
CXCORE Reference Manual

• Basic Structures

• Operations on Arrays

o Initialization

o Accessing Elements and sub-Arrays

o Copying and Filling

o Transforms and Permutations

o Arithmetic, Logic and Comparison

o Statistics

o Linear Algebra

o Math Functions

o Random Number Generation

o Discrete Transforms

• Dynamic Structures

o Memory Storages

o Sequences

o Sets

o Graphs

o Trees

• Drawing Functions

o Curves and Shapes

o Text

o Point Sets and Contours

• Data Persistence and RTTI

o File Storage

o Writing Data

o Reading Data

o RTTI and Generic Functions

• Miscellaneous Functions

• Error Handling and System Functions

o Error Handling

o System Functions

• Alphabetical List of Functions

• List of Examples

Basic Structures

CvPoint
2D point with integer coordinates

 typedef struct CvPoint

 {

 int x; /* x-coordinate, usually zero-based */

 int y; /* y-coordinate, usually zero-based */

 }

 CvPoint;

 /* the constructor function */

 inline CvPoint cvPoint(int x, int y);

 /* conversion from CvPoint2D32f */

 inline CvPoint cvPointFrom32f(CvPoint2D32f point);

CvPoint2D32f
2D point with floating-point coordinates

 typedef struct CvPoint2D32f

 {

 float x; /* x-coordinate, usually zero-based */

 float y; /* y-coordinate, usually zero-based */

 }

 CvPoint2D32f;

 /* the constructor function */

 inline CvPoint2D32f cvPoint2D32f(double x, double y);

 /* conversion from CvPoint */

 inline CvPoint2D32f cvPointTo32f(CvPoint point);

CvPoint3D32f
3D point with floating-point coordinates

 typedef struct CvPoint3D32f

 {

 float x; /* x-coordinate, usually zero-based */

 float y; /* y-coordinate, usually zero-based */

 float z; /* z-coordinate, usually zero-based */

 }

 CvPoint3D32f;

 /* the constructor function */

 inline CvPoint3D32f cvPoint3D32f(double x, double y, double z);

CvPoint2D64f
2D point with double precision floating-point coordinates

 typedef struct CvPoint2D64f

 {

 double x; /* x-coordinate, usually zero-based */

 double y; /* y-coordinate, usually zero-based */

 }

 CvPoint2D64f;

 /* the constructor function */

 inline CvPoint2D64f cvPoint2D64f(double x, double y);

 /* conversion from CvPoint */

 inline CvPoint2D64f cvPointTo64f(CvPoint point);

CvPoint3D64f
3D point with double precision floating-point coordinates

 typedef struct CvPoint3D64f

 {

 double x; /* x-coordinate, usually zero-based */

 double y; /* y-coordinate, usually zero-based */

 double z; /* z-coordinate, usually zero-based */

 }

 CvPoint3D64f;

 /* the constructor function */

 inline CvPoint3D64f cvPoint3D64f(double x, double y, double z);

CvSize
pixel-accurate size of a rectangle

 typedef struct CvSize

 {

 int width; /* width of the rectangle */

 int height; /* height of the rectangle */

 }

 CvSize;

 /* the constructor function */

 inline CvSize cvSize(int width, int height);

CvSize2D32f
sub-pixel accurate size of a rectangle

 typedef struct CvSize2D32f

 {

 float width; /* width of the box */

 float height; /* height of the box */

 }

 CvSize2D32f;

 /* the constructor function */

 inline CvSize2D32f cvSize2D32f(double width, double height);

CvRect
offset and size of a rectangle

 typedef struct CvRect

 {

 int x; /* x-coordinate of the left-most rectangle corner[s] */

 int y; /* y-coordinate of the top-most or bottom-most

 rectangle corner[s] */

 int width; /* width of the rectangle */

 int height; /* height of the rectangle */

 }

 CvRect;

 /* the constructor function */

 inline CvRect cvRect(int x, int y, int width, int height);

CvScalar
A container for 1-,2-,3- or 4-tuples of numbers

 typedef struct CvScalar

 {

 double val[4];

 }

 CvScalar;

 /* the constructor function: initializes val[0] with val0, val[1] with val1 etc. */

 inline CvScalar cvScalar(double val0, double val1=0,

 double val2=0, double val3=0);

 /* the constructor function: initializes val[0]...val[3] with val0123 */

 inline CvScalar cvScalarAll(double val0123);

 /* the constructor function: initializes val[0] with val0, val[1]...val[3] with zeros */

 inline CvScalar cvRealScalar(double val0);

CvTermCriteria
Termination criteria for iterative algorithms

#define CV_TERMCRIT_ITER 1

#define CV_TERMCRIT_NUMBER CV_TERMCRIT_ITER

#define CV_TERMCRIT_EPS 2

typedef struct CvTermCriteria

{

 int type; /* a combination of CV_TERMCRIT_ITER and CV_TERMCRIT_EPS */

 int max_iter; /* maximum number of iterations */

 double epsilon; /* accuracy to achieve */

}

CvTermCriteria;

/* the constructor function */

inline CvTermCriteria cvTermCriteria(int type, int max_iter, double epsilon);

/* check termination criteria and transform it so that type=CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,

 and both max_iter and epsilon are valid */

CvTermCriteria cvCheckTermCriteria(CvTermCriteria criteria,

 double default_eps,

 int default_max_iters);

CvMat
Multi-channel matrix

 typedef struct CvMat

 {

 int type; /* CvMat signature (CV_MAT_MAGIC_VAL), element type and flags */

 int step; /* full row length in bytes */

 int* refcount; /* underlying data reference counter */

 union

 {

 uchar* ptr;

 short* s;

 int* i;

 float* fl;

 double* db;

 } data; /* data pointers */

 #ifdef __cplusplus

 union

 {

 int rows;

 int height;

 };

 union

 {

 int cols;

 int width;

 };

 #else

 int rows; /* number of rows */

 int cols; /* number of columns */

 #endif

 } CvMat;

CvMatND

Multi-dimensional dense multi-channel array

 typedef struct CvMatND

 {

 int type; /* CvMatND signature (CV_MATND_MAGIC_VAL), element type and flags */

 int dims; /* number of array dimensions */

 int* refcount; /* underlying data reference counter */

 union

 {

 uchar* ptr;

 short* s;

 int* i;

 float* fl;

 double* db;

 } data; /* data pointers */

 /* pairs (number of elements, distance between elements in bytes) for

 every dimension */

 struct

 {

 int size;

 int step;

 }

 dim[CV_MAX_DIM];

 } CvMatND;

CvSparseMat
Multi-dimensional sparse multi-channel array

 typedef struct CvSparseMat

 {

 int type; /* CvSparseMat signature (CV_SPARSE_MAT_MAGIC_VAL), element type and flags */

 int dims; /* number of dimensions */

 int* refcount; /* reference counter - not used */

 struct CvSet* heap; /* a pool of hashtable nodes */

 void** hashtable; /* hashtable: each entry has a list of nodes

 having the same "hashvalue modulo hashsize" */

 int hashsize; /* size of hashtable */

 int total; /* total number of sparse array nodes */

 int valoffset; /* value offset in bytes for the array nodes */

 int idxoffset; /* index offset in bytes for the array nodes */

 int size[CV_MAX_DIM]; /* arr of dimension sizes */

 } CvSparseMat;

IplImage
IPL image header

 typedef struct _IplImage

 {

 int nSize; /* sizeof(IplImage) */

 int ID; /* version (=0)*/

 int nChannels; /* Most of OpenCV functions support 1,2,3 or 4 channels */

 int alphaChannel; /* ignored by OpenCV */

 int depth; /* pixel depth in bits: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U,

 IPL_DEPTH_16S, IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F are supported */

 char colorModel[4]; /* ignored by OpenCV */

 char channelSeq[4]; /* ditto */

 int dataOrder; /* 0 - interleaved color channels, 1 - separate color channels.

 cvCreateImage can only create interleaved images */

 int origin; /* 0 - top-left origin,

 1 - bottom-left origin (Windows bitmaps style) */

 int align; /* Alignment of image rows (4 or 8).

 OpenCV ignores it and uses widthStep instead */

 int width; /* image width in pixels */

 int height; /* image height in pixels */

 struct _IplROI *roi;/* image ROI. when it is not NULL, this specifies image region to process */

 struct _IplImage *maskROI; /* must be NULL in OpenCV */

 void *imageId; /* ditto */

 struct _IplTileInfo *tileInfo; /* ditto */

 int imageSize; /* image data size in bytes

 (=image->height*image->widthStep

 in case of interleaved data)*/

 char *imageData; /* pointer to aligned image data */

 int widthStep; /* size of aligned image row in bytes */

 int BorderMode[4]; /* border completion mode, ignored by OpenCV */

 int BorderConst[4]; /* ditto */

 char *imageDataOrigin; /* pointer to a very origin of image data

 (not necessarily aligned) -

 it is needed for correct image deallocation */

 }

 IplImage;

The structure IplImage came from Intel Image Processing Library where the format is native. OpenCV supports only a

subset of possible IplImage formats:

• alphaChannel is ignored by OpenCV.

• colorModel and channelSeq are ignored by OpenCV. The single OpenCV function cvCvtColor working with color

spaces takes the source and destination color spaces as a parameter.

• dataOrder must be IPL_DATA_ORDER_PIXEL (the color channels are interleaved), however selected channels

of planar images can be processed as well if COI is set.

• align is ignored by OpenCV, while widthStep is used to access to subsequent image rows.

• maskROI is not supported. The function that can work with mask take it as a separate parameter. Also the mask

in OpenCV is 8-bit, whereas in IPL it is 1-bit.

• tileInfo is not supported.

• BorderMode and BorderConst are not supported. Every OpenCV function working with a pixel neigborhood uses

a single hard-coded border mode (most often, replication).

Besides the above restrictions, OpenCV handles ROI differently. It requires that the sizes or ROI sizes of all source and

destination images match exactly (according to the operation, e.g. for cvPyrDown destination width(height) must be

equal to source width(height) divided by 2 ±1), whereas IPL processes the intersection area - that is, the sizes or ROI

sizes of all images may vary independently.

CvArr
Arbitrary array

 typedef void CvArr;

The metatype CvArr* is used only as a function parameter to specify that the function accepts arrays of more than a

single type, for example IplImage*, CvMat* or even CvSeq*. The particular array type is determined at runtime by

analyzing the first 4 bytes of the header.

Operations on Arrays

Initialization

CreateImage
Creates header and allocates data

IplImage* cvCreateImage(CvSize size, int depth, int channels);
size

Image width and height.
depth

Bit depth of image elements. Can be one of:

IPL_DEPTH_8U - unsigned 8-bit integers

IPL_DEPTH_8S - signed 8-bit integers

IPL_DEPTH_16U - unsigned 16-bit integers

IPL_DEPTH_16S - signed 16-bit integers

IPL_DEPTH_32S - signed 32-bit integers

IPL_DEPTH_32F - single precision floating-point numbers

IPL_DEPTH_64F - double precision floating-point numbers
channels

Number of channels per element(pixel). Can be 1, 2, 3 or 4. The channels are interleaved, for example the

usual data layout of a color image is:

b0 g0 r0 b1 g1 r1 ...

Although in general IPL image format can store non-interleaved images as well and some of OpenCV can

process it, this function can create interleaved images only.

The function cvCreateImage creates the header and allocates data. This call is a shortened form of

 header = cvCreateImageHeader(size,depth,channels);

 cvCreateData(header);

CreateImageHeader
Allocates, initializes, and returns structure IplImage

IplImage* cvCreateImageHeader(CvSize size, int depth, int channels);
size

Image width and height.
depth

Image depth (see CreateImage).
channels

Number of channels (see CreateImage).

The function cvCreateImageHeader allocates, initializes, and returns the structure IplImage. This call is an analogue of

 iplCreateImageHeader(channels, 0, depth,

 channels == 1 ? "GRAY" : "RGB",

 channels == 1 ? "GRAY" : channels == 3 ? "BGR" :

 channels == 4 ? "BGRA" : "",

 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL, 4,

 size.width, size.height,

 0,0,0,0);

though it does not use IPL functions by default (see also CV_TURN_ON_IPL_COMPATIBILITY macro)

ReleaseImageHeader
Releases header

void cvReleaseImageHeader(IplImage** image);
image

Double pointer to the deallocated header.

The function cvReleaseImageHeader releases the header. This call is an analogue of

 if(image)

 {

 iplDeallocate(*image, IPL_IMAGE_HEADER | IPL_IMAGE_ROI);

 *image = 0;

 }

though it does not use IPL functions by default (see also CV_TURN_ON_IPL_COMPATIBILITY)

ReleaseImage
Releases header and image data

void cvReleaseImage(IplImage** image);
image

Double pointer to the header of the deallocated image.

The function cvReleaseImage releases the header and the image data. This call is a shortened form of

 if(*image)

 {

 cvReleaseData(*image);

 cvReleaseImageHeader(image);

 }

InitImageHeader
Initializes allocated by user image header

IplImage* cvInitImageHeader(IplImage* image, CvSize size, int depth,

 int channels, int origin=0, int align=4);
image

Image header to initialize.
size

Image width and height.
depth

Image depth (see CreateImage).
channels

Number of channels (see CreateImage).
origin

IPL_ORIGIN_TL or IPL_ORIGIN_BL.
align

Alignment for image rows, typically 4 or 8 bytes.

The function cvInitImageHeader initializes the image header structure, pointer to which is passed by the user, and

returns the pointer.

CloneImage
Makes a full copy of image

IplImage* cvCloneImage(const IplImage* image);
image

Original image.

The function cvCloneImage makes a full copy of the image including header, ROI and data

SetImageCOI
Sets channel of interest to given value

void cvSetImageCOI(IplImage* image, int coi);
image

Image header.

coi
Channel of interest.

The function cvSetImageCOI sets the channel of interest to a given value. Value 0 means that all channels are selected, 1

means that the first channel is selected etc. If ROI is NULL and coi != 0, ROI is allocated. Note that most of OpenCV

functions do not support COI, so to process separate image/matrix channel one may copy (via cvCopy or cvSplit) the

channel to separate image/matrix, process it and copy the result back (via cvCopy or cvCvtPlaneToPix) if need.

GetImageCOI
Returns index of channel of interest

int cvGetImageCOI(const IplImage* image);
image

Image header.

The function cvGetImageCOI returns channel of interest of the image (it returns 0 if all the channels are selected).

SetImageROI
Sets image ROI to given rectangle

void cvSetImageROI(IplImage* image, CvRect rect);
image

Image header.
rect

ROI rectangle.

The function cvSetImageROI sets the image ROI to a given rectangle. If ROI is NULL and the value of the parameter rect

is not equal to the whole image, ROI is allocated. Unlike COI, most of OpenCV functions do support ROI and treat it in a

way as it would be a separate image (for example, all the pixel coordinates are counted from top-left or bottom-left

(depending on the image origin) corner of ROI)

ResetImageROI
Releases image ROI

void cvResetImageROI(IplImage* image);
image

Image header.

The function cvResetImageROI releases image ROI. After that the whole image is considered selected. The similar result

can be achieved by

cvSetImageROI(image, cvRect(0, 0, image->width, image->height));

cvSetImageCOI(image, 0);

But the latter variant does not deallocate image->roi.

GetImageROI
Returns image ROI coordinates

CvRect cvGetImageROI(const IplImage* image);
image

Image header.

The function cvGetImageROI returns image ROI coordinates. The rectangle cvRect(0,0,image->width,image->height) is

returned if there is no ROI

CreateMat
Creates new matrix

CvMat* cvCreateMat(int rows, int cols, int type);
rows

Number of rows in the matrix.
cols

Number of columns in the matrix.
type

Type of the matrix elements. Usually it is specified in form CV_<bit_depth>(S|U|F)C<number_of_channels>, for

example:

CV_8UC1 means an 8-bit unsigned single-channel matrix, CV_32SC2 means a 32-bit signed matrix with two

channels.

The function cvCreateMat allocates header for the new matrix and underlying data, and returns a pointer to the created

matrix. It is a short form for:

 CvMat* mat = cvCreateMatHeader(rows, cols, type);

 cvCreateData(mat);

Matrices are stored row by row. All the rows are aligned by 4 bytes.

CreateMatHeader
Creates new matrix header

CvMat* cvCreateMatHeader(int rows, int cols, int type);
rows

Number of rows in the matrix.
cols

Number of columns in the matrix.
type

Type of the matrix elements (see cvCreateMat).

The function cvCreateMatHeader allocates new matrix header and returns pointer to it. The matrix data can further be

allocated using cvCreateData or set explicitly to user-allocated data via cvSetData.

ReleaseMat
Deallocates matrix

void cvReleaseMat(CvMat** mat);
mat

Double pointer to the matrix.

The function cvReleaseMat decrements the matrix data reference counter and releases matrix header:

 if(*mat)

 cvDecRefData(*mat);

 cvFree((void**)mat);

InitMatHeader
Initializes matrix header

CvMat* cvInitMatHeader(CvMat* mat, int rows, int cols, int type,

 void* data=NULL, int step=CV_AUTOSTEP);
mat

Pointer to the matrix header to be initialized.
rows

Number of rows in the matrix.
cols

Number of columns in the matrix.
type

Type of the matrix elements.
data

Optional data pointer assigned to the matrix header.
step

Full row width in bytes of the data assigned. By default, the minimal possible step is used, i.e., no gaps is

assumed between subsequent rows of the matrix.

The function cvInitMatHeader initializes already allocated CvMat structure. It can be used to process raw data with

OpenCV matrix functions.

For example, the following code computes matrix product of two matrices, stored as ordinary arrays.

Calculating Product of Two Matrices

 double a[] = { 1, 2, 3, 4

 5, 6, 7, 8,

 9, 10, 11, 12 };

 double b[] = { 1, 5, 9,

 2, 6, 10,

 3, 7, 11,

 4, 8, 12 };

 double c[9];

 CvMat Ma, Mb, Mc ;

 cvInitMatHeader(&Ma, 3, 4, CV_64FC1, a);

 cvInitMatHeader(&Mb, 4, 3, CV_64FC1, b);

 cvInitMatHeader(&Mc, 3, 3, CV_64FC1, c);

 cvMatMulAdd(&Ma, &Mb, 0, &Mc);

 // c array now contains product of a(3x4) and b(4x3) matrices

Mat
Initializes matrix header (light-weight variant)

CvMat cvMat(int rows, int cols, int type, void* data=NULL);
rows

Number of rows in the matrix.
cols

Number of columns in the matrix.
type

Type of the matrix elements (see CreateMat).
data

Optional data pointer assigned to the matrix header.

The function cvMat is a fast inline substitution for cvInitMatHeader. Namely, it is equivalent to:

 CvMat mat;

 cvInitMatHeader(&mat, rows, cols, type, data, CV_AUTOSTEP);

CloneMat
Creates matrix copy

CvMat* cvCloneMat(const CvMat* mat);
mat

Input matrix.

The function cvCloneMat creates a copy of input matrix and returns the pointer to it.

CreateMatND
Creates multi-dimensional dense array

CvMatND* cvCreateMatND(int dims, const int* sizes, int type);
dims

Number of array dimensions. It must not exceed CV_MAX_DIM (=32 by default, though it may be changed at

build time)
sizes

Array of dimension sizes.
type

Type of array elements. The same as for CvMat

The function cvCreateMatND allocates header for multi-dimensional dense array and the underlying data, and returns

pointer to the created array. It is a short form for:

 CvMatND* mat = cvCreateMatNDHeader(dims, sizes, type);

 cvCreateData(mat);

Array data is stored row by row. All the rows are aligned by 4 bytes.

CreateMatNDHeader
Creates new matrix header

CvMatND* cvCreateMatNDHeader(int dims, const int* sizes, int type);
dims

Number of array dimensions.
sizes

Array of dimension sizes.
type

Type of array elements. The same as for CvMat

The function cvCreateMatND allocates header for multi-dimensional dense array. The array data can further be allocated

using cvCreateData or set explicitly to user-allocated data via cvSetData.

ReleaseMatND
Deallocates multi-dimensional array

void cvReleaseMatND(CvMatND** mat);
mat

Double pointer to the array.

The function cvReleaseMatND decrements the array data reference counter and releases the array header:

 if(*mat)

 cvDecRefData(*mat);

 cvFree((void**)mat);

InitMatNDHeader

Initializes multi-dimensional array header

CvMatND* cvInitMatNDHeader(CvMatND* mat, int dims, const int* sizes, int type, void* data=NULL);
mat

Pointer to the array header to be initialized.
dims

Number of array dimensions.
sizes

Array of dimension sizes.
type

Type of array elements. The same as for CvMat
data

Optional data pointer assigned to the matrix header.

The function cvInitMatNDHeader initializes CvMatND structure allocated by the user.

CloneMatND
Creates full copy of multi-dimensional array

CvMatND* cvCloneMatND(const CvMatND* mat);
mat

Input array.

The function cvCloneMatND creates a copy of input array and returns pointer to it.

DecRefData
Decrements array data reference counter

void cvDecRefData(CvArr* arr);
arr

array header.

The function cvDecRefData decrements CvMat or CvMatND data reference counter if the reference counter pointer is not

NULL and deallocates the data if the counter reaches zero. In the current implementation the reference counter is not

NULL only if the data was allocated using cvCreateData function, in other cases such as:

external data was assigned to the header using cvSetData

the matrix header presents a part of a larger matrix or image

the matrix header was converted from image or n-dimensional matrix header

the reference counter is set to NULL and thus it is not decremented. Whenever the data is deallocated or not, the data

pointer and reference counter pointers are cleared by the function.

IncRefData
Increments array data reference counter

int cvIncRefData(CvArr* arr);
arr

array header.

The function cvIncRefData increments CvMat or CvMatND data reference counter and returns the new counter value if

the reference counter pointer is not NULL, otherwise it returns zero.

CreateData
Allocates array data

void cvCreateData(CvArr* arr);
arr

Array header.

The function cvCreateData allocates image, matrix or multi-dimensional array data. Note that in case of matrix types

OpenCV allocation functions are used and in case of IplImage they are used too unless CV_TURN_ON_IPL_COMPATIBILITY

was called. In the latter case IPL functions are used to allocate the data

ReleaseData
Releases array data

void cvReleaseData(CvArr* arr);
arr

Array header

The function cvReleaseData releases the array data. In case of CvMat or CvMatND it simply calls cvDecRefData(), that is

the function can not deallocate external data. See also the note to cvCreateData.

SetData
Assigns user data to the array header

void cvSetData(CvArr* arr, void* data, int step);
arr

Array header.
data

User data.
step

Full row length in bytes.

The function cvSetData assigns user data to the array header. Header should be initialized before using

cvCreate*Header, cvInit*Header or cvMat (in case of matrix) function.

GetRawData
Retrieves low-level information about the array

void cvGetRawData(const CvArr* arr, uchar** data,

 int* step=NULL, CvSize* roi_size=NULL);
arr

Array header.
data

Output pointer to the whole image origin or ROI origin if ROI is set.
step

Output full row length in bytes.
roi_size

Output ROI size.

The function cvGetRawData fills output variables with low-level information about the array data. All output parameters

are optional, so some of the pointers may be set to NULL. If the array is IplImage with ROI set, parameters of ROI are

returned.

The following example shows how to get access to array elements using this function.

Using GetRawData to calculate absolute value of elements of a single-channel floating-point array.

 float* data;

 int step;

 CvSize size;

 int x, y;

 cvGetRawData(array, (uchar**)&data, &step, &size);

 step /= sizeof(data[0]);

 for(y = 0; y < size.height; y++, data += step)

 for(x = 0; x < size.width; x++)

 data[x] = (float)fabs(data[x]);

GetMat
Returns matrix header for arbitrary array

CvMat* cvGetMat(const CvArr* arr, CvMat* header, int* coi=NULL, int allowND=0);
arr

Input array.
header

Pointer to CvMat structure used as a temporary buffer.
coi

Optional output parameter for storing COI.
allowND

If non-zero, the function accepts multi-dimensional dense arrays (CvMatND*) and returns 2D (if CvMatND

has two dimensions) or 1D matrix (when CvMatND has 1 dimension or more than 2 dimensions). The array

must be continuous.

The function cvGetMat returns matrix header for the input array that can be matrix - CvMat, image - IplImage or multi-

dimensional dense array - CvMatND* (latter case is allowed only if allowND != 0) . In the case of matrix the function

simply returns the input pointer. In the case of IplImage* or CvMatND* it initializes header structure with parameters of

the current image ROI and returns pointer to this temporary structure. Because COI is not supported by CvMat, it is

returned separately.

The function provides an easy way to handle both types of array - IplImage and CvMat -, using the same code.

Reverse transform from CvMat to IplImage can be done using cvGetImage function.

Input array must have underlying data allocated or attached, otherwise the function fails.

If the input array is IplImage with planar data layout and COI set, the function returns pointer to the selected plane and

COI = 0. It enables per-plane processing of multi-channel images with planar data layout using OpenCV functions.

GetImage
Returns image header for arbitrary array

IplImage* cvGetImage(const CvArr* arr, IplImage* image_header);
arr

Input array.
image_header

Pointer to IplImage structure used as a temporary buffer.

The function cvGetImage returns image header for the input array that can be matrix - CvMat*, or image - IplImage*. In

the case of image the function simply returns the input pointer. In the case of CvMat* it initializes image_header structure

with parameters of the input matrix. Note that if we transform IplImage to CvMat and then transform CvMat back to

IplImage, we can get different headers if the ROI is set, and thus some IPL functions that calculate image stride from its

width and align may fail on the resultant image.

CreateSparseMat
Creates sparse array

CvSparseMat* cvCreateSparseMat(int dims, const int* sizes, int type);

dims
Number of array dimensions. As opposite to the dense matrix, the number of dimensions is practically

unlimited (up to 216).
sizes

Array of dimension sizes.
type

Type of array elements. The same as for CvMat

The function cvCreateSparseMat allocates multi-dimensional sparse array. Initially the array contain no elements, that is

cvGet*D or cvGetReal*D return zero for every index

ReleaseSparseMat
Deallocates sparse array

void cvReleaseSparseMat(CvSparseMat** mat);
mat

Double pointer to the array.

The function cvReleaseSparseMat releases the sparse array and clears the array pointer upon exit

CloneSparseMat
Creates full copy of sparse array

CvSparseMat* cvCloneSparseMat(const CvSparseMat* mat);
mat

Input array.

The function cvCloneSparseMat creates a copy of the input array and returns pointer to the copy.

Accessing Elements and sub-Arrays

GetSubRect
Returns matrix header corresponding to the rectangular sub-array of input image or matrix

CvMat* cvGetSubRect(const CvArr* arr, CvMat* submat, CvRect rect);
arr

Input array.
submat

Pointer to the resultant sub-array header.
rect

Zero-based coordinates of the rectangle of interest.

The function cvGetSubRect returns header, corresponding to a specified rectangle of the input array. In other words, it

allows the user to treat a rectangular part of input array as a stand-alone array. ROI is taken into account by the

function so the sub-array of ROI is actually extracted.

GetRow, GetRows
Returns array row or row span

CvMat* cvGetRow(const CvArr* arr, CvMat* submat, int row);

CvMat* cvGetRows(const CvArr* arr, CvMat* submat, int start_row, int end_row, int delta_row=1);

arr
Input array.

submat
Pointer to the resulting sub-array header.

row
Zero-based index of the selected row.

start_row
Zero-based index of the starting row (inclusive) of the span.

end_row
Zero-based index of the ending row (exclusive) of the span.

delta_row
Index step in the row span. That is, the function extracts every delta_row-th row from start_row and up to

(but not including) end_row.

The functions GetRow and GetRows return the header, corresponding to a specified row/row span of the input array. Note

that GetRow is a shortcut for cvGetRows:

cvGetRow(arr, submat, row) ~ cvGetRows(arr, submat, row, row + 1, 1);

GetCol, GetCols
Returns array column or column span

CvMat* cvGetCol(const CvArr* arr, CvMat* submat, int col);

CvMat* cvGetCols(const CvArr* arr, CvMat* submat, int start_col, int end_col);
arr

Input array.
submat

Pointer to the resulting sub-array header.
col

Zero-based index of the selected column.
start_col

Zero-based index of the starting column (inclusive) of the span.
end_col

Zero-based index of the ending column (exclusive) of the span.

The functions GetCol and GetCols return the header, corresponding to a specified column/column span of the input

array. Note that GetCol is a shortcut for cvGetCols:

cvGetCol(arr, submat, col); // ~ cvGetCols(arr, submat, col, col + 1);

GetDiag
Returns one of array diagonals

CvMat* cvGetDiag(const CvArr* arr, CvMat* submat, int diag=0);
arr

Input array.
submat

Pointer to the resulting sub-array header.
diag

Array diagonal. Zero corresponds to the main diagonal, -1 corresponds to the diagonal above the main etc.,

1 corresponds to the diagonal below the main etc.

The function cvGetDiag returns the header, corresponding to a specified diagonal of the input array.

GetSize
Returns size of matrix or image ROI

CvSize cvGetSize(const CvArr* arr);
arr

array header.

The function cvGetSize returns number of rows (CvSize::height) and number of columns (CvSize::width) of the input

matrix or image. In case of image the size of ROI is returned.

InitSparseMatIterator
Initializes sparse array elements iterator

CvSparseNode* cvInitSparseMatIterator(const CvSparseMat* mat,

 CvSparseMatIterator* mat_iterator);
mat

Input array.
mat_iterator

Initialized iterator.

The function cvInitSparseMatIterator initializes iterator of sparse array elements and returns pointer to the first element,

or NULL if the array is empty.

GetNextSparseNode
Initializes sparse array elements iterator

CvSparseNode* cvGetNextSparseNode(CvSparseMatIterator* mat_iterator);
mat_iterator

Sparse array iterator.

