Computer Communications 31 (2008) 4376-4382

Contents lists available at ScienceDirect

computer
communications |

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

iMuseum: A scalable context-aware intelligent museum system

Zhiyong Yu?, Xingshe Zhou?, Zhiwen Yu®P* Jong Hyuk Park®, Jianhua Ma¢

aSchool of Computer Science, Northwestern Polytechnical University, PR China

b Academic Center for Computing and Media Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
€ Department of Computer Science and Engineering, Kyungnam University, Korea

d Faculty of Computer and Information Sciences, Hosei University, Japan

ARTICLE INFO ABSTRACT

Article history:
Available online 16 May 2008

A context-aware intelligent museum system can capture the information of the visitor and surroundings,
recognize the visitor's purpose, and then assist visiting in the museum. It is noted that not only the devices
in the museum cannot be easily predicted, but the available applications may change over time. Therefore
infinite entities and dynamic context knowledge are necessarily managed by a system with good scalability.
This paper proposes a scalable context-aware intelligent museum system called iMuseum. The system is
based on a new context model, 2«3CM (2 Sets and 3 Layers Context Model) that integrates the advantages
of ontology-based model and hierarchical model. The iMuseum system has two novel features: distributed
acquisition of context knowledge on demand and centralized sharing of context knowledge with double-
repository. With the two mechanisms, the system is able to support defining new concepts, synthesizing
high-level context, and querying application-oriented context at run-time. As a result, the third parties
can independently develop their own applications or context providers, and also add or end them option-
ally. The preliminary experimental results have demonstrated the scalability and acceptance of the system.

Keywords:

Intelligent museum
Context-aware

Scalability

Dynamic context knowledge

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The intelligent museum is the new generation museum follow-
ing traditional and digital ones [1]. It not only helps visitors receive
commentaries of cultural relics conveniently and accurately, but
also provides personalization services toward visitors by mobile,
multimedia or web technologies to enhance the tourist experience
in the museum.

A context-aware system for intelligent museum treats the mu-
seum as a smart space. It collects information of visitors and sur-
roundings, recognizes visitors’ purposes, and then assists visiting,
whiles striving to be minimally intrusive through this process
[2]. The system manages all the entities (e.g., applications, sensors,
and handheld devices) and context information (e.g., visitor loca-
tion and profile, surrounding light and temperature, cultural relics,
and device capabilities) in the museum. It should support the
interoperation between entities and hide the complexity, hetero-
geneity, and dynamics of the computing environment.

The fundamental difference between an intelligent museum
and other smart spaces is that visitors are ambulatory. A visitor
may enter or exit at any time, which leads his/her profile and de-

* Corresponding author. Address: School of Computer Science, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, P.R. China. Tel.: +81 075 753 7480;
fax: +81 075 753 7480.

E-mail addresses: yuzhiyong@mail.nwpu.edu.cn (Z. Yu), zhouxs@nwpu.edu.cn
(X. Zhou), yu@ccm.media.kyoto-u.ac.jp (Z. Yu), jhpark1@kyungnam.ac.kr (J.H. Park),
jianhua@hosei.ac.jp (J. Ma).

0140-3664/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2008.05.004

vices to be unpredictable. In addition, to attract visitors, the mu-
seum often needs to update tourist programs, and therefore new
applications are developed and added into the system by third
party service providers at all times. As a result, infinite entities
and dynamic context information are necessarily managed by the
context-aware intelligent museum system. However, most of exit-
ing systems lack of this scalability, which brings on the problem of
difficult, fallible, and time-consuming maintenance.

To address this problem, we propose a scalable context-aware
intelligent museum system, namely iMuseum. It provides visitors
with customized relic information via handheld devices in visiting.
It decouples context acquisition from context usage through an
underlying context server. By defining pluggable and sharable con-
text vocabularies, third parties can independently develop their
own context-aware applications or context providers, and then
add or end them at run-time of the system.

The rest of this paper is structured as follows. In Section 2, we
discuss related work about intelligent museum systems. In Section
3, details of the iMuseum, including context model, system archi-
tecture, and key features are described. Section 4 presents the
implementation of the prototype system and experimental results.
Finally, Section 5 concludes the paper and points out several direc-
tions for future research.

