

Table of contents

Distance Transform

David Coeurjolly

Laboratoire LIRIS Université Claude Bernard Lyon 1 43 Bd du 11 Novembre 1918 69622 Villeurbanne CEDEX France david.coeurjolly@liris.cnrs.fr

2006

Table of contents

- Euclidean DT
- Voronoi diagram based DT

Conclusion

Table of contents

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < @

Table of contents

- Chamfer based DT
- Euclidean DT
- Voronoi diagram based DT

Conclusion

Table of contents

Table of contents

OT Algorithms

- Chamfer based DT
- Euclidean DT
- Voronoi diagram based DT

Conclusion 5

Table of contents

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Table of contents

Definitions

Application

Discrete metrics

DT Algorithn

Chamfer based DT Euclidean DT Voronoi diagram based DT

Conclusion

Applicat

Discrete metrics

DT Algorithms

- Chamfer based DT
- Euclidean DT
- Voronoi diagram based DT

Conclusion

Definitions

Applications

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT Voronoi diagram based DT

Conclusion

Context : region based shape analysis

Definition of the DT

Labeling of each pixel p of the object by the distance to the closest point q in the background

Statement

- Classical problem in discrete geometry
- From the DT we can compute:
 - direct measurements (local width,...)
 - differential estimators
 - medial axis or skeleton extraction

Definitions

Applications

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT Voronoi diagram based DT

Conclusion

Context : region based shape analysis

Definition of the DT

Labeling of each pixel p of the object by the distance to the closest point q in the background

- Classical problem in discrete geometry
- From the DT we can compute:
 - direct measurements (local width,...)
 - differential estimators
 - medial axis or skeleton extraction

Statement

Table of contents

Definitions

Applications

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT Voronoi diagram based DT

Conclusion

2 Applications

Discrete metrics

DT Algorithms

- Chamfer based DT
- Euclidean DT
- Voronoi diagram based DT

Conclusion

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ ⊙ < ⊙

David Coeurjolly

Definitions

Idea

Applications

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT Voronoi diagram based DT

Conclusion

Approximation of differential estimators

We consider the boundary of a shape as an implicit surface f(x, y) = 0 where *f* is given by the DT

$$f(x, y) = 0$$

$$\vec{g}(x, y) = (l_x, l_y)^T$$

$$\vec{t}(x, y) = \frac{(-l_x, l_y)^T}{\sqrt{l_x^2 + l_y^2}}$$

$$k = \frac{-t^{\mathsf{T}}Ht}{\|\vec{g}\|}, \quad H = \begin{bmatrix} I_{xx} & I_{xy} \\ I_{yx} & I_{yy} \end{bmatrix}$$

David Coeurjolly

Definitions

Idea

Applications

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT Voronoi diagram based DT

Conclusion

Approximation of differential estimators

We consider the boundary of a shape as an implicit surface f(x, y) = 0 where *f* is given by the DT

$$f(\mathbf{x}, \mathbf{y}) = 0$$

$$\vec{g}(\mathbf{x}, \mathbf{y}) = (I_x, I_y)^T$$

$$\vec{t}(\mathbf{x}, \mathbf{y}) = \frac{(-I_x, I_y)^T}{\sqrt{I_x^2 + I_y^2}}$$

$$k = \frac{-t^{T}Ht}{\|\vec{g}\|}, \quad H = \begin{bmatrix} I_{xx} & I_{xy} \\ I_{yx} & I_{yy} \end{bmatrix}$$