The function cvGetNextSparseNode moves iterator to the next sparse matrix element and returns pointer to it. In the

current version there is no any particular order of the elements, because they are stored in hash table. The sample

below demonstrates how to iterate through the sparse matrix:

Using cvInitSparseMatIterator and cvGetNextSparseNode to calculate sum of floating-point sparse array.

 double sum;

 int i, dims = cvGetDims(array);

 CvSparseMatIterator mat_iterator;

 CvSparseNode* node = cvInitSparseMatIterator(array, &mat_iterator);

 for(; node != 0; node = cvGetNextSparseNode(&mat_iterator))

 {

 const int* idx = CV_NODE_IDX(array, node); /* get pointer to the element indices */

 float val = *(float*)CV_NODE_VAL(array, node); /* get value of the element

 (assume that the type is CV_32FC1) */

 printf("(");

 for(i = 0; i < dims; i++)

 printf("%4d%s", idx[i], i < dims - 1 "," : "): ");

 printf("%g₩n", val);

 sum += val;

 }

 printf("₩nTotal sum = %g₩n", sum);

GetElemType
Returns type of array elements

int cvGetElemType(const CvArr* arr);
arr

Input array.

The functions GetElemType returns type of the array elements as it is described in cvCreateMat discussion:

CV_8UC1 ... CV_64FC4

GetDims, GetDimSize
Return number of array dimensions and their sizes or the size of particular dimension

int cvGetDims(const CvArr* arr, int* sizes=NULL);

int cvGetDimSize(const CvArr* arr, int index);
arr

Input array.
sizes

Optional output vector of the array dimension sizes. For 2d arrays the number of rows (height) goes first,

number of columns (width) next.
index

Zero-based dimension index (for matrices 0 means number of rows, 1 means number of columns; for images

0 means height, 1 means width).

The function cvGetDims returns number of array dimensions and their sizes. In case of IplImage or CvMat it always

returns 2 regardless of number of image/matrix rows. The function cvGetDimSize returns the particular dimension size

(number of elements per that dimension). For example, the following code calculates total number of array elements in

two ways:

// via cvGetDims()

int sizes[CV_MAX_DIM];

int i, total = 1;

int dims = cvGetDims(arr, size);

for(i = 0; i < dims; i++)

 total *= sizes[i];

// via cvGetDims() and cvGetDimSize()

int i, total = 1;

int dims = cvGetDims(arr);

for(i = 0; i < dims; i++)

 total *= cvGetDimsSize(arr, i);

Ptr*D
Return pointer to the particular array element

uchar* cvPtr1D(const CvArr* arr, int idx0, int* type=NULL);

uchar* cvPtr2D(const CvArr* arr, int idx0, int idx1, int* type=NULL);

uchar* cvPtr3D(const CvArr* arr, int idx0, int idx1, int idx2, int* type=NULL);

uchar* cvPtrND(const CvArr* arr, const int* idx, int* type=NULL, int create_node=1, unsigned*

precalc_hashval=NULL);
arr

Input array.
idx0

The first zero-based component of the element index
idx1

The second zero-based component of the element index
idx2

The third zero-based component of the element index
idx

Array of the element indices
type

Optional output parameter: type of matrix elements
create_node

Optional input parameter for sparse matrices. Non-zero value of the parameter means that the requested

element is created if it does not exist already.
precalc_hashval

Optional input parameter for sparse matrices. If the pointer is not NULL, the function does not recalculate the

node hash value, but takes it from the specified location. It is useful for speeding up pair-wise operations

(TODO: provide an example)

The functions >cvPtr*D return pointer to the particular array element. Number of array dimension should match to the

number of indices passed to the function except for cvPtr1D function that can be used for sequential access to 1D, 2D

or nD dense arrays.

The functions can be used for sparse arrays as well - if the requested node does not exist they create it and set it to

zero.

All these as well as other functions accessing array elements (cvGet*D, cvGetReal*D, cvSet*D, cvSetReal*D) raise an

error in case if the element index is out of range.

Get*D
Return the particular array element

CvScalar cvGet1D(const CvArr* arr, int idx0);

CvScalar cvGet2D(const CvArr* arr, int idx0, int idx1);

CvScalar cvGet3D(const CvArr* arr, int idx0, int idx1, int idx2);

CvScalar cvGetND(const CvArr* arr, const int* idx);
arr

Input array.
idx0

The first zero-based component of the element index
idx1

The second zero-based component of the element index
idx2

The third zero-based component of the element index
idx

Array of the element indices

The functions cvGet*D return the particular array element. In case of sparse array the functions return 0 if the requested

node does not exist (no new node is created by the functions)

GetReal*D
Return the particular element of single-channel array

double cvGetReal1D(const CvArr* arr, int idx0);

double cvGetReal2D(const CvArr* arr, int idx0, int idx1);

double cvGetReal3D(const CvArr* arr, int idx0, int idx1, int idx2);

double cvGetRealND(const CvArr* arr, const int* idx);
arr

Input array. Must have a single channel.
idx0

The first zero-based component of the element index
idx1

The second zero-based component of the element index
idx2

The third zero-based component of the element index
idx

Array of the element indices

The functions cvGetReal*D return the particular element of single-channel array. If the array has multiple channels,

runtime error is raised. Note that cvGet*D function can be used safely for both single-channel and multiple-channel

arrays though they are a bit slower.

In case of sparse array the functions return 0 if the requested node does not exist (no new node is created by the

functions)

mGet

Return the particular element of single-channel floating-point matrix

double cvmGet(const CvMat* mat, int row, int col);
mat

Input matrix.
row

The zero-based index of row.
col

The zero-based index of column.

The function cvmGet is a fast replacement for cvGetReal2D in case of single-channel floating-point matrices. It is faster

because it is inline, it does less checks for array type and array element type and it checks for the row and column

ranges only in debug mode.

Set*D
Change the particular array element

void cvSet1D(CvArr* arr, int idx0, CvScalar value);

void cvSet2D(CvArr* arr, int idx0, int idx1, CvScalar value);

void cvSet3D(CvArr* arr, int idx0, int idx1, int idx2, CvScalar value);

void cvSetND(CvArr* arr, const int* idx, CvScalar value);
arr

Input array.
idx0

The first zero-based component of the element index
idx1

The second zero-based component of the element index
idx2

The third zero-based component of the element index
idx

Array of the element indices
value

The assigned value

The functions cvSet*D assign the new value to the particular element of array. In case of sparse array the functions

create the node if it does not exist yet

SetReal*D
Change the particular array element

void cvSetReal1D(CvArr* arr, int idx0, double value);

void cvSetReal2D(CvArr* arr, int idx0, int idx1, double value);

void cvSetReal3D(CvArr* arr, int idx0, int idx1, int idx2, double value);

void cvSetRealND(CvArr* arr, const int* idx, double value);
arr

Input array.
idx0

The first zero-based component of the element index
idx1

The second zero-based component of the element index
idx2

The third zero-based component of the element index
idx

Array of the element indices
value

The assigned value

The functions cvSetReal*D assign the new value to the particular element of single-channel array. If the array has

multiple channels, runtime error is raised. Note that cvSet*D function can be used safely for both single-channel and

multiple-channel arrays though they are a bit slower.

In case of sparse array the functions create the node if it does not exist yet

mSet
Return the particular element of single-channel floating-point matrix

void cvmSet(CvMat* mat, int row, int col, double value);
mat

The matrix.
row

The zero-based index of row.
col

The zero-based index of column.
value

The new value of the matrix element

The function cvmSet is a fast replacement for cvSetReal2D in case of single-channel floating-point matrices. It is faster

because it is inline, it does less checks for array type and array element type and it checks for the row and column

ranges only in debug mode.

ClearND
Clears the particular array element

void cvClearND(CvArr* arr, const int* idx);
arr

Input array.
idx

Array of the element indices

The function cvClearND clears (sets to zero) the particular element of dense array or deletes the element of sparse

array. If the element does not exists, the function does nothing.

Copying and Filling

Copy
Copies one array to another

void cvCopy(const CvArr* src, CvArr* dst, const CvArr* mask=NULL);
src

The source array.
dst

The destination array.
mask

Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvCopy copies selected elements from input array to output array:

dst(I)=src(I) if mask(I)!=0.

If any of the passed arrays is of IplImage type, then its ROI and COI fields are used. Both arrays must have the same

type, the same number of dimensions and the same size. The function can also copy sparse arrays (mask is not

supported in this case).

Set
Sets every element of array to given value

void cvSet(CvArr* arr, CvScalar value, const CvArr* mask=NULL);
arr

The destination array.
value

Fill value.
mask

Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvSet copies scalar value to every selected element of the destination array:

arr(I)=value if mask(I)!=0

If array arr is of IplImage type, then is ROI used, but COI must not be set.

SetZero
Clears the array

void cvSetZero(CvArr* arr);

#define cvZero cvSetZero
arr

array to be cleared.

The function cvSetZero clears the array. In case of dense arrays (CvMat, CvMatND or IplImage) cvZero(array) is

equivalent to cvSet(array,cvScalarAll(0),0), in case of sparse arrays all the elements are removed.

SetIdentity
Initializes scaled identity matrix

void cvSetIdentity(CvArr* mat, CvScalar value=cvRealScalar(1));
arr

The matrix to initialize (not necesserily square).
value

The value to assign to the diagonal elements.

The function cvSetIdentity initializes scaled identity matrix:

arr(i,j)=value if i=j,

 0 otherwise

Range
Fills matrix with given range of numbers

void cvRange(CvArr* mat, double start, double end);
mat

The matrix to initialize. It should be single-channel 32-bit, integer or floating-point.
start

The lower inclusive boundary of the range.
end

The upper exclusive boundary of the range.

The function cvRange initializes the matrix as following:

arr(i,j)=(end-start)*(i*cols(arr)+j)/(cols(arr)*rows(arr))

For example, the following code will initilize 1D vector with subsequent integer numbers.

CvMat* A = cvCreateMat(1, 10, CV_32S);

cvRange(A, 0, A->cols); // A will be initialized as [0,1,2,3,4,5,6,7,8,9]

Transforms and Permutations

Reshape
Changes shape of matrix/image without copying data

CvMat* cvReshape(const CvArr* arr, CvMat* header, int new_cn, int new_rows=0);
arr

Input array.
header

Output header to be filled.
new_cn

New number of channels. new_cn = 0 means that number of channels remains unchanged.
new_rows

New number of rows. new_rows = 0 means that number of rows remains unchanged unless it needs to be

changed according to new_cn value. destination array to be changed.

The function cvReshape initializes CvMat header so that it points to the same data as the original array but has different

shape - different number of channels, different number of rows or both.

For example, the following code creates one image buffer and two image headers, first is for 320x240x3 image and the

second is for 960x240x1 image:

IplImage* color_img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3);

CvMat gray_mat_hdr;

IplImage gray_img_hdr, *gray_img;

cvReshape(color_img, &gray_mat_hdr, 1);

gray_img = cvGetImage(&gray_mat_hdr, &gray_img_hdr);

And the next example converts 3x3 matrix to a single 1x9 vector

CvMat* mat = cvCreateMat(3, 3, CV_32F);

CvMat row_header, *row;

row = cvReshape(mat, &row_header, 0, 1);

ReshapeMatND
Changes shape of multi-dimensional array w/o copying data

CvArr* cvReshapeMatND(const CvArr* arr,

 int sizeof_header, CvArr* header,

 int new_cn, int new_dims, int* new_sizes);

#define cvReshapeND(arr, header, new_cn, new_dims, new_sizes) ₩

 cvReshapeMatND((arr), sizeof(*(header)), (header), ₩

 (new_cn), (new_dims), (new_sizes))

arr

Input array.
sizeof_header

Size of output header to distinguish between IplImage, CvMat and CvMatND output headers.
header

Output header to be filled.
new_cn

New number of channels. new_cn = 0 means that number of channels remains unchanged.
new_dims

New number of dimensions. new_dims = 0 means that number of dimensions remains the same.
new_sizes

Array of new dimension sizes. Only new_dims-1 values are used, because the total number of elements must

remain the same. Thus, if new_dims = 1, new_sizes array is not used

The function cvReshapeMatND is an advanced version of cvReshape that can work with multi-dimensional arrays as well

(though, it can work with ordinary images and matrices) and change the number of dimensions. Below are the two

samples from the cvReshape description rewritten using cvReshapeMatND:

IplImage* color_img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3);

IplImage gray_img_hdr, *gray_img;

gray_img = (IplImage*)cvReshapeND(color_img, &gray_img_hdr, 1, 0, 0);

...

/* second example is modified to convert 2x2x2 array to 8x1 vector */

int size[] = { 2, 2, 2 };

CvMatND* mat = cvCreateMatND(3, size, CV_32F);

CvMat row_header, *row;

row = cvReshapeND(mat, &row_header, 0, 1, 0);

Repeat
Fill destination array with tiled source array

void cvRepeat(const CvArr* src, CvArr* dst);
src

Source array, image or matrix.
dst

Destination array, image or matrix.

The function cvRepeat fills the destination array with source array tiled:

dst(i,j)=src(i mod rows(src), j mod cols(src))

So the destination array may be as larger as well as smaller than the source array.

Flip
Flip a 2D array around vertical, horizontall or both axises

void cvFlip(const CvArr* src, CvArr* dst=NULL, int flip_mode=0);

#define cvMirror cvFlip

src

Source array.
dst

Destination array. If dst = NULL the flipping is done inplace.
flip_mode

Specifies how to flip the array.

flip_mode = 0 means flipping around x-axis, flip_mode > 0 (e.g. 1) means flipping around y-axis and

flip_mode < 0 (e.g. -1) means flipping around both axises. See also the discussion below for the formulas

The function cvFlip flips the array in one of different 3 ways (row and column indices are 0-based):

dst(i,j)=src(rows(src)-i-1,j) if flip_mode = 0

dst(i,j)=src(i,cols(src1)-j-1) if flip_mode > 0

dst(i,j)=src(rows(src)-i-1,cols(src)-j-1) if flip_mode < 0

The example cenaria of the function use are:

• vertical flipping of the image (flip_mode > 0) to switch between top-left and bottom-left image origin, which

is typical operation in video processing under Win32 systems.

• horizontal flipping of the image with subsequent horizontal shift and absolute difference calculation to check

for a vertical-axis symmetry (flip_mode > 0)

• simultaneous horizontal and vertical flipping of the image with subsequent shift and absolute difference

calculation to check for a central symmetry (flip_mode < 0)

• reversing the order of 1d point arrays(flip_mode > 0)

Split
Divides multi-channel array into several single-channel arrays or extracts a single channel from the array

void cvSplit(const CvArr* src, CvArr* dst0, CvArr* dst1,

 CvArr* dst2, CvArr* dst3);

#define cvCvtPixToPlane cvSplit
src

Source array.
dst0...dst3

Destination channels.

The function cvSplit divides a multi-channel array into separate single-channel arrays. Two modes are available for the

operation. If the source array has N channels then if the first N destination channels are not NULL, all they are extracted

from the source array, otherwise if only a single destination channel of the first N is not NULL, this particular channel is

extracted, otherwise an error is raised. Rest of destination channels (beyond the first N) must always be NULL. For

IplImage cvCopy with COI set can be also used to extract a single channel from the image.

Merge
Composes multi-channel array from several single-channel arrays or inserts a single channel into the array

void cvMerge(const CvArr* src0, const CvArr* src1,

 const CvArr* src2, const CvArr* src3, CvArr* dst);

#define cvCvtPlaneToPix cvMerge
src0... src3

Input channels.
dst

Destination array.

The function cvMerge is the opposite to the previous. If the destination array has N channels then if the first N input

channels are not NULL, all they are copied to the destination array, otherwise if only a single source channel of the first

N is not NULL, this particular channel is copied into the destination array, otherwise an error is raised. Rest of source

channels (beyond the first N) must always be NULL. For IplImage cvCopy with COI set can be also used to insert a

single channel into the image.

MixChannels
Copies several channels from input arrays to certain channels of output arrays

void cvMixChannels(const CvArr** src, int src_count,

 CvArr** dst, int dst_count,

 const int* from_to, int pair_count);
src

The array of input arrays.
src_count

The number of input arrays.
dst

The array of output arrays.
dst_count

The number of output arrays.
from_to

The array of pairs of indices of the planes copied. from_to[k*2] is the 0-based index of the input plane, and

from_to[k*2+1] is the index of the output plane, where the continuous numbering of the planes over all the

input and over all the output arrays is used. When from_to[k*2] is negative, the corresponding output plane is

filled with 0's.
pair_count

The number of pairs in from_to, or the number of the planes copied.

The function cvMixChannels is a generalized form of cvSplit and cvMerge and some forms of cvCvtColor. It can be used

to change the order of the planes, add/remove alpha channel, extract or insert a single plane or multiple planes etc.

Below is the example, how to split 4-channel RGBA image into 3-channel BGR (i.e. with R&B swapped) and separate

alpha channel images:

 CvMat* rgba = cvCreateMat(100, 100, CV_8UC4);

 CvMat* bgr = cvCreateMat(rgba->rows, rgba->cols, CV_8UC3);

 CvMat* alpha = cvCreateMat(rgba->rows, rgba->cols, CV_8UC1);

 CvArr* out[] = { bgr, alpha };

 int from_to[] = { 0, 2, 1, 1, 2, 0, 3, 3 };

 cvSet(rgba, cvScalar(1,2,3,4));

 cvMixChannels((const CvArr**)&rgba, 1, out, 2, from_to, 4);

RandShuffle
Randomly shuffles the array elements

void cvRandShuffle(CvArr* mat, CvRNG* rng, double iter_factor=1.);
mat

The input/output matrix. It is shuffled in-place.
rng

The Random Number Generator used to shuffle the elements. When the pointer is NULL, a temporary RNG will

be created and used.
iter_factor

The relative parameter that characterizes intensity of the shuffling performed. See the description below.

The function cvRandShuffle shuffles the matrix by swapping randomly chosen pairs of the matrix elements on each

iteration (where each element may contain several components in case of multi-channel arrays). The number of

iterations (i.e. pairs swapped) is round(iter_factor*rows(mat)*cols(mat)), so iter_factor=0 means that no shuffling is

done, iter_factor=1 means that the function swaps rows(mat)*cols(mat) random pairs etc.

Arithmetic, Logic and Comparison

LUT
Performs look-up table transform of array

void cvLUT(const CvArr* src, CvArr* dst, const CvArr* lut);
src

Source array of 8-bit elements.
dst

Destination array of arbitrary depth and of the same number of channels as the source array.
lut

Look-up table of 256 elements; should have the same depth as the destination array. In case of multi-

channel source and destination arrays, the table should either have a single-channel (in this case the same

table is used for all channels), or the same number of channels as the source/destination array.

The function cvLUT fills the destination array with values from the look-up table. Indices of the entries are taken from the

source array. That is, the function processes each element of src as following:

dst(I)=lut[src(I)+DELTA]

where DELTA=0 if src has depth CV_8U, and DELTA=128 if src has depth CV_8S.

ConvertScale
Converts one array to another with optional linear transformation

void cvConvertScale(const CvArr* src, CvArr* dst, double scale=1, double shift=0);

#define cvCvtScale cvConvertScale

#define cvScale cvConvertScale

#define cvConvert(src, dst) cvConvertScale((src), (dst), 1, 0)
src

Source array.
dst

Destination array.
scale

Scale factor.
shift

Value added to the scaled source array elements.

The function cvConvertScale has several different purposes and thus has several synonyms. It copies one array to

another with optional scaling, which is performed first, and/or optional type conversion, performed after:

dst(I)=src(I)*scale + (shift,shift,...)

All the channels of multi-channel arrays are processed independently.

The type conversion is done with rounding and saturation, that is if a result of scaling + conversion can not be

represented exactly by a value of destination array element type, it is set to the nearest representable value on the real

axis.

In case of scale=1, shift=0 no prescaling is done. This is a specially optimized case and it has the appropriate

cvConvert synonym. If source and destination array types have equal types, this is also a special case that can be used

to scale and shift a matrix or an image and that fits to cvScale synonym.

ConvertScaleAbs
Converts input array elements to 8-bit unsigned integer another with optional linear transformation

void cvConvertScaleAbs(const CvArr* src, CvArr* dst, double scale=1, double shift=0);

#define cvCvtScaleAbs cvConvertScaleAbs

src

Source array.
dst

Destination array (should have 8u depth).
scale

ScaleAbs factor.
shift

Value added to the scaled source array elements.

The function cvConvertScaleAbs is similar to the previous one, but it stores absolute values of the conversion results:

dst(I)=abs(src(I)*scale + (shift,shift,...))

The function supports only destination arrays of 8u (8-bit unsigned integers) type, for other types the function can be

emulated by combination of cvConvertScale and cvAbs functions.

Add
Computes per-element sum of two arrays

void cvAdd(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL);

src1
The first source array.

src2
The second source array.

dst
The destination array.

mask
Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvAdd adds one array to another one:

dst(I)=src1(I)+src2(I) if mask(I)!=0

All the arrays must have the same type, except the mask, and the same size (or ROI size)

AddS
Computes sum of array and scalar

void cvAddS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL);
src

The source array.
value

Added scalar.
dst

The destination array.
mask

Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvAddS adds scalar value to every element in the source array src1 and stores the result in dst

dst(I)=src(I)+value if mask(I)!=0

All the arrays must have the same type, except the mask, and the same size (or ROI size)

AddWeighted
Computes weighted sum of two arrays

void cvAddWeighted(const CvArr* src1, double alpha,

 const CvArr* src2, double beta,

 double gamma, CvArr* dst);
src1

The first source array.
alpha

Weight of the first array elements.
src2

The second source array.
beta

Weight of the second array elements.
dst

The destination array.
gamma

Scalar, added to each sum.

The function cvAddWeighted calculated weighted sum of two arrays as following:

dst(I)=src1(I)*alpha+src2(I)*beta+gamma

All the arrays must have the same type and the same size (or ROI size)

Sub
Computes per-element difference between two arrays

void cvSub(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL);
src1

The first source array.
src2

The second source array.
dst

The destination array.
mask

Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvSub subtracts one array from another one:

dst(I)=src1(I)-src2(I) if mask(I)!=0

All the arrays must have the same type, except the mask, and the same size (or ROI size)

SubS
Computes difference between array and scalar

void cvSubS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL);
src

The source array.
value

Subtracted scalar.
dst

The destination array.
mask

Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvSubS subtracts a scalar from every element of the source array:

dst(I)=src(I)-value if mask(I)!=0

All the arrays must have the same type, except the mask, and the same size (or ROI size)

SubRS
Computes difference between scalar and array

void cvSubRS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL);
src

The first source array.
value

Scalar to subtract from.
dst

The destination array.
mask

Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvSubRS subtracts every element of source array from a scalar:

dst(I)=value-src(I) if mask(I)!=0

All the arrays must have the same type, except the mask, and the same size (or ROI size)

Mul
Calculates per-element product of two arrays

void cvMul(const CvArr* src1, const CvArr* src2, CvArr* dst, double scale=1);
src1

The first source array.
src2

The second source array.
dst

The destination array.
scale

Optional scale factor

The function cvMul calculates per-element product of two arrays:

dst(I)=scale•src1(I)•src2(I)

All the arrays must have the same type, and the same size (or ROI size)

Div
Performs per-element division of two arrays

void cvDiv(const CvArr* src1, const CvArr* src2, CvArr* dst, double scale=1);
src1

The first source array. If the pointer is NULL, the array is assumed to be all 1’s.
src2

The second source array.
dst

The destination array.
scale

Optional scale factor

The function cvDiv divides one array by another:

dst(I)=scale•src1(I)/src2(I), if src1!=NULL

dst(I)=scale/src2(I), if src1=NULL

All the arrays must have the same type, and the same size (or ROI size)

And
Calculates per-element bit-wise conjunction of two arrays

void cvAnd(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL);
src1

The first source array.
src2

The second source array.
dst

The destination array.
mask

Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvAnd calculates per-element bit-wise logical conjunction of two arrays:

dst(I)=src1(I)&src2(I) if mask(I)!=0

In the case of floating-point arrays their bit representations are used for the operation. All the arrays must have the

same type, except the mask, and the same size

AndS
Calculates per-element bit-wise conjunction of array and scalar

void cvAndS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL);
src

The source array.
value

Scalar to use in the operation.
dst

The destination array.
mask

Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function AndS calculates per-element bit-wise conjunction of array and scalar:

dst(I)=src(I)&value if mask(I)!=0

Prior to the actual operation the scalar is converted to the same type as the arrays. In the case of floating-point arrays

their bit representations are used for the operation. All the arrays must have the same type, except the mask, and the

same size

The following sample demonstrates how to calculate absolute value of floating-point array elements by clearing the

most-significant bit:

float a[] = { -1, 2, -3, 4, -5, 6, -7, 8, -9 };

CvMat A = cvMat(3, 3, CV_32F, &a);

int i, abs_mask = 0x7fffffff;

cvAndS(&A, cvRealScalar(*(float*)&abs_mask), &A, 0);

for(i = 0; i < 9; i++)

 printf("%.1f ", a[i]);

The code should print:

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Or
Calculates per-element bit-wise disjunction of two arrays

void cvOr(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL);
src1

The first source array.
src2

The second source array.
dst

The destination array.
mask

Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvOr calculates per-element bit-wise disjunction of two arrays:

dst(I)=src1(I)|src2(I)

In the case of floating-point arrays their bit representations are used for the operation. All the arrays must have the

same type, except the mask, and the same size

OrS
Calculates per-element bit-wise disjunction of array and scalar

void cvOrS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL);
src1

The source array.
value

Scalar to use in the operation.
dst

The destination array.
mask

Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function OrS calculates per-element bit-wise disjunction of array and scalar:

dst(I)=src(I)|value if mask(I)!=0

Prior to the actual operation the scalar is converted to the same type as the arrays. In the case of floating-point arrays

their bit representations are used for the operation. All the arrays must have the same type, except the mask, and the

same size

Xor
Performs per-element bit-wise "exclusive or" operation on two arrays

void cvXor(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL);
src1

The first source array.
src2

The second source array.
dst

The destination array.
mask

Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvXor calculates per-element bit-wise logical conjunction of two arrays:

dst(I)=src1(I)^src2(I) if mask(I)!=0

In the case of floating-point arrays their bit representations are used for the operation. All the arrays must have the

same type, except the mask, and the same size

XorS
Performs per-element bit-wise "exclusive or" operation on array and scalar

void cvXorS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL);
src

The source array.
value

Scalar to use in the operation.
dst

The destination array.
mask

Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function XorS calculates per-element bit-wise conjunction of array and scalar:

dst(I)=src(I)^value if mask(I)!=0

Prior to the actual operation the scalar is converted to the same type as the arrays. In the case of floating-point arrays

their bit representations are used for the operation. All the arrays must have the same type, except the mask, and the

same size

The following sample demonstrates how to conjugate complex vector by switching the most-significant bit of imaging

part:

float a[] = { 1, 0, 0, 1, -1, 0, 0, -1 }; /* 1, j, -1, -j */

CvMat A = cvMat(4, 1, CV_32FC2, &a);

int i, neg_mask = 0x80000000;

cvXorS(&A, cvScalar(0, *(float*)&neg_mask, 0, 0), &A, 0);

for(i = 0; i < 4; i++)

 printf("(%.1f, %.1f) ", a[i*2], a[i*2+1]);

The code should print:

(1.0,0.0) (0.0,-1.0) (-1.0,0.0) (0.0,1.0)

Not
Performs per-element bit-wise inversion of array elements

void cvNot(const CvArr* src, CvArr* dst);
src1

The source array.
dst

The destination array.

The function Not inverses every bit of every array element:

dst(I)=~src(I)

Cmp
Performs per-element comparison of two arrays

void cvCmp(const CvArr* src1, const CvArr* src2, CvArr* dst, int cmp_op);
src1

The first source array.
src2

The second source array. Both source array must have a single channel.
dst

The destination array, must have 8u or 8s type.
cmp_op

The flag specifying the relation between the elements to be checked:

CV_CMP_EQ - src1(I) "equal to" src2(I)

CV_CMP_GT - src1(I) "greater than" src2(I)

CV_CMP_GE - src1(I) "greater or equal" src2(I)

CV_CMP_LT - src1(I) "less than" src2(I)

CV_CMP_LE - src1(I) "less or equal" src2(I)

CV_CMP_NE - src1(I) "not equal to" src2(I)

The function cvCmp compares the corresponding elements of two arrays and fills the destination mask array:

dst(I)=src1(I) op src2(I),

where op is '=', '>', '>=', '<', '<=' or '!='.

dst(I) is set to 0xff (all '1'-bits) if the particular relation between the elements is true and 0 otherwise. All the arrays

must have the same type, except the destination, and the same size (or ROI size)

CmpS
Performs per-element comparison of array and scalar

void cvCmpS(const CvArr* src, double value, CvArr* dst, int cmp_op);
src

The source array, must have a single channel.
value

The scalar value to compare each array element with.
dst

The destination array, must have 8u or 8s type.
cmp_op

The flag specifying the relation between the elements to be checked:

CV_CMP_EQ - src1(I) "equal to" value

CV_CMP_GT - src1(I) "greater than" value

CV_CMP_GE - src1(I) "greater or equal" value

CV_CMP_LT - src1(I) "less than" value

CV_CMP_LE - src1(I) "less or equal" value

CV_CMP_NE - src1(I) "not equal" value

The function cvCmpS compares the corresponding elements of array and scalar and fills the destination mask array:

dst(I)=src(I) op scalar,

where op is '=', '>', '>=', '<', '<=' or '!='.

dst(I) is set to 0xff (all '1'-bits) if the particular relation between the elements is true and 0 otherwise. All the arrays

must have the same size (or ROI size)

InRange
Checks that array elements lie between elements of two other arrays

void cvInRange(const CvArr* src, const CvArr* lower, const CvArr* upper, CvArr* dst);
src

The first source array.
lower

The inclusive lower boundary array.
upper

The exclusive upper boundary array.
dst

The destination array, must have 8u or 8s type.