2. Related work

In the past few years, intelligent museum systems have become
a hot topic that attracts many researchers’ interests.

mailto:yuzhiyong@mail.nwpu.edu.cn
mailto:zhouxs@nwpu.edu.cn
mailto:yu@ccm.media.kyoto-u.ac.jp
mailto:jhpark1@kyungnam.ac.kr
mailto:jianhua@hosei.ac.jp
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

Z. Yu et al./Computer Communications 31 (2008) 4376-4382 4377

Several systems provide web services for browsing museum
collections through the Web enhanced with personalization tech-
nologies. Pechenizkiy and Calders [3] proposed a framework that
learns visitor’s interest model online and offline. It supports user
navigation, information filtering, and other important processes
of a user-centered interactive information exchange between mu-
seum websites and their visitors. Rutledge et al. [4] presented an
approach for determining user interests in a semantically anno-
tated museum collection with the help of interaction dialog. The
Rijksmuseum project [5] explores different users’ characteristics
and personalizes users’ museum experiences within the virtual
and physical collections. These systems cannot supply visitors with
the live experiences in a museum since the digital information is
parted from the physical world.

In some other projects, handheld devices are used in museums
along with the visiting. The Multimedia Tour [6] provides visitors
with rich and captivating audio-visual information about the col-
lection. The MoMo project [7] includes a mechanism for browsing
large collections of explanatory items on PDAs and provided social
interaction within museums. These systems do not have the fea-
ture of context-awareness. They collect limited information of sur-
roundings, and are unable to synthesize multiple contexts into
high-level context. As a result, they cannot make services intelli-
gent enough.

A few researchers developed context-aware systems for intelli-
gent museums. Koch and Sonenberg [8] presented a demonstration
application that sends tailored content to the visitor’s mobile
phone in MMS (Multimedia Messaging Service) according to his/
her location and profile preloaded. The Remember tool [9] records
real-time photographs and typed notes about the visited exhibits,
which provides a starting point for later exploration, discussion
and reflection on the observed phenomena. However, these sys-
tems are all tight coupled architectures. Entities such as sensors
and the context manager are not independent in a tight system.
In other words, the systems lack of scalability. If a new application
is needed to create and deploy, since it is unable to reuse partial
modules of former applications, overall redeployment is needed.
This is unacceptable in terms of cost and time.

Our work mainly aims to address the scalability issue in a con-
text-aware intelligent museum system. It differs from previous
systems in several aspects. First, unlike the systems presented in
[3-5], our system is an assistant system for real visiting. Visitors
are in a smart physical space instead of virtual space such as on
the Web. Second, it is context-aware, i.e., providing adaptive visit-
ing services according to the visitor’s changing context. A variety of
environmental states can be sensed and synthesized to recognize
visitors’ high-level context through ontology technologies. Third
and the most remarkable, our system is a loose coupled hierarchi-
cal system with run-time scalability. It outstands from all tight
coupled systems (e.g., [8,9]). It separates context-aware applica-
tions from the context server and context providers efficiently by
shared context knowledge and simple interfaces.

3. System design

The general principle of our system is that it not only provides
client access to retrieve context data, but permits the simple regis-
tration of new distributed heterogeneous data sources [10]. It is
based on a new context model that benefits from ontology as well
as database.

3.1. Context model

The ontology-based model [11] can share vocabularies across
different tools and systems, and perform reasoning based on do-

main knowledge. But it has shortages for its inefficient storing
and querying as it is always represented in semi-structural data.
The hierarchical model [12] comes from the traditional database
that does well in data maintenance and retrieve. However, it is
not good at expressing knowledge in a human intelligible way
and reasoning from the knowledge. Therefore, we propose a 2 Sets
and 3 Layers Context Model (2+3CM), which is illustrated in Fig. 1.
It integrates the advantages of ontology-based model and hierar-
chical model.

We first divide all context knowledge into two sets: concepts
and instances. Concepts are used to describe vocabularies, relations
or states about a class of individuals, while instances to describe
the state of a specific individual. They are from the TBox and ABox
of description logic [13] respectively. TBox statements describe a
system in terms of controlled vocabularies. They are associated
with object-oriented classes and properties. ABox are TBox-com-
pliant statements about that vocabulary, and are associated with
instances of those classes.

Then all context knowledge is partitioned into three layers. The
basic layer contexts come from data sources directly such as sen-
sors. The high-level layer contexts can not be collected from sen-
sors directly but need some fusion or reasoning, i.e., synthesizing.
The application-oriented layer contexts are an extraction from all
contexts, which only include the parts needed by a certain
application.

