IBATIS Data Access Objects

Developer Guide

Version 2.0

June 17, 2004

JiBATISE

WWW_IEATIS. COM

Developer Guide iBATIS Data Access Objects 2.0 2

Introduction

When developing robust Java applications, it is ofteoca gdea to isolate the specifics of your persistence
implementation behind a common API. Data Access Objects ghovto create simple components that
provide access to your data without revealing the specifi¢tedfrtplementation to the rest of your
application. Using DAOs you can allow your applicatiobéodynamically configured to use different
persistence mechanisms. If you have a complex applicattbrawmiumber of different databases and
persistence approaches involved, DAOs can help you createisteon8PI for the rest of your

application to use.

Data Access Objects (com.ibatis.dao.*)

The iBATIS Data Access Objects API can be used to help hidésperce layer implementation details
from the rest of your application by allowing dynamic, glalgle DAO components to be swapped in and
out easily. For example, you could have two implementsiidra particular DAO, one that uses the
iBATIS SQL Maps framework to persist objects to the datalzaskanother that uses the Hibernate
framework. Another example would be a DAO that provides cad@ngces for another DAO.

Depending on the situation (e.g. limited database perfaenas limited memory), either the cache DAO
could be “plugged in” or the standard un-cached DAO cbaldsed. These examples show the
convenience that the DAO pattern provides, however, morerfenfias the safety that DAO provides. The
DAO pattern protects your application from possibly béied to a particular persistence approach. Inthe
event that your current solution becomes unsuitable (or@vavailable), you can simply create new DAO
implementations to support a new solution, without ing¥o modify any code in the other layers of your
application.

Note! The DAO framework and SQLMaps Framework are completely sepamndtare not dependent on
each other in any way. Please feel free to use either one sepanabelth together.

The Components of the Data Access Objects API

There are a number of classes that make up the DAO API. Bachvery specific and important role.
The following table lists the classes and a brief descripfidre next sections will provide more detail on
how to use these classes.

Class/Interface (Patterns) Description

DaoManager Responsible for configuration of the DAO framework (@&o.xml),

(Facade) instantiating Dao implementations and acts as a facade testhef the
APL.

DaoTransaction A generic interface for marking transactions (connectioAsjommon

(Marker Interface) implementation would wrap a JDBC connection object.

DaoException All methods and classes in the DAO API throw this exoapt

(RuntimeException) exclusively. Dao implementations should also throweRiseption

exclusively. Avoid throwing any other exception type, argldad nes
them within the DaoException.

Dao A marker interface for all DAO implementations. This interfamest
(Marker Interface) be implemented by all DAO classes. This interface doesautdre
any methods to be implemented, and only acts as a marker (i.e.
something for the DaoFactory to identify the class by).

http://www.ibatis.com by Clinton Begin

Developer Guide

iBATIS Data Access Objects 2.0

JDBC Transaction Manager Implementations

N

SQLMAP Manages transactions via the SQL Maps frameworktaichnsaction
management services including various DataSource and transacti
manager configurations.

HIBERNATE Provides easy integration for Hibernate andstsociated transaction
facilities (SessionFactory, Session, Transaction).

JDBC Manages transactions via the JDBC API using the bas&Sburce
and Connection interfaces.

JTA Manages JTA global (distributed) transaction servi€&eqjuires a
managed DataSource that can be accessed via JNDI.

EXTERNAL Allows transactions to be controlled externally

iBATIS Data Access Objects 2.0

O Developer components
[Framework components

dao.zml read: <zititerfaces> Tdb
il EE e DaoTransCaction
Builder DaoTransaction
huildDaclanagen]) ——==
&
| T 1 é
= E 5 i1
o g =] @
getDao() @ | T ‘
——start Transaction(}—= <<interfaces> Jdbe
Client —commit Transaction)=={ Daclanager DaoTran:;aEcrhon et DaoTrani:;twn
——end Transaction () —==|
-get Transaction () |
o
E fnanages =
-1 <=zinterfaces>
g T £ DaoContesxt
g % é Drao
E [=]
= 57 3
&
belongs to
<<interfaces> <<interfacess <<interfacess
CompanyDan Dreparttmentlian Etnployeeliao
DraoProzy
Idbe Caching Jdbe SqlMap Hibernate
Cotnpaty [==—adapts— Cotnpany Depattrent Employes EmployeeDao
Dran Dao Diao Dao Dao
Company y| Employee
DB DB
Legend
R e

http://www.ibatis.com

by Clinton Begin

Developer Guide iBATIS Data Access Objects 2.0 4

dao.xml —The Configuration File (http://www.ibatis.com/dtd/dao-2.dtd)