Definitions

Applications

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT Voronoi diagram based DT

Conclusion

Medial Axis and Skeleton extraction

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Definitions

Applications

Discrete metrics

DT Algorithn

Chamfer based DT Euclidean DT Voronoi diagram based DT

Conclusion

Definitio

2 App

3 Discrete metrics

- DT Algorithms
 - Chamfer based DT
 - Euclidean DT
 - Voronoi diagram based DT

Conclusion

Table of contents

David Coeurjolly

Discrete metrics

<□> <同> <目> <目> <目> <目> <日> <同> <日> <日> <日> <日> <日> <日</p>

Definitions

Applications

Discrete metrics

DT Algorithr

Chamfer based DT Euclidean DT Voronoi diagram based DT

Conclusion

Constraint

Definition of a metric based on integer numbers

- Rounded metric d
- Approximate the Euclidean metric with integers: Chamfer masks
- DT based on sequences of chamfer masks
- Displacement based DT $(d_x, d_y)^T$
- DT based on the squared Euclidean distance SDT

David Coeurjolly

Axioms of a metric

<□> <同> <目> <目> <目> <目> <日> <同> <日> <日> <日> <日> <日> <日</p>

Definitions

Applications

Discrete metrics

DT Algorith

Chamfer based DT Euclidean DT Voronoi diagram based DT

Conclusion

d is a metric on an non-empty set S iff:

 $\forall p, q, r \in S:$

•
$$d(p,p)=0$$

•
$$d(p,q) = d(q,p)$$

•
$$d(p,r) \leq d(p,q) + d(q,r)$$

Ball

A ball of radius r with center p is the set of points q in S such that:

d(p,q) < r

David Coeurjolly

Definitions

Applications

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT Voronoi diagram

Conclusion

Rounded Euclidean metric

If d is a metric then $\lceil d \rceil$ is also a metric

- $\lceil d(p,p) \rceil = 0$
- $\lceil d(p,q) \rceil = \lceil d(q,p) \rceil$
- $\lceil d(p,r) \rceil \leq \lceil d(p,q) \rceil + \lceil d(q,r) \rceil \ (\forall a,b,c \in \mathbb{R}, a+b \geq c \Rightarrow \lceil a \rceil + \lceil b \rceil \geq \lceil c \rceil)$

 \Rightarrow Yes !

And what about $\lfloor d \rfloor$ or $\lfloor d \rfloor$?

No!

Definitions

Applications

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT Voronoi diagram based DT

Conclusion

[Bor86, Ver91, Thi01, FM05]

Idea

First, we fix a set of elementary displacements and then we affect a weight to each step in order to approximate the Euclidean distance.

Chamfer metrics

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

—	1	-	1	1	1
1	0	1	1	0	1
—	1	-	1	1	1

Definitions

Applications

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT Voronoi diagram based DT

Conclusion

[Bor86, Ver91, Thi01, FM05]

Idea

First, we fix a set of elementary displacements and then we affect a weight to each step in order to approximate the Euclidean distance.

General masks

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Chamfer metrics

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT Voronoi diagram based DT

Conclusion

Elementary displacements: Farey series

(u, v) is valid if $\frac{v}{u}$ is an irreducible fraction

Elementary displacements in a $m \times m$ mask \Leftrightarrow fractions in the Farey series \mathcal{F}_m

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

David Coeurjolly

Definitions

Applications

Discrete metrics

DT Algorithm

- Chamfer based DT Euclidean DT
- Voronoi diagram based DT

```
Conclusion
```

How to compute the weights ?

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• The mask must form a metric:

Objectives

- d(p,p) = 0
- d(p,q) = d(q,p)
- $d(p,r) \leq d(p,q) + d(q,r)$
- Trade-off between the approximation of the Euclidean distance and the size of the mask

Cost function to minimize

 $d_{mask}(p,q) - d_{euc}(p,q)$

Over a domain defined by linear constraints

- 3x3 mask : *b* < 2*a* and *b* > *a*
- 5x5 mask : 2*a* < *c*, 3*b* < 2*c* and *c* < *a* + *b*

David Coeurjolly

Definitions

Applications

Discrete metrics

DT Algorithm

- Chamfer based DT Euclidean DT
- Voronoi diagram based DT

Conclusion

How to compute the weights ?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Objectives