Therefore, all context knowledge is classified into six categories:
basic concepts (B-C), basic instances (B-I), high-level concepts (H-
C), high-level instances (H-I), application-oriented concepts (A-C),
and application-oriented instances (A-I). We combine OWL-DL
[14] and SWRL [15] to express all context knowledge. OWL-DL is
the ontology language with the most powerful expression ability
to guarantee the reasoning completeness. SWRL is the semantic
web rule language extended from OWL-DL. It can be integrated
with OWL-DL seamlessly. It is able to define both rules and queries.
These features allow us to express and process all types of context
knowledge in a uniform way.

For example, the following segment represents B-Cs defined
from a temperature sensor. It denotes a Thermometer that can pro-
vide temperature integer values.

<owl:Class rdf:ID = “Thermometer”/>

<owl:DatatypeProperty rdf:ID = “temperature_is">
<rdfs:domain rdf:resource = “Thermometer”/>
<rdfs:range rdf:resource = “&xsd;int”/>

</owl:DatatypeProperty>

On the other hand, B-Is come from this temperature sensor will
be:

<Thermometer rdf:about = “Thermometer_1">
<temperature_is rdf:datatype = “&xsd;int">30</tempera-
ture_is></Thermometer>

Concept Instance

Application-oriented Layer
Hghevel Laver
Basic Layer

Fig. 1. 2+3CM context model.

4378 Z. Yu et al./ Computer Communications 31 (2008) 4376-4382

It means Thermometer_1, which is a particular of Thermometer,
senses that the temperature is 30°.

An H-C example defined from an application is shown as
follows:

Thermometer(?fooom(?yfis_in(7y f temperature_is(?x,?z fswrlb:
greaterThan(?z,28) -> is_hot(?y,YES)

This rule is a human readable SWRL sentence, whose syntax
also follows OWL. It infers a Room is hot if the temperature of a
Thermometer in the Room is greater than 28°.

H-Is can be expressed in the same way of B-Is while A-Cs can be
expressed similarly with H-Cs. A-Is need not to be expressed in a
formal way as they are sent to applications directly.

3.2. System architecture

There are three types of computing entities in our system (see
Fig. 2): context providers, context-aware applications, and a con-
text server.

Context Providers are entities that provide basic instances to
the context server in predefined expression and transmission form.
They register to the context server by defining new basic concepts,
which declare their abilities of context production.

Context-Aware Applications use application-oriented instances
to implement particular services adapting to these contexts. They
register to the context server by defining new application-oriented
concepts, which describe their requirements of context consump-
tion. In the expression of requirements, some rules can be added
to define new high-level concepts. The server will employ these
user-defined rules to infer high-level instances.

The Context Server is the centric node that manages all entities
and context knowledge. All context providers and context-aware
applications register to it. The Mapper creates the relationship be-
tween provider abilities and application requirements, and gener-
ates new application-oriented instances when basic instance
update happens. The Synthesizer is responsible for synthesizing
high-level instances that applications need. The Ontology Knowl-
edge Base is used for storing context that is expressed and inferred
based on ontology.

The key features of our system are two mechanisms: distributed
acquisition of context knowledge and its centralized sharing. With
these two mechanisms, iMuseum is able to support defining new
concepts, synthesizing high-level context, and querying applica-
tion-oriented instances at run-time. We will describe the details
of them in the following sections.

3.3. Distributed acquisition of context knowledge on demand

The mechanism of distributed acquisition of context knowledge
on demand ensures that each category of context knowledge

Context-Aware
Application

Context-Aware
Application

— A

Context
[Synthesizer [Mapper]Server

¢ t

[Ontology Knowledge Base]
Context Context Context
Provider Provider Provider

Fig. 2. System architecture.

comes from the entity with the most competence to define it. It
makes the context knowledge sufficient but not redundant. At
run-time, six acquisition ways can be used to add new context
knowledge into the system:

(1) The server defines some basic concepts at the beginning of
the system development, forming as Original Ontology (see
Fig. 3). All the following new context knowledge is based
on this semantic foundation.

(2) Applications add new application-oriented concepts or high-
level concepts, i.e., requirements or rules. Since applications
are consumers of application-oriented instances or high-
level instances, they have the responsibility of defining what
is needed and how to obtain.

(3) Providers add new basic concepts (i.e., abilities) as they
encapsulate data sources.

