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Abstract

This thesis deals with estimating position and orientation in real-time, using measure-
ments from vision and inertial sensors. A system has been developed to solve this problem
in unprepared environments, assuming that a map or scene model is available. Compared
to ‘camera-only’ systems, the combination of the complementary sensors yields an accu-
rate and robust system which can handle periods with uninformative or no vision data and
reduces the need for high frequency vision updates.

The system achieves real-time pose estimation by fusing vision and inertial sensors
using the framework of nonlinear state estimation for which state space models have been
developed. The performance of the system has been evaluated using an augmented reality
application where the output from the system is used to superimpose virtual graphics on
the live video stream. Furthermore, experiments have been performed where an industrial
robot providing ground truth data is used to move the sensor unit. In both cases the system
performed well.

Calibration of the relative position and orientation of the camera and the inertial sen-
sor turn out to be essential for proper operation of the system. A new and easy-to-use
algorithm for estimating these has been developed using a gray-box system identification
approach. Experimental results show that the algorithm works well in practice.
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Introduction

Knowledge about position and orientation (pose) is a key ingredient in many applications.
One such application can be found in the field of augmented reality (AR). Here, one of
the main ideas is to overlay a real scene with computer generated graphics in real-time.
This can be accomplished by showing the virtual objects on see-through head-mounted
displays or superimposing them on live video imagery. Figure [I.T|illustrates the concept
of AR with some examples. In order to have realistic augmentation it is essential to
know the position and orientation of the camera with high accuracy and low latency. This
knowledge is required to position and align the virtual objects correctly with the real
world and they appear to stay in the same location regardless of the camera movement.

In this thesis the problem of pose estimation is approached using the combination of
a camera and an inertial measurement unit (IMU). In theory, a ‘vision only approach’
suffices for pose estimation. Such an approach can give good absolute accuracy, but
is difficult to run at high frame rate and is not robust during fast motions. The main
justification for adding an IMU— by itself accurate for a short period, but drift-prone for
longer timescales — is to obtain a robust system. This approach, partly inspired from the
human sensory system, is becoming a promising solution as it is a self-contained system
requiring no external infrastructure.

The combination of inertial and vision sensors has been previously used in literature,
see e.g.,|Corke et al.|(2007) for an introduction. Reported systems apply various methods:
inertial measurements are used as backup (Aron et al., [2007)), for short time pose predic-
tion (Klein and Drummond, 2004)), or depth map alignment (Lobo and Dias, 2004). Alter-
natively, vision and inertial subsystems are loosely coupled, using visual pose measure-
ments (Ribo et al., 2004} [Chroust and Vinczel 2004} /Armesto et al., 2007). Vision relies
either on specific targets, line contours or natural landmarks. Calibration of the sensors
is discussed in e.g., (Lobo and Dias| 2007). Furthermore, the problem is closely related
to the problem of simultaneous localization and mapping (SLAM) (Durrant-Whyte and
Bailey, [2006; [Thrun et al.,|2005)), where camera tracking and scene model reconstruction
are performed simultaneously. Single camera SLAM is discussed in e.g., Davison| (2003));
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(¢) Visualization of virtual objects in TV shows. (d) On-site virtual reconstruction.

Figure 1.1: Examples of augmented reality applications. Courtesy of BBC R&D
and Fraunhofer IGD.

Davison et al.| (2007); [Klein and Murray| (2007).

1.1 Problem formulation

The work in this thesis has been performed within the EU project MATRIS
2008)), where the objective is to develop a hybrid camera tracking system using vision
and inertial sensors. By using a 3D scene model containing natural landmarks, there is no
need for a prepared environment with artificial markers. This will remove the costly and
time consuming procedure of preparing the environment, and allow for AR applications
outside dedicated studios, for instance outdoors.

A schematic overview of the approach is shown in Figure [[.2] The inertial mea-
surement unit provides rapid measurements of acceleration and angular velocity. The
computer vision system generates correspondences between the camera image and the
scene model. This 3D scene model contains positions of various natural markers and is
generated offline using images and/or drawings of the scene. The inertial and vision mea-
surements are combined in the sensor fusion model to obtain the camera pose. By using
the pose estimates in the computer vision module, a tightly-coupled system is obtained.