The function cvInRange does the range check for every element of the input array:

dst(I)=lower(I)0 <= src(I)0 < upper(I)0

for single-channel arrays,

dst(I)=lower(I)0 <= src(I)0 < upper(I)0 &&

 lower(I)1 <= src(I)1 < upper(I)1

for two-channel arrays etc.

dst(I) is set to 0xff (all '1'-bits) if src(I) is within the range and 0 otherwise. All the arrays must have the same type,

except the destination, and the same size (or ROI size)

InRangeS
Checks that array elements lie between two scalars

void cvInRangeS(const CvArr* src, CvScalar lower, CvScalar upper, CvArr* dst);
src

The first source array.
lower

The inclusive lower boundary.
upper

The exclusive upper boundary.
dst

The destination array, must have 8u or 8s type.

The function cvInRangeS does the range check for every element of the input array:

dst(I)=lower0 <= src(I)0 < upper0

for a single-channel array,

dst(I)=lower0 <= src(I)0 < upper0 &&

 lower1 <= src(I)1 < upper1

for a two-channel array etc.

dst(I) is set to 0xff (all '1'-bits) if src(I) is within the range and 0 otherwise. All the arrays must have the same size (or

ROI size)

Max
Finds per-element maximum of two arrays

void cvMax(const CvArr* src1, const CvArr* src2, CvArr* dst);
src1

The first source array.
src2

The second source array.
dst

The destination array.

The function cvMax calculates per-element maximum of two arrays:

dst(I)=max(src1(I), src2(I))

All the arrays must have a single channel, the same data type and the same size (or ROI size).

MaxS
Finds per-element maximum of array and scalar

void cvMaxS(const CvArr* src, double value, CvArr* dst);
src

The first source array.
value

The scalar value.
dst

The destination array.

The function cvMaxS calculates per-element maximum of array and scalar:

dst(I)=max(src(I), value)

All the arrays must have a single channel, the same data type and the same size (or ROI size).

Min
Finds per-element minimum of two arrays

void cvMin(const CvArr* src1, const CvArr* src2, CvArr* dst);
src1

The first source array.
src2

The second source array.
dst

The destination array.

The function cvMin calculates per-element minimum of two arrays:

dst(I)=min(src1(I),src2(I))

All the arrays must have a single channel, the same data type and the same size (or ROI size).

MinS
Finds per-element minimum of array and scalar

void cvMinS(const CvArr* src, double value, CvArr* dst);
src

The first source array.
value

The scalar value.
dst

The destination array.

The function cvMinS calculates minimum of array and scalar:

dst(I)=min(src(I), value)

All the arrays must have a single channel, the same data type and the same size (or ROI size).

AbsDiff
Calculates absolute difference between two arrays

void cvAbsDiff(const CvArr* src1, const CvArr* src2, CvArr* dst);
src1

The first source array.
src2

The second source array.
dst

The destination array.

The function cvAbsDiff calculates absolute difference between two arrays.

dst(I)c = abs(src1(I)c - src2(I)c).

All the arrays must have the same data type and the same size (or ROI size).

AbsDiffS
Calculates absolute difference between array and scalar

void cvAbsDiffS(const CvArr* src, CvArr* dst, CvScalar value);

#define cvAbs(src, dst) cvAbsDiffS(src, dst, cvScalarAll(0))
src

The source array.
dst

The destination array.
value

The scalar.

The function cvAbsDiffS calculates absolute difference between array and scalar.

dst(I)c = abs(src(I)c - valuec).

All the arrays must have the same data type and the same size (or ROI size).

Statistics

CountNonZero
Counts non-zero array elements

int cvCountNonZero(const CvArr* arr);
arr

The array, must be single-channel array or multi-channel image with COI set.

The function cvCountNonZero returns the number of non-zero elements in src1:

result = sumI arr(I)!=0

In case of IplImage both ROI and COI are supported.

Sum
Summarizes array elements

CvScalar cvSum(const CvArr* arr);
arr

The array.

The function cvSum calculates sum S of array elements, independently for each channel:

Sc = sumI arr(I)c

If the array is IplImage and COI is set, the function processes the selected channel only and stores the sum to the first

scalar component (S0).

Avg
Calculates average (mean) of array elements

CvScalar cvAvg(const CvArr* arr, const CvArr* mask=NULL);
arr

The array.
mask

The optional operation mask.

The function cvAvg calculates the average value M of array elements, independently for each channel:

N = sumI mask(I)!=0

Mc = 1/N • sumI,mask(I)!=0 arr(I)c

If the array is IplImage and COI is set, the function processes the selected channel only and stores the average to the

first scalar component (S0).

AvgSdv
Calculates average (mean) of array elements

void cvAvgSdv(const CvArr* arr, CvScalar* mean, CvScalar* std_dev, const CvArr* mask=NULL);
arr

The array.
mean

Pointer to the mean value, may be NULL if it is not needed.
std_dev

Pointer to the standard deviation.
mask

The optional operation mask.

The function cvAvgSdv calculates the average value and standard deviation of array elements, independently for each

channel:

N = sumI mask(I)!=0

meanc = 1/N • sumI,mask(I)!=0 arr(I)c

std_devc = sqrt(1/N • sumI,mask(I)!=0 (arr(I)c - Mc)
2)

If the array is IplImage and COI is set, the function processes the selected channel only and stores the average and

standard deviation to the first compoenents of output scalars (M0 and S0).

MinMaxLoc
Finds global minimum and maximum in array or subarray

void cvMinMaxLoc(const CvArr* arr, double* min_val, double* max_val,

 CvPoint* min_loc=NULL, CvPoint* max_loc=NULL, const CvArr* mask=NULL);
arr

The source array, single-channel or multi-channel with COI set.
min_val

Pointer to returned minimum value.
max_val

Pointer to returned maximum value.
min_loc

Pointer to returned minimum location.
max_loc

Pointer to returned maximum location.
mask

The optional mask that is used to select a subarray.

The function MinMaxLoc finds minimum and maximum element values and their positions. The extremums are searched

over the whole array, selected ROI (in case of IplImage) or, if mask is not NULL, in the specified array region. If the array

has more than one channel, it must be IplImage with COI set. In case if multi-dimensional arrays min_loc->x and

max_loc->x will contain raw (linear) positions of the extremums.

Norm

Calculates absolute array norm, absolute difference norm or relative difference norm

double cvNorm(const CvArr* arr1, const CvArr* arr2=NULL, int norm_type=CV_L2, const CvArr* mask=NULL);
arr1

The first source image.
arr2

The second source image. If it is NULL, the absolute norm of arr1 is calculated, otherwise absolute or relative

norm of arr1-arr2 is calculated.
normType

Type of norm, see the discussion.
mask

The optional operation mask.

The function cvNorm calculates the absolute norm of arr1 if arr2 is NULL:

norm = ||arr1||C = maxI abs(arr1(I)), if normType = CV_C

norm = ||arr1||L1 = sumI abs(arr1(I)), if normType = CV_L1

norm = ||arr1||L2 = sqrt(sumI arr1(I)
2), if normType = CV_L2

And the function calculates absolute or relative difference norm if arr2 is not NULL:

norm = ||arr1-arr2||C = maxI abs(arr1(I)-arr2(I)), if normType = CV_C

norm = ||arr1-arr2||L1 = sumI abs(arr1(I)-arr2(I)), if normType = CV_L1

norm = ||arr1-arr2||L2 = sqrt(sumI (arr1(I)-arr2(I))
2), if normType = CV_L2

or

norm = ||arr1-arr2||C/||arr2||C, if normType = CV_RELATIVE_C

norm = ||arr1-arr2||L1/||arr2||L1, if normType = CV_RELATIVE_L1

norm = ||arr1-arr2||L2/||arr2||L2, if normType = CV_RELATIVE_L2

The function Norm returns the calculated norm. The multiple-channel array are treated as single-channel, that is, the

results for all channels are combined.

Reduce
Reduces matrix to a vector

void cvReduce(const CvArr* src, CvArr* dst, int op=CV_REDUCE_SUM);
src

The input matrix.
dst

The output single-row/single-column vector that accumulates somehow all the matrix rows/columns.
dim

The dimension index along which the matrix is reduce. 0 means that the matrix is reduced to a single row, 1

means that the matrix is reduced to a single column. -1 means that the dimension is chosen automatically by

analysing the dst size.
op

The reduction operation. It can take of the following values:

CV_REDUCE_SUM - the output is the sum of all the matrix rows/columns.

CV_REDUCE_AVG - the output is the mean vector of all the matrix rows/columns.

CV_REDUCE_MAX - the output is the maximum (column/row-wise) of all the matrix rows/columns.

CV_REDUCE_MIN - the output is the minimum (column/row-wise) of all the matrix rows/columns.

The function cvReduce reduces matrix to a vector by treating the matrix rows/columns as a set of 1D vectors and

performing the specified operation on the vectors until a single row/column is obtained. For example, the function can

be used to compute horizontal and vertical projections of an raster image. In case of CV_REDUCE_SUM and CV_REDUCE_AVG

the output may have a larger element bit-depth to preserve accuracy. And multi-channel arrays are also supported in

these two reduction modes.

Linear Algebra

DotProduct
Calculates dot product of two arrays in Euclidian metrics

double cvDotProduct(const CvArr* src1, const CvArr* src2);
src1

The first source array.
src2

The second source array.

The function cvDotProduct calculates and returns the Euclidean dot product of two arrays.

src1•src2 = sumI(src1(I)*src2(I))

In case of multiple channel arrays the results for all channels are accumulated. In particular, cvDotProduct(a,a), where a

is a complex vector, will return ||a||2. The function can process multi-dimensional arrays, row by row, layer by layer

and so on.

Normalize
Normalizes array to a certain norm or value range

void cvNormalize(const CvArr* src, CvArr* dst,

 double a=1, double b=0, int norm_type=CV_L2,

 const CvArr* mask=NULL);
src

The input array.
dst

The output array; in-place operation is supported.
a

The minimum/maximum value of the output array or the norm of output array.
b

The maximum/minimum value of the output array.
norm_type

The normalization type. It can take one of the following values:

CV_C - the C-norm (maximum of absolute values) of the array is normalized.

CV_L1 - the L1-norm (sum of absolute values) of the array is normalized.

CV_L2 - the (Euclidian) L2-norm of the array is normalized.

CV_MINMAX - the array values are scaled and shifted to the specified range.
mask

The operation mask. Makes the function consider and normalize only certain array elements.

The function cvNormalize normalizes the input array so that it's norm or value range takes the certain value(s).

When norm_type==CV_MINMAX:

 dst(i,j)=(src(i,j)-min(src))*(b'-a')/(max(src)-min(src)) + a', if mask(i,j)!=0

 dst(i,j)=src(i,j) otherwise

where b'=MAX(a,b), a'=MIN(a,b);

min(src) and max(src) are the global minimum and maximum, respectively, of the input array, computed over the whole

array or the specified subset of it.

When norm_type!=CV_MINMAX:

 dst(i,j)=src(i,j)*a/cvNorm(src,0,norm_type,mask), if mask(i,j)!=0

 dst(i,j)=src(i,j) otherwise

Here is the short example:

float v[3] = { 1, 2, 3 };

CvMat V = cvMat(1, 3, CV_32F, v);

// make vector v unit-length;

// equivalent to

// for(int i=0;i<3;i++) v[i]/=sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);

cvNormalize(&V, &V);

CrossProduct
Calculates cross product of two 3D vectors

void cvCrossProduct(const CvArr* src1, const CvArr* src2, CvArr* dst);
src1

The first source vector.
src2

The second source vector.
dst

The destination vector.

The function cvCrossProduct calculates the cross product of two 3D vectors:

dst = src1 × src2, (dst1 = src12src23 - src13src22 , dst2 = src13src21 - src11src23 , dst3 = src11src22 - src12src21).

ScaleAdd
Calculates sum of scaled array and another array

void cvScaleAdd(const CvArr* src1, CvScalar scale, const CvArr* src2, CvArr* dst);

#define cvMulAddS cvScaleAdd
src1

The first source array.
scale

Scale factor for the first array.
src2

The second source array.
dst

The destination array

The function cvScaleAdd calculates sum of scaled array and another array:

dst(I)=src1(I)*scale + src2(I)

All array parameters should have the same type and the same size.

GEMM
Performs generalized matrix multiplication

void cvGEMM(const CvArr* src1, const CvArr* src2, double alpha,

 const CvArr* src3, double beta, CvArr* dst, int tABC=0);

#define cvMatMulAdd(src1, src2, src3, dst) cvGEMM(src1, src2, 1, src3, 1, dst, 0)

#define cvMatMul(src1, src2, dst) cvMatMulAdd(src1, src2, 0, dst)
src1

The first source array.
src2

The second source array.
src3

The third source array (shift). Can be NULL, if there is no shift.
dst

The destination array.
tABC

The operation flags that can be 0 or combination of the following values:

CV_GEMM_A_T - transpose src1

CV_GEMM_B_T - transpose src2

CV_GEMM_C_T - transpose src3

for example, CV_GEMM_A_T+CV_GEMM_C_T corresponds to

alpha*src1T*src2 + beta*srcT

The function cvGEMM performs generalized matrix multiplication:

dst = alpha*op(src1)*op(src2) + beta*op(src3), where op(X) is X or XT

All the matrices should have the same data type and the coordinated sizes. Real or complex floating-point matrices are

supported

Transform
Performs matrix transform of every array element

void cvTransform(const CvArr* src, CvArr* dst, const CvMat* transmat, const CvMat* shiftvec=NULL);
src

The first source array.
dst

The destination array.
transmat

Transformation matrix.
shiftvec

Optional shift vector.

The function cvTransform performs matrix transformation of every element of array src and stores the results in dst:

dst(I)=transmat*src(I) + shiftvec or dst(I)k=sumj(transmat(k,j)*src(I)j) + shiftvec(k)

That is every element of N-channel array src is considered as N-element vector, which is transformed using matrix M×N

matrix transmat and shift vector shiftvec into an element of M-channel array dst. There is an option to embedd

shiftvec into transmat. In this case transmat should be M×N+1 matrix and the right-most column is treated as the shift

vector.

Both source and destination arrays should have the same depth and the same size or selected ROI size. transmat and

shiftvec should be real floating-point matrices.

The function may be used for geometrical transformation of ND point set, arbitrary linear color space transformation,

shuffling the channels etc.

PerspectiveTransform
Performs perspective matrix transform of vector array

void cvPerspectiveTransform(const CvArr* src, CvArr* dst, const CvMat* mat);
src

The source three-channel floating-point array.
dst

The destination three-channel floating-point array.
mat

3×3 or 4×4 transformation matrix.

The function cvPerspectiveTransform transforms every element of src (by treating it as 2D or 3D vector) in the following

way:

(x, y, z) -> (x’/w, y’/w, z’/w) or

(x, y) -> (x’/w, y’/w),

where

(x’, y’, z’, w’) = mat4x4*(x, y, z, 1) or

(x’, y’, w’) = mat3x3*(x, y, 1)

and w = w’ if w’!=0,

 inf otherwise

MulTransposed
Calculates product of array and transposed array

void cvMulTransposed(const CvArr* src, CvArr* dst, int order, const CvArr* delta=NULL);
src

The source matrix.
dst

The destination matrix.
order

Order of multipliers.
delta

An optional array, subtracted from src before multiplication.

The function cvMulTransposed calculates the product of src and its transposition.

The function evaluates

dst=(src-delta)*(src-delta)T

if order=0, and

dst=(src-delta)T*(src-delta)

otherwise.

Trace
Returns trace of matrix

CvScalar cvTrace(const CvArr* mat);
mat

The source matrix.

The function cvTrace returns sum of diagonal elements of the matrix src1.

tr(src1)=sumimat(i,i)

Transpose
Transposes matrix

void cvTranspose(const CvArr* src, CvArr* dst);

#define cvT cvTranspose
src

The source matrix.
dst

The destination matrix.

The function cvTranspose transposes matrix src1:

dst(i,j)=src(j,i)

Note that no complex conjugation is done in case of complex matrix. Conjugation should be done separately: look at

the sample code in cvXorS for example

Det
Returns determinant of matrix

double cvDet(const CvArr* mat);
mat

The source matrix.

The function cvDet returns determinant of the square matrix mat. The direct method is used for small matrices and

Gaussian elimination is used for larger matrices. For symmetric positive-determined matrices it is also possible to run

SVD with U=V=NULL and then calculate determinant as a product of the diagonal elements of W

Invert
Finds inverse or pseudo-inverse of matrix

double cvInvert(const CvArr* src, CvArr* dst, int method=CV_LU);

#define cvInv cvInvert
src

The source matrix.
dst

The destination matrix.
method

Inversion method:

CV_LU - Gaussian elimination with optimal pivot element chose

CV_SVD - Singular value decomposition (SVD) method

CV_SVD_SYM - SVD method for a symmetric positively-defined matrix

The function cvInvert inverts matrix src1 and stores the result in src2

In case of LU method the function returns src1 determinant (src1 must be square). If it is 0, the matrix is not inverted

and src2 is filled with zeros.

In case of SVD methods the function returns the inversed condition number of src1 (ratio of the smallest singular value

to the largest singular value) and 0 if src1 is all zeros. The SVD methods calculate a pseudo-inverse matrix if src1 is

singular

Solve
Solves linear system or least-squares problem

int cvSolve(const CvArr* A, const CvArr* B, CvArr* X, int method=CV_LU);
A

The source matrix.
B

The right-hand part of the linear system.
X

The output solution.
method

The solution (matrix inversion) method:

CV_LU - Gaussian elimination with optimal pivot element chose

CV_SVD - Singular value decomposition (SVD) method

CV_SVD_SYM - SVD method for a symmetric positively-defined matrix.

The function cvSolve solves linear system or least-squares problem (the latter is possible with SVD methods):

dst = arg minX||A*X-B||

If CV_LU method is used, the function returns 1 if src1 is non-singular and 0 otherwise, in the latter case dst is not valid

SVD
Performs singular value decomposition of real floating-point matrix

void cvSVD(CvArr* A, CvArr* W, CvArr* U=NULL, CvArr* V=NULL, int flags=0);
A

Source M×N matrix.
W

Resulting singular value matrix (M×N or N×N) or vector (N×1).
U

Optional left orthogonal matrix (M×M or M×N). If CV_SVD_U_T is specified, the number of rows and columns in

the sentence above should be swapped.
V

Optional right orthogonal matrix (N×N)
flags

Operation flags; can be 0 or combination of the following values:

• CV_SVD_MODIFY_A enables modification of matrix src1 during the operation. It speeds up the

processing.

• CV_SVD_U_T means that the tranposed matrix U is returned. Specifying the flag speeds up the

processing.

• CV_SVD_V_T means that the tranposed matrix V is returned. Specifying the flag speeds up the

processing.

The function cvSVD decomposes matrix A into a product of a diagonal matrix and two orthogonal matrices:

A=U*W*VT

Where W is diagonal matrix of singular values that can be coded as a 1D vector of singular values and U and V. All the

singular values are non-negative and sorted (together with U and and V columns) in descenting order.

SVD algorithm is numerically robust and its typical applications include:

• accurate eigenvalue problem solution when matrix A is square, symmetric and positively defined matrix, for

example, when it is a covariation matrix. W in this case will be a vector of eigen values, and U=V is matrix of

eigen vectors (thus, only one of U or V needs to be calculated if the eigen vectors are required)

• accurate solution of poor-conditioned linear systems

• least-squares solution of overdetermined linear systems. This and previous is done by cvSolve function with

CV_SVD method

• accurate calculation of different matrix characteristics such as rank (number of non-zero singular values),

condition number (ratio of the largest singular value to the smallest one), determinant (absolute value of

determinant is equal to the product of singular values). All the things listed in this item do not require

calculation of U and V matrices.

SVBkSb
Performs singular value back substitution

void cvSVBkSb(const CvArr* W, const CvArr* U, const CvArr* V,

 const CvArr* B, CvArr* X, int flags);
W

Matrix or vector of singular values.
U

Left orthogonal matrix (tranposed, perhaps)
V

Right orthogonal matrix (tranposed, perhaps)
B

The matrix to multiply the pseudo-inverse of the original matrix A by. This is the optional parameter. If it is

omitted then it is assumed to be an identity matrix of an appropriate size (So X will be the reconstructed

pseudo-inverse of A).
X

The destination matrix: result of back substitution.
flags

Operation flags, should match exactly to the flags passed to cvSVD.

The function cvSVBkSb calculates back substitution for decomposed matrix A (see cvSVD description) and matrix B:

X=V*W-1*UT*B

Where

W-1(i,i)=1/W(i,i) if W(i,i) > epsilon•sumiW(i,i),

 0 otherwise

And epsilon is a small number that depends on the matrix data type.

This function together with cvSVD is used inside cvInvert and cvSolve, and the possible reason to use these (svd &

bksb) "low-level" function is to avoid temporary matrices allocation inside the high-level counterparts (inv & solve).

EigenVV
Computes eigenvalues and eigenvectors of symmetric matrix

void cvEigenVV(CvArr* mat, CvArr* evects, CvArr* evals, double eps=0);
mat

The input symmetric square matrix. It is modified during the processing.
evects

The output matrix of eigenvectors, stored as a subsequent rows.
evals

The output vector of eigenvalues, stored in the descenting order (order of eigenvalues and eigenvectors is

syncronized, of course).
eps

Accuracy of diagonalization (typically, DBL_EPSILON=≈10-15 is enough).

The function cvEigenVV computes the eigenvalues and eigenvectors of the matrix A:

mat*evects(i,:)' = evals(i)*evects(i,:)' (in MATLAB notation)

The contents of matrix A is destroyed by the function.

Currently the function is slower than cvSVD yet less accurate, so if A is known to be positively-defined (for example, it

is a covariation matrix), it is recommended to use cvSVD to find eigenvalues and eigenvectors of A, especially if

eigenvectors are not required. That is, instead of

cvEigenVV(mat, eigenvals, eigenvects);

call

cvSVD(mat, eigenvals, eigenvects, 0, CV_SVD_U_T + CV_SVD_MODIFY_A);

CalcCovarMatrix
Calculates covariation matrix of the set of vectors

void cvCalcCovarMatrix(const CvArr** vects, int count, CvArr* cov_mat, CvArr* avg, int flags);
vects

The input vectors. They all must have the same type and the same size. The vectors do not have to be 1D,

they can be 2D (e.g. images) etc.
count

The number of input vectors.
cov_mat

The output covariation matrix that should be floating-point and square.
avg

The input or output (depending on the flags) array - the mean (average) vector of the input vectors.
flags

The operation flags, a combination of the following values:

CV_COVAR_SCRAMBLED - the output covaration matrix is calculated as:

scale*[vects[0]-avg,vects[1]-avg,...]T*[vects[0]-avg,vects[1]-avg,...],

that is, the covariation matrix is count×count. Such an unusual covariation matrix is used for fast PCA of a set

of very large vectors (see, for example, EigenFaces technique for face recognition). Eigenvalues of this

"scrambled" matrix will match to the eigenvalues of the true covariation matrix and the "true" eigenvectors can

be easily calculated from the eigenvectors of the "scrambled" covariation matrix.

CV_COVAR_NORMAL - the output covaration matrix is calculated as:

scale*[vects[0]-avg,vects[1]-avg,...]*[vects[0]-avg,vects[1]-avg,...]T,

that is, cov_mat will be a usual covariation matrix with the same linear size as the total number of elements in

every input vector. One and only one of CV_COVAR_SCRAMBLED and CV_COVAR_NORMAL must be specified

CV_COVAR_USE_AVG - if the flag is specified, the function does not calculate avg from the input vectors, but,

instead, uses the passed avg vector. This is useful if avg has been already calculated somehow, or if the

covariation matrix is calculated by parts - in this case, avg is not a mean vector of the input sub-set of

vectors, but rather the mean vector of the whole set.

CV_COVAR_SCALE - if the flag is specified, the covariation matrix is scaled by the number of input vectors.

CV_COVAR_ROWS - Means that all the input vectors are stored as rows of a single matrix, vects[0]. count is

ignored in this case, and avg should be a single-row vector of an appropriate size. CV_COVAR_COLS - Means

that all the input vectors are stored as columns of a single matrix, vects[0]. count is ignored in this case, and

avg should be a single-column vector of an appropriate size.

The function cvCalcCovarMatrix calculates the covariation matrix and, optionally, mean vector of the set of input vectors.

The function can be used for PCA, for comparing vectors using Mahalanobis distance etc.

Mahalonobis
Calculates Mahalonobis distance between two vectors

double cvMahalanobis(const CvArr* vec1, const CvArr* vec2, CvArr* mat);
vec1

The first 1D source vector.
vec2

The second 1D source vector.
mat

The inverse covariation matrix.

The function cvMahalonobis calculates the weighted distance between two vectors and returns it:

d(vec1,vec2)=sqrt(sumi,j {mat(i,j)*(vec1(i)-vec2(i))*(vec1(j)-vec2(j))})

The covariation matrix may be calculated using cvCalcCovarMatrix function and further inverted using cvInvert function

(CV_SVD method is the preffered one, because the matrix might be singular).

CalcPCA
Performs Principal Component Analysis of a vector set

void cvCalcPCA(const CvArr* data, CvArr* avg,

 CvArr* eigenvalues, CvArr* eigenvectors, int flags);
data

The input data; each vector is either a single row (CV_PCA_DATA_AS_ROW) or a single column

(CV_PCA_DATA_AS_COL).
avg

The mean (average) vector, computed inside the function or provided by user.
eigenvalues

The output eigenvalues of covariation matrix.
eigenvectors

The output eigenvectors of covariation matrix (i.e. principal components); one vector per row.
flags

The operation flags, a combination of the following values:

CV_PCA_DATA_AS_ROW - the vectors are stored as rows (i.e. all the components of a certain vector are stored

continously)

CV_PCA_DATA_AS_COL - the vectors are stored as columns (i.e. values of a certain vector component are stored

continuously)

(the above two flags are mutually exclusive)

CV_PCA_USE_AVG - use pre-computed average vector

The function cvCalcPCA performs PCA analysis of the vector set. First, it uses cvCalcCovarMatrix to compute covariation

matrix and then it finds its eigenvalues and eigenvectors. The output number of eigenvalues/eigenvectors should be

less than or equal to MIN(rows(data),cols(data)).

ProjectPCA
Projects vectors to the specified subspace

void cvProjectPCA(const CvArr* data, const CvArr* avg,

 const CvArr* eigenvectors, CvArr* result)
data

The input data; each vector is either a single row or a single column.
avg

The mean (average) vector. If it is a single-row vector, it means that the input vectors are stored as rows of

data; otherwise, it should be a single-column vector, then the vectors are stored as columns of data.
eigenvectors

The eigenvectors (principal components); one vector per row.
result

The output matrix of decomposition coefficients. The number of rows must be the same as the number of

vectors, the number of columns must be less than or equal to the number of rows in eigenvectors. That it is

less, the input vectors are projected into subspace of the first cols(result) principal components.

The function cvProjectPCA projects input vectors to the subspace represented by the orthonormal basis (eigenvectors).

Before computing the dot products, avg vector is subtracted from the input vectors:

result(i,:)=(data(i,:)-avg)*eigenvectors' // for CV_PCA_DATA_AS_ROW layout.

BackProjectPCA
Reconstructs the original vectors from the projection coefficients

void cvBackProjectPCA(const CvArr* proj, const CvArr* avg,

 const CvArr* eigenvects, CvArr* result);
proj

The input data; in the same format as result in cvProjectPCA.
avg

The mean (average) vector. If it is a single-row vector, it means that the output vectors are stored as rows of

result; otherwise, it should be a single-column vector, then the vectors are stored as columns of result.
eigenvectors

The eigenvectors (principal components); one vector per row.
result

The output matrix of reconstructed vectors.

The function cvBackProjectPCA reconstructs the vectors from the projection coefficients:

result(i,:)=proj(i,:)*eigenvectors + avg // for CV_PCA_DATA_AS_ROW layout.

Math Functions

Round, Floor, Ceil
Converts floating-point number to integer

int cvRound(double value);

int cvFloor(double value);

int cvCeil(double value);
value

The input floating-point value

The functions cvRound, cvFloor and cvCeil convert input floating-point number to integer using one of the rounding

modes. cvRound returns the nearest integer value to the argument. cvFloor returns the maximum integer value that is not

larger than the argument. cvCeil returns the minimum integer value that is not smaller than the argument. On some

architectures the functions work much faster than the standard cast operations in C. If absolute value of the argument

is greater than 231, the result is not determined. Special values (±Inf, NaN) are not handled.

Sqrt
Calculates square root

float cvSqrt(float value);
value

The input floating-point value

The function cvSqrt calculates square root of the argument. If the argument is negative, the result is not determined.

InvSqrt
Calculates inverse square root

float cvInvSqrt(float value);
value

The input floating-point value

The function cvInvSqrt calculates inverse square root of the argument, and normally it is faster than 1./sqrt(value). If

the argument is zero or negative, the result is not determined. Special values (±Inf, NaN) are not handled.

Cbrt
Calculates cubic root

float cvCbrt(float value);
value

The input floating-point value

The function cvCbrt calculates cubic root of the argument, and normally it is faster than pow(value,1./3). Besides,

negative arguments are handled properly. Special values (±Inf, NaN) are not handled.

FastArctan
Calculates angle of 2D vector

float cvFastArctan(float y, float x);
x

x-coordinate of 2D vector
y

y-coordinate of 2D vector

The function cvFastArctan calculates full-range angle of input 2D vector. The angle is measured in degrees and varies

from 0° to 360°. The accuracy is ~0.1°

IsNaN
Determines if the argument is Not A Number

int cvIsNaN(double value);
value

The input floating-point value

The function cvIsNaN returns 1 if the argument is Not A Number (as defined by IEEE754 standard), 0 otherwise.