(4) Providers add new basic instances. The providers that corre-
late with some applications are in active state, otherwise in
waiting state. Only the active providers will send new
instances when the surrounding changes.

(5) The server infers high-level instances since only the server
can collect all basic instances and high-level concepts.

(6) The server generates application-oriented instances. This is
because only the server can gather all context instances
and application-oriented concepts.

The Global Ontology is defined as the ontology that imports all
ontologies in the system. It is updated continuously by adding new
knowledge in these six ways on the base of the Original Ontology
(see Fig. 3).

Pub/Sub (Publish/Subscribe) communication is adopted to
asynchronously transmit all types of context knowledge among
various entities. Therefore the system is decoupled in time and
space. The server maintains the correlations between requirements
and abilities dynamically. It aims to merely subscribe the basic in-
stances related with application layer, only synthesize the high-le-
vel instances related with application layer and updated with basic
layer, and only query the application-oriented instances updated
with basic layer. Hence acquisition of context knowledge on de-
mand is achieved.

3.4. Centralized sharing of context knowledge with double-repository

Sharing of context knowledge provides an approach for various
entities distributed in the system to access or update this context
knowledge. Knowledge sharing mainly has two functions:

(1) Partial new knowledge is defined based on the former knowl-
edge, i.e,, importing the old global ontology. This part of
knowledge includes some basic concepts, basic instances,
high-level concepts, and application-oriented concepts.

New
Knowledge

New
Knowledge

Original
Ontology

Ontology
(New)

Ontology
(Old)

Fig. 3. Run-time updating procedure of Global Ontology.

Z. Yu et al./Computer Communications 31 (2008) 4376-4382 4379

(2) Partial new knowledge is discovered based on the former
knowledge, i.e., reasoning (generally means consistency
checking, taxonomy classification, synthesizing, and query-
ing) from the old global ontology. This part of knowledge
includes high-level instances and application-oriented
instances.

In systems that use high-level context, centralized sharing of
context knowledge can improve the synthesizing efficiency [10].
The iMuseum system realizes centralized context sharing via a
double-repository approach. Fig. 4 shows the schematic architec-
ture. The server maintains a File Repository and a Memory Repos-
itory. The file repository offers a reference address pointing to the
global ontology. All entities on networks can import existing con-
text knowledge through this address, and then produce new con-
text knowledge. The file repository also provides an uploading
address that allows all knowledge (formatted as files) to be up-
loaded into this repository. The memory repository inputs context
from the file repository, checks consistency and classifies taxon-
omy about the global ontology, synthesizes high-level context in-
stances, and queries application-oriented instances.

Consistency checking consists of two functions. First, it detects
classes that cannot have any instances. DL Reasoners can be used
to accomplish this based on OWL ontologies. (The SWRL sentences
should be excluded before checking, because SWRL is beyond DL.)
Second, it determines semantic inconsistencies. Semantic inconsis-
tencies cannot be found by any general reasoners. For example, the
system infers that Tom is in Room1 based on the location of his
mobile phone, whereas at the same time, his voice is detected in
Room2, hence an inconsistency occurs. This kind of cases can be
solved by developers of particular applications, e.g. [16].

4. Implementation and evaluation

The iMuseum prototype system is deployed in a museum exhibi-
tion room (see Fig. 5). The context server, context-aware applica-
tions and other basic services are implemented on the background
computer. Every visitor is given a PDA using as an assistant tour tool.
It connects with the background computer through a WLAN AP (Ac-
cess Point). The PDA is equipped with a RFID (Radio Frequency Iden-
tification) reader that can detect the tags attached on the relics.

4.1. Software platform

To support multiple applications loading or unloading indepen-
dently and dynamically, we adopt OSGi [17] to build the software
platform on the background computer. Fig. 6 shows the platform
architecture. From bottom to top it consists of three layers: phys-
ical interface layer, system layer, and OSGi layer. The OSGi layer
is composed of service framework and service bundles. The service
framework provides a service hosting environment. All services are
built and running as bundles on top of the framework.

Memory

Repository

Fig. 4. Centralized sharing with double-repository.

Door —RFD_]

at

Exhibition Room

()

<>
WLAN AP
Background
Computer \ '

isitor Relic

Fig. 5. Prototype system of iMuseum.