The problem of estimating camera pose from inertial and visual measurements is for-
mulated as a nonlinear state estimation problem. This thesis deals with the question of
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Vision Model
v
IMU . Sen§0r P'osmo.n
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Figure 1.2: Estimating camera pose by fusing measurements from an inertial mea-
surement unit and a computer vision system.

how to solve this nonlinear state estimation problem in real-time using the available sen-
sor information. Furthermore, several issues, including calibration, are addressed in order
to obtain a solution working in practice.

1.2 Contributions

The main contributions of the thesis are:

e The development, testing and evaluation of a real-time pose estimation system
based on vision and inertial measurements.

e The derivation of process and measurements models for this system which can be
used for nonlinear state estimation of position and orientation.

e The development of a new and easy-to-use calibration procedure to determine the
relative position and orientation of a rigidly connected camera and IMU.

Some aspects have been previously published in

F. Gustafsson, T. B. Schon, and J. D. Hol. Sensor fusion for augmented reality. In
Proceedings of 17th International Federation of Automatic Control World Congress,
Seoul, South Korea, July 2008. Accepted for publication.

J. D. Hol, T. B. Schon, H. Luinge, P. J. Slycke, and F. Gustafsson. Robust real-time
tracking by fusing measurements from inertial and vision sensors. Journal of Real-
Time Image Processing, 2(2):149-160, Nov. 2007. doii10.1007/s11554-007-0040-2.

J. D. Hol, T. B. Schon, F. Gustafsson, and P. J. Slycke. Sensor fusion for augmented
reality. In Proceedings of 9th International Conference on Information Fusion, Flo-
rence, Italy, July 2006b. doi:10.1109/ICIF.2006.301604.

Outside the scope of this thesis fall the following conference papers

J. D. Hol, T. B. Schon, and F. Gustafsson. On resampling algorithms for particle fil-
ters. In Proceedings of Nonlinear Statistical Signal Processing Workshop, Cambridge,
UK, Sept. 2006a. doi:10.1109/NSSPW.2006.4378824|

G. Hendeby, J. D. Hol, R. Karlsson, and F. Gustafsson. A graphics processing unit
implementation of the particle filter. In Proceedings of European Signal Processing
Conference, Poznan, Poland, Sept. 2007.


http://dx.doi.org/10.1109/NSSPW.2006.4378824
http://dx.doi.org/10.1007/s11554-007-0040-2
http://dx.doi.org/10.1109/ICIF.2006.301604
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1.3 Thesis outline

This thesis is organized in the following way: Chapter 2] gives an overview of the devel-
oped pose estimation system. It is an edited version of the paper originally published as
Hol et al.|(2007) and discusses the setup, the sensor fusion algorithm and the performance
evaluation of the system.

The sensor unit consisting of an IMU and a camera is the subject of Chapter [3] The
operating principles, measurements and processing algorithms of these sensors are dis-
cussed. In Chapter[]the process and measurement models of the sensor fusion algorithm
for real-time camera pose estimation are derived.

Calibration of the relative position and orientation between the IMU and the camera
is essential for proper operation of the pose estimation system. Similar types of problems
occur when the estimated pose is compared to that of an external reference. Chapter [3]
presents a theoretical framework for solving the relative pose calibration problem using
various types of measurements. This theory is applied in Chapter[6|to develop a number
of calibration algorithms.

The pose estimation system has been tested as an augmented reality application. The
result of this experiment is the topic of Chapter[7} Finally, Chapter|[§|concludes this thesis
and gives suggestions for further work.



System overview

This chapter provides an overview of the developed pose estimation system. It is an edited
version of the paper originally published as

J. D. Hol, T. B. Schon, H. Luinge, P. J. Slycke, and F. Gustafsson. Robust real-time
tracking by fusing measurements from inertial and vision sensors. Journal of Real-
Time Image Processing, 2(2):149-160, Nov. 2007. doii10.1007/s11554-007-0040-2.

and discusses the setup, the sensor fusion algorithm and the performance evaluation of
the system.


http://dx.doi.org/10.1007/s11554-007-0040-2
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Robust real-time tracking by fusing
measurements from inertial and vision
Sensors

J. D. Hol%, T. B. Schon®, H. Luinge®, P. J. Slycke® and F. Gustafsson®

@Linkoping University, Division of Automatic Control,
SE-581 83 Linkoping, Sweden

b Xsens Tt echnologies B.V., Pantheon 6a, Postbus 559,
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Abstract

The problem of estimating and predicting position and orientation (pose) of
a camera is approached by fusing measurements from inertial sensors (ac-
celerometers and rate gyroscopes) and vision. The sensor fusion approach
described in this contribution is based on non-linear filtering of these comple-
mentary sensors. This way, accurate and robust pose estimates are available
for the primary purpose of augmented reality applications, but with the sec-
ondary effect of reducing computation time and improving the performance
in vision processing.

