour
plot of f. Thecontoursor level curves,areellipses,which arewide in the z dimension,andwhich represent
points which have the samevalue of f. The dark circle in the middle is the feasibleregion satisfyingthe
constrainyy = 0. Thearrowvs pointin thedirectionsof greatesincreasef f. Notethatthedirectionof greatest
increasds alwaysperpendiculato thelevel curves.

Imaginethe ellipsesassnapshot®f aninflating andballoon. As the ballon expands the valueof f along
the ellipse decreasesThe size-zercellipse hasthe highestvalueof f. Considerwhat happenssthe ellipse
expands At first, thevaluesof f arehigh, but the ellipsedoesnotintersecthefeasiblecircle anywhere.When
thelong axisof theellipsefinally toucheghecircleat (+1,0), f = 1 asin figure4(left). Thisis themaximum
constrainedraluefor f —ary larger, andno pointonthelevel curve will bein thefeasiblecircle. Thekey thing
is that,at f = 1, theellipseis tangento thecircle?

The ellipsethencontinuesto grow, f dropping,intersectingthe circle at four points, until the ellipse sur
roundsthe circle and only the shortaxis endpointsarestill touching. This is the minimum (f = 0, z = 0,
y = £1). Again, thetwo curvesaretangent.Beyondthis value,thelevel curvesdo notintersecthecircle.

Thecurvesbeingtangenttthe minimumandmaximumshouldmake intuitive senself thetwo curveswere
not tangentjmaginea point (call it p) wherethey touch. Sincethe curvesarent tangentthenthe curveswill
cross,meetingat p, asin figreffig:crossing(right) Sincethe f contour(light curwe)is alevel curve, the points
to oneside of the contourhave greaterf value,while the pointson the otherside have lower f value. Since
we may move arywherealongg andstill satisfythe constraintwe cannudgep alongg to eithersideof the
contourto eitherincreaseor decreasef. Sop cannotbe anextremepoint.

2Differentiablecurveswhich touchbut do not crossaretangentput feel freeto verify it by checkingderivatives!



Figured: Level curvesof the paraboloidjntersectinghe constraintircle.

This intuition is very important;the entire enterpriseof Lagrangemultipliers (which arecomingsoon,re-
ally!) restsonit. Soheresanotherequivalent,way of looking at the tangentrequirementwhich generalizes
better Consideragainthe zoomsin figure4. Now think aboutthe normalvectorsof the contourandconstraint
curves. Thetwo curvesbeingtangentat a pointis equivalentto the normalvectorsbeingparallelat that point.
The contouris alevel curve, andsothe gradientof f, V f, is normalto it. But thatmeanghatat anextreme
point p, thegradientof f will be perpendiculato g aswell. This shouldalsomake sense-the gradientis the
directionof steepesascent.At a solutionp, we mustbe on g, and,while it is fine for f to have a non-zero
gradientthedirectionof steepesascenhadbetterbe perpendiculato g. Otherwise we canprojectV f onto
g, geta non-zerodirectionalong g, and nudgep alongthat direction,increasingf but stayingon g. If the
directionof steepesincreaseanddecreasdake you off perpendicularhyoff of g, then,evenif youarenotatan
unconstrainednaximumof f, thereis nolocal move you canmake to increasef which doesnottake you out
of thefeasibleregiong.

Formally, we canwrite our claim thatthe normalvectorsareparallelatanextremepointp as:

Vilp) = AVy(p) (7)

So,our methodfor finding extremepoints® which satisfythe constraintss to look for pointwherethefollowing
equationsoldtrue:

Vi) = AVg(z) (8)
g(z) = 0 (9)
We cancompactlyrepresenbothequationsat onceby writing the Lagrangian
Alz,N) = [f(z)—Mg(x) (10)
andaskingfor pointswhere
VA(z,)) = 0 (11)

The partial derivativeswith respecto = recover the parallel-normalsquationswhile the partial derivative
with respecto )\ recoverstheconstraing(xz) = 0. The X is our first Lagrangemultiplier.