Communication iMuseum Application
services services services
g2 b
INEIEHENE
S(El2((2]2](2]: osci
< E Lg) 52 layer
OSGi service framework
Java virtual machine System
Operating system layer
Ethernet | €20l | IEEE | IEEE | Blue } 11; ltlzrstlaf:el
modem | 802.11 1394 tooth layer

Fig. 6. Background platform based on OSGi.

Three types of services are constructed according to the require-
ments of iMuseum: Communication services, iMuseum services,
and Application services. Communication services are general
and basic services including HTTP (offers a reference address to
the global ontology), FTP (offers an uploading address for new
ontology files), and ActiveMQ [18] (a JMS [19] realization providing
Pub/Sub communication). iMuseum services rely on communica-
tion services. They are special supporting services including Relic
Content and Context Server. The Relic Content refers to the data-
base for storing relic information such as category, dynasty, loca-
tion, ID number, etc.,, and media files such as texts, pictures,
audios, videos, etc. Application services are context-aware applica-
tions relying on both communication services and iMuseum ser-
vices. Application services include iGuide, iRecommender, and
other applications developed by the third parties, which will be de-
scribed in detail in Section 4.3.

4.2. Context server

The context server is a general functional entity that manages
context without focusing on any particular applications. We devel-
oped the context server with J2SE 5.0 and Protégé [20]. The whole
program is a Java class containing several properties and methods
(see Fig. 7).

There are a total of six properties:

AbilityList - It is used to store objects of Ability. When a provider
registers to the server, an Ability object is created and added
into this ability list.

4380 Z. Yu et al./ Computer Communications 31 (2008) 4376-4382

Requisition ighConcept
List List
Global Global
Model OWL

Mapping Module

(Reasoning Modules)
Model || OWL Updating
Updater | | Updater Modules

JMS IMS rrp |Communicating
Sender || Receiver || Client Modules

Fig. 7. Components on the context server.

RequisitionList - It is responsible for storing objects of Requisi-
tion. When an application registers to the server, a Requisition
object is created and added into this requisition list.
HighConceptList - It is utilized to store objects of HighConcept. If
a new high-level concept is defined during the application reg-
istration, a HighConcept object is created and added into this
high-level concept list.

GlobalModel - It contains all fresh context knowledge used for
context reasoning.

GlobalOWL - When a new OWL file is added in the system, the
global OWL files must be updated to import this new file.
SWRLFactory - It can extract SWRL sentences from the Global-
Model to create Ability objects, Requisition objects, and High-
Concept objects.

There are four types of methods correspondingly:

The mapping module (Mapper) utilizes the SWRLFactory to
maintain AbilityList, RequisitionList, and HighConceptList, and also
construct relationships between them.

The reasoning modules (Jess [21] and Racer [22]) reason from
the GlobalModel, i.e., checking consistency, classifying taxonomy,
and processing SWRL rules and queries.

The updating modules (ModelUpdater and OWLUpdater) update
the GlobalModel and the GlobalOWL when an OWL file is added or
updated.

The communicating modules (JMSSender, JMSReceiver and FTPC-
lient) are responsible for information exchanging with outside, e.g.,
applications, providers, and the FTP server.

4.3. Applications

We have developed two context-aware applications: iGuide
and iRecommender. When a visitor is interested in a cultural re-
lic nearby, the iGuide will automatically play corresponding mul-
timedia commendatory of this relic on the visitor's PDA. The
iRecommender can recommend related relics that a visitor might
be interested in after he/she views some relics. The relics recom-
mended are sorted by relevancy and indicated with their loca-
tions. These two applications were proposed mainly for
illustrating the scalability of our framework. The approach for
capturing contexts is not the focus of this paper. In iGuide, the
user’s location (near which relic) and the staying time were ac-
quired through a RFID system. In iRecommender, the user view-
ing history was recorded in order for inferring which type of
relics the user might like most. User preference also can be
incorporated in the recommendation, which can be learned using
different techniques, e.g. [23,24].

Taking the iGuide as an example, we here describe the running
procedure of an application to demonstrate the scalability of the
iMuseum system.