A real-time implementation of a multi-rate extended Kalman filter is de-
scribed, using a dynamic model with 22 states, where 100 Hz inertial mea-
surements and 12.5 Hz correspondences from vision are processed. An ex-
ample where an industrial robot is used to move the sensor unit is presented.
The advantage with this configuration is that it provides ground truth for the
pose, allowing for objective performance evaluation. The results show that
we obtain an absolute accuracy of 2 cm in position and 1° in orientation.

2.1 Introduction

This paper deals with estimating the position and orientation (pose) of a camera in real-
time, using measurements from inertial sensors (accelerometers and rate gyroscopes) and
acamera. A system has been developed to solve this problem in unprepared environments,
assuming that a map or scene model is available. For a more detailed description of the
overall system and the construction of scene models we refer to|Chandaria et al.| (2007)
and |Koeser et al.|(2007)), respectively. In this paper, the sensor fusion part of the system is
described, which is based upon a rather general framework for nonlinear state estimation
available from the statistical signal processing community.

This problem can under ideal conditions be solved using only a camera. Hence, it
might seem superfluous to introduce inertial sensors. However, the most important rea-
sons justifying an inertial measurement unit (IMU) are:
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e Producing more robust estimates. Any single camera system will experience prob-
lems during periods with uninformative or no vision data. This will occur, typically
due to occlusion or fast motion. An IMU will help to bridge such gaps, which will
be illustrated in the present paper.

e Reducing computational demands for image processing. Accurate short time pose
estimates are available using the information from the IMU, reducing the need for
fast vision updates.

The combination of vision and inertial sensors has been used previously in literature.
Corke et al.[(2007) give an introduction to this field and its applications. Reported systems
apply various methods: inertial measurements are used as backup (Aron et al., [2007)), for
short time pose prediction (Klein and Drummond, 2004), or depth map alignment (Lobo
and Dias| 2004). Alternatively, vision and inertial subsystems are loosely coupled, using
visual pose measurements (Ribo et al., 2004} |Chroust and Vincze, 2004} |Armesto et al.}
2007). Vision relies either on specific targets, line contours or natural landmarks. Cali-
bration of the sensors is discussed in e.g., (Lobo and Dias||2007). Furthermore, the prob-
lem is closely related to the problem of simultaneous localization and mapping (SLAM)
(Durrant-Whyte and Bailey, 2006; Thrun et al., 2005), where camera tracking and scene
model construction are performed simultaneously. Single camera SLAM is discussed in
Davison| (2003); |[Davison et al.| (2007). In that context so called fast localization algo-
rithms (Williams et al., [2007) are investigated as alternatives to inertial support (Pinies
et al.l [2007; |Gemeiner et al., 2007).

In our approach, real-time camera pose estimation is achieved by fusing inertial and
vision measurements using the framework of nonlinear state estimation, covering methods
such as the Extended Kalman Filter (EKF), the Unscented Kalman Filters (UKF) and the
particle filter (PF). This results in a tightly coupled system, naturally supporting multi-
rate signals. The vision measurements are based on natural landmarks, which are detected
guided by pose predictions. The measurements from the sensors are used directly rather
than being processed to a vision based pose or an inertial based pose. The components of
the system are well known. However, we believe that the way in which these components
are assembled is novel and we show that the resulting system provides accurate and robust
pose estimates.