- The mask must form a metric:
 - d(p,p) = 0
 - d(p,q) = d(q,p)• $d(p,r) \le d(p,q) + d(q,r)$
- Trade-off between the approximation of the Euclidean distance and the size of the mask

Cost function to minimize

$$d_{mask}(p,q) - d_{euc}(p,q)$$

Over a domain defined by linear constraints

- 3x3 mask : b < 2a and b > a
- 5x5 mask : 2a < c, 3b < 2c and c < a + b

David Coeurjolly

Definitions

Applications

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT Voronoi diagram based DT

Conclusion

3x3 masks [Bor86]

$$Diff = yb + (x - y)a - \sqrt{x^2 + y^2}$$

$$\Rightarrow a_{opt} = 0.95509$$
 and $b_{opt} = 1.3693$

Example: a = 1,

- x-axis: the column x = 10 and $1 \le y \le 10$
- y-axis: the error function $yb + (x - y)a - \sqrt{x^2 + y^2}$
- b = 1: d_8 or chessboard metric

Weight analysis

Unit balls

Discrete metrics

Chamfer based DT Euclidean DT Voronoi diagram based DT

David Coeurjolly

Definitions

Applications

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT Voronoi diagram based DT

Conclusion

Sequence of chamfer masks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

[RP66, MDKC00, Nag05]

Idea

We consider a set of chamfer masks (*e.g.* d_4 and d_8) and we switch the masks to find a better approximation of d_{euc} in a DT problem

Problems to solve

- Find the set of chamfer masks
- Find the best sequence of the masks to approximate deuc

David Coeurjolly

Definitions

Applications

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT Voronoi diagram based DT

Conclusion

Chamfer metrics - summary

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- + Simple computations
- Approximation of the Euclidean distance
- Not an isotropic representation of an object
- + DT is easy to implement

Main drawbacks

If you:

- change the shape of the pixels (*e.g.* elongated grids with factor λ),
- change size of the mask, or
- change the dimension of the image

you have to update the weights with a new optimization process

David Coeurjolly

Definitions

Applications

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT Voronoi diagram

Conclusion

Exact Euclidean metrics

<□> <同> <目> <目> <目> <目> <日> <同> <日> <日> <日> <日> <日> <日</p>

DT based on displacement vectors (d_x, d_y)

- + Error free representation
- Complex DT to obtain an error free computation
- We have to store two coordinates

DT based on the squared Euclidean distance (d_{euc}^2)

- + Error free representation
- + Fast error free DT
- We have to store the square of integer numbers

Table of contents

Definitions

Applications

Discrete metrics

DT Algorithms

Chamfer based DT Euclidean DT Voronoi diagram based DT

Conclusion

Definition

Applicatio

Discrete metrics

4 DT Algorithms

- Chamfer based DT
- Euclidean DT
- Voronoi diagram based DT

Conclusion

◆□ → ◆□ → ∢ 三 → ∢ 国 → ∢ □ →

Table of contents

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT

Euclidean DT Voronoi diagram based DT

Conclusion

Definition

Applicatio

Discrete metrics

OT Algorithms

- Chamfer based DT
- Euclidean DT
- Voronoi diagram based DT

Conclusion

Definitions

Application

Discrete metrics

DT Algorithms

Chamfer based DT

Euclidean DT Voronoi

diagram based DT

Conclusion

Computation of the Chamfer DT

Sketch of the algorithm

[RP66, RP68, Bor86]

Decomposition of the mask into two parts and double scan of the image to update the min distance

 $DT(i,j) = \min_{(k,l) \in Mask} (DT(i+k,j+l) + weight(k,l))$

Initialization :

DT(i,j) = 0 if $(i,j) \notin Object$ $DT(i,j) = +\infty$ if $(i,j) \in Object$

Rem: the displacement (0,0) with weight 0 belongs to the mask...