Step 1: Communication services and iMuseum services start up
first. At this moment the context knowledge only contains
basic concept, “Visitor” (see Fig. 8a), which comes from
the original ontology.
Then the PDA (installed with a RFID reader, an ID pro-
vider, and the iGuide client) starts up, and declares its
abilities of context production at the same time. Here
the context knowledge expands with basic concepts
“Relic”, “localize_near’ and “localize_for” (see Fig. 8b).
iGuide launches and indicates its requirements of context
consumption. At this time the context knowledge grows
to that shown in Fig. 8c. The high-level concept “inter-
est_in” (e.g., if the visitor has localized near a relic for more
than 5 s) and corresponding application-oriented concept
are defined.
The server determines that context abilities can satisfy
context requirements, and then subscribes context
updates from the ID provider.
A visitor holding this PDA approaches a relic attached
with a RFID tag, which can be detected by the RFID reader.
In this case, the ID provider sends the tag’s ID and contin-
uance time to the server. The context knowledge may
contain the basic instance like “visitor Visitor_1 localizes
near relic Relic_1 for 7 s” (Fig. 8d).
The server infers whether the visitor is interested in the
relic. If interested, the context knowledge changes to the
one shown in Fig. 8e. The high-level instance, “Visitor_1
is interested in Relic_1" is synthesized. Then a query is
triggered to obtain application-oriented context instances
and send them to iGuide.
Step 7: iGuide retrieves the corresponding multimedia commen-
taries of this relic, and delivers them to the visitor’s PDA.

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

There are different modal commentaries available for each relic,
which could be used according to different conditions. For exam-
ple, when a visitor wants to know more detailed information and
the network speed is very slow, he/she can view the text descrip-
tion shown as Fig. 9a. A child would be interested in the image one
(see Fig. 9b). And the video commentary (see Fig. 9c) is more
attractive but needs broader network bandwidth.

If a visitor who holds a new PDA enters the exhibition room, he
can use the service of iGuide just by registering as described in Step
2. If a new application is developed at run-time, it can be added
into the system by registering as Step 3. Visitors or applications
also can leave the system with little influence on others. Along
with these dynamic changes, context knowledge increases or de-
creases at run-time.

4.4. Evaluation

We evaluated iMuseum in terms of time performance and user
acceptance. The background computer is a PC with Intel Pentium
CPU 3.0GHz, 1.0GB RAM, running MS Windows 2000. The visitor’s
handheld device is a PDA (HP iPAQ hx2490b) running MS Windows
CE 5.0. The context server involves three phases that are time-con-
suming: initialization, entity registration, and context update. The
average running time of 20 tries is shown in Table 1.

Time increases slightly when a new piece of knowledge (3.5 KB) s
added into. The reason is that our KB is very small (41 KB), and time
of processing different sizes of KB is not substantially different. We
can see that the initialization time is relatively long (about 5 s). In
this phase, all components on the context server are created and pre-

Z. Yu et al./Computer Communications 31 (2008) 4376-4382 4381

(a) Step 1

(b) Step 2

(d) Step 5

interest_in

(c)Step 3

interest_in

(e) Step 6

Fig. 8. Context knowledge update of iGuide.

[info 1| Info 2 |Info 3 [Info 4 [Info 5 |
Galloping Horse/Easten Hanj2nd Room

Info:3:4:5unread. audio is caching...

[1nfo 1] Info 2 [info 3 [Info 4 [Infa 5 |
Galloping HorsefEasten Hanf2nd Room

Info:3:4:Sunread. audio is caching...

(b) Image

[Info 1] Infa 2 [Info 3 [Tnfo 4 | Info 5
Galloping Horse/Easten Han/2nd Room

¥
Info:3:4:Sunread. audio is caching...

(c) Video

Fig. 9. Client side snapshots of iGuide.

Table 1
Running time of context server in different phases

Phase Initialization Entity registration Context update

Time (ms) 4969 422 813

pared. Fortunately, this overhead is merely generated during the
system startup and it is transparent to visitors. It does not affect
the performance of other services at running time. Both response
time of entity registration and context update is shorter than 1 s. It
adequately satisfies the demand of dynamical registration and
immediate context-awareness. Hence the time overhead is
acceptable.

From the user’s perspective, we conducted a user study to evalu-
ate the user acceptance of our system. Ten participants from the
Northwestern Polytechnical University, China were invited to visit
the intelligent museum. Each person was given a PDA as client side
to run two applications (iGuide and iRecommender). After visiting,
they completed a questionnaire. The questions and results are
shown in Table 2.

All the subjects were satisfied with the multimedia contents
provided by iGuide, and the response time was also acceptable.