The DaoManager class is responsible for configuration d&@ Framework. The DaoManager is able

to parse a special XML file with configuration informatifmm the framework. The configuration XML file
specifies the following things: 1) DAO contexts, 2) Tiransaction Manager implementation for each
context, 3) properties for configuration of the Transadlanager, 3) the Dao implementations for each
associated DAO interface. A DAO context is a grouping ofedlabnfiguration information and DAO
implementations. Usually a context is associated withglesttata source such as a relational database or a
flat file. By configuring multiple contexts, you can easigntralize access configuration to multiple
databases. The structure of the DAO configuration file feonly called dao.xml, but not required) is as
follows. Values that you will likely change for your dipption are highlighted.

<IDOCTYPE daoConfig
PUBLIC "-//iBATIS.com//DTD DAO Configuration 2. O//EN"
"http://lwww.ibatis.com/dtd/dao-2.dtd">
<daoConfig>
<properties resource=" com/domain/properties/MyProperties.properties "/>
<!-- Example JDBC DAO Configuration -->

<context>

<transactionManager type="JDBC">
<property name="DataSource" value=" SIMPLE"/>

<property name="JDBC.Driver" value=" ${driver} "/>
<property name="JDBC.ConnectionURL" value=" ${url} "/>
<property name="JDBC.Username" value=" ${username} "/>
<property name="JDBC.Password" value=" ${password} "/>
<property name="JDBC.DefaultAutoCommit" value ="true" />
<property name="Pool.MaximumActiveConnections " value="10"/>
<property name="Pool.MaximumldleConnections" value="5"/>
<property name="Pool.MaximumCheckoutTime" val ~ ue="120000"/>
</transactionManager>

<dao interface=" com.domain.dao.OrderDao "

implementation=" com.domain.dao.jdbc.JdbcOrderDao "/>
<dao interface=" com.domain.dao.LineltemDao

implementation=" com.domain.dao.jdbc.JdbcLineltemDao "/>
<dao interface=" com.domain.dao.CustomerDao

implementation=" com.domain.dao.jdbc.JdbcCustomerDao "/>
</context>

<!-- Example SQL Maps DAO Configuration -->
<context>

<transactionManager type="SQLMAP">
<property name="SqlMapConfigResource" value=" com/domain/dao/sglmap/SqlMapConfig.xml "/>
</transactionManager>

<dao interface=" com.domain.dao.PersonDao "

implementation=" com.domain.dao.sqlmap.SglMapPersonDao "/>
<dao interface=" com.domain.dao.BusinessDao

implementation=" com.domain.dao.sqlmap.SglMapBusinessDao "/>
<dao interface=" com.domain.dao.AccountDao "

implementation=" com.domain.dao.sqlmap.SglMapAccountDao "/>
</context>

</daoConfig>

http://www.ibatis.com by Clinton Begin

Developer Guide iBATIS Data Access Objects 2.0 5

In the example above, what we end up with is two DAO caat®AOs are automatically aware of which
context they belong to and therefore which transaction matagee. There can be any number of DAO
contexts specified in a dao.xml. Generally a context @fi#rrto a single specific data source.

In order to manage multiple configurations for difféarenvironments (DEVT, Q/A, PROD), you can also
make use of the optional <properties> element as shown .alitne allows you to use placeholders in the
place of literal value elements. For example, if you have eepiep file with the following values:

driver = org.postgresql.Driver
url = jdbc:postgresql://localhost:5432/test

Then in the dao.xml file you can use placeholders insteagpitit values. For example (as above):

<property name="JDBC.Driver" value=" ${driver} "/>
<property name="JDBC.ConnectionURL" value=" ${url} />

This allows for easier management of different environmerftgroations. Only one properties resource
may be specified per dao.xml.

Within the context (continuing with the example aboteg, first context configuration states that we will
be using a transaction manager implementation called “JDBQO% pHnticular implementation has certain
properties that it needs for configuration, which are spedifi¢de property elements in the body of the
transaction manager element. Different transaction managemnieyptiations will require different
properties. See below for more.