IsInf
Determines if the argument is Infinity

int cvIsInf(double value);
value

The input floating-point value

The function cvIsInf returns 1 if the argument is ±Infinity (as defined by IEEE754 standard), 0 otherwise.

CartToPolar
Calculates magnitude and/or angle of 2d vectors

void cvCartToPolar(const CvArr* x, const CvArr* y, CvArr* magnitude,

 CvArr* angle=NULL, int angle_in_degrees=0);
x

The array of x-coordinates
y

The array of y-coordinates
magnitude

The destination array of magnitudes, may be set to NULL if it is not needed
angle

The destination array of angles, may be set to NULL if it is not needed. The angles are measured in radians

(0..2π) or in degrees (0..360°).
angle_in_degrees

The flag indicating whether the angles are measured in radians, which is default mode, or in degrees.

The function cvCartToPolar calculates either magnitude, angle, or both of every 2d vector (x(I),y(I)):

magnitude(I)=sqrt(x(I)2+y(I)2),

angle(I)=atan(y(I)/x(I))

The angles are calculated with ≈0.1° accuracy. For (0,0) point the angle is set to 0.

PolarToCart
Calculates cartesian coordinates of 2d vectors represented in polar form

void cvPolarToCart(const CvArr* magnitude, const CvArr* angle,

 CvArr* x, CvArr* y, int angle_in_degrees=0);
magnitude

The array of magnitudes. If it is NULL, the magnitudes are assumed all 1’s.
angle

The array of angles, whether in radians or degrees.
x

The destination array of x-coordinates, may be set to NULL if it is not needed.
y

The destination array of y-coordinates, mau be set to NULL if it is not needed.
angle_in_degrees

The flag indicating whether the angles are measured in radians, which is default mode, or in degrees.

The function cvPolarToCart calculates either x-coodinate, y-coordinate or both of every vector

magnitude(I)*exp(angle(I)*j), j=sqrt(-1):

x(I)=magnitude(I)*cos(angle(I)),

y(I)=magnitude(I)*sin(angle(I))

Pow
Raises every array element to power

void cvPow(const CvArr* src, CvArr* dst, double power);
src

The source array.
dst

The destination array, should be the same type as the source.
power

The exponent of power.

The function cvPow raises every element of input array to p:

dst(I)=src(I)p, if p is integer

dst(I)=abs(src(I))p, otherwise

That is, for non-integer power exponent the absolute values of input array elements are used. However, it is possible to

get true values for negative values using some extra operations, as the following sample, computing cube root of array

elements, shows:

CvSize size = cvGetSize(src);

CvMat* mask = cvCreateMat(size.height, size.width, CV_8UC1);

cvCmpS(src, 0, mask, CV_CMP_LT); /* find negative elements */

cvPow(src, dst, 1./3);

cvSubRS(dst, cvScalarAll(0), dst, mask); /* negate the results of negative inputs */

cvReleaseMat(&mask);

For some values of power, such as integer values, 0.5 and -0.5, specialized faster algorithms are used.

Exp
Calculates exponent of every array element

void cvExp(const CvArr* src, CvArr* dst);
src

The source array.
dst

The destination array, it should have double type or the same type as the source.

The function cvExp calculates exponent of every element of input array:

dst(I)=exp(src(I))

Maximum relative error is ≈7e-6. Currently, the function converts denormalized values to zeros on output.

Log
Calculates natural logarithm of every array element absolute value

void cvLog(const CvArr* src, CvArr* dst);
src

The source array.
dst

The destination array, it should have double type or the same type as the source.

The function cvLog calculates natural logarithm of absolute value of every element of input array:

dst(I)=log(abs(src(I))), src(I)!=0

dst(I)=C, src(I)=0

Where C is large negative number (≈-700 in the current implementation)

SolveCubic
Finds real roots of a cubic equation

int cvSolveCubic(const CvMat* coeffs, CvMat* roots);
coeffs

The equation coefficients, array of 3 or 4 elements.
roots

The output array of real roots. Should have 3 elements.

The function cvSolveCubic finds real roots of a cubic equation:

coeffs[0]*x3 + coeffs[1]*x2 + coeffs[2]*x + coeffs[3] = 0

(if coeffs is 4-element vector)

or

x3 + coeffs[0]*x2 + coeffs[1]*x + coeffs[2] = 0

(if coeffs is 3-element vector)

The function returns the number of real roots found. The roots are stored to root array, which is padded with zeros if

there is only one root.

Random Number Generation

RNG
Initializes random number generator state

CvRNG cvRNG(int64 seed=-1);
seed

64-bit value used to initiate a random sequence.

The function cvRNG initializes random number generator and returns the state. Pointer to the state can be then passed to

cvRandInt, cvRandReal and cvRandArr functions. In the current implementation a multiply-with-carry generator is used.

RandArr
Fills array with random numbers and updates the RNG state

void cvRandArr(CvRNG* rng, CvArr* arr, int dist_type, CvScalar param1, CvScalar param2);
rng

RNG state initialized by cvRNG.
arr

The destination array.
dist_type

Distribution type:

CV_RAND_UNI - uniform distribution

CV_RAND_NORMAL - normal or Gaussian distribution
param1

The first parameter of distribution. In case of uniform distribution it is the inclusive lower boundary of random

numbers range. In case of normal distribution it is the mean value of random numbers.
param2

The second parameter of distribution. In case of uniform distribution it is the exclusive upper boundary of

random numbers range. In case of normal distribution it is the standard deviation of random numbers.

The function cvRandArr fills the destination array with uniformly or normally distributed random numbers. In the sample

below the function is used to add a few normally distributed floating-point numbers to random locations within a 2d

array

/* let noisy_screen be the floating-point 2d array that is to be "crapped" */

CvRNG rng_state = cvRNG(0xffffffff);

int i, pointCount = 1000;

/* allocate the array of coordinates of points */

CvMat* locations = cvCreateMat(pointCount, 1, CV_32SC2);

/* arr of random point values */

CvMat* values = cvCreateMat(pointCount, 1, CV_32FC1);

CvSize size = cvGetSize(noisy_screen);

cvRandInit(&rng_state,

 0, 1, /* use dummy parameters now and adjust them further */

 0xffffffff /* just use a fixed seed here */,

 CV_RAND_UNI /* specify uniform type */);

/* initialize the locations */

cvRandArr(&rng_state, locations, CV_RAND_UNI, cvScalar(0,0,0,0), cvScalar(size.width,size.height,0,0));

/* modify RNG to make it produce normally distributed values */

rng_state.disttype = CV_RAND_NORMAL;

cvRandSetRange(&rng_state,

 30 /* deviation */,

 100 /* average point brightness */,

 -1 /* initialize all the dimensions */);

/* generate values */

cvRandArr(&rng_state, values, CV_RAND_NORMAL,

 cvRealScalar(100), // average intensity

 cvRealScalar(30) // deviation of the intensity

);

/* set the points */

for(i = 0; i < pointCount; i++)

{

 CvPoint pt = *(CvPoint*)cvPtr1D(locations, i, 0);

 float value = *(float*)cvPtr1D(values, i, 0);

 ((float)cvPtr2D(noisy_screen, pt.y, pt.x, 0)) += value;

}

/* not to forget to release the temporary arrays */

cvReleaseMat(&locations);

cvReleaseMat(&values);

/* RNG state does not need to be deallocated */

RandInt
Returns 32-bit unsigned integer and updates RNG

unsigned cvRandInt(CvRNG* rng);
rng

RNG state initialized by RandInit and, optionally, customized by RandSetRange (though, the latter function does

not affect on the discussed function outcome).

The function cvRandInt returns uniformly-distributed random 32-bit unsigned integer and updates RNG state. It is

similar to rand() function from C runtime library, but it always generates 32-bit number whereas rand() returns a number

in between 0 and RAND_MAX which is 2**16 or 2**32, depending on the platform.

The function is useful for generating scalar random numbers, such as points, patch sizes, table indices etc, where

integer numbers of a certain range can be generated using modulo operation and floating-point numbers can be

generated by scaling to 0..1 of any other specific range. Here is the example from the previous function discussion

rewritten using cvRandInt:

/* the input and the task is the same as in the previous sample. */

CvRNG rng_state = cvRNG(0xffffffff);

int i, pointCount = 1000;

/* ... - no arrays are allocated here */

CvSize size = cvGetSize(noisy_screen);

/* make a buffer for normally distributed numbers to reduce call overhead */

#define bufferSize 16

float normalValueBuffer[bufferSize];

CvMat normalValueMat = cvMat(bufferSize, 1, CV_32F, normalValueBuffer);

int valuesLeft = 0;

for(i = 0; i < pointCount; i++)

{

 CvPoint pt;

 /* generate random point */

 pt.x = cvRandInt(&rng_state) % size.width;

 pt.y = cvRandInt(&rng_state) % size.height;

 if(valuesLeft <= 0)

 {

 /* fulfill the buffer with normally distributed numbers if the buffer is empty */

 cvRandArr(&rng_state, &normalValueMat, CV_RAND_NORMAL, cvRealScalar(100), cvRealScalar(30));

 valuesLeft = bufferSize;

 }

 ((float)cvPtr2D(noisy_screen, pt.y, pt.x, 0) = normalValueBuffer[--valuesLeft];

}

/* there is no need to deallocate normalValueMat because we have

both the matrix header and the data on stack. It is a common and efficient

practice of working with small, fixed-size matrices */

RandReal
Returns floating-point random number and updates RNG

double cvRandReal(CvRNG* rng);
rng

RNG state initialized by cvRNG.

The function cvRandReal returns uniformly-distributed random floating-point number from 0..1 range (1 is not included).

Discrete Transforms

DFT
Performs forward or inverse Discrete Fourier transform of 1D or 2D floating-point array

#define CV_DXT_FORWARD 0

#define CV_DXT_INVERSE 1

#define CV_DXT_SCALE 2

#define CV_DXT_ROWS 4

#define CV_DXT_INV_SCALE (CV_DXT_SCALE|CV_DXT_INVERSE)

#define CV_DXT_INVERSE_SCALE CV_DXT_INV_SCALE

void cvDFT(const CvArr* src, CvArr* dst, int flags, int nonzero_rows=0);
src

Source array, real or complex.
dst

Destination array of the same size and same type as the source.
flags

Transformation flags, a combination of the following values:

CV_DXT_FORWARD - do forward 1D or 2D transform. The result is not scaled.

CV_DXT_INVERSE - do inverse 1D or 2D transform. The result is not scaled. CV_DXT_FORWARD and CV_DXT_INVERSE

are mutually exclusive, of course.

CV_DXT_SCALE - scale the result: divide it by the number of array elements. Usually, it is combined with

CV_DXT_INVERSE, and one may use a shortcut CV_DXT_INV_SCALE.

CV_DXT_ROWS - do forward or inverse transform of every individual row of the input matrix. This flag allows user

to transform multiple vectors simultaneously and can be used to decrease the overhead (which is sometimes

several times larger than the processing itself), to do 3D and higher-dimensional transforms etc.
nonzero_rows

Number of nonzero rows to in the source array (in case of forward 2d transform), or a number of rows of

interest in the destination array (in case of inverse 2d transform). If the value is negative, zero, or greater than

the total number of rows, it is ignored. The parameter can be used to speed up 2d convolution/correlation

when computing them via DFT. See the sample below.

The function cvDFT performs forward or inverse transform of 1D or 2D floating-point array:

Forward Fourier transform of 1D vector of N elements:

y = F(N)•x, where F(N)jk=exp(-i•2Pi•j•k/N), i=sqrt(-1)

Inverse Fourier transform of 1D vector of N elements:

x'= (F(N))-1•y = conj(F(N))•y

x = (1/N)•x

Forward Fourier transform of 2D vector of M×N elements:

Y = F(M)•X•F(N)

Inverse Fourier transform of 2D vector of M×N elements:

X'= conj(F(M))•Y•conj(F(N))

X = (1/(M•N))•X'

In case of real (single-channel) data, the packed format, borrowed from IPL, is used to to represent a result of forward

Fourier transform or input for inverse Fourier transform:

Re Y0,0 Re Y0,1 Im Y0,1 Re Y0,2 Im Y0,2 ... Re Y0,N/2-1 Im Y0,N/2-1 Re Y0,N/2

Re Y1,0 Re Y1,1 Im Y1,1 Re Y1,2 Im Y1,2 ... Re Y1,N/2-1 Im Y1,N/2-1 Re Y1,N/2

Im Y1,0 Re Y2,1 Im Y2,1 Re Y2,2 Im Y2,2 ... Re Y2,N/2-1 Im Y2,N/2-1 Im Y2,N/2

..

Re YM/2-1,0 Re YM-3,1 Im YM-3,1 Re YM-3,2 Im YM-3,2 ... Re YM-3,N/2-1 Im YM-3,N/2-1 Re YM-3,N/2

Im YM/2-1,0 Re YM-2,1 Im YM-2,1 Re YM-2,2 Im YM-2,2 ... Re YM-2,N/2-1 Im YM-2,N/2-1 Im YM-2,N/2

Re YM/2,0 Re YM-1,1 Im YM-1,1 Re YM-1,2 Im YM-1,2 ... Re YM-1,N/2-1 Im YM-1,N/2-1 Im YM-1,N/2

Note: the last column is present if N is even, the last row is present if M is even.

In case of 1D real transform the result looks like the first row of the above matrix

Computing 2D Convolution using DFT

 CvMat* A = cvCreateMat(M1, N1, CV_32F);

 CvMat* B = cvCreateMat(M2, N2, A->type);

 // it is also possible to have only abs(M2-M1)+1×abs(N2-N1)+1

 // part of the full convolution result

 CvMat* conv = cvCreateMat(A->rows + B->rows - 1, A->cols + B->cols - 1, A->type);

 // initialize A and B

 ...

 int dft_M = cvGetOptimalDFTSize(A->rows + B->rows - 1);

 int dft_N = cvGetOptimalDFTSize(A->cols + B->cols - 1);

 CvMat* dft_A = cvCreateMat(dft_M, dft_N, A->type);

 CvMat* dft_B = cvCreateMat(dft_M, dft_N, B->type);

 CvMat tmp;

 // copy A to dft_A and pad dft_A with zeros

 cvGetSubRect(dft_A, &tmp, cvRect(0,0,A->cols,A->rows));

 cvCopy(A, &tmp);

 cvGetSubRect(dft_A, &tmp, cvRect(A->cols,0,dft_A->cols - A->cols,A->rows));

 cvZero(&tmp);

 // no need to pad bottom part of dft_A with zeros because of

 // use nonzero_rows parameter in cvDFT() call below

 cvDFT(dft_A, dft_A, CV_DXT_FORWARD, A->rows);

 // repeat the same with the second array

 cvGetSubRect(dft_B, &tmp, cvRect(0,0,B->cols,B->rows));

 cvCopy(B, &tmp);

 cvGetSubRect(dft_B, &tmp, cvRect(B->cols,0,dft_B->cols - B->cols,B->rows));

 cvZero(&tmp);

 // no need to pad bottom part of dft_B with zeros because of

 // use nonzero_rows parameter in cvDFT() call below

 cvDFT(dft_B, dft_B, CV_DXT_FORWBRD, B->rows);

 cvMulSpectrums(dft_A, dft_B, dft_A, 0 /* or CV_DXT_MUL_CONJ to get correlation

 rather than convolution */);

 cvDFT(dft_A, dft_A, CV_DXT_INV_SCALE, conv->rows); // calculate only the top part

 cvGetSubRect(dft_A, &tmp, cvRect(0,0,conv->cols,conv->rows));

 cvCopy(&tmp, conv);

GetOptimalDFTSize
Returns optimal DFT size for given vector size

int cvGetOptimalDFTSize(int size0);
size0

Vector size.

The function cvGetOptimalDFTSize returns the minimum number N that is greater to equal to size0, such that DFT of a

vector of size N can be computed fast. In the current implementation N=2p×3q×5r for some p, q, r.

The function returns a negative number if size0 is too large (very close to INT_MAX)

MulSpectrums
Performs per-element multiplication of two Fourier spectrums

void cvMulSpectrums(const CvArr* src1, const CvArr* src2, CvArr* dst, int flags);
src1

The first source array.
src2

The second source array.
dst

The destination array of the same type and the same size of the sources.
flags

A combination of the following values:

CV_DXT_ROWS - treat each row of the arrays as a separate spectrum (see cvDFT parameters description).

CV_DXT_MUL_CONJ - conjugate the second source array before the multiplication.

The function cvMulSpectrums performs per-element multiplication of the two CCS-packed or complex matrices that are

results of real or complex Fourier transform.

The function, together with cvDFT, may be used to calculate convolution of two arrays fast.

DCT
Performs forward or inverse Discrete Cosine transform of 1D or 2D floating-point array

#define CV_DXT_FORWARD 0

#define CV_DXT_INVERSE 1

#define CV_DXT_ROWS 4

void cvDCT(const CvArr* src, CvArr* dst, int flags);
src

Source array, real 1D or 2D array.
dst

Destination array of the same size and same type as the source.
flags

Transformation flags, a combination of the following values:

CV_DXT_FORWARD - do forward 1D or 2D transform.

CV_DXT_INVERSE - do inverse 1D or 2D transform.

CV_DXT_ROWS - do forward or inverse transform of every individual row of the input matrix. This flag allows user

to transform multiple vectors simultaneously and can be used to decrease the overhead (which is sometimes

several times larger than the processing itself), to do 3D and higher-dimensional transforms etc.

The function cvDCT performs forward or inverse transform of 1D or 2D floating-point array:

Forward Cosine transform of 1D vector of N elements:

y = C(N)•x, where C(N)jk=sqrt((j==0?1:2)/N)•cos(Pi•(2k+1)•j/N)

Inverse Cosine transform of 1D vector of N elements:

x = (C(N))-1•y = (C(N))T•y

Forward Cosine transform of 2D vector of M×N elements:

Y = (C(M))•X•(C(N))T

Inverse Cosine transform of 2D vector of M×N elements:

X = (C(M))T•Y•C(N)

Dynamic Structures

Memory Storages

CvMemStorage
Growing memory storage

typedef struct CvMemStorage

{

 struct CvMemBlock* bottom;/* first allocated block */

 struct CvMemBlock* top; /* the current memory block - top of the stack */

 struct CvMemStorage* parent; /* borrows new blocks from */

 int block_size; /* block size */

 int free_space; /* free space in the top block (in bytes) */

} CvMemStorage;

Memory storage is a low-level structure used to store dynamically growing data structures such as sequences,

contours, graphs, subdivisions etc. It is organized as a list of memory blocks of equal size - bottom field is the

beginning of the list of blocks and top is the currently used block, but not necessarily the last block of the list. All

blocks between bottom and top, not including the latter, are considered fully ocupied; and all blocks between top and

the last block, not including top, are considered free and top block itself is partly ocupied - free_space contains the

number of free bytes left in the end of top.

New memory buffer that may be allocated explicitly by cvMemStorageAlloc function or implicitly by higher-level

functions, such as cvSeqPush, cvGraphAddEdge etc., always starts in the end of the current block if it fits there. After

allocation free_space is decremented by the size of the allocated buffer plus some padding to keep the proper

alignment. When the allocated buffer does not fit into the available part of top, the next storage block from the list is

taken as top and free_space is reset to the whole block size prior to the allocation.

If there is no more free blocks, a new block is allocated (or borrowed from parent, see cvCreateChildMemStorage) and

added to the end of list. Thus, the storage behaves as a stack with bottom indicating bottom of the stack and the pair

(top, free_space) indicating top of the stack. The stack top may be saved via cvSaveMemStoragePos, restored via

cvRestoreMemStoragePos or reset via cvClearStorage.

CvMemBlock
Memory storage block

typedef struct CvMemBlock

{

 struct CvMemBlock* prev;

 struct CvMemBlock* next;

} CvMemBlock;

The structure CvMemBlock represents a single block of memory storage. Actual data of the memory blocks follows the

header, that is, the i-th byte of the memory block can be retrieved with the expression ((char*)(mem_block_ptr+1))[i].

However, normally there is no need to access the storage structure fields directly.

CvMemStoragePos

Memory storage position

typedef struct CvMemStoragePos

{

 CvMemBlock* top;

 int free_space;

} CvMemStoragePos;

The structure described below stores the position of the stack top that can be saved via cvSaveMemStoragePos and

restored via cvRestoreMemStoragePos.

CreateMemStorage
Creates memory storage

CvMemStorage* cvCreateMemStorage(int block_size=0);
block_size

Size of the storage blocks in bytes. If it is 0, the block size is set to default value - currently it is ≈64K.

The function cvCreateMemStorage creates a memory storage and returns pointer to it. Initially the storage is empty. All

fields of the header, except the block_size, are set to 0.

CreateChildMemStorage
Creates child memory storage

CvMemStorage* cvCreateChildMemStorage(CvMemStorage* parent);
parent

Parent memory storage.

The function cvCreateChildMemStorage creates a child memory storage that is similar to simple memory storage except

for the differences in the memory allocation/deallocation mechanism. When a child storage needs a new block to add

to the block list, it tries to get this block from the parent. The first unoccupied parent block available is taken and

excluded from the parent block list. If no blocks are available, the parent either allocates a block or borrows one from

its own parent, if any. In other words, the chain, or a more complex structure, of memory storages where every storage

is a child/parent of another is possible. When a child storage is released or even cleared, it returns all blocks to the

parent. In other aspects, the child storage is the same as the simple storage.

The children storages are useful in the following situation. Imagine that user needs to process dynamical data resided

in some storage and put the result back to the same storage. With the simplest approach, when temporary data is

resided in the same storage as the input and output data, the storage will look as following after processing:

Dynamic data processing without using child storage

That is, garbage appears in the middle of the storage. However, if one creates a child memory storage in the beginning

of the processing, writes temporary data there and releases the child storage in the end, no garbage will appear in the

source/destination storage:

Dynamic data processing using a child storage

ReleaseMemStorage
Releases memory storage

void cvReleaseMemStorage(CvMemStorage** storage);
storage

Pointer to the released storage.

The function cvReleaseMemStorage deallocates all storage memory blocks or returns them to the parent, if any. Then it

deallocates the storage header and clears the pointer to the storage. All children of the storage must be released

before the parent is released.

ClearMemStorage
Clears memory storage

void cvClearMemStorage(CvMemStorage* storage);
storage

Memory storage.

The function cvClearMemStorage resets the top (free space boundary) of the storage to the very beginning. This function

does not deallocate any memory. If the storage has a parent, the function returns all blocks to the parent.

MemStorageAlloc
Allocates memory buffer in the storage

void* cvMemStorageAlloc(CvMemStorage* storage, size_t size);
storage

Memory storage.
size

Buffer size.

The function cvMemStorageAlloc allocates memory buffer in the storage. The buffer size must not exceed the storage

block size, otherwise runtime error is raised. The buffer address is aligned by CV_STRUCT_ALIGN (=sizeof(double) for the

moment) bytes.

MemStorageAllocString
Allocates text string in the storage

typedef struct CvString

{

 int len;

 char* ptr;

}

CvString;

CvString cvMemStorageAllocString(CvMemStorage* storage, const char* ptr, int len=-1);
storage

Memory storage.
ptr

The string.
len

Length of the string (not counting the ending '₩0'). If the parameter is negative, the function computes the

length.

The function cvMemStorageAllocString creates copy of the string in the memory storage. It returns the structure that

contains user-passed or computed length of the string and pointer to the copied string.

SaveMemStoragePos
Saves memory storage position

void cvSaveMemStoragePos(const CvMemStorage* storage, CvMemStoragePos* pos);
storage

Memory storage.
pos

The output position of the storage top.

The function cvSaveMemStoragePos saves the current position of the storage top to the parameter pos. The function

cvRestoreMemStoragePos can further retrieve this position.

RestoreMemStoragePos
Restores memory storage position

void cvRestoreMemStoragePos(CvMemStorage* storage, CvMemStoragePos* pos);
storage

Memory storage.
pos

New storage top position.

The function cvRestoreMemStoragePos restores the position of the storage top from the parameter pos. This function and

The function cvClearMemStorage are the only methods to release memory occupied in memory blocks. Note again that

there is no way to free memory in the middle of the occupied part of the storage.

Sequences

CvSeq
Growable sequence of elements

#define CV_SEQUENCE_FIELDS() ₩

 int flags; /* micsellaneous flags */ ₩

 int header_size; /* size of sequence header */ ₩

 struct CvSeq* h_prev; /* previous sequence */ ₩

 struct CvSeq* h_next; /* next sequence */ ₩

 struct CvSeq* v_prev; /* 2nd previous sequence */ ₩

 struct CvSeq* v_next; /* 2nd next sequence */ ₩

 int total; /* total number of elements */ ₩

 int elem_size;/* size of sequence element in bytes */ ₩

 char* block_max;/* maximal bound of the last block */ ₩

 char* ptr; /* current write pointer */ ₩

 int delta_elems; /* how many elements allocated when the sequence grows (sequence granularity) */ ₩

 CvMemStorage* storage; /* where the seq is stored */ ₩

 CvSeqBlock* free_blocks; /* free blocks list */ ₩

 CvSeqBlock* first; /* pointer to the first sequence block */

typedef struct CvSeq

{

 CV_SEQUENCE_FIELDS()

} CvSeq;

The structure CvSeq is a base for all of OpenCV dynamic data structures.

Such an unusual definition via a helper macro simplifies the extension of the structure CvSeq with additional parameters.

To extend CvSeq the user may define a new structure and put user-defined fields after all CvSeq fields that are

included via the macro CV_SEQUENCE_FIELDS().

There are two types of sequences - dense and sparse. Base type for dense sequences is CvSeq and such sequences

are used to represent growable 1d arrays - vectors, stacks, queues, deques. They have no gaps in the middle - if an

element is removed from the middle or inserted into the middle of the sequence the elements from the closer end are

shifted. Sparse sequences have CvSet base class and they are discussed later in more details. They are sequences of

nodes each of those may be either occupied or free as indicated by the node flag. Such sequences are used for

unordered data structures such as sets of elements, graphs, hash tables etc.

The field header_size contains the actual size of the sequence header and should be greater or equal to sizeof(CvSeq).

The fields h_prev, h_next, v_prev, v_next can be used to create hierarchical structures from separate sequences. The

fields h_prev and h_next point to the previous and the next sequences on the same hierarchical level while the fields

v_prev and v_next point to the previous and the next sequence in the vertical direction, that is, parent and its first child.

But these are just names and the pointers can be used in a different way.

The field first points to the first sequence block, whose structure is described below.

The field total contains the actual number of dense sequence elements and number of allocated nodes in sparse

sequence.

The field flagscontain the particular dynamic type signature (CV_SEQ_MAGIC_VAL for dense sequences and

CV_SET_MAGIC_VAL for sparse sequences) in the highest 16 bits and miscellaneous information about the sequence. The

lowest CV_SEQ_ELTYPE_BITS bits contain the ID of the element type. Most of sequence processing functions do not use

element type but element size stored in elem_size. If sequence contains the numeric data of one of CvMat type then the

element type matches to the corresponding CvMat element type, e.g. CV_32SC2 may be used for sequence of 2D

points, CV_32FC1 for sequences of floating-point values etc. CV_SEQ_ELTYPE(seq_header_ptr) macro retrieves the type

of sequence elements. Processing function that work with numerical sequences check that elem_size is equal to the

calculated from the type element size. Besides CvMat compatible types, there are few extra element types defined in

cvtypes.h header:

Standard Types of Sequence Elements

 #define CV_SEQ_ELTYPE_POINT CV_32SC2 /* (x,y) */

 #define CV_SEQ_ELTYPE_CODE CV_8UC1 /* freeman code: 0..7 */

 #define CV_SEQ_ELTYPE_GENERIC 0 /* unspecified type of sequence elements */

 #define CV_SEQ_ELTYPE_PTR CV_USRTYPE1 /* =6 */

 #define CV_SEQ_ELTYPE_PPOINT CV_SEQ_ELTYPE_PTR /* &elem: pointer to element of other sequence */

 #define CV_SEQ_ELTYPE_INDEX CV_32SC1 /* #elem: index of element of some other sequence */

 #define CV_SEQ_ELTYPE_GRAPH_EDGE CV_SEQ_ELTYPE_GENERIC /* &next_o, &next_d, &vtx_o, &vtx_d */

 #define CV_SEQ_ELTYPE_GRAPH_VERTEX CV_SEQ_ELTYPE_GENERIC /* first_edge, &(x,y) */

 #define CV_SEQ_ELTYPE_TRIAN_ATR CV_SEQ_ELTYPE_GENERIC /* vertex of the binary tree */

 #define CV_SEQ_ELTYPE_CONNECTED_COMP CV_SEQ_ELTYPE_GENERIC /* connected component */

 #define CV_SEQ_ELTYPE_POINT3D CV_32FC3 /* (x,y,z) */

The next CV_SEQ_KIND_BITS bits specify the kind of the sequence:

Standard Kinds of Sequences

 /* generic (unspecified) kind of sequence */

 #define CV_SEQ_KIND_GENERIC (0 << CV_SEQ_ELTYPE_BITS)

 /* dense sequence suntypes */

 #define CV_SEQ_KIND_CURVE (1 << CV_SEQ_ELTYPE_BITS)

 #define CV_SEQ_KIND_BIN_TREE (2 << CV_SEQ_ELTYPE_BITS)

 /* sparse sequence (or set) subtypes */

 #define CV_SEQ_KIND_GRAPH (3 << CV_SEQ_ELTYPE_BITS)

 #define CV_SEQ_KIND_SUBDIV2D (4 << CV_SEQ_ELTYPE_BITS)

The remaining bits are used to identify different features specific to certain sequence kinds and element types. For

example, curves made of points (CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE_POINT), together with the flag CV_SEQ_FLAG_CLOSED

belong to the type CV_SEQ_POLYGON or, if other flags are used, to its subtype. Many contour processing functions check

the type of the input sequence and report an error if they do not support this type. The file cvtypes.h stores the

complete list of all supported predefined sequence types and helper macros designed to get the sequence type of

other properties. Below follows the definition of the building block of sequences.