Table 2
User study results
Application Question Average
rating”
iGuide The multimedia contents of relics were attractive for 5.0
me.
The distance to sense relics was suitable. 35
I was satisfied with the response time. 4.0
iRecommender The recommended relics are exactly the ones I want 4.5
to see.
The indication of relic’s location is very useful to find 4.8
it quickly.
Both The interface and operations of the system were easy 3.7
to master.
I would use this tool again for its helpfulness in 5.0
visiting.

" 5=strongly agree; 4 = agree; 3 = neutral; 2 = disagree; 1 = strongly disagree.

But they had different opinions about the distance to sense relics.
Several participants complained that they had to be very near to
the relic and hold the PDA in certain direction to detect the at-
tached tag. The reason is that there is a fixed identification distance

4382 Z. Yu et al./ Computer Communications 31 (2008) 4376-4382

(about 1 m in our prototype) between RFID tags and the reader.
The signal is easily influenced by metal objects. It can be improved
by choosing another type of RFID system with better performance.
Both the recommended relics and location indications provided by
iRecommender were interesting and useful. Some visitors sug-
gested that this tool should be operated without a pen, i.e., can
be controlled by speech or totally automatically. We can add a
speech recognition engine into the PDA to meet this requirement.
Despite these issues, all of the participants indicated that they
would use this tour assistant tool again.

5. Conclusion and future work

In this paper, we proposed a scalable context-aware intelligent
museum system called iMuseum. It captures context about visitors
and surroundings and then provides users with appropriate relic
information. It addresses the application scalability and visitor
ambulation issues in museum. The main contributions include:
(1) introducing a 2 Sets and 3 Layers Context Model (2*3CM) that
supports uniform expression and various types of context knowl-
edge integration by combining ontology-based model and hierar-
chical model; (2) proposing mechanisms of distributed
acquisition and centralized sharing of context knowledge, which
enables run-time new concepts definition, high-level context syn-
thesizing, and application-oriented query; (3) presenting a con-
text-aware application iGuide to illustrate the running process of
the system and its scalability.

There are still several issues not solved in the current system.
First, since some basic concepts are defined by new distributed
entities, their semantics would not be well understood. Second,
the Mapper in the context server requires efficient algorithm to
construct the relationship between abilities and requirements. In
the future, we will conduct research on these issues. We also plan
to integrate some other recommendation methods [25] to enrich
personalization services and consider the common preferences
among group members so as to recommend museum collections
to a group of visitors [26].

Acknowledgements

This work was partially supported by the High-Tech Program of
China (863) (No. 2006AA01Z198) and the Innovation Fund of
Northwestern Polytechnical University (NPU) of China (No.
2006CR13). It was also partially supported by Kyungnam Univer-
sity of Korea. The authors thank all the members from Ubiquitous
Computing Lab of NPU for their discussion and implementation of
the system.

References

[1] P. Busetta, M. Merzi, S. Rossi, et al., Group communication for real-time role
coordination and ambient intelligence, 2003. Available from: <http://
citeseer.ist.psu.edu/article/busettaO3group.html>.

[2] M. Satyanarayanan, Pervasive computing: vision and challenges, IEEE Personal
Communications 8 (4) (2001) 10-17.

[3] M. Pechenizkiy, T. Calders, A framework for guiding the museum tours
personalization, in: Proceedings of Workshop on Personalization Enhanced
Access to Cultural Heritage Joint with the 11th International Conference on
User Modeling, 2007, pp. 11-28.

[4] L. Rutledge, L. Aroyo, N. Stash, Determining user interests about museum
collections, in: Proceedings of the 15th International Conference on World
Wide Web (WWW’06), 2006, pp. 855-856.

[5] L. Aroyo, P. Gorgels, Y. Wang, et al., Personalized museum experience: the
Rijksmuseum use case, in: Proceedings of Museums and the Web 2007
(MW’07), 2007. Available from: <http://www.archimuse.com/mw2007/
papers/aroyo/aroyo.html>.

[6] G. Wilson, Multimedia tour programmer at Tate Modern, in: Proceedings of
Museums and the Web 2004 (MW’'04), 2004. Available from: <http://
www.archimuse.com/mw2004/papers/wlson/wilson.html>.

[7] J. Jaen, J.M. Esteve, J.A. Mocholi, et al., MoMo: enabling hybrid museums, IEE
Proceedings Software 152 (5) (2005) 245-251.

[8] F. Koch, L. Sonenberg, Using multimedia content in intelligent mobile services,
in: Proceedings of the WebMedia & LA-Web 2004 Joint Conference 10th
Brazilian Symposium on Multimedia and the Web 2nd Latin American Web
Congress (LA-Webmedia’04), 2004, pp. 41-43.

