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Labeling of each pixel p of the object by the distance to the closest point q in the
background
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@ Classical problem in discrete geometry
@ From the DT we can compute:

o direct measurements (local width,...)
o differential estimators
@ medial axis or skeleton extraction
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Applications We consider the boundary of a shape as an implicit surface f(x,y) =0
where f is given by the DT

f(x,y)=0
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e Definition of a metric based on integer numbers
Euclidean DT

Voronoi
diagram
based DT

@ Rounded metric [d |

@ Approximate the Euclidean metric with integers: Chamfer masks
@ DT based on sequences of chamfer masks

@ Displacement based DT (dy, dy)"

@ DT based on the squared Euclidean distance SDT
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based DT

Axioms of a metric

d is a metric on an non-empty set S iff:
vp,q,r € S:

® d(p,p) =0

° d(p,q) =d(q,p)

© d(p,r) <d(p,q) +d(q,r)

Ball

A ball of radius r with center p is the set of points g in S such that:

d(p,q) <r
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Applications

Discrete
metrics

DT 1 1 i 1
o If d is a metric then [d] is also a metric

Chamfer

based DT [+ |’d (p’ p)‘l =0

Euclidean DT

i @ [d(p,q)] = [d(a,p)]

o ® [d(p,r)] < [d(p,a)] + [d(a,r)] (Va,b,c €R, a+b>c= [a]+ [b] > [c])
B = Yes'!

And what about |d | or [d] ?
No!
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Applications

. First, we fix a set of elementary displacements and then we affect a weight to each
metrics step in order to approximate the Euclidean distance.

DT

Algorithms

Chamfer
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[Bor86, Ver91, Thi0l, FMO5]

; Idea
Discrete
L First, we fix a set of elementary displacements and then we affect a weight to each
step in order to approximate the Euclidean distance.
Chamfer
based DT
et General masks
diagram
based o7 2b|c|2a|c|2b
bla|b c |[b|a|[b]c
(=, N:[al0la]| (=, =+ 7):[2a]la| 0 [a]2a
bla|b c |[b|a|[b]c
2b|c|2a|c|2b

dg
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Discrete (u,v) is valid if ¥ is an irreducible fraction
Chamfer / /
based DT
\E/:‘i\]::mv DT / /( /'
basea DT
£4 < /,

Elementary displacements in a m x m mask < fractions in the Farey series Fm
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Deorete @ The mask must form a metric:

e d(p,p) =0

Chamfer ° d(p7 q) = d(q7 p)
based DT e d(p,r) <d(p,q) +d(q,r)
@ Trade-off between the approximation of the Euclidean distance and the size of

based DT the mask
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How to compute the weights ?

Objectives

@ The mask must form a metric:

e d(p,p)=0
e d(p,q) =d(a,p)
e d(p,r) <d(p,q)+d(q,r)

@ Trade-off between the approximation of the Euclidean distance and the size of
the mask

Cost function to minimize

Amask (P> 9) — deuc (P, q)

Over a domain defined by linear constraints

@ 3x3mask: b <2aandb > a

@ 5x6mask:2a<c,3b<2candc<a+b
o ...
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3x3 masks [Bor86]

Weight analysis

Diff =yb + (X —y)a — 1/x2 +y?2

= agpt = 0.95509 and bgp = 1.3693

Example: a=1,

2
1
0+ )
12 56 7 89 ul
4 : — b=
b=sqrt(2)
\ ———b=0pt

\ b=4/3
-3

@ x-axis: the column x = 10 and
1<y <10

@ y-axis: the error function
yb + (x —y)a— /x2 +y?2

@ b = 1: dg or chessboard
metric
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Unit balls

*Ho0

(Chamfer ball images from [Thi01])

O

Cl5,7411
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Discrete
metrics

[RP66, MDKCO0, Nag05]

Idea

We consider a set of chamfer masks (e.g. d, and dg) and we switch the

diagram

based DT masks to find a better approximation of deyc in a DT problem

Problems to solve
@ Find the set of chamfer masks
@ Find the best sequence of the masks to approximate deyc
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Chamfer metrics - summary

+ Simple computations

- Approximation of the Euclidean distance

- Not an isotropic representation of an object
+ DT is easy to implement

Main drawbacks

If you:
@ change the shape of the pixels (e.g. elongated grids with factor \),
@ change size of the mask, or
@ change the dimension of the image

you have to update the weights with a new optimization process
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metrics .
DT based on displacement vectors (dy, dy)

Chanter + Error free representation

ased DT

Euclidean OT - Complex DT to obtain an error free computation

p - We have to store two coordinates

DT based on the squared Euclidean distance (d2,)

+ Error free representation
+ Fast error free DT

- We have to store the square of integer numbers
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Computation of the Chamfer DT

[RP66, RP68, Borg]

Sketch of the algorithm

Decomposition of the mask into two parts and double scan of the image to update the min distance

BZ —

DT(i,j)= min (DT(i+k,j+ 1)+ weight(k,1))
(k,l)eMask
Initialization :
DT (i,j) =0 if (i,j) ¢ Object

DT(i,j) = +oo if (i,j) € Object

Rem: the displacement (0, 0) with weight 0 belongs to the mask...
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Using the d;_, mask

Example

W W W
N O O W

W O O N W

3

= X X N W

W W W W

w AN N W

(image from [Thi01])

w =~ 3 N W
w N~ N W
W W A N W
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Idea - [Dan80, Mul92]
Store at each pixel the vector V = (xp, yp) such that DT (p) = |v(p)|

Cramter_ Danielson’s algorithm [Dan80]
ST Multiple scan process with directional masks (4-connected). At each step
Rer we update V = (Xp, Yp) With the vector with the minimal distance.
©.1) —
(1,0) (1,0) @ Top-down scan