CvSeqBlock
Continuous sequence block

typedef struct CvSeqBlock

{

 struct CvSeqBlock* prev; /* previous sequence block */

 struct CvSeqBlock* next; /* next sequence block */

 int start_index; /* index of the first element in the block +

 sequence->first->start_index */

 int count; /* number of elements in the block */

 char* data; /* pointer to the first element of the block */

} CvSeqBlock;

Sequence blocks make up a circular double-linked list, so the pointers prev and next are never NULL and point to the

previous and the next sequence blocks within the sequence. It means that next of the last block is the first block and

prev of the first block is the last block. The fields start_index and count help to track the block location within the

sequence. For example, if the sequence consists of 10 elements and splits into three blocks of 3, 5, and 2 elements,

and the first block has the parameter start_index = 2, then pairs (start_index, count) for the sequence blocks are

(2,3), (5, 5), and (10, 2) correspondingly. The parameter start_index of the first block is usually 0 unless some

elements have been inserted at the beginning of the sequence.

CvSlice
A sequence slice

typedef struct CvSlice

{

 int start_index;

 int end_index;

} CvSlice;

inline CvSlice cvSlice(int start, int end);

#define CV_WHOLE_SEQ_END_INDEX 0x3fffffff

#define CV_WHOLE_SEQ cvSlice(0, CV_WHOLE_SEQ_END_INDEX)

/* calculates the sequence slice length */

int cvSliceLength(CvSlice slice, const CvSeq* seq);

Some of functions that operate on sequences take CvSlice slice parameter that is often set to the whole sequence

(CV_WHOLE_SEQ) by default. Either of the start_index and end_index may be negative or exceed the sequence length,

start_index is inclusive, end_index is exclusive boundary. If they are equal, the slice is considered empty (i.e. contains

no elements). Because sequences are treated as circular structures, the slice may select a few elements in the end of a

sequence followed by a few elements in the beginning of the sequence, for example, cvSlice(-2, 3) in case of 10-

element sequence will select 5-element slice, containing pre-last (8th), last (9th), the very first (0th), second (1th) and

third (2nd) elements. The functions normalize the slice argument in the following way: first, cvSliceLength is called to

determine the length of the slice, then, start_index of the slice is normalized similarly to the argument of cvGetSeqElem

(i.e. negative indices are allowed). The actual slice to process starts at the normalized start_index and lasts

cvSliceLength elements (again, assuming the sequence is a circular structure).

If a function does not take slice argument, but you want to process only a part of the sequence, the sub-sequence

may be extracted using cvSeqSlice function, or stored as into a continuous buffer with cvCvtSeqToArray (optionally,

followed by cvMakeSeqHeaderForArray.

CreateSeq
Creates sequence

CvSeq* cvCreateSeq(int seq_flags, int header_size,

 int elem_size, CvMemStorage* storage);
seq_flags

Flags of the created sequence. If the sequence is not passed to any function working with a specific type of

sequences, the sequence value may be set to 0, otherwise the appropriate type must be selected from the list

of predefined sequence types.
header_size

Size of the sequence header; must be greater or equal to sizeof(CvSeq). If a specific type or its extension is

indicated, this type must fit the base type header.
elem_size

Size of the sequence elements in bytes. The size must be consistent with the sequence type. For example, for

a sequence of points to be created, the element type CV_SEQ_ELTYPE_POINT should be specified and the

parameter elem_size must be equal to sizeof(CvPoint).
storage

Sequence location.

The function cvCreateSeq creates a sequence and returns the pointer to it. The function allocates the sequence header

in the storage block as one continuous chunk and sets the structure fields flags, elem_size, header_size and storage to

passed values, sets delta_elems to the default value (that may be reassigned using cvSetSeqBlockSize function), and

clears other header fields, including the space after the first sizeof(CvSeq) bytes.

SetSeqBlockSize
Sets up sequence block size

void cvSetSeqBlockSize(CvSeq* seq, int delta_elems);
seq

Sequence.
delta_elems

Desirable sequence block size in elements.

The function cvSetSeqBlockSize affects memory allocation granularity. When the free space in the sequence buffers has

run out, the function allocates the space for delta_elems sequence elements. If this block immediately follows the one

previously allocated, the two blocks are concatenated, otherwise, a new sequence block is created. Therefore, the

bigger the parameter is, the lower the possible sequence fragmentation, but the more space in the storage is wasted.

When the sequence is created, the parameter delta_elems is set to the default value ≈1K. The function can be called

any time after the sequence is created and affects future allocations. The function can modify the passed value of the

parameter to meet the memory storage constraints.

SeqPush
Adds element to sequence end

char* cvSeqPush(CvSeq* seq, void* element=NULL);
seq

Sequence.
element

Added element.

The function cvSeqPush adds an element to the end of sequence and retuns pointer to the allocated element. If the input

element is NULL, the function simply allocates a space for one more element.

The following code demonstrates how to create a new sequence using this function:

CvMemStorage* storage = cvCreateMemStorage(0);

CvSeq* seq = cvCreateSeq(CV_32SC1, /* sequence of integer elements */

 sizeof(CvSeq), /* header size - no extra fields */

 sizeof(int), /* element size */

 storage /* the container storage */);

int i;

for(i = 0; i < 100; i++)

{

 int* added = (int*)cvSeqPush(seq, &i);

 printf("%d is added₩n", *added);

}

...

/* release memory storage in the end */

cvReleaseMemStorage(&storage);

The function cvSeqPush has O(1) complexity, but there is a faster method for writing large sequences (see

cvStartWriteSeq and related functions).

SeqPop

Removes element from sequence end

void cvSeqPop(CvSeq* seq, void* element=NULL);
seq

Sequence.
element

Optional parameter. If the pointer is not zero, the function copies the removed element to this location.

The function cvSeqPop removes an element from the sequence. The function reports an error if the sequence is already

empty. The function has O(1) complexity.

SeqPushFront
Adds element to sequence beginning

char* cvSeqPushFront(CvSeq* seq, void* element=NULL);
seq

Sequence.
element

Added element.

The function cvSeqPushFront is similar to cvSeqPush but it adds the new element to the beginning of the sequence. The

function has O(1) complexity.

SeqPopFront
Removes element from sequence beginning

void cvSeqPopFront(CvSeq* seq, void* element=NULL);
seq

Sequence.
element

Optional parameter. If the pointer is not zero, the function copies the removed element to this location.

The function cvSeqPopFront removes an element from the beginning of the sequence. The function reports an error if

the sequence is already empty. The function has O(1) complexity.

SeqPushMulti
Pushes several elements to the either end of sequence

void cvSeqPushMulti(CvSeq* seq, void* elements, int count, int in_front=0);
seq

Sequence.
elements

Added elements.
count

Number of elements to push.
in_front

The flags specifying the modified sequence end:

CV_BACK (=0) - the elements are added to the end of sequence

CV_FRONT(!=0) - the elements are added to the beginning of sequence

The function cvSeqPushMulti adds several elements to either end of the sequence. The elements are added to the

sequence in the same order as they are arranged in the input array but they can fall into different sequence blocks.

SeqPopMulti

Removes several elements from the either end of sequence

void cvSeqPopMulti(CvSeq* seq, void* elements, int count, int in_front=0);
seq

Sequence.
elements

Removed elements.
count

Number of elements to pop.
in_front

The flags specifying the modified sequence end:

CV_BACK (=0) - the elements are removed from the end of sequence

CV_FRONT(!=0) - the elements are removed from the beginning of sequence

The function cvSeqPopMulti removes several elements from either end of the sequence. If the number of the elements to

be removed exceeds the total number of elements in the sequence, the function removes as many elements as

possible.

SeqInsert
Inserts element in sequence middle

char* cvSeqInsert(CvSeq* seq, int before_index, void* element=NULL);
seq

Sequence.
before_index

Index before which the element is inserted. Inserting before 0 (the minimal allowed value of the parameter) is

equal to cvSeqPushFront and inserting before seq->total (the maximal allowed value of the parameter) is

equal to cvSeqPush.
element

Inserted element.

The function cvSeqInsert shifts the sequence elements from the inserted position to the nearest end of the sequence

and copies the element content there if the pointer is not NULL. The function returns pointer to the inserted element.

SeqRemove
Removes element from sequence middle

void cvSeqRemove(CvSeq* seq, int index);
seq

Sequence.
index

Index of removed element.

The function cvSeqRemove removes elements with the given index. If the index is out of range the function reports an

error. An attempt to remove an element from an empty sequence is a partitial case of this situation. The function

removes an element by shifting the sequence elements between the nearest end of the sequence and the index-th

position, not counting the latter.

ClearSeq
Clears sequence

void cvClearSeq(CvSeq* seq);
seq

Sequence.

The function cvClearSeq removes all elements from the sequence. The function does not return the memory to the

storage, but this memory is reused later when new elements are added to the sequence. This function time complexity

is O(1).

GetSeqElem
Returns pointer to sequence element by its index

char* cvGetSeqElem(const CvSeq* seq, int index);

#define CV_GET_SEQ_ELEM(TYPE, seq, index) (TYPE*)cvGetSeqElem((CvSeq*)(seq), (index))
seq

Sequence.
index

Index of element.

The function cvGetSeqElem finds the element with the given index in the sequence and returns the pointer to it. If the

element is not found, the function returns 0. The function supports negative indices, where -1 stands for the last

sequence element, -2 stands for the one before last, etc. If the sequence is most likely to consist of a single sequence

block or the desired element is likely to be located in the first block, then the macro CV_GET_SEQ_ELEM(elemType, seq,

index) should be used, where the parameter elemType is the type of sequence elements (CvPoint for example), the

parameter seq is a sequence, and the parameter index is the index of the desired element. The macro checks first

whether the desired element belongs to the first block of the sequence and returns it if it does, otherwise the macro

calls the main function GetSeqElem. Negative indices always cause the cvGetSeqElem call. The function has O(1) time

complexity assuming that number of blocks is much smaller than the number of elements.

SeqElemIdx
Returns index of concrete sequence element

int cvSeqElemIdx(const CvSeq* seq, const void* element, CvSeqBlock** block=NULL);
seq

Sequence.
element

Pointer to the element within the sequence.
block

Optional argument. If the pointer is not NULL, the address of the sequence block that contains the element is

stored in this location.

The function cvSeqElemIdx returns the index of a sequence element or a negative number if the element is not found.

CvtSeqToArray
Copies sequence to one continuous block of memory

void* cvCvtSeqToArray(const CvSeq* seq, void* elements, CvSlice slice=CV_WHOLE_SEQ);
seq

Sequence.
elements

Pointer to the destination array that must be large enough. It should be a pointer to data, not a matrix header.
slice

The sequence part to copy to the array.

The function cvCvtSeqToArray copies the entire sequence or subsequence to the specified buffer and returns the pointer

to the buffer.

MakeSeqHeaderForArray
Constructs sequence from array

CvSeq* cvMakeSeqHeaderForArray(int seq_type, int header_size, int elem_size,

 void* elements, int total,

 CvSeq* seq, CvSeqBlock* block);
seq_type

Type of the created sequence.
header_size

Size of the header of the sequence. Parameter sequence must point to the structure of that size or greater

size.
elem_size

Size of the sequence element.
elements

Elements that will form a sequence.
total

Total number of elements in the sequence. The number of array elements must be equal to the value of this

parameter.
seq

Pointer to the local variable that is used as the sequence header.
block

Pointer to the local variable that is the header of the single sequence block.

The function cvMakeSeqHeaderForArray initializes sequence header for array. The sequence header as well as the

sequence block are allocated by the user (for example, on stack). No data is copied by the function. The resultant

sequence will consists of a single block and have NULL storage pointer, thus, it is possible to read its elements, but the

attempts to add elements to the sequence will raise an error in most cases.

SeqSlice
Makes separate header for the sequence slice

CvSeq* cvSeqSlice(const CvSeq* seq, CvSlice slice,

 CvMemStorage* storage=NULL, int copy_data=0);
seq

Sequence.
slice

The part of the sequence to extract.
storage

The destination storage to keep the new sequence header and the copied data if any. If it is NULL, the

function uses the storage containing the input sequence.
copy_data

The flag that indicates whether to copy the elements of the extracted slice (copy_data!=0) or not (copy_data=0)

The function cvSeqSlice creates a sequence that represents the specified slice of the input sequence. The new

sequence either shares the elements with the original sequence or has own copy of the elements. So if one needs to

process a part of sequence but the processing function does not have a slice parameter, the required sub-sequence

may be extracted using this function.

CloneSeq
Creates a copy of sequence

CvSeq* cvCloneSeq(const CvSeq* seq, CvMemStorage* storage=NULL);
seq

Sequence.
storage

The destination storage to keep the new sequence header and the copied data if any. If it is NULL, the

function uses the storage containing the input sequence.

The function cvCloneSeq makes a complete copy of the input sequence and returns it. The call cvCloneSeq(seq,

storage) is equivalent to cvSeqSlice(seq, CV_WHOLE_SEQ, storage, 1)

SeqRemoveSlice
Removes sequence slice

void cvSeqRemoveSlice(CvSeq* seq, CvSlice slice);
seq

Sequence.
slice

The part of the sequence to remove.

The function cvSeqRemoveSlice removes slice from the sequence.

SeqInsertSlice
Inserts array in the middle of sequence

void cvSeqInsertSlice(CvSeq* seq, int before_index, const CvArr* from_arr);
seq

Sequence.
slice

The part of the sequence to remove.
from_arr

The array to take elements from.

The function cvSeqInsertSlice inserts all from_arr array elements at the specified position of the sequence. The array

from_arr can be a matrix or another sequence.

SeqInvert
Reverses the order of sequence elements

void cvSeqInvert(CvSeq* seq);
seq

Sequence.

The function cvSeqInvert reverses the sequence in-place - makes the first element go last, the last element go first etc.

SeqSort
Sorts sequence element using the specified comparison function

/* a < b ? -1 : a > b ? 1 : 0 */

typedef int (CV_CDECL* CvCmpFunc)(const void* a, const void* b, void* userdata);

void cvSeqSort(CvSeq* seq, CvCmpFunc func, void* userdata=NULL);
seq

The sequence to sort
func

The comparison function that returns negative, zero or positive value depending on the elements relation (see

the above declaration and the example below) - similar function is used by qsort from C runline except that in

the latter userdata is not used
userdata

The user parameter passed to the compasion function; helps to avoid global variables in some cases.

The function cvSeqSort sorts the sequence in-place using the specified criteria. Below is the example of the function

use:

/* Sort 2d points in top-to-bottom left-to-right order */

static int cmp_func(const void* _a, const void* _b, void* userdata)

{

 CvPoint* a = (CvPoint*)_a;

 CvPoint* b = (CvPoint*)_b;

 int y_diff = a->y - b->y;

 int x_diff = a->x - b->x;

 return y_diff ? y_diff : x_diff;

}

...

CvMemStorage* storage = cvCreateMemStorage(0);

CvSeq* seq = cvCreateSeq(CV_32SC2, sizeof(CvSeq), sizeof(CvPoint), storage);

int i;

for(i = 0; i < 10; i++)

{

 CvPoint pt;

 pt.x = rand() % 1000;

 pt.y = rand() % 1000;

 cvSeqPush(seq, &pt);

}

cvSeqSort(seq, cmp_func, 0 /* userdata is not used here */);

/* print out the sorted sequence */

for(i = 0; i < seq->total; i++)

{

 CvPoint* pt = (CvPoint*)cvSeqElem(seq, i);

 printf("(%d,%d)₩n", pt->x, pt->y);

}

cvReleaseMemStorage(&storage);

SeqSearch
Searches element in sequence

/* a < b ? -1 : a > b ? 1 : 0 */

typedef int (CV_CDECL* CvCmpFunc)(const void* a, const void* b, void* userdata);

char* cvSeqSearch(CvSeq* seq, const void* elem, CvCmpFunc func,

 int is_sorted, int* elem_idx, void* userdata=NULL);
seq

The sequence
elem

The element to look for
func

The comparison function that returns negative, zero or positive value depending on the elements relation (see

also cvSeqSort).
is_sorted

Whether the sequence is sorted or not.
elem_idx

Output parameter; index of the found element.
userdata

The user parameter passed to the compasion function; helps to avoid global variables in some cases.

The function cvSeqSearch searches the element in the sequence. If the sequence is sorted, binary O(log(N)) search is

used, otherwise, a simple linear search is used. If the element is not found, the function returns NULL pointer and the

index is set to the number of sequence elements if the linear search is used, and to the smallest index i, seq(i)>elem.

StartAppendToSeq
Initializes process of writing data to sequence

void cvStartAppendToSeq(CvSeq* seq, CvSeqWriter* writer);
seq

Pointer to the sequence.
writer

Writer state; initialized by the function.

The function cvStartAppendToSeq initializes the process of writing data to the sequence. Written elements are added to

the end of the sequence by CV_WRITE_SEQ_ELEM(written_elem, writer) macro. Note that during the writing process

other operations on the sequence may yield incorrect result or even corrupt the sequence (see description of

cvFlushSeqWriter that helps to avoid some of these problems).

StartWriteSeq
Creates new sequence and initializes writer for it

void cvStartWriteSeq(int seq_flags, int header_size, int elem_size,

 CvMemStorage* storage, CvSeqWriter* writer);
seq_flags

Flags of the created sequence. If the sequence is not passed to any function working with a specific type of

sequences, the sequence value may be equal to 0, otherwise the appropriate type must be selected from the

list of predefined sequence types.
header_size

Size of the sequence header. The parameter value may not be less than sizeof(CvSeq). If a certain type or

extension is specified, it must fit the base type header.
elem_size

Size of the sequence elements in bytes; must be consistent with the sequence type. For example, if the

sequence of points is created (element type CV_SEQ_ELTYPE_POINT), then the parameter elem_size must be

equal to sizeof(CvPoint).
storage

Sequence location.
writer

Writer state; initialized by the function.

The function cvStartWriteSeq is a composition of cvCreateSeq and cvStartAppendToSeq. The pointer to the created

sequence is stored at writer->seq and is also returned by cvEndWriteSeq function that should be called in the end.

EndWriteSeq
Finishes process of writing sequence

CvSeq* cvEndWriteSeq(CvSeqWriter* writer);
writer

Writer state

The function cvEndWriteSeq finishes the writing process and returns the pointer to the written sequence. The function

also truncates the last incomplete sequence block to return the remaining part of the block to the memory storage. After

that the sequence can be read and modified safely.

FlushSeqWriter
Updates sequence headers from the writer state

void cvFlushSeqWriter(CvSeqWriter* writer);
writer

Writer state

The function cvFlushSeqWriter is intended to enable the user to read sequence elements, whenever required, during the

writing process, e.g., in order to check specific conditions. The function updates the sequence headers to make

reading from the sequence possible. The writer is not closed, however, so that the writing process can be continued

any time. In some algorithm requires often flush'es, consider using cvSeqPush instead.

StartReadSeq
Initializes process of sequential reading from sequence

void cvStartReadSeq(const CvSeq* seq, CvSeqReader* reader, int reverse=0);
seq

Sequence.
reader

Reader state; initialized by the function.
reverse

Determines the direction of the sequence traversal. If reverse is 0, the reader is positioned at the first

sequence element, otherwise it is positioned at the last element.

The function cvStartReadSeq initializes the reader state. After that all the sequence elements from the first down to the

last one can be read by subsequent calls of the macro CV_READ_SEQ_ELEM(read_elem, reader) in case of forward

reading and by using CV_REV_READ_SEQ_ELEM(read_elem, reader) in case of reversed reading. Both macros put the

sequence element to read_elem and move the reading pointer toward the next element. A circular structure of sequence

blocks is used for the reading process, that is, after the last element has been read by the macro CV_READ_SEQ_ELEM, the

first element is read when the macro is called again. The same applies to CV_REV_READ_SEQ_ELEM . There is no function

to finish the reading process, since it neither changes the sequence nor creates any temporary buffers. The reader field

ptr points to the current element of the sequence that is to be read next. The code below demonstrates how to use

sequence writer and reader.

CvMemStorage* storage = cvCreateMemStorage(0);

CvSeq* seq = cvCreateSeq(CV_32SC1, sizeof(CvSeq), sizeof(int), storage);

CvSeqWriter writer;

CvSeqReader reader;

int i;

cvStartAppendToSeq(seq, &writer);

for(i = 0; i < 10; i++)

{

 int val = rand()%100;

 CV_WRITE_SEQ_ELEM(val, writer);

 printf("%d is written₩n", val);

}

cvEndWriteSeq(&writer);

cvStartReadSeq(seq, &reader, 0);

for(i = 0; i < seq->total; i++)

{

 int val;

#if 1

 CV_READ_SEQ_ELEM(val, reader);

 printf("%d is read₩n", val);

#else /* alternative way, that is prefferable if sequence elements are large,

 or their size/type is unknown at compile time */

 printf("%d is read₩n", *(int*)reader.ptr);

 CV_NEXT_SEQ_ELEM(seq->elem_size, reader);

#endif

}

...

cvReleaseStorage(&storage);

GetSeqReaderPos
Returns the current reader position

int cvGetSeqReaderPos(CvSeqReader* reader);
reader

Reader state.

The function cvGetSeqReaderPos returns the current reader position (within 0 ... reader->seq->total - 1).

SetSeqReaderPos
Moves the reader to specified position

void cvSetSeqReaderPos(CvSeqReader* reader, int index, int is_relative=0);
reader

Reader state.
index

The destination position. If the positioning mode is used (see the next parameter) the actual position will be

index mod reader->seq->total.
is_relative

If it is not zero, then index is a relative to the current position.

The function cvSetSeqReaderPos moves the read position to the absolute position or relative to the current position.

Sets

CvSet
Collection of nodes

 typedef struct CvSetElem

 {

 int flags; /* it is negative if the node is free and zero or positive otherwise */

 struct CvSetElem* next_free; /* if the node is free, the field is a

 pointer to next free node */

 }

 CvSetElem;

 #define CV_SET_FIELDS() ₩

 CV_SEQUENCE_FIELDS() /* inherits from CvSeq */ ₩

 struct CvSetElem* free_elems; /* list of free nodes */

 typedef struct CvSet

 {

 CV_SET_FIELDS()

 } CvSet;

The structure CvSet is a base for OpenCV sparse data structures.

As follows from the above declaration CvSet inherits from CvSeq and it adds free_elems field it to, which is a list of free

nodes. Every set node, whether free or not, is the element of the underlying sequence. While there is no restrictions on

elements of dense sequences, the set (and derived structures) elements must start with integer field and be able to fit

CvSetElem structure, because these two fields (integer followed by the pointer) are required for organization of node

set with the list of free nodes. If a node is free, flags field is negative (the most-significant bit, or MSB, of the field is

set), and next_free points to the next free node (the first free node is referenced by free_elems field of CvSet). And if a

node is occupied, flags field is positive and contains the node index that may be retrieved using (set_elem->flags &

CV_SET_ELEM_IDX_MASK) expression, the rest of the node content is determined by the user. In particular, the

occupied nodes are not linked as the free nodes are, so the second field can be used for such a link as well as for

some different purpose. The macro CV_IS_SET_ELEM(set_elem_ptr) can be used to determined whether the specified

node is occupied or not.

Initially the set and the list are empty. When a new node is requiested from the set, it is taken from the list of free nodes,

which is updated then. If the list appears to be empty, a new sequence block is allocated and all the nodes within the

block are joined in the list of free nodes. Thus, total field of the set is the total number of nodes both occupied and

free. When an occupied node is released, it is added to the list of free nodes. The node released last will be occupied

first.

In OpenCV CvSet is used for representing graphs (CvGraph), sparse multi-dimensional arrays (CvSparseMat), planar

subdivisions (CvSubdiv2D) etc.

CreateSet
Creates empty set

CvSet* cvCreateSet(int set_flags, int header_size,

 int elem_size, CvMemStorage* storage);
set_flags

Type of the created set.
header_size

Set header size; may not be less than sizeof(CvSet).
elem_size

Set element size; may not be less than CvSetElem.
storage

Container for the set.

The function cvCreateSet creates an empty set with a specified header size and element size, and returns the pointer to

the set. The function is just a thin layer on top of cvCreateSeq.

SetAdd
Occupies a node in the set

int cvSetAdd(CvSet* set_header, CvSetElem* elem=NULL, CvSetElem** inserted_elem=NULL);
set_header

Set.
elem

Optional input argument, inserted element. If not NULL, the function copies the data to the allocated node

(The MSB of the first integer field is cleared after copying).
inserted_elem

Optional output argument; the pointer to the allocated cell.

The function cvSetAdd allocates a new node, optionally copies input element data to it, and returns the pointer and the

index to the node. The index value is taken from the lower bits of flags field of the node. The function has O(1)

complexity, however there exists a faster function for allocating set nodes (see cvSetNew).

SetRemove
Removes element from set

void cvSetRemove(CvSet* set_header, int index);
set_header

Set.
index

Index of the removed element.

The function cvSetRemove removes an element with a specified index from the set. If the node at the specified location

is not occupied the function does nothing. The function has O(1) complexity, however, cvSetRemoveByPtr provides yet

faster way to remove a set element if it is located already.

SetNew
Adds element to set (fast variant)

CvSetElem* cvSetNew(CvSet* set_header);
set_header

Set.

The function cvSetNew is inline light-weight variant of cvSetAdd. It occupies a new node and returns pointer to it rather

than index.

SetRemoveByPtr
Removes set element given its pointer

void cvSetRemoveByPtr(CvSet* set_header, void* elem);
set_header

Set.
elem

Removed element.

The function cvSetRemoveByPtr is inline light-weight variant of cvSetRemove that takes element pointer. The function

does not check whether the node is occupied or not - the user should take care of it.

GetSetElem
Finds set element by its index

CvSetElem* cvGetSetElem(const CvSet* set_header, int index);
set_header

Set.
index

Index of the set element within a sequence.

The function cvGetSetElem finds a set element by index. The function returns the pointer to it or 0 if the index is invalid

or the corresponding node is free. The function supports negative indices as it uses cvGetSeqElem to locate the node.

ClearSet
Clears set

void cvClearSet(CvSet* set_header);
set_header

Cleared set.

The function cvClearSet removes all elements from set. It has O(1) time complexity.

Graphs

CvGraph
Oriented or unoriented weigted graph

 #define CV_GRAPH_VERTEX_FIELDS() ₩

 int flags; /* vertex flags */ ₩

 struct CvGraphEdge* first; /* the first incident edge */

 typedef struct CvGraphVtx

 {

 CV_GRAPH_VERTEX_FIELDS()

 }

 CvGraphVtx;

 #define CV_GRAPH_EDGE_FIELDS() ₩

 int flags; /* edge flags */ ₩

 float weight; /* edge weight */ ₩

 struct CvGraphEdge* next[2]; /* the next edges in the incidence lists for staring (0) */ ₩

 /* and ending (1) vertices */ ₩

 struct CvGraphVtx* vtx[2]; /* the starting (0) and ending (1) vertices */

 typedef struct CvGraphEdge

 {

 CV_GRAPH_EDGE_FIELDS()

 }

 CvGraphEdge;

 #define CV_GRAPH_FIELDS() ₩

 CV_SET_FIELDS() /* set of vertices */ ₩

 CvSet* edges; /* set of edges */

 typedef struct CvGraph

 {

 CV_GRAPH_FIELDS()

 }

 CvGraph;

The structure CvGraph is a base for graphs used in OpenCV.

Graph structure inherits from CvSet - this part describes common graph properties and the graph vertices, and

contains another set as a member - this part describes the graph edges.

The vertex, edge and the graph header structures are declared using the same technique as other extendible OpenCV

structures - via macros, that simplifies extension and customization of the structures. While the vertex and edge

structures do not inherit from CvSetElem explicitly, they satisfy both conditions on the set elements - have an integer

field in the beginning and fit CvSetElem structure. The flags fields are used as for indicating occupied vertices and

edges as well as for other purposes, for example, for graph traversal (see cvCreateGraphScanner et al.), so it is better

not to use them directly.

The graph is represented as a set of edges each of whose has the list of incident edges. The incidence lists for

different vertices are interleaved to avoid information duplication as much as posssible.

The graph may be oriented or unoriented. In the latter case there is no distiction between edge connecting vertex A

with vertex B and the edge connecting vertex B with vertex A - only one of them can exist in the graph at the same

moment and it represents both <A, B> and <B, A> edges..

CreateGraph
Creates empty graph

CvGraph* cvCreateGraph(int graph_flags, int header_size, int vtx_size,

 int edge_size, CvMemStorage* storage);
graph_flags

Type of the created graph. Usually, it is either CV_SEQ_KIND_GRAPH for generic unoriented graphs and

CV_SEQ_KIND_GRAPH | CV_GRAPH_FLAG_ORIENTED for generic oriented graphs.
header_size

Graph header size; may not be less than sizeof(CvGraph).
vtx_size

Graph vertex size; the custom vertex structure must start with CvGraphVtx (use CV_GRAPH_VERTEX_FIELDS())
edge_size

Graph edge size; the custom edge structure must start with CvGraphEdge (use CV_GRAPH_EDGE_FIELDS())

storage
The graph container.

The function cvCreateGraph creates an empty graph and returns pointer to it.

GraphAddVtx
Adds vertex to graph

int cvGraphAddVtx(CvGraph* graph, const CvGraphVtx* vtx=NULL,

 CvGraphVtx** inserted_vtx=NULL);
graph

Graph.
vtx

Optional input argument used to initialize the added vertex (only user-defined fields beyond

sizeof(CvGraphVtx) are copied).
inserted_vertex

Optional output argument. If not NULL, the address of the new vertex is written there.

The function cvGraphAddVtx adds a vertex to the graph and returns the vertex index.