Next in the context, is the specification of all DAO ifdees and their associated implementations. These
mappings link a generic DAO interface to a concrete (specifigleimentation. This is where we can see
the “pluggable” nature of Data Access Objects. By simplyapd) the implementation class for a given
DAO mapping, the persistence approach taken can be completelyach(e.g. from JDBC to SQL Maps).

Transaction Manager Implementations and Configuraton

The Transaction Manager implementation is the componenwtthatanage the pool of transaction
objects. A transaction manager is usually just a wrappendmgpecific implementation of a connection
pool such as a DataSource implementation. Similarly a traosactually wraps a particular
implementation such as a JDBC Connection instance.

There are currently five implementations of transaction mandgersome with the framework: JDBC,
JTA, SQLMAP, HIBERNATE and EXTERNAL. More details arepided for each below.

JDBC Transaction Manager

This implementation uses JDBC to provide connection pgaarvices via the DataSource API. There are
3 DataSource implementations supported: SIMPLE, DBCP abBd. JSIMPLE is an implementation of

the iBATIS SimpleDataSource, which is a standalone implementatéal for minimal overhead and
dependencies. DBCP is an implementation that uses thealBIBCP DataSource. Finally, JNDI is an
implementation that retrieves a DataSource reference from adiMdtory. This is the most common and
flexible configuration, as it allows you to centrally capfie your application via your application server.

The following are examples of each of the JDBC Configuration

http://www.ibatis.com by Clinton Begin

Developer Guide iBATIS Data Acces

s Objects 2.0

<!-- Example iBATIS SimpleDataSource JDBC Tran

saction Manager -->

<transactionManager type=" JDBC">
<property name="DataSource" value="SIMPLE"/ >
<property name="JDBC.Driver" value="${drive r}"/>
<property name="JDBC.ConnectionURL" value=" ${url}"/>
<property name="JDBC.Username" value="${use = rname}"/>
<property name="JDBC.Password" value="${pas sword}"/>
<property name="JDBC.DefaultAutoCommit" val ue="true" />

<!-- The following are optional -->
<property name="Pool.MaximumActiveConnectio
<property name="Pool.MaximumldleConnections
<property hame="Pool.MaximumCheckoutTime" v
<property name="Pool.TimeToWait" value="100
<property hame="Pool.PingQuery" value="sele
<property hame="Pool.PingEnabled" value="fa
<property name="Pool.PingConnectionsOlderTh
<property name="Pool.PingConnectionsNotUsed
</transactionManager>

<!-- Example Jakarta DBCP JDBC Transaction Man

<transactionManager type=" JDBC">
<property name="DataSource" value="DBCP"/>
<property name="JDBC.Driver" value="${driver}
<property name="JDBC.ConnectionURL" value="%{
<property name="JDBC.Username" value="${usern
<property name="JDBC.Password" value="${passw
<property hame="JDBC.DefaultAutoCommit" value
<!-- The following are optional -->
<property hame="Pool.MaximumActiveConnections
<property hame="Pool.MaximumldleConnections"
<property hame="Pool.MaximumWait" value="6000
<!I-- Use of the validation query can be probl
<property name="Pool.ValidationQuery" value="
<property name="Pool.LogAbandoned" value="fal

<property hame="Pool.RemoveAbandoned" value="
<property nhame="Pool.RemoveAbandonedTimeout"

</transactionManager>

ns" value="10"/>
" value="5"/>
alue="120000"/>
00"/>
ct * from dual"/>
Ise"/>
an" value="0"/>
For" value="0"/>

ager -->

II/>
url}'/>
ame}'/>
ord}"/>
="true" />

" value="10"/>
value="5"/>
0II/>

ematic. If you have difficulty, try without it. -

select 1 from ACCOUNT"/>
se"/>
false"/>
value="50000"/>

<!-- Example JNDI DataSource JDBC Transaction Manager -->

<transactionManager type=" JDBC">
<property name="DataSource" value="JNDI"/>
<property name="DBJndiContext" value="java:co
</transactionManager>

JTA Transaction Manager

mp/env/jdbc/MyDataSource"/>

>

The JTA Transaction Manager manages transactions usingvtn@rdasaction Architecture (JTA) API.