Let's re-sole the circle-paraboloidproblemfrom above using this method. It was so easyto solve with
substitionthatthe Lagrangemultiplier methodisn't ary easier(if factit’'s harder),but at leastit illustratesthe
method.TheLagrangiaris:

Alz,N) = [flz) - Mg(x) (12)
= 2—z} 22, Az} + 23 1) (13)
andwe want
VA(z,A) = Vf(z)—AVg(z)=0 (14)
(15)

3We cansortout afterwe find themwhich areminima, maxima,or neither



which givesthe equations

0
8—331A(m’ A) = —2x1—-2\x; =0 (16)
0
8—332A(x’ A) = —4dxs—2 22 =0 17)
0 A
aA(x, AN = zi4+22-1=0 (18)
(19)

Fromthefirst two equationswe musthave either\ = —1orA = —2. If A = —1,thenz, = 0, z; = £1, and
f=1.1f A= —-2,thenzy, = +1, 2, =0, andf = 0. Thesearethe minimumandmaximum,respectiely.

Let's saywe insteadwantthe constrainthatxz andy sumto 1 (z + y — 1 = 0). Then,we have the situation
in figure ??(right). Beforewe do arything numeric,corvince yourselffrom the picture thatthe maximumis
goingto occurin the (+,+) quadrantat a point wherethe line is tangentto a level curve of f. Also corvince
yourselfthattheminimumwill notbedefined;that f valuesgetarbitrarily low in bothdirectionsalongtheline
away from the maximum.Formally, we have

Az, A) = f(z) = Ag(z) (20)
= 2—27 - 22521 + 22 — 1) (21)
andwe want
VA(z,A) = Vf(z)—AVg(z)=0 (22)
(23)
which gives
aixl/\(x7)\) = 221 —-A=0 (24)
%A(x,/\) = —dzs—A=0 (25)
66—/\A(:E,)\) = z1+z2—1=0 (26)
(27)

We canseefrom thefirst two equationghatz; = 24, which, with, sincethey sumto one,meansr; = 2/3,
xzo = 1/3. At thosevalues,f = 4/3 and\ = —4/3.

Sowhatdo we have sofar? Givena function anda constraintwe canwrite the Lagrangiandifferentiate,
andsolve for zero. Actually solving that systemof equationscanbe hard, but note thatthe Lagrangianis a
function of n+1 variables(n z; plus\) andsowe do have theright numberof equationgo hopefor unique,
existing solutions:n from the z; partialderivatives,plusonefrom the \ partialderivative.

2.4 MoreDimensions

If we wantto have mutliple constraintsthis methodstill works perfectlywell, thoughit get harderto draw
the picturesto illustrateit. To generalize]et's think of the parallel-normalideain a slightly differentway.
In unconstraineaptimization(no constraints)we knewv we were at a local extremebecauseéhe gradientof
f waszero— therewasno local direction of motion which increasedf. Along camethe constraintg and
dashedall hopesof the gradientbeingcompletelyzeroat a constrainedextremep, becausave wereconfined
to g. However, we still wantedthattherebe no directionof increaseansidethe feasibleregion. This occured
whenever the gradientat p, while probably not zero, had no componentsvhich were perpendiculato the
normalof g at p. To recap:in the presencef a constraint,V f (p) doesnot have to be zeroat a solutionp, it
justhasto beentirely containedn the (one-dimensionalyubspacepannedy Vg(p).