GraphRemoveVtx
Removes vertex from graph

int cvGraphRemoveVtx(CvGraph* graph, int index);
graph

Graph.
vtx_idx

Index of the removed vertex.

The function cvGraphRemoveAddVtx removes a vertex from the graph together with all the edges incident to it. The

function reports an error, if the input vertex does not belong to the graph. The return value is number of edges deleted,

or -1 if the vertex does not belong to the graph.

GraphRemoveVtxByPtr
Removes vertex from graph

int cvGraphRemoveVtxByPtr(CvGraph* graph, CvGraphVtx* vtx);
graph

Graph.
vtx

Pointer to the removed vertex.

The function cvGraphRemoveVtxByPtr removes a vertex from the graph together with all the edges incident to it. The

function reports an error, if the vertex does not belong to the graph. The return value is number of edges deleted, or -1

if the vertex does not belong to the graph.

GetGraphVtx
Finds graph vertex by index

CvGraphVtx* cvGetGraphVtx(CvGraph* graph, int vtx_idx);
graph

Graph.
vtx_idx

Index of the vertex.

The function cvGetGraphVtx finds the graph vertex by index and returns the pointer to it or NULL if the vertex does not

belong to the graph.

GraphVtxIdx
Returns index of graph vertex

int cvGraphVtxIdx(CvGraph* graph, CvGraphVtx* vtx);
graph

Graph.
vtx

Pointer to the graph vertex.

The function cvGraphVtxIdx returns index of the graph vertex.

GraphAddEdge
Adds edge to graph

int cvGraphAddEdge(CvGraph* graph, int start_idx, int end_idx,

 const CvGraphEdge* edge=NULL, CvGraphEdge** inserted_edge=NULL);
graph

Graph.
start_idx

Index of the starting vertex of the edge.
end_idx

Index of the ending vertex of the edge. For unoriented graph the order of the vertex parameters does not

matter.
edge

Optional input parameter, initialization data for the edge.
inserted_edge

Optional output parameter to contain the address of the inserted edge.

The function cvGraphAddEdge connects two specified vertices. The function returns 1 if the edge has been added

successfully, 0 if the edge connecting the two vertices exists already and -1 if either of the vertices was not found, the

starting and the ending vertex are the same or there is some other critical situation. In the latter case (i.e. when the

result is negative) the function also reports an error by default.

GraphAddEdgeByPtr
Adds edge to graph

int cvGraphAddEdgeByPtr(CvGraph* graph, CvGraphVtx* start_vtx, CvGraphVtx* end_vtx,

 const CvGraphEdge* edge=NULL, CvGraphEdge** inserted_edge=NULL);
graph

Graph.
start_vtx

Pointer to the starting vertex of the edge.
end_vtx

Pointer to the ending vertex of the edge. For unoriented graph the order of the vertex parameters does not

matter.
edge

Optional input parameter, initialization data for the edge.
inserted_edge

Optional output parameter to contain the address of the inserted edge within the edge set.

The function cvGraphAddEdge connects two specified vertices. The function returns 1 if the edge has been added

successfully, 0 if the edge connecting the two vertices exists already and -1 if either of the vertices was not found, the

starting and the ending vertex are the same or there is some other critical situation. In the latter case (i.e. when the

result is negative) the function also reports an error by default.

GraphRemoveEdge
Removes edge from graph

void cvGraphRemoveEdge(CvGraph* graph, int start_idx, int end_idx);
graph

Graph.
start_idx

Index of the starting vertex of the edge.
end_idx

Index of the ending vertex of the edge. For unoriented graph the order of the vertex parameters does not

matter.

The function cvGraphRemoveEdge removes the edge connecting two specified vertices. If the vertices are not connected

[in that order], the function does nothing.

GraphRemoveEdgeByPtr
Removes edge from graph

void cvGraphRemoveEdgeByPtr(CvGraph* graph, CvGraphVtx* start_vtx, CvGraphVtx* end_vtx);
graph

Graph.
start_vtx

Pointer to the starting vertex of the edge.
end_vtx

Pointer to the ending vertex of the edge. For unoriented graph the order of the vertex parameters does not

matter.

The function cvGraphRemoveEdgeByPtr removes the edge connecting two specified vertices. If the vertices are not

connected [in that order], the function does nothing.

FindGraphEdge
Finds edge in graph

CvGraphEdge* cvFindGraphEdge(const CvGraph* graph, int start_idx, int end_idx);

#define cvGraphFindEdge cvFindGraphEdge
graph

Graph.
start_idx

Index of the starting vertex of the edge.
end_idx

Index of the ending vertex of the edge. For unoriented graph the order of the vertex parameters does not

matter.

The function cvFindGraphEdge finds the graph edge connecting two specified vertices and returns pointer to it or NULL if

the edge does not exists.

FindGraphEdgeByPtr
Finds edge in graph

CvGraphEdge* cvFindGraphEdgeByPtr(const CvGraph* graph, const CvGraphVtx* start_vtx,

 const CvGraphVtx* end_vtx);

#define cvGraphFindEdgeByPtr cvFindGraphEdgeByPtr
graph

Graph.
start_vtx

Pointer to the starting vertex of the edge.
end_vtx

Pointer to the ending vertex of the edge. For unoriented graph the order of the vertex parameters does not

matter.

The function cvFindGraphEdge finds the graph edge connecting two specified vertices and returns pointer to it or NULL if

the edge does not exists.

GraphEdgeIdx
Returns index of graph edge

int cvGraphEdgeIdx(CvGraph* graph, CvGraphEdge* edge);
graph

Graph.
edge

Pointer to the graph edge.

The function cvGraphEdgeIdx returns index of the graph edge.

GraphVtxDegree
Counts edges indicent to the vertex

int cvGraphVtxDegree(const CvGraph* graph, int vtx_idx);
graph

Graph.
vtx

Index of the graph vertex.

The function cvGraphVtxDegree returns the number of edges incident to the specified vertex, both incoming and

outcoming. To count the edges, the following code is used:

 CvGraphEdge* edge = vertex->first; int count = 0;

 while(edge)

 {

 edge = CV_NEXT_GRAPH_EDGE(edge, vertex);

 count++;

 }

The macro CV_NEXT_GRAPH_EDGE(edge, vertex) returns the edge incident to vertex that follows after edge.

GraphVtxDegreeByPtr
Finds edge in graph

int cvGraphVtxDegreeByPtr(const CvGraph* graph, const CvGraphVtx* vtx);
graph

Graph.
vtx

Pointer to the graph vertex.

The function cvGraphVtxDegree returns the number of edges incident to the specified vertex, both incoming and

outcoming.

ClearGraph

Clears graph

void cvClearGraph(CvGraph* graph);
graph

Graph.

The function cvClearGraph removes all vertices and edges from the graph. The function has O(1) time complexity.

CloneGraph
Clone graph

CvGraph* cvCloneGraph(const CvGraph* graph, CvMemStorage* storage);
graph

The graph to copy.
storage

Container for the copy.

The function cvCloneGraph creates full copy of the graph. If the graph vertices or edges have pointers to some external

data, it still be shared between the copies. The vertex and edge indices in the new graph may be different from the

original, because the function defragments the vertex and edge sets.

CvGraphScanner
Graph traversal state

 typedef struct CvGraphScanner

 {

 CvGraphVtx* vtx; /* current graph vertex (or current edge origin) */

 CvGraphVtx* dst; /* current graph edge destination vertex */

 CvGraphEdge* edge; /* current edge */

 CvGraph* graph; /* the graph */

 CvSeq* stack; /* the graph vertex stack */

 int index; /* the lower bound of certainly visited vertices */

 int mask; /* event mask */

 }

 CvGraphScanner;

The structure CvGraphScanner is used for depth-first graph traversal. See discussion of the functions below.

CreateGraphScanner
Creates structure for depth-first graph traversal

CvGraphScanner* cvCreateGraphScanner(CvGraph* graph, CvGraphVtx* vtx=NULL,

 int mask=CV_GRAPH_ALL_ITEMS);
graph

Graph.
vtx

Initial vertex to start from. If NULL, the traversal starts from the first vertex (a vertex with the minimal index in

the sequence of vertices).
mask

Event mask indicating which events are interesting to the user (where cvNextGraphItem function returns

control to the user) It can be CV_GRAPH_ALL_ITEMS (all events are interesting) or combination of the following

flags:

• CV_GRAPH_VERTEX - stop at the graph vertices visited for the first time

• CV_GRAPH_TREE_EDGE - stop at tree edges (tree edge is the edge connecting the last visited

vertex and the vertex to be visited next)

• CV_GRAPH_BACK_EDGE - stop at back edges (back edge is an edge connecting the last visited

vertex with some of its ancestors in the search tree)

• CV_GRAPH_FORWARD_EDGE - stop at forward edges (forward edge is an edge conecting the last

visited vertex with some of its descendants in the search tree). The forward edges are only possible

during oriented graph traversal)

• CV_GRAPH_CROSS_EDGE - stop at cross edges (cross edge is an edge connecting different search

trees or branches of the same tree. The cross edges are only possible during oriented graphs

traversal)

• CV_GRAPH_ANY_EDGE - stop and any edge (tree, back, forward and cross edges)

• CV_GRAPH_NEW_TREE - stop in the beginning of every new search tree. When the traversal

procedure visits all vertices and edges reachible from the initial vertex (the visited vertices together

with tree edges make up a tree), it searches for some unvisited vertex in the graph and resumes the

traversal process from that vertex. Before starting a new tree (including the very first tree when

cvNextGraphItem is called for the first time) it generates CV_GRAPH_NEW_TREE event.

For unoriented graphs each search tree corresponds to a connected component of the graph.

• CV_GRAPH_BACKTRACKING - stop at every already visited vertex during backtracking - returning to

already visited vertexes of the traversal tree.

The function cvCreateGraphScanner creates structure for depth-first graph traversal/search. The initialized structure is

used in cvNextGraphItem function - the incremental traversal procedure.

NextGraphItem
Makes one or more steps of the graph traversal procedure

int cvNextGraphItem(CvGraphScanner* scanner);
scanner

Graph traversal state. It is updated by the function.

The function cvNextGraphItem traverses through the graph until an event interesting to the user (that is, an event,

specified in the mask in cvCreateGraphScanner call) is met or the traversal is over. In the first case it returns one of the

events, listed in the description of mask parameter above and with the next call it resumes the traversal. In the latter

case it returns CV_GRAPH_OVER (-1). When the event is CV_GRAPH_VERTEX, or CV_GRAPH_BACKTRACKING or

CV_GRAPH_NEW_TREE, the currently observed vertex is stored in scanner->vtx. And if the event is edge-related, the edge

itself is stored at scanner->edge, the previously visited vertex - at scanner->vtx and the other ending vertex of the edge

- at scanner->dst.

ReleaseGraphScanner
Finishes graph traversal procedure

void cvReleaseGraphScanner(CvGraphScanner** scanner);
scanner

Double pointer to graph traverser.

The function cvGraphScanner finishes graph traversal procedure and releases the traverser state.

Trees

CV_TREE_NODE_FIELDS
Helper macro for a tree node type declaration

#define CV_TREE_NODE_FIELDS(node_type) ₩

 int flags; /* micsellaneous flags */ ₩

 int header_size; /* size of sequence header */ ₩

 struct node_type* h_prev; /* previous sequence */ ₩

 struct node_type* h_next; /* next sequence */ ₩

 struct node_type* v_prev; /* 2nd previous sequence */ ₩

 struct node_type* v_next; /* 2nd next sequence */

The macro CV_TREE_NODE_FIELDS() is used to declare structures that can be organized into hierarchical strucutures

(trees), such as CvSeq - the basic type for all dynamical structures. The trees made of nodes declared using this

macro can be processed using the functions described below in this section.

CvTreeNodeIterator
Opens existing or creates new file storage

typedef struct CvTreeNodeIterator

{

 const void* node;

 int level;

 int max_level;

}

CvTreeNodeIterator;

The structure CvTreeNodeIterator is used to traverse trees. The tree node declaration should start with

CV_TREE_NODE_FIELDS(...) macro.

InitTreeNodeIterator
Initializes tree node iterator

void cvInitTreeNodeIterator(CvTreeNodeIterator* tree_iterator,

 const void* first, int max_level);
tree_iterator

Tree iterator initialized by the function.
first

The initial node to start traversing from.
max_level

The maximal level of the tree (first node assumed to be at the first level) to traverse up to. For example, 1

means that only nodes at the same level as first should be visited, 2 means that the nodes on the same level

as first and their direct children should be visited etc.

The function cvInitTreeNodeIterator initializes tree iterator. The tree is traversed in depth-first order.

NextTreeNode
Returns the currently observed node and moves iterator toward the next node

void* cvNextTreeNode(CvTreeNodeIterator* tree_iterator);
tree_iterator

Tree iterator initialized by the function.

The function cvNextTreeNode returns the currently observed node and then updates the iterator - moves it toward the

next node. In other words, the function behavior is similar to *p++ expression on usual C pointer or C++ collection

iterator. The function returns NULL if there is no more nodes.

PrevTreeNode
Returns the currently observed node and moves iterator toward the previous node

void* cvPrevTreeNode(CvTreeNodeIterator* tree_iterator);
tree_iterator

Tree iterator initialized by the function.

The function cvPrevTreeNode returns the currently observed node and then updates the iterator - moves it toward the

previous node. In other words, the function behavior is similar to *p-- expression on usual C pointer or C++ collection

iterator. The function returns NULL if there is no more nodes.

TreeToNodeSeq
Gathers all node pointers to the single sequence

CvSeq* cvTreeToNodeSeq(const void* first, int header_size, CvMemStorage* storage);
first

The initial tree node.
header_size

Header size of the created sequence (sizeof(CvSeq) is the most used value).
storage

Container for the sequence.

The function cvTreeToNodeSeq puts pointers of all nodes reacheable from first to the single sequence. The pointers are

written subsequently in the depth-first order.

InsertNodeIntoTree
Adds new node to the tree

void cvInsertNodeIntoTree(void* node, void* parent, void* frame);
node

The inserted node.
parent

The parent node that is already in the tree.
frame

The top level node. If parent and frame are the same, v_prev field of node is set to NULL rather than parent.

The function cvInsertNodeIntoTree adds another node into tree. The function does not allocate any memory, it can only

modify links of the tree nodes.

RemoveNodeFromTree
Removes node from tree

void cvRemoveNodeFromTree(void* node, void* frame);
node

The removed node.
frame

The top level node. If node->v_prev = NULL and node->h_prev is NULL (i.e. if node is the first child of frame),

frame->v_next is set to node->h_next (i.e. the first child or frame is changed).

The function cvRemoveNodeFromTree removes node from tree. The function does not deallocate any memory, it can only

modify links of the tree nodes.

Drawing Functions

Drawing functions work with matrices/images or arbitrary depth. Antialiasing is implemented only for 8-bit images. All

the functions include parameter color that means rgb value (that may be constructed with CV_RGB macro or cvScalar

function) for color images and brightness for grayscale images.

If a drawn figure is partially or completely outside the image, it is clipped. For color images the order channel is: Blue

Green Red ... If one needs a different channel order, it is possible to construct color via cvScalar with the particular

channel order, or convert the image before and/or after drawing in it with cvCvtColor or cvTransform.

Curves and Shapes

CV_RGB
Constructs a color value

#define CV_RGB(r, g, b) cvScalar((b), (g), (r))

Line
Draws a line segment connecting two points

void cvLine(CvArr* img, CvPoint pt1, CvPoint pt2, CvScalar color,

 int thickness=1, int line_type=8, int shift=0);
img

The image.
pt1

First point of the line segment.
pt2

Second point of the line segment.
color

Line color.
thickness

Line thickness.
line_type

Type of the line:

8 (or 0) - 8-connected line.

4 - 4-connected line.

CV_AA - antialiased line.
shift

Number of fractional bits in the point coordinates.

The function cvLine draws the line segment between pt1 and pt2 points in the image. The line is clipped by the image

or ROI rectangle. For non-antialiased lines with integer coordinates the 8-connected or 4-connected Bresenham

algorithm is used. Thick lines are drawn with rounding endings. Antialiased lines are drawn using Gaussian filtering. To

specify the line color, the user may use the macro CV_RGB(r, g, b).

Rectangle
Draws simple, thick or filled rectangle

void cvRectangle(CvArr* img, CvPoint pt1, CvPoint pt2, CvScalar color,

 int thickness=1, int line_type=8, int shift=0);
img

Image.
pt1

One of the rectangle vertices.
pt2

Opposite rectangle vertex.
color

Line color (RGB) or brightness (grayscale image).

thickness
Thickness of lines that make up the rectangle. Negative values, e.g. CV_FILLED, make the function to draw a

filled rectangle.
line_type

Type of the line, see cvLine description.
shift

Number of fractional bits in the point coordinates.

The function cvRectangle draws a rectangle with two opposite corners pt1 and pt2.

Circle
Draws a circle

void cvCircle(CvArr* img, CvPoint center, int radius, CvScalar color,

 int thickness=1, int line_type=8, int shift=0);
img

Image where the circle is drawn.
center

Center of the circle.
radius

Radius of the circle.
color

Circle color.
thickness

Thickness of the circle outline if positive, otherwise indicates that a filled circle has to be drawn.
line_type

Type of the circle boundary, see cvLine description.
shift

Number of fractional bits in the center coordinates and radius value.

The function cvCircle draws a simple or filled circle with given center and radius. The circle is clipped by ROI rectangle.

To specify the circle color, the user may use the macro CV_RGB (r, g, b).

Ellipse
Draws simple or thick elliptic arc or fills ellipse sector

void cvEllipse(CvArr* img, CvPoint center, CvSize axes, double angle,

 double start_angle, double end_angle, CvScalar color,

 int thickness=1, int line_type=8, int shift=0);
img

Image.
center

Center of the ellipse.
axes

Length of the ellipse axes.
angle

Rotation angle.
start_angle

Starting angle of the elliptic arc.
end_angle

Ending angle of the elliptic arc.
color

Ellipse color.
thickness

Thickness of the ellipse arc.
line_type

Type of the ellipse boundary, see cvLine description.
shift

Number of fractional bits in the center coordinates and axes' values.

The function cvEllipse draws a simple or thick elliptic arc or fills an ellipse sector. The arc is clipped by ROI rectangle.

A piecewise-linear approximation is used for antialiased arcs and thick arcs. All the angles are given in degrees. The

picture below explains the meaning of the parameters.

Parameters of Elliptic Arc

EllipseBox
Draws simple or thick elliptic arc or fills ellipse sector

void cvEllipseBox(CvArr* img, CvBox2D box, CvScalar color,

 int thickness=1, int line_type=8, int shift=0);
img

Image.
box

The enclosing box of the ellipse drawn
thickness

Thickness of the ellipse boundary.
line_type

Type of the ellipse boundary, see cvLine description.
shift

Number of fractional bits in the box vertex coordinates.

The function cvEllipseBox draws a simple or thick ellipse outline, or fills an ellipse. The functions provides a convenient

way to draw an ellipse approximating some shape; that is what cvCamShift and cvFitEllipse do. The ellipse drawn is

clipped by ROI rectangle. A piecewise-linear approximation is used for antialiased arcs and thick arcs.

FillPoly
Fills polygons interior

void cvFillPoly(CvArr* img, CvPoint** pts, int* npts, int contours,

 CvScalar color, int line_type=8, int shift=0);
img

Image.
pts

Array of pointers to polygons.
npts

Array of polygon vertex counters.
contours

Number of contours that bind the filled region.
color

Polygon color.
line_type

Type of the polygon boundaries, see cvLine description.
shift

Number of fractional bits in the vertex coordinates.

The function cvFillPoly fills an area bounded by several polygonal contours. The function fills complex areas, for

example, areas with holes, contour self-intersection, etc.

FillConvexPoly
Fills convex polygon

void cvFillConvexPoly(CvArr* img, CvPoint* pts, int npts,

 CvScalar color, int line_type=8, int shift=0);
img

Image.
pts

Array of pointers to a single polygon.
npts

Polygon vertex counter.
color

Polygon color.
line_type

Type of the polygon boundaries, see cvLine description.
shift

Number of fractional bits in the vertex coordinates.

The function cvFillConvexPoly fills convex polygon interior. This function is much faster than The function cvFillPoly

and can fill not only the convex polygons but any monotonic polygon, i.e. a polygon whose contour intersects every

horizontal line (scan line) twice at the most.

PolyLine
Draws simple or thick polygons

void cvPolyLine(CvArr* img, CvPoint** pts, int* npts, int contours, int is_closed,

 CvScalar color, int thickness=1, int line_type=8, int shift=0);
img

Image.
pts

Array of pointers to polylines.
npts

Array of polyline vertex counters.
contours

Number of polyline contours.
is_closed

Indicates whether the polylines must be drawn closed. If closed, the function draws the line from the last

vertex of every contour to the first vertex.
color

Polyline color.
thickness

Thickness of the polyline edges.
line_type

Type of the line segments, see cvLine description.
shift

Number of fractional bits in the vertex coordinates.

The function cvPolyLine draws a single or multiple polygonal curves.

Text

InitFont
Initializes font structure

void cvInitFont(CvFont* font, int font_face, double hscale,

 double vscale, double shear=0,

 int thickness=1, int line_type=8);
font

Pointer to the font structure initialized by the function.
font_face

Font name identifier. Only a subset of Hershey fonts (http://sources.isc.org/utils/misc/hershey-font.txt) are

supported now:

CV_FONT_HERSHEY_SIMPLEX - normal size sans-serif font

CV_FONT_HERSHEY_PLAIN - small size sans-serif font

CV_FONT_HERSHEY_DUPLEX - normal size sans-serif font (more complex than CV_FONT_HERSHEY_SIMPLEX)

CV_FONT_HERSHEY_COMPLEX - normal size serif font

CV_FONT_HERSHEY_TRIPLEX - normal size serif font (more complex than CV_FONT_HERSHEY_COMPLEX)

CV_FONT_HERSHEY_COMPLEX_SMALL - smaller version of CV_FONT_HERSHEY_COMPLEX

CV_FONT_HERSHEY_SCRIPT_SIMPLEX - hand-writing style font

CV_FONT_HERSHEY_SCRIPT_COMPLEX - more complex variant of CV_FONT_HERSHEY_SCRIPT_SIMPLEX

The parameter can be composited from one of the values above and optional CV_FONT_ITALIC flag, that means

italic or oblique font.
hscale

Horizontal scale. If equal to 1.0f, the characters have the original width depending on the font type. If equal

to 0.5f, the characters are of half the original width.
vscale

Vertical scale. If equal to 1.0f, the characters have the original height depending on the font type. If equal to

0.5f, the characters are of half the original height.
shear

Approximate tangent of the character slope relative to the vertical line. Zero value means a non-italic font,

1.0f means ≈45° slope, etc. thickness Thickness of lines composing letters outlines. The function cvLine is

used for drawing letters.
thickness

Thickness of the text strokes.
line_type

Type of the strokes, see cvLine description.

The function cvInitFont initializes the font structure that can be passed to text rendering functions.

PutText
Draws text string

void cvPutText(CvArr* img, const char* text, CvPoint org, const CvFont* font, CvScalar color);
img

Input image.
text

String to print.
org

Coordinates of the bottom-left corner of the first letter.
font

Pointer to the font structure.
color

Text color.

The function cvPutText renders the text in the image with the specified font and color. The printed text is clipped by ROI

rectangle. Symbols that do not belong to the specified font are replaced with the rectangle symbol.

GetTextSize
Retrieves width and height of text string

void cvGetTextSize(const char* text_string, const CvFont* font, CvSize* text_size, int* baseline);
font

Pointer to the font structure.
text_string

Input string.
text_size

Resultant size of the text string. Height of the text does not include the height of character parts that are

below the baseline.
baseline

y-coordinate of the baseline relatively to the bottom-most text point.

The function cvGetTextSize calculates the binding rectangle for the given text string when a specified font is used.

Point Sets and Contours

DrawContours
Draws contour outlines or interiors in the image

void cvDrawContours(CvArr *img, CvSeq* contour,

 CvScalar external_color, CvScalar hole_color,

 int max_level, int thickness=1,

 int line_type=8, CvPoint offset=cvPoint(0,0));
img

Image where the contours are to be drawn. Like in any other drawing function, the contours are clipped with

the ROI.
contour

Pointer to the first contour.
external_color

Color of the external contours.
hole_color

Color of internal contours (holes).
max_level

Maximal level for drawn contours. If 0, only contour is drawn. If 1, the contour and all contours after it on the

same level are drawn. If 2, all contours after and all contours one level below the contours are drawn, etc. If

the value is negative, the function does not draw the contours following after contour but draws child

contours of contour up to abs(max_level)-1 level.
thickness

Thickness of lines the contours are drawn with. If it is negative (e.g. =CV_FILLED), the contour interiors are

drawn.
line_type

Type of the contour segments, see cvLine description.
offset

Shift all the point coordinates by the specified value. It is useful in case if the contours retrived in some image

ROI and then the ROI offset needs to be taken into account during the rendering.

The function cvDrawContours draws contour outlines in the image if thickness>=0 or fills area bounded by the contours

if thickness<0.

Example. Connected component detection via contour functions
#include "cv.h"

#include "highgui.h"

int main(int argc, char** argv)

{

 IplImage* src;

 // the first command line parameter must be file name of binary (black-n-white) image

 if(argc == 2 && (src=cvLoadImage(argv[1], 0))!= 0)

 {

 IplImage* dst = cvCreateImage(cvGetSize(src), 8, 3);

 CvMemStorage* storage = cvCreateMemStorage(0);

 CvSeq* contour = 0;

 cvThreshold(src, src, 1, 255, CV_THRESH_BINARY);

 cvNamedWindow("Source", 1);

 cvShowImage("Source", src);

 cvFindContours(src, storage, &contour, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);

 cvZero(dst);

 for(; contour != 0; contour = contour->h_next)

 {

 CvScalar color = CV_RGB(rand()&255, rand()&255, rand()&255);

 /* replace CV_FILLED with 1 to see the outlines */

 cvDrawContours(dst, contour, color, color, -1, CV_FILLED, 8);

 }

 cvNamedWindow("Components", 1);

 cvShowImage("Components", dst);

 cvWaitKey(0);

 }

}

Replace CV_FILLED with 1 in the sample below to see the contour outlines

InitLineIterator
Initializes line iterator

int cvInitLineIterator(const CvArr* image, CvPoint pt1, CvPoint pt2,

 CvLineIterator* line_iterator, int connectivity=8,

 int left_to_right=0);
image

Image to sample the line from.
pt1

First ending point of the line segment.
pt2

Second ending point of the line segment.
line_iterator

Pointer to the line iterator state structure.
connectivity

The scanned line connectivity, 4 or 8.
left_to_right

The flag, indicating whether the line should be always scanned from the left-most point to the right-most out

of pt1 and pt2 (left_to_right≠0), or it is scanned in the specified order, from pt1 to pt2 (left_to_right=0).

The function cvInitLineIterator initializes the line iterator and returns the number of pixels between two end points.

Both points must be inside the image. After the iterator has been initialized, all the points on the raster line that

connects the two ending points may be retrieved by successive calls of CV_NEXT_LINE_POINT point. The points on the

line are calculated one by one using 4-connected or 8-connected Bresenham algorithm.

Example. Using line iterator to calculate sum of pixel values along the color line
 CvScalar sum_line_pixels(IplImage* image, CvPoint pt1, CvPoint pt2)

 {

 CvLineIterator iterator;

 int blue_sum = 0, green_sum = 0, red_sum = 0;

 int count = cvInitLineIterator(image, pt1, pt2, &iterator, 8, 0);

 for(int i = 0; i < count; i++){

 blue_sum += iterator.ptr[0];

 green_sum += iterator.ptr[1];

 red_sum += iterator.ptr[2];

 CV_NEXT_LINE_POINT(iterator);

 /* print the pixel coordinates: demonstrates how to calculate the coordinates */

 {

 int offset, x, y;

 /* assume that ROI is not set, otherwise need to take it into account. */

 offset = iterator.ptr - (uchar*)(image->imageData);

 y = offset/image->widthStep;

 x = (offset - y*image->widthStep)/(3*sizeof(uchar) /* size of pixel */);

 printf("(%d,%d)₩n", x, y);

 }

 }

 return cvScalar(blue_sum, green_sum, red_sum);

 }

ClipLine
Clips the line against the image rectangle

int cvClipLine(CvSize img_size, CvPoint* pt1, CvPoint* pt2);
img_size

Size of the image.
pt1

First ending point of the line segment. It is modified by the function.
pt2

Second ending point of the line segment. It is modified by the function.

The function cvClipLine calculates a part of the line segment which is entirely in the image. It returns 0 if the line

segment is completely outside the image and 1 otherwise.

Ellipse2Poly
Approximates elliptic arc with polyline

int cvEllipse2Poly(CvPoint center, CvSize axes,

 int angle, int arc_start,

 int arc_end, CvPoint* pts, int delta);
center

Center of the arc.
axes

Half-sizes of the arc. See cvEllipse.
angle

Rotation angle of the ellipse in degrees. See cvEllipse.
start_angle

Starting angle of the elliptic arc.
end_angle

Ending angle of the elliptic arc.
pts

The array of points, filled by the function.
delta

Angle between the subsequent polyline vertices, approximation accuracy. So, the total number of output

points will ceil((end_angle - start_angle)/delta) + 1 at max.

The function cvEllipse2Poly computes vertices of the polyline that approximates the specified elliptic arc. It is used by

cvEllipse.

ClipLine
CVAPI(int) cvEllipse2Poly(CvPoint center, CvSize axes, int angle, int arc_start, int arc_end, CvPoint * pts, int delta);

Data Persistence and RTTI

File Storage

CvFileStorage
File Storage

 typedef struct CvFileStorage

 {

 ... // hidden fields

 } CvFileStorage;

The structure CvFileStorage is "black box" representation of file storage that is associated with a file on disk. Several

functions that are described below take CvFileStorage on input and allow user to save or to load hierarchical collections

that consist of scalar values, standard CXCore objects (such as matrices, sequences, graphs) and user-defined

objects.