[9] M. Fleck, M. Frid, T. Kindberg, et al., Rememberer: a tool for capturing museum
visits, in: Proceedings of the 4th International Conference on Ubiquitous
Computing (Ubicomp’02), 2002, pp. 48-55.

[10] M. Baldauf, S. Dustdar, F. Rosenberg, A survey on context-aware systems,
International Journal of Ad Hoc and Ubiquitous Computing 2 (4) (2007) 263-
277.

[11] X. Wang, D. Zhang, T. Gu, et al., Ontology based context modeling and
reasoning using OWL, in: Proceedings of the 2nd IEEE Conference on Pervasive
Computing and Communications (PerCom’04), 2004, pp. 18-22.

[12] A. Schmidt, A layered model for user context management with controlled
aging and imperfection handling, in: Proceedings of the 2nd International
Workshop on Modeling and Retrieval of Context (MRC'05), 2005, pp. 86—
100.

[13] F. Baader, D. Calvanese, D. McGuinness, et al, The Description Logic
Handbook: Theory, Implementation and Applications, Cambridge University
Press, 2003.

[14] M. Dean, G. Schreiber, S. Bechhofer, et al., OWL Web Ontology Language
Reference, 2004. Available from: <http://www.w3.org/TR/owl-ref>.

[15] L. Horrocks, P.F. Patel-Schneider, H. Boley, et al., SWRL: a semantic web rule
language combining OWL and RuleML, 2004. Available from: <http://
www.daml.org/rules/proposal>.

[16] C. Xu, S.C. Cheung, Inconsistency detection and resolution for context-aware
middleware support, in: Proceedings of the 10th European Software
Engineering Conference Held Jointly with 13th ACM SIGSOFT international
Symposium on Foundations of Software Engineering (ESEC/FSE-13), 2005, pp.
336-345.

[17] D. Marples, P. Kriens, The open services gateway initiative: an introductory
overview, [EEE Communication Magazine 39 (12) (2001) 110-114.

[18] ActiveMQ. Available from: <http://activemq.apache.org>.

[19] JMS. Available from: <http://java.sun.com/products/jms>.

[20] Protégé. Available from: <http://protege.stanford.edu>.

[21] Jess. Available from: <http://www.jessrules.com/jess>.

[22] RacerPro. Available from: <http://www.racer-systems.com>.

[23] Z. Yu, D. Zhang, X. Zhou, C. Li, User preference learning for multimedia
personalization in pervasive computing environment, in: The 9th International
Conference on Knowledge-Based Intelligent Information & Engineering
Systems (KES 2005), pp. 236-242.

[24] V. Schickel-Zuber, B. Faltings, Inferring user’s preference using ontologies, in:
Proceedings of American Association for Artificial Intelligence 2006 (AAAI'06),
2006, pp. 1413-1418.

[25] Z. Yu, X. Zhou, D. Zhang, et al, Supporting context-aware media
recommendations for smart phones, I[EEE Pervasive Computing 5 (3) (2006)
68-75.

[26] Z.Yu, X. Zhou, Y. Hao, et al., TV program recommendation for multiple viewers
based on user profile merging, User Modeling and User-Adapted Interaction 16
(1) (2006) 63-82.

http://citeseer.ist.psu.edu/article/busetta03group.html
http://citeseer.ist.psu.edu/article/busetta03group.html
http://www.archimuse.com/mw2007/papers/aroyo/aroyo.html
http://www.archimuse.com/mw2007/papers/aroyo/aroyo.html
http://www.archimuse.com/mw2004/papers/wlson/wilson.html
http://www.archimuse.com/mw2004/papers/wlson/wilson.html
http://www.w3.org/TR/owl-ref
http://www.daml.org/rules/proposal
http://www.daml.org/rules/proposal
http://activemq.apache.org
http://java.sun.com/products/jms
http://protege.stanford.edu
http://www.jessrules.com/jess
http://www.racer-systems.com

	iMuseum: A scalable context-aware intelligent museum system
	Introduction
	Related work
	System design
	Context model
	System architecture
	Distributed acquisition of context knowledge on demand
	Centralized sharing of context knowledge with double-repository

	Implementation and evaluation
	Software platform
	Context server
	Applications
	Evaluation

	Conclusion and future work
	Acknowledgements
	References