The sensors generating the measurements y; are described in Section 2.2] In Sec-
tion[2.3] the framework for state estimation in nonlinear dynamic systems is introduced in
more detail and used to solve the sensor fusion problem we are faced with in the present
application. In implementing this, there are several practical issues that have to be solved.
The overall performance of the system heavily relies on successful solutions to these
matters, which is explained in Section [2.4] The performance of the implementation is
evaluated in Section [2.5] and finally, the paper is concluded in Section [2.6]

2.2 Sensors

An IMU and a digital video camera are combined to provide measurements to the sensor
fusion module, described in this paper. Both sensors are relatively small and unobtrusive
and they can be conveniently integrated into a single sensor unit. An example of a proto-
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type is shown in Figure 2.1} An on board digital signal processor containing calibration

Figure 2.1: A prototype of the MATRIS project, integrating a camera and an IMU
in a single housing. It provides a hardware synchronized stream of video and inertial
data.

parameters is used to calibrate and synchronize data from the different components.
Before discussing the inertial and vision sensors in the subsequent sections, the re-
quired coordinate systems are introduced.

2.2.1 Coordinate systems

When working with a sensor unit containing a camera and an IMU several coordinate
systems have to be introduced:

e Earth (e): The camera pose is estimated with respect to this coordinate system. It
is fixed to earth and the features of the scene are modeled in this coordinate system.
It can be aligned in any way; however, preferably it should be vertically aligned.

e Camera (c): The coordinate system attached to the moving camera. Its origin is
located in the optical center of the camera, with the z-axis pointing along the optical
axis. The camera, a projective device, acquires its images in the image plane (i).
This plane is perpendicular to the optical axis and is located at an offset (focal
length) from the optical center of the camera.

e Body (b): This is the coordinate system of the IMU. Even though the camera and
the IMU are rigidly attached to each other and contained within a single package,
the body coordinate system does not coincide with the camera coordinate system.
They are separated by a constant translation and rotation.

These coordinate systems are used to denote geometric quantities, for instance, c® is the
position of the camera coordinate system expressed in the earth system and R is the
rotation matrix from the body system to the camera system.
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2.2.2 Inertial sensors

The sensor unit contains an IMU with three perpendicularly mounted 1200 degree/s
ADXLXRS300 angular velocity sensors and two 5g 2D ADXIL.22293 accelerometers,
which are mounted such that three of the sensitive axes are perpendicular to each other.
MEMS rate gyroscopes are chosen because of their dramatically reduced size and low
cost as compared to alternatives such as fiber optic angular velocity sensors.

The signals from the inertial components are synchronously measured at 100 Hz using
a 16 bit A/D converter. A temperature sensor is added to compensate for the temperature
dependency of the different sensing components.

The assembly containing the gyroscopes and accelerometers has been subjected to a
calibration procedure to calibrate for the exact physical alignment of each component,
the gains, the offsets and the temperature relations of the gains and offsets. With these
a 3D angular velocity vector and a 3D accelerometer vector, both resolved in the body
coordinate system, are computed using an on board processor. See e.g., [Titterton and
Westonl| (1997); (Chatfield| (1997) for suitable background material on inertial sensors and
the associated signal processing.

The calibrated gyroscope signal y,, , contains measurements of the angular velocity

w?, , from body to earth (.;) expressed in the body coordinate system (°):

yw, - ebt+6wt+ewt (21)

Even though the gyroscope signal is corrected for temperature effects, some low-frequency
offset fluctuations 4, ; remain, partly due to the unmodeled acceleration dependency. The
remaining error eﬁ)’t is assumed to be zero mean white noise. The measurements are not
accurate enough to pick up the rotation of the earth. This implies that the earth coordinate
system can be considered to be an inertial frame.

A change in orientation can be obtained by proper integration of the gyroscope signal.
This orientation can be obtained even during fast and abrupt movements, not relying on
any infrastructure other than the gyroscope itself. However, the accuracy in orientation
will deteriorate for periods longer than a few seconds.

The calibrated accelerometer signal y,, , contains measurements of the combination

of the body acceleration vector b, and the gravity vector g, both expressed in the body
coordinate system:

yat_b —g"+ 8, el 2.2

Even though the accelerometer measurement is corrected for temperature effects a small
low-frequency offset §,, + remains. The error ef’l,t is assumed to be zero mean white noise.

Gravity is a constant vector in the earth coordinate system. However, expressed in
body coordinates gravity depends on the orientation of the sensor unit. This means that
once the orientation is known, the accelerometer signal can be used to estimate the accel-
eration, or alternatively, once the acceleration is known, the direction of the vertical can
be estimated.