This implementation always requires that the DataSource ingplietion is retrieved via JNDI and that a
UserTransaction instance is also accessible via INDI. Henceadlserae additional setup on the server
side, but it makes the configuration of the DAO framewauke simple. Here is an example configuration:

<transactionManager type="JTA">

<property name="DBJndiContext" value="java:co
<property name="UserTransaction" value="java:

</transactionManager>

mp/env/jdbc/MyDataSource"/>
comp/env/UserTransaction"/>

http://www.ibatis.com

by Clinton Begin

Developer Guide iBATIS Data Access Objects 2.0 7

SQLMAP Transaction Manager

The SQLMAP transaction manager implementation wraps theN8§Qis transaction management services
for simple use via the DAO framework. All you need tedfy is the SQL Maps configuration file. Here
is an example configuration:

<transactionManager type="SQLMAP">
<property name="SqglMapConfigResource" value=" com/domain/dao/sqlmap/SqlMapConfig.xml"/>
</transactionManager>

HIBERNATE Transaction Manager

Similarly, the HIBERNATE transaction manager implementatioaps the Hibernate transaction
management services for simple use via the DAO framework. Bgditalproperties specified in the
configuration are the same as those that would normallpdmfied in a hibernate.properties file. In
addition, the persistent classes (that you would normethjta the Hibernate Configuration) are added
using properties that start with “class.”. Here's an exaropnfiguration:

<transactionManager type="HIBERNATE">
<property name="hibernate.dialect" value="net .sf.hibernate.dialect.PostgreSQLDialect"/>
<property name="hibernate.connection.driver_c lass" value="${driver}"/>
<property name="hibernate.connection.url" val ue="${url}"/>
<property name="hibernate.connection.username " value="${username}"/>
<property name="hibernate.connection.password " value="${password}"/>
<property name="class.1" value="com.domain.Pe rson"/>
<property name="class.2" value="com.domain.Bu siness"/>
<property nhame="class.3" value="com.domain.Ac count"/>
</transactionManager>

EXTERNAL Transaction Manager

The EXTERNAL transaction manager implementation allowsréordactions to be externally controlled
by the DAO framework. This implementation basically havehavior and therefore requires no
properties. You may use an EXTERNAL transaction managewife dealing with a flat file. Here’s and
example configuration:

<transactionManager type="EXTERNAL"/>

DAO Implementation Templates

You may be wondering how this transaction manager configaratorks. Well, for each of the above
transaction manager implementations, there is a DAO Templatatth it. The templates provide easy
access to the artifacts of each implementation. For exampl&l#hand JDBC templates provide simple
access to the JDBC Connection object. Similarly the SQLMARI&mprovides access to the
SglMapExecutor instance, while the HIBERNATE template gaeeess to the Session object.

Using the DAO templates is completely optional, but 99%heftime, there won’t be a good reason to
stray from them.

More information about these templates is provided indghevfing section that deals with programming
the DAO framework.

http://www.ibatis.com by Clinton Begin

Developer Guide iBATIS Data Access Objects 2.0 8

DaoManager -Programming

The iBATIS Data Access Objects framework has a number of gbal, it attempts to hide the details of
your persistence layer. This includes hiding all interfacpldmentation and exception details of your
persistence solution. For example: if you're using 3®BC, the DAO framework will hide classes like
DataSource, Connection and SQLException. Similarly, ifrgousing the Hibernate ORM (Object
Relational Mapper), the DAO framework will hide classes libaf@uration, SessionFactory, Session and
HibernateException. All of these implementation detailstvei hidden behind a consistent DAO interface
layer. Even the number of data sources that you're usingechinden from the view of the application.

The second goal is to simplify the persistence programmudgl, while at the same time keeping it more
consistent. Different persistence solutions have diffgggramming semantics and behavior. The DAO
framework attempts to hide this as much as possible, alipthanservice and domain layer of your
application to be written in a consistent fashion.

The DaoManager class is responsible for configuration db&@ framework (via dao.xml described
above). In addition, the DaoManager acts as a central fagéue test of the DAO API. Particularly it
provides methods that allow you to access the transactiori3ADdnstances.