The last statemengeneralizeso multiple constraints.With multiple constraintsy; () = 0, we will insist
that a solutionp satisfyeachg;(p) = 0. We will alsowantthe gradientV f(p) to be non-zeroalongthe



Figure5: A sphericalevel curve of thefunction f(z) = |z| with two constrainplanesy = —1 andz = —1.

directionsthat p is free to vary. However, given the constraintsp cannotmake any local movementalong
vectorswhich have any componenperpendiculato arny constraint. Thereforeour conditionshouldagainbe
thatV f(p), while not necessarilyzero,is entirely containedn the subspacespannedy the Vg;(p) normals.
We canexpresghis by the equation

Vi) = ngxm) (28)

Which assertshatV f(p) bealinearcombinationof the normals with weights);.
It turnsoutthattossingall the constraintsnto a singleLagrangiaraccomplisheshis:

Mz, ) = f(w)—Z/\igi(w) (29)

It shouldbe clearthatdifferentiatingA(x, \) with respecto \; andsettingequalto zerorecoversthe ith
constraintg; (xz) = 0, while differentiatingwith respecto the z; recorersthe assertiorthatthe gradientof f
have no componentsvhich arent spannedy the constraintsiormals.

As an exampleof multiple constraintsconsiderfigure ??. Imaginethat f is the distancefrom the origin.
Thus,thelevel surfacesof f areconcentricspheresvith the gradientpointing straightout of thespheresLet’s
saywe wantthe minimumof f subjectto the constraintg¢haty = —1 andz = —1, shovn asplanesin the
figure. Again imaginethe spheresasexpandingfrom the center until it makescontactwith the planes.The
unconstrainedninimum is, of course,at the origin, whereV f is zero. The spheregrows, and f increases.
Whenthespheresradiusreache®ne,the sphergoucheshothplanesndividually. At thepointsof contactthe
gradientof f is perpendiculato thetouchingplane.Thosepointswould besolutionsif thatplaneweretheonly
constraint. Whenthe spherereachesa radiusof 1/2, it is touchingboth planesalongtheir line of intersection.
Notethatthe gradientis not zeroat thatpoint, nor is it perpendiculato eithersurface.However, it is parallel
to an (equal)combinationof the two planes’normalvectors,or, equivalently; it lies insidethe planespanned
by thosevectors(the planez = 0, [not shovn dueto my lacking matlabskills]).

A goodway to think aboutthe effect of addingconstraintds asfollows. Beforethereareary constraints,
therearen dimensiondor x to vary alongwhenmaximizing,andwe wantto find pointswhereall n dimensions
have zerogradient. Every time we add a constraint,we restrictone dimension,so we have lessfreedomin
maximizing. However, that constraintalsoremovesa dimensionalongwhich the gradientmustbe zero. So,
in the“nice” casewe shouldbe ableto addasmary or few constraintgup to n) aswe wish, andeverything
shouldwork out?

“4In the“not-nice” casesall sortsof thingscangowrong. Constraintsnaybe unsatisfiablée.g.z = 0 andz = 1, or subtlersituations
canpreventthe Lagrangemultipliersfrom existing [more].



3 The Lagrangian

ThelLagrangiamA(z, \) = f(z) + >, Aigi(z) is afunctionof n + m variablesremembethatz € R", plus
onefor eachof them \; € )). Differentiatinggivesthe corresponding: + m equationsgachsetto zero,
to solve. Then equationdrom differentiatingwith respecto eachx; recosersour gradientconditions. The
m equationdrom differentiatingwith respecthe \; recover the constrainty;. Sothe numbersgive ussome
confidencehatwe have theright numberof equationgo hopefor pointsolutions.

It' shelpfulto have anideaof whatthe Lagrangiaractuallymeans Therearetwo intuitions,describedelow.

3.1 The Lagrangian asan Encoding

First,we canlook attheLagrangiarasanencodingof theproblem.Thisview is easyto understangbut doesnt
really getusanywhere).Wheneerthe constraintaresatisfiedthe g; arezero,andsoatthesepoint, regarless
of thevalueof the A\; multipliers,A(z, \) = f(x). Thisis agoodfactto keepin mind.