CXCore can read and write data in XML (http://www.w3c.org/XML) or YAML (http://www.yaml.org) formats. Below is

the example of 3×3 floating-point identity matrix A, stored in XML and YAML files using CXCore functions:

XML:
<?xml version="1.0">

<opencv_storage>

<A type_id="opencv-matrix">

 <rows>3</rows>

 <cols>3</cols>

 <dt>f</dt>

 <data>1. 0. 0. 0. 1. 0. 0. 0. 1.</data>

</opencv_storage>
YAML:

%YAML:1.0

A: !!opencv-matrix

 rows: 3

 cols: 3

 dt: f

 data: [1., 0., 0., 0., 1., 0., 0., 0., 1.]

As it can be seen from the examples, XML uses nested tags to represent hierarchy, while YAML uses indentation for

that purpose (similarly to Python programming language).

The same CXCore functions can read and write data in both formats, the particular format is determined by the

extension of the opened file, .xml for XML files and .yml or .yaml for YAML.

CvFileNode
File Storage Node

/* file node type */

#define CV_NODE_NONE 0

#define CV_NODE_INT 1

#define CV_NODE_INTEGER CV_NODE_INT

#define CV_NODE_REAL 2

#define CV_NODE_FLOAT CV_NODE_REAL

#define CV_NODE_STR 3

#define CV_NODE_STRING CV_NODE_STR

#define CV_NODE_REF 4 /* not used */

#define CV_NODE_SEQ 5

#define CV_NODE_MAP 6

#define CV_NODE_TYPE_MASK 7

/* optional flags */

#define CV_NODE_USER 16

#define CV_NODE_EMPTY 32

#define CV_NODE_NAMED 64

#define CV_NODE_TYPE(tag) ((tag) & CV_NODE_TYPE_MASK)

#define CV_NODE_IS_INT(tag) (CV_NODE_TYPE(tag) == CV_NODE_INT)

#define CV_NODE_IS_REAL(tag) (CV_NODE_TYPE(tag) == CV_NODE_REAL)

#define CV_NODE_IS_STRING(tag) (CV_NODE_TYPE(tag) == CV_NODE_STRING)

#define CV_NODE_IS_SEQ(tag) (CV_NODE_TYPE(tag) == CV_NODE_SEQ)

#define CV_NODE_IS_MAP(tag) (CV_NODE_TYPE(tag) == CV_NODE_MAP)

#define CV_NODE_IS_COLLECTION(tag) (CV_NODE_TYPE(tag) >= CV_NODE_SEQ)

#define CV_NODE_IS_FLOW(tag) (((tag) & CV_NODE_FLOW) != 0)

#define CV_NODE_IS_EMPTY(tag) (((tag) & CV_NODE_EMPTY) != 0)

#define CV_NODE_IS_USER(tag) (((tag) & CV_NODE_USER) != 0)

#define CV_NODE_HAS_NAME(tag) (((tag) & CV_NODE_NAMED) != 0)

#define CV_NODE_SEQ_SIMPLE 256

#define CV_NODE_SEQ_IS_SIMPLE(seq) (((seq)->flags & CV_NODE_SEQ_SIMPLE) != 0)

typedef struct CvString

{

 int len;

 char* ptr;

}

CvString;

/* all the keys (names) of elements in the readed file storage

 are stored in the hash to speed up the lookup operations */

typedef struct CvStringHashNode

{

 unsigned hashval;

 CvString str;

 struct CvStringHashNode* next;

}

CvStringHashNode;

/* basic element of the file storage - scalar or collection */

typedef struct CvFileNode

{

 int tag;

 struct CvTypeInfo* info; /* type information

 (only for user-defined object, for others it is 0) */

 union

 {

 double f; /* scalar floating-point number */

 int i; /* scalar integer number */

 CvString str; /* text string */

 CvSeq* seq; /* sequence (ordered collection of file nodes) */

 struct CvMap* map; /* map (collection of named file nodes) */

 } data;

}

CvFileNode;

The structure is used only for retrieving data from file storage (i.e. for loading data from file). When data is written to file,

it is done sequentially, with minimal buffering. No data is stored in the file storage.

In opposite, when data is read from file, the whole file is parsed and represented in memory as a tree. Every node of

the tree is represented by CvFileNode. Type of the file node N can be retrieved as CV_NODE_TYPE(N->tag). Some file

nodes (leaves) are scalars: text strings, integer or floating-point numbers. Other file nodes are collections of file nodes,

which can be scalars or collections in their turn. There are two types of collections: sequences and maps (we use

YAML notation, however, the same is true for XML streams). Sequences (do not mix them with CvSeq) are ordered

collections of unnamed file nodes, maps are unordered collections of named file nodes. Thus, elements of sequences

are accessed by index (cvGetSeqElem), while elements of maps are accessed by name (cvGetFileNodeByName). The

table below describes the different types of a file node:

Type CV_NODE_TYPE(node->tag) Value

Integer CV_NODE_INT node->data.i

Floating-point CV_NODE_REAL node->data.f

Text string CV_NODE_STR node->data.str.ptr

Sequence CV_NODE_SEQ node->data.seq

Map CV_NODE_MAP node->data.map*

*
There is no need to access map field directly (BTW, CvMap is a hidden structure). The elements of the map can

be retrieved with cvGetFileNodeByName function that takes pointer to the "map" file node.

A user (custom) object is instance of either one of standard CxCore types, such as CvMat, CvSeq etc., or any type

registered with cvRegisterTypeInfo. Such an object is initially represented in file as a map (as shown in XML and YAML

sample files above), after file storage has been opened and parsed. Then the object can be decoded (coverted to the

native representation) by request - when user calls cvRead or cvReadByName function.

CvAttrList
List of attributes

typedef struct CvAttrList

{

 const char** attr; /* NULL-terminated array of (attribute_name,attribute_value) pairs */

 struct CvAttrList* next; /* pointer to next chunk of the attributes list */

}

CvAttrList;

/* initializes CvAttrList structure */

inline CvAttrList cvAttrList(const char** attr=NULL, CvAttrList* next=NULL);

/* returns attribute value or 0 (NULL) if there is no such attribute */

const char* cvAttrValue(const CvAttrList* attr, const char* attr_name);

In the current implementation attributes are used to pass extra parameters when writing user objects (see cvWrite). XML

attributes inside tags are not supported, besides the object type specification (type_id attribute).

OpenFileStorage
Opens file storage for reading or writing data

CvFileStorage* cvOpenFileStorage(const char* filename, CvMemStorage* memstorage, int flags);
filename

Name of the file associated with the storage.
memstorage

Memory storage used for temporary data and for storing dynamic structures, such as CvSeq or CvGraph. If it

is NULL, a temporary memory storage is created and used.
flags

Can be one of the following:

CV_STORAGE_READ - the storage is open for reading

CV_STORAGE_WRITE - the storage is open for writing

The function cvOpenFileStorage opens file storage for reading or writing data. In the latter case a new file is created or

existing file is rewritten. Type of the read of written file is determined by the filename extension: .xml for XML, and .yml

or .yaml for YAML. The function returns pointer to CvFileStorage structure.

ReleaseFileStorage
Releases file storage

void cvReleaseFileStorage(CvFileStorage** fs);
fs

Double pointer to the released file storage.

The function cvReleaseFileStorage closes the file associated with the storage and releases all the temporary structures.

It must be called after all I/O operations with the storage are finished.

Writing Data

StartWriteStruct
Starts writing a new structure

void cvStartWriteStruct(CvFileStorage* fs, const char* name,

 int struct_flags, const char* type_name=NULL,

 CvAttrList attributes=cvAttrList());
fs

File storage.
name

Name of the written structure. The structure can be accessed by this name when the storage is read.
struct_flags

A combination one of the following values:

CV_NODE_SEQ - the written structure is a sequence (see discussion of CvFileStorage), that is, its elements do

not have a name.

CV_NODE_MAP - the written structure is a map (see discussion of CvFileStorage), that is, all its elements have

names.

One and only one of the two above flags must be specified

CV_NODE_FLOW - the optional flag that has sense only for YAML streams. It means that the structure is written

as a flow (not as a block), which is more compact. It is recommended to use this flag for structures or arrays

whose elements are all scalars.
type_name

Optional parameter - the object type name. In case of XML it is written as type_id attribute of the structure

opening tag. In case of YAML it is written after a colon following the structure name (see the example in

CvFileStorage description). Mainly it comes with user objects. When the storage is read, the encoded type

name is used to determine the object type (see CvTypeInfo and cvFindTypeInfo).
attributes

This parameter is not used in the current implementation.

The function cvStartWriteStruct starts writing a compound structure (collection) that can be a sequence or a map.

After all the structure fields, which can be scalars or structures, are written, cvEndWriteStruct should be called. The

function can be used to group some objects or to implement write function for a some user object (see CvTypeInfo).

EndWriteStruct
Ends writing a structure

void cvEndWriteStruct(CvFileStorage* fs);
fs

File storage.

The function cvEndWriteStruct finishes the currently written structure.

WriteInt
Writes an integer value

void cvWriteInt(CvFileStorage* fs, const char* name, int value);
fs

File storage.
name

Name of the written value. Should be NULL if and only if the parent structure is a sequence.
value

The written value.

The function cvWriteInt writes a single integer value (with or without a name) to the file storage.

WriteReal
Writes a floating-point value

void cvWriteReal(CvFileStorage* fs, const char* name, double value);
fs

File storage.
name

Name of the written value. Should be NULL if and only if the parent structure is a sequence.
value

The written value.

The function cvWriteReal writes a single floating-point value (with or without a name) to the file storage. The special

values are encoded: NaN (Not A Number) as .NaN, ±Infinity as +.Inf (-.Inf).

The following example shows how to use the low-level writing functions to store custom structures, such as termination

criteria, without registering a new type.

void write_termcriteria(CvFileStorage* fs, const char* struct_name,

 CvTermCriteria* termcrit)

{

 cvStartWriteStruct(fs, struct_name, CV_NODE_MAP, NULL, cvAttrList(0,0));

 cvWriteComment(fs, "termination criteria", 1); // just a description

 if(termcrit->type & CV_TERMCRIT_ITER)

 cvWriteInteger(fs, "max_iterations", termcrit->max_iter);

 if(termcrit->type & CV_TERMCRIT_EPS)

 cvWriteReal(fs, "accuracy", termcrit->epsilon);

 cvEndWriteStruct(fs);

}

WriteString
Writes a text string

void cvWriteString(CvFileStorage* fs, const char* name,

 const char* str, int quote=0);
fs

File storage.
name

Name of the written string. Should be NULL if and only if the parent structure is a sequence.
str

The written text string.
quote

If non-zero, the written string is put in quotes, regardless of whether they are required or not. Otherwise, if

the flag is zero, quotes are used only when they are required (e.g. when the string starts with a digit or

contains spaces).

The function cvWriteString writes a text string to the file storage.

WriteComment
Writes comment

void cvWriteComment(CvFileStorage* fs, const char* comment, int eol_comment);
fs

File storage.
comment

The written comment, single-line or multi-line.
eol_comment

If non-zero, the function tries to put the comment in the end of current line. If the flag is zero, if the comment

is multi-line, or if it does not fit in the end of the current line, the comment starts from a new line.

The function cvWriteComment writes a comment into the file storage. The comments are skipped when the storage is

read, so they may be used only for debugging or descriptive purposes.

StartNextStream
Starts the next stream

void cvStartNextStream(CvFileStorage* fs);
fs

File storage.

The function cvStartNextStream starts the next stream in the file storage. Both YAML and XML supports multiple

"streams". This is useful for concatenating files or for resuming the writing process.

Write
Writes user object

void cvWrite(CvFileStorage* fs, const char* name,

 const void* ptr, CvAttrList attributes=cvAttrList());
fs

File storage.
name

Name, of the written object. Should be NULL if and only if the parent structure is a sequence.
ptr

Pointer to the object.
attributes

The attributes of the object. They are specific for each particular type (see the dicsussion).

The function cvWrite writes the object to file storage. First, the appropriate type info is found using cvTypeOf. Then,

write method of the type info is called.

Attributes are used to customize the writing procedure. The standard types support the following attributes (all the *dt

attributes have the same format as in cvWriteRawData):

CvSeq

• header_dt - description of user fields of the sequence header that follow CvSeq, or CvChain (if the

sequence is Freeman chain) or CvContour (if the sequence is a contour or point sequence)

• dt - description of the sequence elements.

• recursive - if the attribute is present and is not equal to "0" or "false", the whole tree of sequences

(contours) is stored.

CvGraph

• header_dt - description of user fields of the graph header that follow CvGraph;

• vertex_dt - description of user fields of graph vertices

• edge_dt - description of user fields of graph edges (note, that edge weight is always written, so

there is no need to specify it explicitly)

Below is the code that creates the YAML file shown in CvFileStorage description:

#include "cxcore.h"

int main(int argc, char** argv)

{

 CvMat* mat = cvCreateMat(3, 3, CV_32F);

 CvFileStorage* fs = cvOpenFileStorage("example.yml", 0, CV_STORAGE_WRITE);

 cvSetIdentity(mat);

 cvWrite(fs, "A", mat, cvAttrList(0,0));

 cvReleaseFileStorage(&fs);

 cvReleaseMat(&mat);

 return 0;

}

WriteRawData
Writes multiple numbers

void cvWriteRawData(CvFileStorage* fs, const void* src,

 int len, const char* dt);
fs

File storage.
src

Pointer to the written array
len

Number of the array elements to write.
dt

Specification of each array element that has the following format: ([count]{'u'|'c'|'w'|'s'|'i'|'f'|'d'})...,

where the characters correspond to fundamental C types:

• 'u' - 8-bit unsigned number

• 'c' - 8-bit signed number

• 'w' - 16-bit unsigned number

• 's' - 16-bit signed number

• 'i' - 32-bit signed number

• 'f' - single precision floating-point number

• 'd' - double precision floating-point number

• 'r' - pointer. 32 lower bits of it are written as a signed integer. The type can be used to store

structures with links between the elements.

count is the optional counter of values of the certain type. For example, dt='2if' means that each array

element is a structure of 2 integers, followed by a single-precision floating-point number. The equivalent

notations of the above specification are 'iif', '2i1f' etc. Other examples: dt='u' means that the array

consists of bytes, dt='2d' - the array consists of pairs of double’s.

The function cvWriteRawData writes array, which elements consist of a single of multiple numbers. The function call can

be replaced with a loop containing a few cvWriteInt and cvWriteReal calls, but a single call is more efficient. Note, that

because none of the elements have a name, they should be written to a sequence rather than a map.

WriteFileNode
Writes file node to another file storage

void cvWriteFileNode(CvFileStorage* fs, const char* new_node_name,

 const CvFileNode* node, int embed);
fs

Destination file storage.
new_file_node

New name of the file node in the destination file storage. To keep the existing name, use

cvGetFileNodeName(node).
node

The written node
embed

If the written node is a collection and this parameter is not zero, no extra level of hiararchy is created. Instead,

all the elements of node are written into the currently written structure. Of course, map elements may be

written only to map, and sequence elements may be written only to sequence.

The function cvWriteFileNode writes a copy of file node to file storage. The possible application of the function are:

merging several file storages into one. Conversion between XML and YAML formats etc.

Reading Data

Data are retrieved from file storage in 2 steps: first, the file node containing the requested data is found; then, data is

extracted from the node manually or using custom read method.

GetRootFileNode
Retrieves one of top-level nodes of the file storage

CvFileNode* cvGetRootFileNode(const CvFileStorage* fs, int stream_index=0);
fs

File storage.
stream_index

Zero-based index of the stream. See cvStartNextStream. In most cases, there is only one stream in the file,

however there can be several.

The function cvGetRootFileNode returns one of top-level file nodes. The top-level nodes do not have a name, they

correspond to the streams, that are stored one after another in the file storage. If the index is out of range, the function

returns NULL pointer, so all the top-level nodes may be iterated by subsequent calls to the function with

stream_index=0,1,..., until NULL pointer is returned. This function may be used as a base for recursive traversal of the

file storage.

GetFileNodeByName
Finds node in the map or file storage

CvFileNode* cvGetFileNodeByName(const CvFileStorage* fs,

 const CvFileNode* map,

 const char* name);

fs
File storage.

map
The parent map. If it is NULL, the function searches in all the top-level nodes (streams), starting from the first

one.
name

The file node name.

The function cvGetFileNodeByName finds a file node by name. The node is searched either in map or, if the pointer is NULL,

among the top-level file nodes of the storage. Using this function for maps and cvGetSeqElem (or sequence reader)

for sequences, it is possible to nagivate through the file storage. To speed up multiple queries for a certain key (e.g. in

case of array of structures) one may use a pair of cvGetHashedKey and cvGetFileNode.

GetHashedKey
Returns a unique pointer for given name

CvStringHashNode* cvGetHashedKey(CvFileStorage* fs, const char* name,

 int len=-1, int create_missing=0);
fs

File storage.
name

Literal node name.
len

Length of the name (if it is known apriori), or -1 if it needs to be calculated.
create_missing

Flag that specifies, whether an absent key should be added into the hash table, or not.

The function cvGetHashedKey returns the unique pointer for each particular file node name. This pointer can be then

passed to cvGetFileNode function that is faster than cvGetFileNodeByName because it compares text strings by

comparing pointers rather than the strings' content.

Consider the following example: an array of points is encoded as a sequence of 2-entry maps, e.g.:

%YAML:1.0

points:

 - { x: 10, y: 10 }

 - { x: 20, y: 20 }

 - { x: 30, y: 30 }

 # ...

Then, it is possible to get hashed "x" and "y" pointers to speed up decoding of the points.

Example. Reading an array of structures from file storage
#include "cxcore.h"

int main(int argc, char** argv)

{

 CvFileStorage* fs = cvOpenFileStorage("points.yml", 0, CV_STORAGE_READ);

 CvStringHashNode* x_key = cvGetHashedNode(fs, "x", -1, 1);

 CvStringHashNode* y_key = cvGetHashedNode(fs, "y", -1, 1);

 CvFileNode* points = cvGetFileNodeByName(fs, 0, "points");

 if(CV_NODE_IS_SEQ(points->tag))

 {

 CvSeq* seq = points->data.seq;

 int i, total = seq->total;

 CvSeqReader reader;

 cvStartReadSeq(seq, &reader, 0);

 for(i = 0; i < total; i++)

 {

 CvFileNode* pt = (CvFileNode*)reader.ptr;

#if 1 /* faster variant */

 CvFileNode* xnode = cvGetFileNode(fs, pt, x_key, 0);

 CvFileNode* ynode = cvGetFileNode(fs, pt, y_key, 0);

 assert(xnode && CV_NODE_IS_INT(xnode->tag) &&

 ynode && CV_NODE_IS_INT(ynode->tag));

 int x = xnode->data.i; // or x = cvReadInt(xnode, 0);

 int y = ynode->data.i; // or y = cvReadInt(ynode, 0);

#elif 1 /* slower variant; does not use x_key & y_key */

 CvFileNode* xnode = cvGetFileNodeByName(fs, pt, "x");

 CvFileNode* ynode = cvGetFileNodeByName(fs, pt, "y");

 assert(xnode && CV_NODE_IS_INT(xnode->tag) &&

 ynode && CV_NODE_IS_INT(ynode->tag));

 int x = xnode->data.i; // or x = cvReadInt(xnode, 0);

 int y = ynode->data.i; // or y = cvReadInt(ynode, 0);

#else /* the slowest yet the easiest to use variant */

 int x = cvReadIntByName(fs, pt, "x", 0 /* default value */);

 int y = cvReadIntByName(fs, pt, "y", 0 /* default value */);

#endif

 CV_NEXT_SEQ_ELEM(seq->elem_size, reader);

 printf("%d: (%d, %d)₩n", i, x, y);

 }

 }

 cvReleaseFileStorage(&fs);

 return 0;

}

Please note that, whatever method of accessing map you are using, it is still much slower than using plain sequences,

for example, in the above sample, it is more efficient to encode the points as pairs of integers in the single numeric

sequence.

GetFileNode
Finds node in the map or file storage

CvFileNode* cvGetFileNode(CvFileStorage* fs, CvFileNode* map,

 const CvStringHashNode* key, int create_missing=0);
fs

File storage.
map

The parent map. If it is NULL, the function searches a top-level node. If both map and key are NULLs, the

function returns the root file node - a map that contains top-level nodes.
key

Unique pointer to the node name, retrieved with cvGetHashedKey.
create_missing

Flag that specifies, whether an absent node should be added to the map, or not.

The function cvGetFileNode finds a file node. It is a faster version cvGetFileNodeByName (see cvGetHashedKey

discussion). Also, the function can insert a new node, if it is not in the map yet (which is used by parsing functions).

GetFileNodeName
Returns name of file node

const char* cvGetFileNodeName(const CvFileNode* node);
node

File node

The function cvGetFileNodeName returns name of the file node or NULL, if the file node does not have a name, or if node

is NULL.

ReadInt

Retrieves integer value from file node

int cvReadInt(const CvFileNode* node, int default_value=0);
node

File node.
default_value

The value that is returned if node is NULL.

The function cvReadInt returns integer that is represented by the file node. If the file node is NULL, default_value is

returned (thus, it is convenient to call the function right after cvGetFileNode without checking for NULL pointer),

otherwise if the file node has type CV_NODE_INT, then node->data.i is returned, otherwise if the file node has type

CV_NODE_REAL, then node->data.f is converted to integer and returned, otherwise the result is not determined.

ReadIntByName
Finds file node and returns its value

int cvReadIntByName(const CvFileStorage* fs, const CvFileNode* map,

 const char* name, int default_value=0);
fs

File storage.
map

The parent map. If it is NULL, the function searches a top-level node.
name

The node name.
default_value

The value that is returned if the file node is not found.

The function cvReadIntByName is a simple superposition of cvGetFileNodeByName and cvReadInt.

ReadReal
Retrieves floating-point value from file node

double cvReadReal(const CvFileNode* node, double default_value=0.);
node

File node.
default_value

The value that is returned if node is NULL.

The function cvReadReal returns floating-point value that is represented by the file node. If the file node is NULL,

default_value is returned (thus, it is convenient to call the function right after cvGetFileNode without checking for NULL

pointer), otherwise if the file node has type CV_NODE_REAL, then node->data.f is returned, otherwise if the file node has

type CV_NODE_INT, then node->data.f is converted to floating-point and returned, otherwise the result is not determined.

ReadRealByName
Finds file node and returns its value

double cvReadRealByName(const CvFileStorage* fs, const CvFileNode* map,

 const char* name, double default_value=0.);
fs

File storage.
map

The parent map. If it is NULL, the function searches a top-level node.
name

The node name.
default_value

The value that is returned if the file node is not found.

The function cvReadRealByName is a simple superposition of cvGetFileNodeByName and cvReadReal.

ReadString
Retrieves text string from file node

const char* cvReadString(const CvFileNode* node, const char* default_value=NULL);
node

File node.
default_value

The value that is returned if node is NULL.

The function cvReadString returns text string that is represented by the file node. If the file node is NULL, default_value

is returned (thus, it is convenient to call the function right after cvGetFileNode without checking for NULL pointer),

otherwise if the file node has type CV_NODE_STR, then node->data.str.ptr is returned, otherwise the result is not

determined.

ReadStringByName
Finds file node and returns its value

const char* cvReadStringByName(const CvFileStorage* fs, const CvFileNode* map,

 const char* name, const char* default_value=NULL);
fs

File storage.
map

The parent map. If it is NULL, the function searches a top-level node.
name

The node name.
default_value

The value that is returned if the file node is not found.

The function cvReadStringByName is a simple superposition of cvGetFileNodeByName and cvReadString.

Read
Decodes object and returns pointer to it

void* cvRead(CvFileStorage* fs, CvFileNode* node,

 CvAttrList* attributes=NULL);
fs

File storage.
node

The root object node.
attributes

Unused parameter.

The function cvRead decodes user object (creates object in a native representation from the file storage subtree) and

returns it. The object to be decoded must be an instance of registered type that supports read method (see

CvTypeInfo). Type of the object is determined by the type name that is encoded in the file. If the object is dynamic

structure, it is created either in memory storage, passed to cvOpenFileStorage or, if NULL pointer was passed, in

temporary memory storage, which is release when cvReleaseFileStorage is called. Otherwise, if the object is not a

dynamic structure, it is created in heap and should be released with a specialized function or using generic cvRelease.

ReadByName
Finds object and decodes it

void* cvReadByName(CvFileStorage* fs, const CvFileNode* map,

 const char* name, CvAttrList* attributes=NULL);
fs

File storage.
map

The parent map. If it is NULL, the function searches a top-level node.
name

The node name.
attributes

Unused parameter.

The function cvReadByName is a simple superposition of cvGetFileNodeByName and cvRead.

ReadRawData
Reads multiple numbers

void cvReadRawData(const CvFileStorage* fs, const CvFileNode* src,

 void* dst, const char* dt);
fs

File storage.
src

The file node (a sequence) to read numbers from.
dst

Pointer to the destination array.
dt

Specification of each array element. It has the same format as in cvWriteRawData.

The function cvReadRawData reads elements from a file node that represents a sequence of scalars

StartReadRawData
Initializes file node sequence reader

void cvStartReadRawData(const CvFileStorage* fs, const CvFileNode* src,

 CvSeqReader* reader);
fs

File storage.
src

The file node (a sequence) to read numbers from.
reader

Pointer to the sequence reader.

The function cvStartReadRawData initializes sequence reader to read data from file node. The initialized reader can be

then passed to cvReadRawDataSlice.

ReadRawDataSlice
Initializes file node sequence reader

void cvReadRawDataSlice(const CvFileStorage* fs, CvSeqReader* reader,

 int count, void* dst, const char* dt);
fs

File storage.
reader

The sequence reader. Initialize it with cvStartReadRawData.
count

The number of elements to read.
dst

Pointer to the destination array.
dt

Specification of each array element. It has the same format as in cvWriteRawData.

The function cvReadRawDataSlice reads one or more elements from the file node, representing a sequence, to user-

specified array. The total number of read sequence elements is a product of total and the number of components in

each array element. For example, if dt='2if', the function will read total*3 sequence elements. As with any sequence,

some parts of the file node sequence may be skipped or read repeatedly by repositioning the reader using

cvSetSeqReaderPos.

RTTI and Generic Functions

CvTypeInfo
Type information

typedef int (CV_CDECL *CvIsInstanceFunc)(const void* struct_ptr);

typedef void (CV_CDECL *CvReleaseFunc)(void** struct_dblptr);

typedef void* (CV_CDECL *CvReadFunc)(CvFileStorage* storage, CvFileNode* node);

typedef void (CV_CDECL *CvWriteFunc)(CvFileStorage* storage,

 const char* name,

 const void* struct_ptr,

 CvAttrList attributes);

typedef void* (CV_CDECL *CvCloneFunc)(const void* struct_ptr);

typedef struct CvTypeInfo

{

 int flags; /* not used */

 int header_size; /* sizeof(CvTypeInfo) */

 struct CvTypeInfo* prev; /* previous registered type in the list */

 struct CvTypeInfo* next; /* next registered type in the list */

 const char* type_name; /* type name, written to file storage */

 /* methods */

 CvIsInstanceFunc is_instance; /* checks if the passed object belongs to the type */

 CvReleaseFunc release; /* releases object (memory etc.) */

 CvReadFunc read; /* reads object from file storage */

 CvWriteFunc write; /* writes object to file storage */

 CvCloneFunc clone; /* creates a copy of the object */

}

CvTypeInfo;

The structure CvTypeInfo contains information about one of standard or user-defined types. Instances of the type may

or may not contain pointer to the corresponding CvTypeInfo structure. In any case there is a way to find type info

structure for given object - using cvTypeOf function. Aternatively, type info can be found by the type name using

cvFindType, which is used when object is read from file storage. User can register a new type with cvRegisterType that

adds the type information structure into the beginning of the type list - thus, it is possible to create specialized types

from generic standard types and override the basic methods.

RegisterType
Registers new type

void cvRegisterType(const CvTypeInfo* info);
info

Type info structure.

The function cvRegisterType registers a new type, which is described by info. The function creates a copy of the

structure, so user should delete it after calling the function.

UnregisterType
Unregisters the type

void cvUnregisterType(const char* type_name);
type_name

Name of the unregistered type.

The function cvUnregisterType unregisters the type with the specified name. If the name is unknown, it is possible to

locate the type info by an instance of the type using cvTypeOf or by iterating the type list, starting from cvFirstType,

and then call cvUnregisterType(info->type_name).

FirstType
Returns the beginning of type list

CvTypeInfo* cvFirstType(void);

The function cvFirstType returns the first type of the list of registered types. Navigation through the list can be done via

prev and next fields of CvTypeInfo structure.

FindType
Finds type by its name

CvTypeInfo* cvFindType(const char* type_name);
type_name

Type name.

The function cvFindType finds a registered type by its name. It returns NULL, if there is no type with the specified name.

TypeOf
Returns type of the object

CvTypeInfo* cvTypeOf(const void* struct_ptr);
struct_ptr

The object pointer.

The function cvTypeOf finds the type of given object. It iterates through the list of registered types and calls is_instance

function/method of every type info structure with the object until one of them return non-zero or until the whole list has

been traversed. In the latter case the function returns NULL.

Release
Releases the object

void cvRelease(void** struct_ptr);
struct_ptr

Double pointer to the object.

The function cvRelease finds the type of given object and calls release with the double pointer.

Clone
Makes a clone of the object

void* cvClone(const void* struct_ptr);
struct_ptr

The object to clone.

The function cvClone finds the type of given object and calls clone with the passed object.