Reading the Configuration File

The dao.xml file is read by the static buildDaoManager() ntetfidhe DaoManagerBuilder class. The
buildDaoManager() method takes a single Reader instance as a payarh&th can be a simple
FileReader that points to a dao.xml file. For example:

Reader reader = new FileReader(C:/myapp/dao.xml);
DaoManager daoManager = DaoManagerBuilder.buildDaoM anager(reader);

More likely though, in a Web application environment (threowise), it is typical to load such
configuration files from the classpath. This allows thdieggon to be moved around without having to
modify properties to accommodate for the new location (i.@eaeh location transparency). This is
simple to do using the com.ibatis.common.resources.Resalassshat is provided with the iBATIS
Database Layer. For example:

Reader reader = Resources.getResourceAsReader(“‘com/ domain/config/dao.xml”);
DaoManager daoManager = DaoManagerBuilder.buildDaoM anager(reader);

Contexts and the DaoManager

The DaoManager instance that is built from a dao.xmldikware of all of the contexts contained within
the configuration file. The context basically bundles DAlementations together with a transaction
manager. The DaoManager knows which DAOs and transaction erarisgong to which contexts.
When you request a DAO instance from the DaoManager, tipempi@nsaction manager will be provided
with it. Therefore, there is no need to ever access tiitexdoor transaction manager directly. Your DAO
knows how it works. Similarly, depending on which D&\@bu work with, transactions will be
appropriately started and/or committed appropriately. Asteation will only be started for a context when
a method is called on one of the DAOs that belong to thexbnThis is described in more detail below.

Getting a Data Access Object
Once you build a DaoManager instance, you can use it tevett Dao implementation by name (as
specified in the dao.xml in the dao-factory section). iGg# DataAccess object is simply a matter of

calling the getDao() method of a DaoManager instance. Forp&am

ProductDao productDao = (ProductDao) daoManager.get Dao (ProductDao.class);

http://www.ibatis.com by Clinton Begin

Developer Guide iBATIS Data Access Objects 2.0 9

Working with Transactions

The DaoManager provides methods for working with traimast These methods allow you to demarcate
transactions and avoid having to pass transaction objg&SJ)BC Connection) around to all of your
DAOs. Here's an example of DAO transaction management in action

ProductDao productDao = (ProductDao) daoManager.get Dao (ProductDao.class);

try {
daoManager.startTransaction();
Product product = productDao.getProduct (5);
product.setDescription (“New description.”);
productDao.updateProduct(product);
daoManager.commitTransaction();

} finally {
daoManager.endTransaction();

}

Calling startTransaction() lets the DaoManager know thaByeinterested in managing transactions
programmatically. No transactions are physically starteidl as method is called on a Dao instance, and
even then, transactions will only be started for contextséamire them. It is very important that you
guarantee a call endTransaction() if you've called startTransgitivhich is why it is within the try-
finally block. The call to endTransaction() will rollbackyachanges you’ve made, unless (of course)
you've made the call to commitTransaction() first.

“Autocommit” -Like Behavior

In addition to programmatically demarcating transactions camuallow the DaoManager to automatically
start and end a transaction for you. This is similah¢osetAutoCommit(true) behavior of the JDBC
Connection class. The difference is that this not reallycamtmit, which means that within your DAO
method, you can have multiple updates occurring and trelylle committed as one single transaction.
You don't need to do anything special to use the autoubbehavior, just don’t call startTransaction().
Here’s an example:

Product product = productDao.getProduct (5); /I Transaction 1
product.setDescription (“New description.”);

productDao.updateProduct(product); /l Transa ction 2
product = productDao.getProduct (5); /[l Tran saction 3

If the updateProduct() method contained more than a singleaypldase updates within the method
definition itself would both be part of Transactiorsg,this type of “autocommit-like” semantic is much
more powerful and simpler too! Notice that in the abowa@le there is no exception handling. Itis all
taken care of internally to ensure that, in the event okeeption, transactions are rolled back (if
necessary) and resources are released.

The next section shows you how to write a Dao like Pra2acfrom the example.

http://www.ibatis.com by Clinton Begin

Developer Guide iBATIS Data Access Objects 2.0 10

Implementing the Dao Interface (i.e. Creating YourData Access Objects)

The Dao interface is very simple and very flexible becauseei dot declare any methods. Itis intended
to act as a marker interface only (as per the Marker InterfatmpatGrand98). In other words, by
extending the Dao interface, all that is really achieved for the @laat implements your Dao interface) is
the ability to be instantiated by DaoFactory and managed by D#déda There are no limitations to the
methods that you use in your Dao interfaces. Although reéommended (for consistency) that Dao
implementations only throw exceptions of type DaoExceptibime DaoException is a RuntimeException,
so it won't interfere with your method signature, @'slnestable, so you won't lose the original exception.
This is part of helping to hide the implementation detzilgour persistence solution.