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT

Euclidean DT Voronoi diagram

Conclusion

(image from [Thi01])

Using the d_{3-4} mask

Example

Definitions

Applications

Discrete metrics

DT Algorithm:

Chamfer based DT

Euclidean DT Voronoi

diagram based DT

Conclusion

Single background pixel at the center of the image

Example

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Table of contents

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT

Euclidean DT

Voronoi diagram based DT

Conclusion

Definition

Applicat

Discrete metrics

4 DT Algorithms

Chamfer based DT

- Euclidean DT
- Voronoi diagram based DT

Conclusion

David Coeurjolly

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT

Euclidean DT

Voronoi diagram based DT

Conclusion

Idea - [Dan80, Mul92]

Store at each pixel the vector $\vec{v} = (x_p, y_p)$ such that DT(p) = |v(p)|

Danielson's algorithm [Dan80]

Multiple scan process with directional masks (4-connected). At each step we update $\vec{v} = (x_{\rho}, y_{\rho})$ with the vector with the minimal distance.

Vector DT

Definition

Application

Discrete metrics

DT Algorithm

Chamfer based DT

Euclidean DT

Voronoi diagram based DT

Conclusion

Local updates can lead to incorrect DT

- *a*, *b* and *c* are background pixels
- Danielson's algorithm: *a* − *d*, *c* − *e* but *c* − *q* or *a* − *q*
- Orrect algorithm: *a* − *d*, *c* − *e* and *b* − *q*

Algorithms exist to correct these pathological cases leading to error-free VDT [Cui99, CM99]

Errors in Danielson's VDT

NERNERNERNER ENVRO

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT

Euclidean DT

Voronoi diagram based DT

Conclusion

Local updates can lead to incorrect DT

- *a*, *b* and *c* are background pixels
- Danielson's algorithm: *a* − *d*, *c* − *e* but *c* − *q* or *a* − *q*
- Correct algorithm: a d, c e and b q

Algorithms exist to correct these pathological cases leading to error-free VDT [Cui99, CM99]

Errors in Danielson's VDT

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT

Euclidean DT

Voronoi diagram based DT

Conclusion

Idea

Store the square of the EDT

$riangle d_{euc}^2$ is not a metric

Squared Euclidean Distance Transform

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Da	vic	1
Coeu	rjo	olly

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT

Euclidean DT

Voronoi diagram based DT

Conclusion

Idea

Store the square of the EDT

$riangle d_{\it euc}^2$ is not a metric

Squared Euclidean Distance Transform

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

David Coeurjolly

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT

Euclidean DT

Voronoi diagram based DT

Conclusion

[ST94, Hir96, MRH00]
Let P be the background of the object F, the SEDT at q in F is given by:

$$s(q) = \min_{p \in P} \{ d_{euc}^2(p,q) \}$$

If we decompose the problem with q(i, j), we have:

$$s(q) = \min_{p(x,y) \in P} \{ (x-i)^2 + (y-j)^2 \}$$

and:

$$g(i,j) = \min_{x} \{ (x-i)^2 \}$$

with

$$s(i,j) = \min_{y} \{ (y-j)^2 + g(i,y) \}$$

<□> <同> <目> <目> <目> <目> <日> <同> <日> <日> <日> <日> <日> <日</p>

⇒ dimensional decomposition of the DT computation

 \Rightarrow separable technique

Squared Euclidean Distance Transform

David Coeurjolly

Definitions

Applications

Discrete metrics

DT Algorithn

Chamfer based DT

Euclidean DT

Voronoi diagram based DT

Conclusion

Step 1: $g(i,j) = \min_{x} \{ (x - i)^2 \}$

<□> <同> <目> <目> <目> <目> <日> <同> <日> <日> <日> <日> <日> <日</p>

Computational cost

- $O(n^2)$ for a $n \times n$ image
- $O(n^d)$ for a n^d image

David Coeurjolly

Definitions

Applications

Discrete metrics

DT Algorithn

Chamfer based DT

Euclidean DT

Voronoi diagram based DT

Conclusion

Step 1: $g(i, j) = \min_{x} \{ (x - i)^2 \}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Simple 2 scan algorithm Input row: ∞ ∞ ∞ ∞ ∞ ∞ 9 4 $\rightarrow :$ ∞ 1 4 4 4 1 1 \rightarrow \leftarrow :