Accelerations can be integrated twice to obtain a change in position. This can be done
during fast and abrupt motions as long as an accurate orientation estimate is available,

for instance from the gyroscopes. However, the accuracy of the position change will
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deteriorate quickly as a result of the double integration and the sensitivity with respect to
orientation errors.

2.2.3 Monocular vision

Apart from the inertial sensors, the sensor unit is equipped with a ptGrey DragonFly
CCD camera with a perspective lens with a focal length of 3.2 mm. Color images with
a resolution of 320x240 pixels at a frame rate of 12.5 Hz are streamed to a PC using a
firewire connection. The camera is triggered by the IMU clock allowing for synchronized
measurements.

This setup is one realization of monocular vision: cameras can vary in sensor type,
resolution, frame rate and various lens types can be used, ranging from perspective to
fish-eye. However, they remain projective devices, that is, they are bearings only sensors
which do not provide distance directly.

Extracting camera position and orientation from images is a known and well studied
problem in computer vision (Ma et al., |2006; Hartley and Zisserman, [2004). The key
ingredient is to find correspondences, relations between features found in the image which
correspond to an element in the scene model. All these are rather abstract concepts, which
do have numerous implementations, ranging from Harris detectors (Harris and Stephens),
1988)) and point clouds models to patches and textured free-form surfaces models (Koeser
et al.,|2007). The correspondences are the pieces of information which can be extracted
from an image and they will be considered to be the vision measurements in this article.

Point correspondences z¢ «+ z° are the relation between 3D points z¢ and 2D image
points z*. For a perspective lens and a pinhole camera the correspondence relation is

i fzﬁ/zﬁ) i
2= )+ e 2.3a
(fzy/zz (230
or equivalently,
0~ (—fL z})z{=(—flo zi)R{(z°—c), (2.3b)

where f is the focal length and I the 2 x 2 identity matrix. The error e} is assumed
to be a zero mean white noise. Here it is worth noting that this assumption is not that
realistic, due to outliers, quantization effects etc. From @ it can be seen that the cam-
era pose depends on the rotation matrix R°® and the position c¢®. Hence, given sufficient
correspondences and a calibrated camera the camera pose can be solved for. Similar rela-
tions can be derived for e.g., line correspondences which also provide information about
the camera pose and optical velocity fields which provide information about the camera
velocity (Corke et al.l 2007).

Correspondences are bearings only measurements and as such they provide informa-
tion about absolute position and orientation with respect to the earth coordinate system.
Note that everything is determined up to a scale ambiguity; viewing a twice as large scene
from double distance will yield an identical image. However, these vision measurements
are available at a relatively low rate due to the trade off between exposure time and accu-
racy (pixel noise and motion blur) which is an important limit for small aperture cameras.
Furthermore, processing capacity might constrain the frame rate. Hence, the observed



12 2 System overview

image can change drastically from frame to frame, which occurs already with normal hu-
man motion. This is the main cause for the limited robustness inherent in single camera
systems.

The computer vision implementation used in the present implementation is based on
a sum of absolute difference (SAD) block matcher in combination with a planar patch
or free-form surface model of the scene. More details can be found in (Chandaria et al.
(2007); |[Koeser et al.| (2007); [Skoglund and Felsberg| (2007)). Both pixel data and 3D po-
sitions are stored for each feature. An example of a scene model is shown in Figure 2.2]
While tracking, search templates are generated by warping the patches in the model ac-

Figure 2.2: An example of a scene model consisting of planar patches (lower right)
and the actual scene that is modeled (upper left).

cording to homographies calculated from the latest prediction of the camera pose. These
templates are then matched with the current calibrated camera image using the block
matcher. In this way correspondences are generated.

2.3 Sensor fusion

The inertial and vision sensors contained in the sensor unit have complementary proper-
ties. Vision in combination with the map gives accurate absolute pose information at a
low rate, but experiences problems during moderately fast motions. The IMU provides
high rate relative pose information regardless of the motion speed, but becomes inaccu-
rate after a short period of time. By fusing information from both sources it is possible to
obtain robust camera pose estimates.