You could imagineusingthe Lagrangiarto do constrainednaximizationin the following way. You move
z aroundR™ looking for a maximumvalueof f. However, you have no control over A, which getssetin the
worstway possiblefor you. Therefore whenyou choosez, lambda is chosento minimize A. Formally, the
problemis to find the z which gives

o= max(m}%n Az, N)) (30)

Now remembetthatif your x happengo satisfythe constraintsA(z, A) = f(z), regardlessof what \ is.
However, if 2 doesnot satisfythe constraintssomeg;(z) # 0. Butthen,)\; canbefiddledto make A(z, \))
assmall asdesired,and miny A(z,\) will be —co. So f* will be the maximumvalueof f subjectto the
constraints.

3.2 Reversingthe Scope

The problemwith the above view of the Lagrangiarnis thatit really doesnt accomplisharything beyond en-
codingthe constraintsandhandingus backthe sameproblemwe startedwith: find the maximumvalueof f,
ignoringthe valuesof = which arenotin thefeasibleregion. More usefully, we canswitchthe min andmax
from the previous section,andtheresultstill holds:

o= mgn(mgx Az, N)) (31)

Thisis partof thefull Kuhn-Tuckertheorem(cite), which we arent goingto proverigorously However, the
intuition behindwhy it’s trueis important. Beforewe examinewhy this reversalshouldwork, let's seewhatit
accomplisheff it'strue.

We originally hada constraineaptimizationproblem.We would very muchlik e for it to becomeanuncon-
strainedoptimizationproblem. Oncewe fix the valuesof the A; multipliers, A(x, A) becomes functionof z
alone.We mightbe ableto maximizethatfunction (it's unconstrained!jelatively easily If so,wewould geta
solutionfor each), call it z*(X). But thenwe cando anunconstraineaninimizationof z*(A) over the space
of \. We would thenhave our solution.

It might not be clearwhy that's ary differentthatfixing « andfinding a minimizing value \* (x) for eachz.
It's differentin two ways. First, unlike z* (), A*(z) would not be continuous.(Remembethatit’'s negative
infinity almosteverywhereandjumpsto f(x) for  which satisfythe constraints.)Secondit is oftenthe case
thatwe canfind a closed-formsolutionto z* () while we have nothingusefulto sayabout\*(z). Thisis also
agenerainstanceof switchingto a dual problemwhena primal problemis unpleasanin someway. [cites]

3.3 Duality

Let's saywe're corvincedthatit would be a goodthing if

max(m}%nA(x,)\)) = m}%n(mfo(x,)\)) (32)

T



Figure6: TheLagrangiarof the paraboloic2 — z? with theconstraintz — 1 = 0.

Now, we'll arguewhy this is true, examplesfirst, intuition secondformal proof elsavhere. Recallthe no-
brainerproblem:maximizef(z) = 2 — x? subjectto z — 1 = 0. Let's form the Lagrangian.

Az, \) = 2—22=Az-1) (33)

This surfaceis plottedin figure ??. The straightdarkline is thevalueof A atz = 1. At thatvalue,the
constraintis satisfiedandso, aspromised,\ hasno effecton A and Lambda(z,\) = f(z) = 1. At eachz,
A*(z) be —oo, exceptfor z = 1 whereA*(z) = 1. Thecurvingdarkline is thevalueof A atz = z*()\) for all
A. Theminimum A valuealongthis z*()) lineisatz = 1, A = 2, wheref = 1, which is the maximum(and
only) valueof f(x) amongthepoint(s)satisfyingthe constraint.

3.4 A sort-of proof of sort-of the Kuhn-Tucker thereom

TheLagrangiarnis hardto plotwhenn > 1. However, let's considemwhathappensn theenvironmentof apoint
p which satisfiesthe constraintsandwhich is a local maximumamongthe points satisfyingthe constraints.
Sinceeachg;(p) = 0, thederivativesof A(x, \) with respecto each); arezero.V f(p) maynotbezero.But
if V f(p) hasary componentvhichis notin the spacespannedy the constraininormalsVg;(p), thenwe can
nudgep in adirectioninsidetheallowedregion,increasingf (p). Sincep is alocalminimuminsidethatregion,
thatisn't possible.SoV f(p) is in the spacespannedy the constraintnormalsVg;(p), andcanthereforebe
written asa (unique)linear combinationof thesenormals. Let V f(p) = >, A;Vgi(p) be thatcombination.
ThenclearlyV f(p) — >, A\iVgi(p) = 0.