Computational cost

- $O(n^2)$ for a $n \times n$ image
- $O(n^d)$ for a n^d image

David Coeurjolly

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT

Euclidean DT

Voronoi diagram based DT

Conclusion

 $O(n^3)$ for a 2D image but we can design $O(n^2)$ algorithms [ST94]

David Coeurjolly

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT

Euclidean DT

Voronoi diagram based DT

Conclusion

$O(n^3)$ for a 2D image but we can design $O(n^2)$ algorithms [ST94]

David Coeurjolly

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT

Euclidean DT

Voronoi diagram based DT

Conclusion

Optimal Step 2 algorithm: Parabola lower envelope computation

[Hir96, MRH00]

David Coeurjolly

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT

Euclidean DT

Voronoi diagram based DT

Conclusion

Linear in time lower envelope computation

Sketch of the algorithm [Hir96, MRH00]

- We scan the parabolas and use a stack to store the parabolas that belong to the lower envelope
- When a new parabola is considered, this parabola may invalidate some parabolas in the stack → we pop the parabolas on the stack while the parabola on the top of the stack is invalidated by the new one
- When no more parabolas have to be considered, we compute the SDT map with the heights of the lower envelope parabolas

(日) (日) (日) (日) (日) (日) (日)

Computational analysis

Linear process in the number of parabolas

- $O(n^2)$ for a $n \times n$ image
- $O(n^d)$ for a n^d image

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT

Euclidean DT

Voronoi diagram based DT

Conclusion

Some results of the SEDT

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 \Rightarrow optimal in time algorithms and error free DT whatever the dimension

David Coeurjolly

SDT - summary

<□> <同> <目> <目> <目> <目> <日> <同> <日> <日> <日> <日> <日> <日</p>

Definitions

Applications

Discrete metrics

- DT Algorithm
- Chamfer based DT

Euclidean DT

Voronoi diagram based DT

Conclusion

- Optimal algorithms to compute error free SDT
- Trivial generalizations to d-dimensional objects
- Can handle elongated factors
- Based on a isotropic metric

Table of contents

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT

Voronoi diagram based DT

Conclusion

Definition

Applicat

Discrete metrics

4 DT Algorithms

- Chamfer based DT
- Euclidean DT
- Voronoi diagram based DT

Conclusion

David Coeurjolly

Definitions Application

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT

Voronoi diagram based DT

Conclusion

Voronoi diagram in Computational Geometry

Definition in 2 - D

Given a set of sites $S = \{s_i\}$ in \mathbb{R}^2 , the Voronoi diagram is a decomposition of the plane into cells $C = \{c_i\}$ (one cell per site) such that for each point p in the open cell c_i , we have $d(p, s_i) < d(p, s_i)$ for $i \neq j$

Voronoi diagrams and EDT

EDT \Leftrightarrow rewriting the Voronoi diagram labeling of background points

DT algorithms based on the Voronoi diagram extraction exist to compute the EDT

David Coeurjolly

LIRIS

Definitions

Applications

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT

Voronoi diagram based DT

Conclusion

Voronoi diagrams and EDT

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

EDT \Leftrightarrow rewriting the Voronoi diagram labeling of background points

DT algorithms based on the Voronoi diagram extraction exist to compute the EDT

Coeurjolly Definitions

David

LIRIS

Applications

Discrete metrics

DT Algorithm:

Chamfer based DT Euclidean DT

Voronoi diagram based DT

Conclusion

David Coeurjolly

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT Fuclidean DT

Voronoi diagram based DT

Conclusion

Sweep line technique to construct 2-D discrete Voronoi diagrams

- 2 scan process to construct the diagram
- When we move from a row to the next one, we use a process based on a stack of sites to update the Voronoi diagram on the current row