@ Bottom-up scan
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Conclusion

@ a, b and c are background pixels
@ Danielson’s algorithm: a—d,c —ebutc —qora—q
@ Correct algorithm: a—d,c —eandb —q
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Definitions Local updates can lead to incorrect DT
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diagram
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Conclusion

@ a, b and c are background pixels
@ Danielson’s algorithm: a—d,c —ebutc —qora—q
@ Correct algorithm: a—d,c —eandb —q

Algorithms exist to correct these pathological cases leading to error-free VDT
[Cui99, CM99]
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e Store the square of the EDT J

based DT

Conclusion

A d2, is not a metric J

u]
o}
|
ul
iht
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Squared Euclidean Distance Transform

[ST94, Hir96, MRHO0]
Let P be the background of the object F, the SEDT at q in F is given by:

s() = min{dé,c(p, a)}

If we decompose the problem with q(i,j), we have:

s@ = min_{(c= i) +(y =)}

and:

9(i,i) = min{(x — )%}
with
00,1} = sl (G —i)?+9(i,y)}

=- dimensional decomposition of the DT computation
= separable technique
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Definitions
Applications

Discrete
metrics

DT Simple 2 scan algorithm

Algorithms
e 0|nputr0w:|oo|l|oo|oo|oo|l|oo|oo|
Euclidean DT

Voronoi o —: |oo|l|l|4|9|.|l|4|
diagram

based DT

Conclusion O =t | 1 | . | 1 | 4 | 1 | . | 1 | 4 |
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Step 1: g(i,j) = ming{(x —i)?}

Simple 2 scan algorithm

@ Inputrow: | oo | M [ oo [ oo [ co [ M | oo | oo |
o —: [co[M[1]4]O0[WM[1]4]
0 —: [1/m[1]4]1[m[1]4]

Computational cost

@ O(n?) foran x nimage
@ O(n?) for a n® image
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For each cell (i, ]), scan the y to compute the min

|
‘
= i 16| 25| 36
- |
Euclidean DT T
— - ] l
= 41 9
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oeurjolly
Straightforward algorithm
For each cell (i, ]), scan the y to compute the min

|
;
— 1 9]16/25) 36
- |
Euclidean DT T
— | 1
— 4/ 9

0O(n®) for a 2D image but we can design O(n?) algorithms [ST94]
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cosuol envelope computation
{(y —j)>+g(i,y)}: family of parabolas
H
Chamfer 9)
based DT
Euclidean DT
16 16

diagram

based DT L L
12 C 12 r

column [9, 4, 4, 1] after step 1 and [5, 4, 2, 1] after step 2

[Hir96, MRHO0O0]
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Linear in time lower envelope computation

Sketch of the algorithm [Hir96, MRHOO]

@ We scan the parabolas and use a stack to store the parabolas that
belong to the lower envelope

@ When a new parabola is considered, this parabola may invalidate some
parabolas in the stack — we pop the parabolas on the stack while the
parabola on the top of the stack is invalidated by the new one

@ When no more parabolas have to be considered, we compute the SDT
map with the heights of the lower envelope parabolas

Computational analysis

Linear process in the number of parabolas

@ O(n?) foran x nimage
@ O(n%) for a n image
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=- optimal in time algorithms and error free DT Whatever the dimension
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SDT - summary

@ Optimal algorithms to compute error free SDT
@ Trivial generalizations to d-dimensional objects
@ Can handle elongated factors

@ Based on a isotropic metric
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Definitionin 2 — D
Given a set of sites S = {s;} in R?, the Voronoi diagram is a decomposition
of the plane into cells C = {c;} (one cell per site) such that for each point p
in the open cell ¢;, we have d(p,si) < d(p,s;) fori #j
based OT

Voronoi
diagram
based DT
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Voronoi diagrams and EDT

EDT < rewriting the Voronoi diagram labeling of background points
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Voronoi diagrams and EDT

EDT < rewriting the Voronoi diagram labeling of background points

DT algorithms based on the Voronoi diagram extraction exist to compute the EDT
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Sweep line technique to construct 2-D
discrete Voronoi diagrams

[BGKW95, GM98]

@ 2 scan process to construct the diagram

@ When we move from a row to the next one, we use a process based on
a stack of sites to update the Voronoi diagram on the current row
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Applications

metrcs. [BGKW95, GM98]

DT
Algorithms
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based DT

Euclidean DT [¢]
Voronoi

diagram °

based DT

Conclusion

@ 2 scan process to construct the diagram

@ When we move from a row to the next one, we use a process based on
a stack of sites to update the Voronoi diagram on the current row

0O(n?) for a 2-D image
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el @ the problem is decomposed into several 1 — D Voronoi diagram
pased O constructions

@ each 1 — D problem can be solved in linear time

= 0O(n?) for 2 — D images and O(n?) for d — D images
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[Coe02]

Anisotropic grids

FErR i
L

Voronoi

diagram

based DT

Hexagonal grids - [Coe02]
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Anisotropic grids - [Coe02]

based 7
Euclidean DT H

oo Hexagonal grids - [Coe02]
diagram
based DT

y=V3z+b
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@ Optimal algorithms to compute the DT based on the error free
Euclidean metric or Chamfer metrics

@ Links between DT and classical objects in the Computational Geometry
@ We also have Farey series in DT problems !

Conclusion
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@ Optimal algorithms to compute the DT based on the error free
Euclidean metric or Chamfer metrics

Euclidean DT

Voronoi

Voronoi @ Links between DT and classical objects in the Computational Geometry
e @ We also have Farey series in DT problems !

Conclusion

Codes are available on the TC18 webpages
http://www.cb.uu.se/"tc18/

Technical Committee 18 “Discrete Geometry” of the International Association on Pattern Recognition (IAPR)
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