Save
Saves object to file

void cvSave(const char* filename, const void* struct_ptr,

 const char* name=NULL,

 const char* comment=NULL,

 CvAttrList attributes=cvAttrList());
filename

File name.
struct_ptr

Object to save.
name

Optional object name. If it is NULL, the name will be formed from filename.
comment

Optional comment to put in the beginning of the file.
attributes

Optional attributes passed to cvWrite.

The function cvSave saves object to file. It provides a simple interface to cvWrite.

Load
Loads object from file

void* cvLoad(const char* filename, CvMemStorage* memstorage=NULL,

 const char* name=NULL, const char** real_name=NULL);
filename

File name.
memstorage

Memory storage for dynamic structures, such as CvSeq or CvGraph. It is not used for matrices or images.
name

Optional object name. If it is NULL, the first top-level object in the storage will be loaded.
real_name

Optional output parameter that will contain name of the loaded object (useful if name=NULL).

The function cvLoad loads object from file. It provides a simple interface to cvRead. After object is loaded, the file

storage is closed and all the temporary buffers are deleted. Thus, to load a dynamic structure, such as sequence,

contour or graph, one should pass a valid destination memory storage to the function.

Miscellaneous Functions

CheckArr
Checks every element of input array for invalid values

int cvCheckArr(const CvArr* arr, int flags=0,

 double min_val=0, double max_val=0);

#define cvCheckArray cvCheckArr
arr

The array to check.
flags

The operation flags, 0 or combination of:

CV_CHECK_RANGE - if set, the function checks that every value of array is within [minVal,maxVal) range,

otherwise it just checks that every element is neigther NaN nor ±Infinity.

CV_CHECK_QUIET - if set, the function does not raises an error if an element is invalid or out of range
min_val

The inclusive lower boundary of valid values range. It is used only if CV_CHECK_RANGE is set.
max_val

The exclusive upper boundary of valid values range. It is used only if CV_CHECK_RANGE is set.

The function cvCheckArr checks that every array element is neither NaN nor ±Infinity. If CV_CHECK_RANGE is set, it also

checks that every element is greater than or equal to minVal and less than maxVal. The function returns nonzero if the

check succeeded, i.e. all elements are valid and within the range, and zero otherwise. In the latter case if

CV_CHECK_QUIET flag is not set, the function raises runtime error.

KMeans2
Splits set of vectors by given number of clusters

void cvKMeans2(const CvArr* samples, int cluster_count,

 CvArr* labels, CvTermCriteria termcrit);
samples

Floating-point matrix of input samples, one row per sample.
cluster_count

Number of clusters to split the set by.
labels

Output integer vector storing cluster indices for every sample.
termcrit

Specifies maximum number of iterations and/or accuracy (distance the centers move by between the

subsequent iterations).

The function cvKMeans2 implements k-means algorithm that finds centers of cluster_count clusters and groups the input

samples around the clusters. On output labels(i) contains a cluster index for sample stored in the i-th row of samples

matrix.

Example. Clustering random samples of multi-gaussian distribution with k-means
#include "cxcore.h"

#include "highgui.h"

void main(int argc, char** argv)

{

 #define MAX_CLUSTERS 5

 CvScalar color_tab[MAX_CLUSTERS];

 IplImage* img = cvCreateImage(cvSize(500, 500), 8, 3);

 CvRNG rng = cvRNG(0xffffffff);

 color_tab[0] = CV_RGB(255,0,0);

 color_tab[1] = CV_RGB(0,255,0);

 color_tab[2] = CV_RGB(100,100,255);

 color_tab[3] = CV_RGB(255,0,255);

 color_tab[4] = CV_RGB(255,255,0);

 cvNamedWindow("clusters", 1);

 for(;;)

 {

 int k, cluster_count = cvRandInt(&rng)%MAX_CLUSTERS + 1;

 int i, sample_count = cvRandInt(&rng)%1000 + 1;

 CvMat* points = cvCreateMat(sample_count, 1, CV_32FC2);

 CvMat* clusters = cvCreateMat(sample_count, 1, CV_32SC1);

 /* generate random sample from multigaussian distribution */

 for(k = 0; k < cluster_count; k++)

 {

 CvPoint center;

 CvMat point_chunk;

 center.x = cvRandInt(&rng)%img->width;

 center.y = cvRandInt(&rng)%img->height;

 cvGetRows(points, &point_chunk, k*sample_count/cluster_count,

 k == cluster_count - 1 ? sample_count : (k+1)*sample_count/cluster_count);

 cvRandArr(&rng, &point_chunk, CV_RAND_NORMAL,

 cvScalar(center.x,center.y,0,0),

 cvScalar(img->width/6, img->height/6,0,0));

 }

 /* shuffle samples */

 for(i = 0; i < sample_count/2; i++)

 {

 CvPoint2D32f* pt1 = (CvPoint2D32f*)points->data.fl + cvRandInt(&rng)%sample_count;

 CvPoint2D32f* pt2 = (CvPoint2D32f*)points->data.fl + cvRandInt(&rng)%sample_count;

 CvPoint2D32f temp;

 CV_SWAP(*pt1, *pt2, temp);

 }

 cvKMeans2(points, cluster_count, clusters,

 cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0));

 cvZero(img);

 for(i = 0; i < sample_count; i++)

 {

 CvPoint2D32f pt = ((CvPoint2D32f*)points->data.fl)[i];

 int cluster_idx = clusters->data.i[i];

 cvCircle(img, cvPointFrom32f(pt), 2, color_tab[cluster_idx], CV_FILLED);

 }

 cvReleaseMat(&points);

 cvReleaseMat(&clusters);

 cvShowImage("clusters", img);

 int key = cvWaitKey(0);

 if(key == 27) // 'ESC'

 break;

 }

}

SeqPartition
Splits sequence into equivalency classes

typedef int (CV_CDECL* CvCmpFunc)(const void* a, const void* b, void* userdata);

int cvSeqPartition(const CvSeq* seq, CvMemStorage* storage, CvSeq** labels,

 CvCmpFunc is_equal, void* userdata);
seq

The sequence to partition.
storage

The storage to store the sequence of equivalency classes. If it is NULL, the function uses seq->storage for

output labels.
labels

Ouput parameter. Double pointer to the sequence of 0-based labels of input sequence elements.
is_equal

The relation function that should return non-zero if the two particular sequence elements are from the same

class, and zero overwise. The partitioning algorithm uses transitive closure of the relation function as

equivalency critria.
userdata

Pointer that is transparently passed to the is_equal function.

The function cvSeqPartition implements quadratic algorithm for splitting a set into one or more classes of equivalency.

The function returns the number of equivalency classes.

Example. Partitioning 2d point set.
#include "cxcore.h"

#include "highgui.h"

#include <stdio.h>

CvSeq* point_seq = 0;

IplImage* canvas = 0;

CvScalar* colors = 0;

int pos = 10;

int is_equal(const void* _a, const void* _b, void* userdata)

{

 CvPoint a = *(const CvPoint*)_a;

 CvPoint b = *(const CvPoint*)_b;

 double threshold = *(double*)userdata;

 return (double)(a.x - b.x)*(a.x - b.x) + (double)(a.y - b.y)*(a.y - b.y) <= threshold;

}

void on_track(int pos)

{

 CvSeq* labels = 0;

 double threshold = pos*pos;

 int i, class_count = cvSeqPartition(point_seq, 0, &labels, is_equal, &threshold);

 printf("%4d classes₩n", class_count);

 cvZero(canvas);

 for(i = 0; i < labels->total; i++)

 {

 CvPoint pt = *(CvPoint*)cvGetSeqElem(point_seq, i, 0);

 CvScalar color = colors[*(int*)cvGetSeqElem(labels, i, 0)];

 cvCircle(canvas, pt, 1, color, -1);

 }

 cvShowImage("points", canvas);

}

int main(int argc, char** argv)

{

 CvMemStorage* storage = cvCreateMemStorage(0);

 point_seq = cvCreateSeq(CV_32SC2, sizeof(CvSeq), sizeof(CvPoint), storage);

 CvRNG rng = cvRNG(0xffffffff);

 int width = 500, height = 500;

 int i, count = 1000;

 canvas = cvCreateImage(cvSize(width,height), 8, 3);

 colors = (CvScalar*)cvAlloc(count*sizeof(colors[0]));

 for(i = 0; i < count; i++)

 {

 CvPoint pt;

 int icolor;

 pt.x = cvRandInt(&rng) % width;

 pt.y = cvRandInt(&rng) % height;

 cvSeqPush(point_seq, &pt);

 icolor = cvRandInt(&rng) | 0x00404040;

 colors[i] = CV_RGB(icolor & 255, (icolor >> 8)&255, (icolor >> 16)&255);

 }

 cvNamedWindow("points", 1);

 cvCreateTrackbar("threshold", "points", &pos, 50, on_track);

 on_track(pos);

 cvWaitKey(0);

 return 0;

}

Error Handling and System Functions

Error Handling

Error handling in OpenCV is similar to IPL (Image Processing Library). In case of error functions do not return the error

code. Instead, they raise an error using CV_ERROR macro that calls cvError that, in its turn, sets the error status with

cvSetErrStatus and calls a standard or user-defined error handler (that can display a message box, write to log etc.,

see cvRedirectError, cvNulDevReport, cvStdErrReport, cvGuiBoxReport). There is global variable, one per each program

thread, that contains current error status (an integer value). The status can be retrieved with cvGetErrStatus function.

There are three modes of error handling (see cvSetErrMode and cvGetErrMode):

Leaf
The program is terminated after error handler is called. This is the default value. It is useful for debugging, as

the error is signalled immediately after it occurs. However, for production systems other two methods may be

prefferable as they provide more control.
Parent

The program is not terminated, but the error handler is called. The stack is unwinded (it is done w/o using

C++ exception mechanism). User may check error code after calling CxCore function with cvGetErrStatus and

react.
Silent

Similar to Parent mode, but no error handler is called.

Actually, the semantics of Leaf and Parent modes is implemented by error handlers and the above description is true

for cvNulDevReport, cvStdErrReport. cvGuiBoxReport behaves slightly differently, and some custom error handler may

implement quite different semantics.

ERROR Handling Macros
Macros for raising an error, checking for errors etc.

/* special macros for enclosing processing statements within a function and separating

 them from prologue (resource initialization) and epilogue (guaranteed resource release) */

#define __BEGIN__ {

#define __END__ goto exit; exit: ; }

/* proceeds to "resource release" stage */

#define EXIT goto exit

/* Declares locally the function name for CV_ERROR() use */

#define CV_FUNCNAME(Name) ₩

 static char cvFuncName[] = Name

/* Raises an error within the current context */

#define CV_ERROR(Code, Msg) ₩

{ ₩

 cvError((Code), cvFuncName, Msg, __FILE__, __LINE__); ₩

 EXIT; ₩

}

/* Checks status after calling CXCORE function */

#define CV_CHECK() ₩

{ ₩

 if(cvGetErrStatus() < 0) ₩

 CV_ERROR(CV_StsBackTrace, "Inner function failed."); ₩

}

/* Provies shorthand for CXCORE function call and CV_CHECK() */

#define CV_CALL(Statement) ₩

{ ₩

 Statement; ₩

 CV_CHECK(); ₩

}

/* Checks some condition in both debug and release configurations */

#define CV_ASSERT(Condition) ₩

{ ₩

 if(!(Condition)) ₩

 CV_ERROR(CV_StsInternal, "Assertion: " #Condition " failed"); ₩

}

/* these macros are similar to their CV_... counterparts, but they

 do not need exit label nor cvFuncName to be defined */

#define OPENCV_ERROR(status,func_name,err_msg) ...

#define OPENCV_ERRCHK(func_name,err_msg) ...

#define OPENCV_ASSERT(condition,func_name,err_msg) ...

#define OPENCV_CALL(statement) ...

Instead of a discussion, here are the documented example of typical CXCORE function and the example of the function

use.

Use of Error Handling Macros
#include "cxcore.h"

#include <stdio.h>

void cvResizeDCT(CvMat* input_array, CvMat* output_array)

{

 CvMat* temp_array = 0; // declare pointer that should be released anyway.

 CV_FUNCNAME("cvResizeDCT"); // declare cvFuncName

 __BEGIN__; // start processing. There may be some declarations just after this macro,

 // but they couldn't be accessed from the epilogue.

 if(!CV_IS_MAT(input_array) || !CV_IS_MAT(output_array))

 // use CV_ERROR() to raise an error

 CV_ERROR(CV_StsBadArg, "input_array or output_array are not valid matrices");

 // some restrictions that are going to be removed later, may be checked with CV_ASSERT()

 CV_ASSERT(input_array->rows == 1 && output_array->rows == 1);

 // use CV_CALL for safe function call

 CV_CALL(temp_array = cvCreateMat(input_array->rows, MAX(input_array->cols,output_array->cols),

 input_array->type));

 if(output_array->cols > input_array->cols)

 CV_CALL(cvZero(temp_array));

 temp_array->cols = input_array->cols;

 CV_CALL(cvDCT(input_array, temp_array, CV_DXT_FORWARD));

 temp_array->cols = output_array->cols;

 CV_CALL(cvDCT(temp_array, output_array, CV_DXT_INVERSE));

 CV_CALL(cvScale(output_array, output_array, 1./sqrt((double)input_array->cols*output_array->cols), 0));

 __END__; // finish processing. Epilogue follows after the macro.

 // release temp_array. If temp_array has not been allocated before an error occured, cvReleaseMat

 // takes care of it and does nothing in this case.

 cvReleaseMat(&temp_array);

}

int main(int argc, char** argv)

{

 CvMat* src = cvCreateMat(1, 512, CV_32F);

#if 1 /* no errors */

 CvMat* dst = cvCreateMat(1, 256, CV_32F);

#else

 CvMat* dst = 0; /* test error processing mechanism */

#endif

 cvSet(src, cvRealScalar(1.), 0);

#if 0 /* change 0 to 1 to suppress error handler invocation */

 cvSetErrMode(CV_ErrModeSilent);

#endif

 cvResizeDCT(src, dst); // if some error occurs, the message box will popup, or a message will be

 // written to log, or some user-defined processing will be done

 if(cvGetErrStatus() < 0)

 printf("Some error occured");

 else

 printf("Everything is OK");

 return 0;

}

GetErrStatus
Returns the current error status

int cvGetErrStatus(void);

The function cvGetErrStatus returns the current error status - the value set with the last cvSetErrStatus call. Note, that

in Leaf mode the program terminates immediately after error occured, so to always get control after the function call,

one should call cvSetErrMode and set Parent or Silent error mode.

SetErrStatus
Sets the error status

void cvSetErrStatus(int status);
status

The error status.

The function cvSetErrStatus sets the error status to the specified value. Mostly, the function is used to reset the error

status (set to it CV_StsOk) to recover after error. In other cases it is more natural to call cvError or CV_ERROR.

GetErrMode
Returns the current error mode

int cvGetErrMode(void);

The function cvGetErrMode returns the current error mode - the value set with the last cvSetErrMode call.

SetErrMode
Sets the error mode

#define CV_ErrModeLeaf 0

#define CV_ErrModeParent 1

#define CV_ErrModeSilent 2

int cvSetErrMode(int mode);
mode

The error mode.

The function cvSetErrMode sets the specified error mode. For description of different error modes see the beginning of

the section.

Error
Raises an error

int cvError(int status, const char* func_name,

 const char* err_msg, const char* file_name, int line);
status

The error status.
func_name

Name of the function where the error occured.
err_msg

Additional information/diagnostics about the error.
file_name

Name of the file where the error occured.
line

Line number, where the error occured.

The function cvError sets the error status to the specified value (via cvSetErrStatus) and, if the error mode is not Silent,
calls the error handler.

ErrorStr
Returns textual description of error status code

const char* cvErrorStr(int status);
status

The error status.

The function cvErrorStr returns the textual description for the specified error status code. In case of unknown status

the function returns NULL pointer.

RedirectError
Sets a new error handler

typedef int (CV_CDECL *CvErrorCallback)(int status, const char* func_name,

 const char* err_msg, const char* file_name, int line);

CvErrorCallback cvRedirectError(CvErrorCallback error_handler,

 void* userdata=NULL, void** prev_userdata=NULL);
error_handler

The new error_handler.
userdata

Arbitrary pointer that is transparetly passed to the error handler.
prev_userdata

Pointer to the previously assigned user data pointer.

The function cvRedirectError sets a new error handler that can be one of standard handlers or a custom handler that

has the certain interface. The handler takes the same parameters as cvError function. If the handler returns non-zero

value, the program is terminated, otherwise, it continues. The error handler may check the current error mode with

cvGetErrMode to make a decision.

cvNulDevReport cvStdErrReport cvGuiBoxReport
Provide standard error handling

int cvNulDevReport(int status, const char* func_name,

 const char* err_msg, const char* file_name,

 int line, void* userdata);

int cvStdErrReport(int status, const char* func_name,

 const char* err_msg, const char* file_name,

 int line, void* userdata);

int cvGuiBoxReport(int status, const char* func_name,

 const char* err_msg, const char* file_name,

 int line, void* userdata);
status

The error status.
func_name

Name of the function where the error occured.
err_msg

Additional information/diagnostics about the error.
file_name

Name of the file where the error occured.
line

Line number, where the error occured.
userdata

Pointer to the user data. Ignored by the standard handlers.

The functions cvNullDevReport, cvStdErrReport and cvGuiBoxReport provide standard error handling. cvGuiBoxReport is

the default error handler on Win32 systems, cvStdErrReport - on other systems. cvGuiBoxReport pops up message box

with the error description and suggest a few options. Below is the sample message box that may be recieved with the

sample code above, if one introduce an error as described in the sample

Error Message Box

If the error handler is set cvStdErrReport, the above message will be printed to standard error output and program will

be terminated or continued, depending on the current error mode.

Error Message printed to Standard Error Output (in Leaf mode)
OpenCV ERROR: Bad argument (input_array or output_array are not valid matrices)

 in function cvResizeDCT, D:₩User₩VP₩Projects₩avl_proba₩a.cpp(75)

Terminating the application...

System and Utility Functions

Alloc
Allocates memory buffer

void* cvAlloc(size_t size);
size

Buffer size in bytes.

The function cvAlloc allocates size bytes and returns pointer to the allocated buffer. In case of error the function

reports an error and returns NULL pointer. By default cvAlloc calls icvAlloc which itself calls malloc, however it is

possible to assign user-defined memory allocation/deallocation functions using cvSetMemoryManager function.

Free
Deallocates memory buffer

void cvFree(T** ptr);
buffer

Double pointer to released buffer.

The function cvFree deallocates memory buffer allocated by cvAlloc. It clears the pointer to buffer upon exit, that is why

the double pointer is used. If *buffer is already NULL, the function does nothing

GetTickCount
Returns number of tics

int64 cvGetTickCount(void);

The function cvGetTickCount returns number of tics starting from some platform-dependent event (number of CPU ticks

from the startup, number of milliseconds from 1970th year etc.). The function is useful for accurate measurement of a

function/user-code execution time. To convert the number of tics to time units, use cvGetTickFrequency.

GetTickFrequency
Returns number of tics per microsecond

double cvGetTickFrequency(void);

The function cvGetTickFrequency returns number of tics per microsecond. Thus, the quotient of cvGetTickCount() and

cvGetTickFrequency() will give a number of microseconds starting from the platform-dependent event.

RegisterModule
Registers another module

typedef struct CvPluginFuncInfo

{

 void** func_addr;

 void* default_func_addr;

 const char* func_names;

 int search_modules;

 int loaded_from;

}

CvPluginFuncInfo;

typedef struct CvModuleInfo

{

 struct CvModuleInfo* next;

 const char* name;

 const char* version;

 CvPluginFuncInfo* func_tab;

}

CvModuleInfo;

int cvRegisterModule(const CvModuleInfo* module_info);
module_info

Information about the module.

The function cvRegisterModule adds module to the list of registered modules. After the module is registered, information

about it can be retrieved using cvGetModuleInfo function. Also, the registered module makes full use of optimized

plugins (IPP, MKL, ...), supported by CXCORE. CXCORE itself, CV (computer vision), CVAUX (auxilary computer vision)

and HIGHGUI (visualization & image/video acquisition) are examples of modules. Registration is usually done then the

shared library is loaded. See cxcore/src/cxswitcher.cpp and cv/src/cvswitcher.cpp for details, how registration is done

and look at cxcore/src/cxswitcher.cpp, cxcore/src/_cxipp.h on how IPP and MKL are connected to the modules.

GetModuleInfo
Retrieves information about the registered module(s) and plugins

void cvGetModuleInfo(const char* module_name,

 const char** version,

 const char** loaded_addon_plugins);
module_name

Name of the module of interest, or NULL, which means all the modules.
version

The output parameter. Information about the module(s), including version.
loaded_addon_plugins

The list of names and versions of the optimized plugins that CXCORE was able to find and load.

The function cvGetModuleInfo returns information about one of or all of the registered modules. The returned information

is stored inside the libraries, so user should not deallocate or modify the returned text strings.

UseOptimized
Switches between optimized/non-optimized modes

int cvUseOptimized(int on_off);
on_off

Use optimized (<>0) or not (0).

The function cvUseOptimized switches between the mode, where only pure C implementations from cxcore, OpenCV etc.

are used, and the mode, where IPP and MKL functions are used if available. When cvUseOptimized(0) is called, all the

optimized libraries are unloaded. The function may be useful for debugging, IPP&MKL upgrade on the fly, online speed

comparisons etc. It returns the number of optimized functions loaded. Note that by default the optimized plugins are

loaded, so it is not necessary to call cvUseOptimized(1) in the beginning of the program (actually, it will only increase

the startup time)

SetMemoryManager
Assings custom/default memory managing functions

typedef void* (CV_CDECL *CvAllocFunc)(size_t size, void* userdata);

typedef int (CV_CDECL *CvFreeFunc)(void* pptr, void* userdata);

void cvSetMemoryManager(CvAllocFunc alloc_func=NULL,

 CvFreeFunc free_func=NULL,

 void* userdata=NULL);
alloc_func

Allocation function; the interface is similar to malloc, except that userdata may be used to determine the

context.
free_func

Deallocation function; the interface is similar to free.
userdata

User data that is transparetly passed to the custom functions.

The function cvSetMemoryManager sets user-defined memory managment functions (substitutors for malloc and free) that

will be called by cvAlloc, cvFree and higher-level functions (e.g. cvCreateImage). Note, that the function should be

called when there is data allocated using cvAlloc. Also, to avoid infinite recursive calls, it is not allowed to call cvAlloc

and cvFree from the custom allocation/deallocation functions.

If alloc_func and free_func pointers are NULL, the default memory managing functions are restored.

SetIPLAllocators
Switches to IPL functions for image allocation/deallocation

typedef IplImage* (CV_STDCALL* Cv_iplCreateImageHeader)

 (int,int,int,char*,char*,int,int,int,int,int,

 IplROI*,IplImage*,void*,IplTileInfo*);

typedef void (CV_STDCALL* Cv_iplAllocateImageData)(IplImage*,int,int);

typedef void (CV_STDCALL* Cv_iplDeallocate)(IplImage*,int);

typedef IplROI* (CV_STDCALL* Cv_iplCreateROI)(int,int,int,int,int);

typedef IplImage* (CV_STDCALL* Cv_iplCloneImage)(const IplImage*);

void cvSetIPLAllocators(Cv_iplCreateImageHeader create_header,

 Cv_iplAllocateImageData allocate_data,

 Cv_iplDeallocate deallocate,

 Cv_iplCreateROI create_roi,

 Cv_iplCloneImage clone_image);

#define CV_TURN_ON_IPL_COMPATIBILITY() ₩

 cvSetIPLAllocators(iplCreateImageHeader, iplAllocateImage, ₩

 iplDeallocate, iplCreateROI, iplCloneImage)
create_header

Pointer to iplCreateImageHeader.
allocate_data

Pointer to iplAllocateImage.
deallocate

Pointer to iplDeallocate.
create_roi

Pointer to iplCreateROI.
clone_image

Pointer to iplCloneImage.

The function cvSetIPLAllocators makes CXCORE to use IPL functions for image allocation/deallocation operations. For

convenience, there is the wrapping macro CV_TURN_ON_IPL_COMPATIBILITY. The function is useful for applications where

IPL and CXCORE/OpenCV are used together and still there are calls to iplCreateImageHeader etc. The function is not

necessary if IPL is called only for data processing and all the allocation/deallocation is done by CXCORE, or if all the

allocation/deallocation is done by IPL and some of OpenCV functions are used to process the data.

GetNumThreads
Returns the current number of threads used

int cvGetNumThreads(void);

The function cvGetNumThreads return the current number of threads that are used by parallelized (via OpenMP) OpenCV

functions.

SetNumThreads
Sets the number of threads

void cvSetNumThreads(int threads=0);
threads

The number of threads.

The function cvSetNumThreads sets the number of threads that are used by parallelized OpenCV functions. When the

argument is zero or negative, and at the beginning of the program, the number of threads is set to the number of

processors in the system, as returned by the function omp_get_num_procs() from OpenMP runtime.

GetThreadNum
Returns index of the current thread

int cvGetThreadNum(void);

The function cvGetThreadNum returns the index, from 0 to cvGetNumThreads()-1, of the thread that called the function. It

is a wrapper for the function omp_get_thread_num() from OpenMP runtime. The retrieved index may be used to access

local-thread data inside the parallelized code fragments.

Alphabetical List of Functions

A
AbsDiff AddWeighted Avg

AbsDiffS Alloc AvgSdv

Add And

AddS AndS

B
BackProjectPCA

C
CalcCovarMatrix CloneGraph CreateGraph

CalcPCA CloneImage CreateGraphScanner

CartToPolar CloneMat CreateImage

Cbrt CloneMatND CreateImageHeader

CheckArr CloneSeq CreateMat

Circle CloneSparseMat CreateMatHeader

ClearGraph Cmp CreateMatND

ClearMemStorage CmpS CreateMatNDHeader

ClearND ConvertScale CreateMemStorage

ClearSeq ConvertScaleAbs CreateSeq

ClearSet Copy CreateSet

ClipLine CountNonZero CreateSparseMat

ClipLine CreateChildMemStorage CrossProduct

Clone CreateData CvtSeqToArray

D
DCT Det DrawContours

DFT Div

DecRefData DotProduct

E
EigenVV EllipseBox Error

Ellipse EndWriteSeq ErrorStr

Ellipse2Poly EndWriteStruct Exp

F
FastArctan FindGraphEdgeByPtr FlushSeqWriter

FillConvexPoly FindType Free

FillPoly FirstType

FindGraphEdge Flip

G
GEMM GetMat GetTickCount

Get*D GetModuleInfo GetTickFrequency

GetCol GetNextSparseNode GraphAddEdge

GetDiag GetNumThreads GraphAddEdgeByPtr

GetDims GetOptimalDFTSize GraphAddVtx

GetElemType GetRawData GraphEdgeIdx

GetErrMode GetReal*D GraphRemoveEdge

GetErrStatus GetRootFileNode GraphRemoveEdgeByPtr

GetFileNode GetRow GraphRemoveVtx

GetFileNodeByName GetSeqElem GraphRemoveVtxByPtr

GetFileNodeName GetSeqReaderPos GraphVtxDegree

GetGraphVtx GetSetElem GraphVtxDegreeByPtr

GetHashedKey GetSize GraphVtxIdx

GetImage GetSubRect GuiBoxReport

GetImageCOI GetTextSize Get

GetImageROI GetThreadNum

I
InRange InitLineIterator InsertNodeIntoTree

InRangeS InitMatHeader InvSqrt

IncRefData InitMatNDHeader Invert

InitFont InitSparseMatIterator IsInf

InitImageHeader InitTreeNodeIterator IsNaN

K
KMeans2

L
LUT Load

Line Log

M
Mahalonobis MemStorageAlloc MinS

MakeSeqHeaderForArray MemStorageAllocString MixChannels

Mat Merge Mul

Max Min MulSpectrums

MaxS MinMaxLoc MulTransposed

N
NextGraphItem Norm Not

NextTreeNode Normalize NulDevReport

O
OpenFileStorage Or OrS

P
PerspectiveTransform Pow Ptr*D

PolarToCart PrevTreeNode PutText

PolyLine ProjectPCA

R
RNG ReadRealByName ReleaseImageHeader

RandArr ReadString ReleaseMat

RandInt ReadStringByName ReleaseMatND

RandReal Rectangle ReleaseMemStorage

RandShuffle RedirectError ReleaseSparseMat

Range Reduce RemoveNodeFromTree

Read RegisterModule Repeat

ReadByName RegisterType ResetImageROI

ReadInt Release Reshape

ReadIntByName ReleaseData ReshapeMatND

ReadRawData ReleaseFileStorage RestoreMemStoragePos

ReadRawDataSlice ReleaseGraphScanner Round

ReadReal ReleaseImage

S
SVBkSb SeqSlice SetSeqReaderPos

SVD SeqSort SetZero

Save Set Solve

SaveMemStoragePos Set*D SolveCubic

ScaleAdd SetAdd Split

SeqElemIdx SetData Sqrt

SeqInsert SetErrMode StartAppendToSeq

SeqInsertSlice SetErrStatus StartNextStream

SeqInvert SetIPLAllocators StartReadRawData

SeqPartition SetIdentity StartReadSeq

SeqPop SetImageCOI StartWriteSeq

SeqPopFront SetImageROI StartWriteStruct

SeqPopMulti SetMemoryManager StdErrReport

SeqPush SetNew Sub

SeqPushFront SetNumThreads SubRS

SeqPushMulti SetReal*D SubS

SeqRemove SetRemove Sum

SeqRemoveSlice SetRemoveByPtr Set

SeqSearch SetSeqBlockSize

T
Trace Transpose TypeOf

Transform TreeToNodeSeq

U
UnregisterType UseOptimized

W
Write WriteInt WriteString

WriteComment WriteRawData

WriteFileNode WriteReal

X
Xor XorS

List of Examples