$O(n^2)$ for a 2-D image

David Coeurjolly

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT Fuclidean DT

Voronoi diagram based DT

Conclusion

Sweep line technique to construct 2-D discrete Voronoi diagrams

- 2 scan process to construct the diagram
- When we move from a row to the next one, we use a process based on a stack of sites to update the Voronoi diagram on the current row

$O(n^2)$ for a 2-D image

David Coeurjolly

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT

Voronoi diagram based DT

Conclusion

Generalizations to higher dimensions

Idea - [Coe02, CRMQR03]

David Coeurjolly

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT

Voronoi diagram based DT

Conclusion

Generalizations to higher dimensions

Idea - [Coe02, CRMQR03]

David Coeurjolly

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT

Voronoi diagram based DT

Conclusion

Generalizations to higher dimensions

Idea - [Coe02, CRMQR03]

David Coeurjolly

Definitions

Application

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT

Voronoi diagram based DT

Conclusion

Generalizations to higher dimensions

Idea - [Coe02, CRMQR03]

David Coeurjolly

Computational cost

<□> <同> <目> <目> <目> <目> <日> <同> <日> <日> <日> <日> <日> <日</p>

Definitions

Applications

Discrete metrics

DT Algorithm

Chamfer based DT Fuclidean DT

Voronoi diagram based DT

Conclusion

Analysis

- the problem is decomposed into several 1 *D* Voronoi diagram constructions
- each 1 D problem can be solved in linear time

 $\Rightarrow O(n^2)$ for 2 – D images and $O(n^d)$ for d - D images

Results

2-D Applications Chamfer based DT Euclidean DT Voronoi diagram based DT

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definitions

Applications

Discrete metrics

DT Algorithms

Chamfer based DT Euclidean DT

Voronoi diagram based DT

Conclusion

Results

Definitions Applications

Discrete metrics

DT Algorithm

Chamfer based DT Euclidean DT

Voronoi diagram based DT

Conclusion

Generalization for separable techniques

Anisotropic grids - [Coe02]

Hexagonal grids - [Coe02]

Definitions

Applications

Discrete metrics

DT Algorithms

Chamfer based DT Euclidean DT

Voronoi diagram based DT

Conclusion

Generalization for separable techniques

Anisotropic grids - [Coe02]

Table of contents

Definitions

Application

Discrete metrics

DT Algorithn

Chamfer based DT Euclidean DT Voronoi diagram based DT

Conclusion

Application

Discrete metrics

DT Algorithms

- Chamfer based DT
- Euclidean DT
- Voronoi diagram based DT

5 Conclusion

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ ⊙ < ⊙

Conclusion

<□> <同> <目> <目> <目> <目> <日> <同> <日> <日> <日> <日> <日> <日</p>

Coeurjolly Definitions

David

LIRIS

Applications

Discrete metrics

DT Algorith

Chamfer based DT Euclidean DT Voronoi diagram

Conclusion

- Optimal algorithms to compute the DT based on the error free Euclidean metric or Chamfer metrics
- Links between DT and classical objects in the Computational Geometry
- We also have Farey series in DT problems !

Codes are available on the TC18 webpages

http://www.cb.uu.se/~tc18/ Technical Committee 18 "Discrete Geometry" of the International Association on Pattern Recognition (IAPR)

Conclusion

<□> <同> <目> <目> <目> <目> <日> <同> <日> <日> <日> <日> <日> <日</p>

Coeurjolly Definitions

David

LIRIS

Applications

Discrete metrics

DT Algorith

Chamfer based DT Euclidean DT Voronoi diagram

based DT

Conclusion

- Optimal algorithms to compute the DT based on the error free Euclidean metric or Chamfer metrics
- Links between DT and classical objects in the Computational Geometry
- We also have Farey series in DT problems !