Now consideravector\’ nearA. V f(p) — 3, A;Vg;(p) cannotstill bezero,becausehelinearcombination
weightsA areunique.But VA(p, \') = V f(p) — >, A;Vgi(p) is non-zero.Thus,fixing A" andallowing p to
vary, thereis somedirection(eitherVA(p, \') or thereversedirectionwherewe could nudgep to increase\.
Thereforeat A\(p), *(A) is atalocal minimum.

Anotherway to remembetthis intuitively is that A is probablynot zero, and, if we setit to zero (a huge
nudge),A(z,0) = f(z), andsothe maximumof A is the unconstraineagnaximumof f, which canonly be
largerthan f (p).

Let’'slook anothemoreexample.Recallthe paraboloidfigure5) with theconstrainthataz andy sumto one.
Themaximumvalueoccuredat (z,y) = (2/3,1/3), wheref = 4/3. The X\ valuewas—4/3. Figure7 shavs
whathappensvhenwe nudge\ up anddown slightly. At A = 0, the LagrangianA is justthe original surface
f. Its maximumvalue(2) is atthe origin (which obviously doesnt satisfythe constraint).At A = —4/3, the
maximumvalueof theLagrangiaris atp = (2/3,1/3), (which doessatisfythe constraints) The gradientof f
is notzero,but it is perpendiculato the constraintine, sop is alocal maximumalongthatline. Anotherway
of thinking of this is thatthe gradientof f (thetop arrow field) is balancedat thatpoint by the scaledgradient
of the constraintthe secondarrow field down). We canseethe effect by addingthesetwo fields, which forms
the gradientof the Lagrangian(third arrow field). This gradientis zeroatp with theright \. If we nudgeA up
to —4/3 + 0.1, thensuddenlythe gradientof f is nolongercompletelycancelledout by AVg, andsowe can
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Figure7: Lagrangiarsurfacesfor the paraboloid2 — 22 — 2y? with theconstraintz +y — 1 = 0.

increasehelagrangiarby nudgingp towardtheorigin. Similarly, if we nudgex downto —4/3 — 0.1, thenthe
gradientof f is over-cancelledandwe canincreasehe Lagrangiarby nudgingp away from the origin.

3.5 What do the multipliers mean?

A usefulaspecbf the Lagrangemultiplier methodis thatthe valuesof the multipliers at solutionpointsoften

hassomesignificance Mathematicallya multiplier ); is thevalueof the partialderivative of A with respecto

theconstrainty;. Soit is therateatwhichwe couldincreasehelLagrangianf we wereto raisethetargetof that

constraint(from zero).But remembethatat solutionpointsp, A(p, A) = f(p). Thereforetherateof increase
of the Lagrangiarwith respecto thatconstraintis alsotherateof increaseof the maximumconstrainedralue
of f with respecto thatconstraint.

In economicswhen f is a profit function andthe g; areconstraintson resourceamounts \; would be the
amount(possiblynegative!) by which profit would riseif onewereallowed onemoreunit of resource. This
rateis calledtheshadowprice of ¢, whichis interpretecasthe amountt would beworth to relaxthatconstraint
upwards(by R&D, mining, bribery, or whatezer means).

[Physicsexample?]

4 A bigger examplethan you probably wanted

This sectioncontainsa big exampleof usingthe Lagrangemultiplier methodin practice,aswell asanother
casewherethe multipliershave aninterestingnterpretation.
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Figure8: Thesimplexz +y + z = 1.