An example of a good Dao interface is:
public interface ProductDao extends Dao {

/I Updates

public int updateProduct (Product product); /I DAO Framework code may throw DaoException
public int insertProduct (Product product);

public int deleteProduct (int productld);

Il Queries
public Product getProduct (int productld);
public List getProductListByProductDescription (Str ing description);

}
Templates and Implementations

As mentioned earlier in this document, there are a numie2AGf Template abstract classes to help
simplify the implementation of your DAOs. Each of the péates matches up with a specific Transaction
Manager. Each of the templates provides a convenience metreiddge the appropriate artifact that you
typically need to interact with the persistence framework. félf@ving table summarizes the templates:

Template Class Transaction Manager Convenience Method
JdbcDaoTemplate JDBC Connection getConnection()
JtaDaoTemplate JTA Connection getConnection()
SglMapDaoTemplate SQLMAP SqglMapExecutor getSqglMapExedutor(
HibernateDaoTemplate HIBERNATE Session getSession()

The following is an example implementation using the SqlMapremplate:
public class SqglMapProductDao implements ProductDao extends SqlMapDaoTemplate {

public SqlMapProductDao (DaoManager daoManager) {
super (daoManager);

}

/* Insert method */
public int updateProduct (Product product) {
try {
getSqglMapExecutor().insert (“insertProduct”, pro duct);
} catch (SQLException e) {
throw new DaoException (“Error inserting produc t. Cause: “+e,e);
}
}

/I ... assume remaining methods to save space

http://www.ibatis.com by Clinton Begin

Developer Guide iBATIS Data Access Objects 2.0 11

Template Constructors and DaoManager Injection

Notice that in the above example, the SglMapProductDao as @ingle constructor that takes the
DaoManager as a parameter. During instantiation, the DaoM#&halgier will pass (inject) the parent
DaoManager to this constructor automatically. Dao implementaare free to keep a reference to the
DaoManager, as is often required to work with transactmalsgain access to other DAOs. In the case of
the templates, each takes the DaoManager as a parameter to thectmmsvhich forces all subclasses to
do the same. When working with the templates, providirgdonstructor is a requirement. You need not
supply a parameterless constructor or any other constraéar. DAOs should only be instantiated by the
DaoManagerBuilder anyway.

DAO Design Considerations

When implementing your Dao classes for your Dao intedait is recommended to use a design that
includes the Dao interface, an abstract (base) class and a earlasst The advantage to having the base
class is that it can contain common methods that simpkfyisage of your persistence approach (e.g.
wrapping up exception handling, transaction acquisiior). Here’s an example:

<<marker>>
77777777 1
J,_, Dao %
©
(O]
15 £
< <@
i g
| :
<<interface>> <<abstract>>
Product Base
Dao JdbcDao
T
|
|
1
|
; <<concrete>>
“implements| Product —extend
JdbcDao

Notice that both the ProductDao and BaseJdbcDao implemeeitamt the Dao marker interface
respectively. Only one is required, but you may havewifft design considerations to help you go one
way or the other (or both). A good approach is to alBaseJdbcDao to implement the Dao marker and
leave the ProductDao without it. Then the concrete PtddiocDao implements both by implementing the
ProductDao and extending the BaseJdbcDao. This may atlosPyroduct interface API to remain free of
the Dao marker.

When working with Templates, you theoretically already hasiendar design. However, it's
recommended that you still create a base class of your owhe &bove example, that would mean that
BaseJdbcDao would extend JdbcDaoTemplate (which alreadgrimepts the Dao marker interface).
That's all folks.

For a complete example of using the DAO framework, pleaseaivw.ibatis.comand download the
JPetstore 4 demo application. Have fun!

http://www.ibatis.com by Clinton Begin

Developer Guide iBATIS Data Access Objects 2.0 12

CLINTON BEGIN MAKES NO WARRANTIES, EXPRESS OR IMPLIE AS TO THE INFORMATION IN THIS
DOCUMENT.

© 2004 Clinton Begin. All rights reserved. iBATEd iBATIS logos are trademarks of Clinton Begin.

The names of actual companies and products medtiomein may be the trademarks of their respectiveers.

http://www.ibatis.com by Clinton Begin