Codes are available on the TC18 webpages

http://www.cb.uu.se/~tc18/ Technical Committee 18 "Discrete Geometry" of the International Association on Pattern Recognition (IAPR)

1

David Coeurjolly

Definitions

Applications

Discrete metrics

DT Algorithn

Chamfer based DT Euclidean DT

Voronoi diagram based DT

Conclusion

Linear time euclidean distance transform algorithms.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, 1995.

G. Borgefors.

Distance transformations in digital images.

Computer Vision, Graphics, and Image Processing, 34(3):344-371, June 1986.

O. Cuisenaire and B. Macq.

Fast euclidean distance transformations by propagation using multiple neighbourhoods. *Computer Vision and Image Understanding*, 76, November 1999.

D. Coeurjolly.

Algorithmique et géométrie discrète pour la caractérisation des courbes et des surfaces. PhD thesis, Université Lumière Lyon 2, Bron, Laboratoire ERIC, dec 2002.

Jr. C. R. Maurer, R. Qi, and V. Raghavan.

A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions.

IEEE Trans. on Pattern Analysis and Machine Intelligence, 25(2):285–270, feb 2003.

O. Cuisenaire.

Distance Transformations : Fast Algorithms and Applications to Medical Image Processing. PhD thesis, Université Catholique de Louvain, oct 1999.

P. E. Danielsson.

Euclidean distance mapping. CGIP, 14:227–248, 1980.

C. Fouard and G. Malandain.

3-d chamfer distances and norms in anisotropic grids. Image and Vision Computing, 23(2):143–158, February 2005.

W. Guan and S. Ma.

A list-processing approach to compute voronoi diagrams and the euclidean distance transform. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20:757–761, 1998.

Definitions

Application

Discrete metrics

DT Algorithn

Chamfer based DT Euclidean DT Voronoi diagram

Conclusion

A unified linear-time algorithm for computing distance maps. Information Processing Letters, 58(3):129–133, May 1996.

J. Mukherjee, P. P. Dasa, M. Aswatha Kumarb, and B. N. Chatterjib. On approximating euclidean metrics by digital distances in 2d and 3d. *Pattern Recognition Letters*, 21(6–7):573–582, 2000.

A. Meijster, J.B.T.M. Roerdink, and W. H. Hesselink.

A general algorithm for computing distance transforms in linear time. In Mathematical Morphology and its Applications to Image and Signal Processing, pages 331–340. Kluwer, 2000.

J. C. Mullikin.

The vector distance transform in two and three dimensions.

Computer Vision, Graphics, and Image Processing. Graphical Models and Image Processing, 54(6):526–535, November 1992.

Benedek Nagy.

A comparison among distances based on neighborhood sequences in regular grids. In SCIA, pages 1027–1036, 2005.

A. Rosenfeld and J. L. Pfaltz.

Sequential operations in digital picture processing. *Journal of the ACM*, 13(4):471–494, October 1966.

A. Rosenfeld and J. L. Pfalz.

Distance functions on digital pictures. *Pattern Recognition*, 1:33–61, 1968.

T. Saito and J. I. Toriwaki.

New algorithms for Euclidean distance transformations of an *n*-dimensional digitized picture with applications.

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

Pattern Recognition, 27:1551-1565, 1994.

E. Thiel.

Géométrie des distances de chanfrein.

Definitions

Applications

Discrete metrics

DT Algorithr

Chamfer based DT

Euclidean DT

Voronoi diagram based DT

Conclusion

Habilitation à Diriger des Recherches, Université de la Méditerranée, Aix-Marseille 2, Déc 2001.

<□> <同> <目> <目> <目> <目> <日> <同> <日> <日> <日> <日> <日> <日</p>

B. J. H Verwer.

Local distances for distance transformations in two and three dimensions. *Pattern Recognition Letters*, 12:671–682, november 1991.