4.1 Maximum Entropy Models
5 Extensions

5.1 Inequality Constraints

The Lagrangemultiplier methodalso coversthe caseof inequality constraints. Constraintsof this form are
written h(xz) > 0. Thekey obsenationaboutinequality constraintswork is that, at ary givenz, a h(x) has
eitherh(z) = 0 or h(z) > 0, whicharequalitatively verydifferent. Thetwo possibilitiesareshowvn in figure 2.
If h(z) = 0 thenh is saidto be activeat z, otherwiseit is inactive If h is active at z, thenh is alot like an
equalityconstraint;it allows z to be maximumif thegradientof f, V f(x), is eitherzeroor pointing towards
negative valuesof h (whichviolatethe constraint).However, if the gradientis pointingtowardspositive values
of h, thenthereis noreasorthatwe cannotmove in thatdirection. Recallthatwe usedto write

Vi(z) = AVy(z) (34)

for a (single)equalityconstraint.The interpretationwasthat, if x is a solution,V f(x) mustbeentirelyin the
directionof thenormalto g(z), Vg(x). For inequalityconstraintsye write

Vf(x) = pVh(z) (35)

but, if x is amaximum,thenif V f(z) is non-zero,it not only hasto be parallel Vg(z), but it mustactually
pointin theoppositesensealongthatdirection(i.e., out of thefeasiblesideandtowardstheforbiddenside).We
canactuallyenforcethis very simply, by restrictingthe multiplier to be negative (or zero). Positive mutlipliers
meanthatthedirectionof increasingf is in the samedirectionasincreasingh(z) — but pointsin thatsituation
certainlyarent solutions,aswe wantto increasef andwe areallowedto increaséh.

If hisinactiveatz (h(x) > 0), thenwe wantto be evenstricteraboutwhatvaluesof p areacceptabldrom
asolution. In fact,in this caseu mustbezeroatz. (Intuitively, if & is inactive,thennothingshouldchangeat
z if wedroph). [betterexplanation]

In summary for inequality constraintswe addthemto the Lagrangianjust asif they were equality con-
straints,exceptthatwe requirethaty < 0 andthat,if h(z) is notzero,theny is. The situationthatoneor the
othercanbenon-zerojut notboth,is referredto ascomplementargladkness This situationcanbe compactly
writtenasph(z) = 0. Bundlingit all up, completewith multiple constraintsyve getthe generalLagrangian:

A, A\ p) = f(z) - Z Xigi(z) — Zujhj (z) (36)

The Kuhn-Tuckertheorem(or our intuitive alguments}ell usthatif a pointz is amaximumof f subjectto
theconstraintg; andh;, then:

VA(z, A\, u) = Vf(z)-— Z AiVgi(z) — Zuthj () =0 (37)



Vi,ui < 0 (38)
> wihi(@) = 0 (39)
J

The secondconditiontakes careof the restrictionon active inequalities. The third conditionis a somavhat
crypticway of insistingthatfor eachi, eithery; is zeroor h;(x) is zero.

Now is probablya goodtime to point out that thereis moreto the Kuhn-Tucker theoremthan the above
statementTheabove conditionsarecalledthefirst-order conditions.All (local) maximawill satisfythem.The
theoremalsogivessecondrder conditionsonthe secondderivative (Hessian)matriceswhich distinguishlocal
maximafrom other situationswhich cantrigger “falsealarms”with the first-orderconditions. However, in
mary situations,oneknowsin advancethatthe solutionwill be a maximum(suchasin the maximumentropy
example).

Caveataboutglobals?

6 Conclusion

This tutorial only introducesthe basicconceptsof the Langrangemultiplier methods. If you areinterested,

thereare mary detailedtexts on the subject[cites]. The goal of this tutorial wasto supply someintuition

behindthe centralideassothatother morecomprehensie andformal sourcedoecomemoreaccessible.
Feedbackequested!