Combing inertial and vision sensors is possible in several ways. For instance, vision
based methods might be extended by using pose predictions from the IMU. These pose
predictions can be used to determine where in the image the features are to be expected.
Once detected, the features can be used to calculate the pose and this pose is then used
as a starting point for the next pose prediction by the IMU. Alternatively, the IMU can
be considered to be the main sensor, which is quite common in the navigation industry.
In that case, vision can be used for error correction, similar to how radio beacons or the
global positioning system (GPS) are used to correct the drift in an inertial navigation
system (INS).
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Although the sensors have different properties, it is from a signal processing perspec-
tive not relevant to assign a ‘main’ sensor and an ‘aiding’ sensor. Both vision and inertial
sensors are equivalent in the sense that they both provide information about the quantity
of interest, the camera pose in this application. The objective is to extract as much in-
formation as possible from the measurements. More specifically, this amounts to finding
the best possible estimate of the filtering probability density function (pdf) p(z¢|y1.t),
where y1.; = {y1,...,y:}. The topic of this section is to provide a solid framework for
computing approximations of this type. First, a rather general introduction to this frame-
work is given in Section[2.3.1] The rest of this section is devoted to explaining how this
framework can be applied to handle the present application. The models are introduced
in Section [2.3.2]and the fusion algorithm is discussed in Section[2.3.3]

2.3.1 Theoretical framework

The objective in sensor fusion is to recursively in time estimate the state in the dynamic
model,

Ti41 = ft(iCtyUmUt), (2.4a)
Ye = hy (mtv Ut, et)a (2.4b)

where z; € R™= denotes the state, y; € R™ denote the measurements from a set of
sensors, v; and e; denote the stochastic process and measurement noise, respectively. The
process model equations, describing the evolution of the states (pose etc.) over time are
denoted by f : R™ x R™ x R"™ — R"=, Furthermore, the measurement model is
given by A : R x R™ x R™ — R"v, describing how the measurements from the
IMU and the camera relate to the state. The goal is to infer all the information from the
measurements y; onto the state x;. The way of doing this is to compute the filtering pdf
p(z¢|y1:+). The filtering pdf contains everything there is to know about the state at time
t, given the information in all the past measurements y;.,. Once an approximation of
p(x¢|y1.¢) is available it can be used to form many different (point) estimates, including
maximum likelihood estimates, confidence intervals and the most common conditional
expectation estimate

ii't = E(l’t|y1;t). (25)

The key element in solving the nonlinear state estimation problem in real-time is the
propagation of p(x¢|y;.;) over time. It is well known (see e.g., Jazwinski, [1970) that a
recursive solution can be obtained by applying Bayes’ theorem, introducing model (2.4)
in the iterations,

P(yt \l‘t)p(ﬁﬂt |y1:t—1)
it) = 2.6
Plelyi) S p(ye|z)p(@e|yra—1)day’ (2.62)

p(xt+1|ylzt) = /p(ﬂft+1|£L’t)p($t\y1:t)dﬂﬁt- (2.6b)

Hence, the quality of the solution is inherently coupled to the models and hence good
models are imperative. It is worth noticing that and (2.6b) are often referred to as
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measurement update and time update, respectively. The sensor fusion problem has now
been reduced to propagating over time as new measurements arrive. The problem
is that the multidimensional integrals present in (2.6) lack analytical solutions in all but
a few special cases. The most common special case is when (2.4) is restricted to be a
linear dynamic system, subject to additive Gaussian noise. Then all the involved densities
will be Gaussian, implying that it is sufficient to propagate the mean and covariance. The
recursions updating these are of course given by the Kalman filter (Kalman, |1960).

However, in most cases there does not exist a closed form solution for (2.6), forcing
the use of approximations of some sort. The literature is full of different ideas on how
to perform these approximations. The most common being the EKF (Smith et al., 1962
Schmidt, 1966) where the model is linearized and the standard Kalman filter equations are
used for this linearized model. A conceptually more appealing approximation is provided
by the PF (Gordon et al., |1993} [Isard and Blake, |1998; |Kitagawal |1996) which retains
the model and approximates (2.6). Other popular approximations for the nonlinear state
estimation problem are provided for example by the UKF (Julier and Uhlmann, 2004)
and the point-mass filter (Bucy and Sennel [1971; Bergmanl [1999). For a more complete
account of the nonlinear state estimation problem, see e.g.,|Schon| (2006).

2.3.2 Models

The probability density functions p(x;41|z:) and p(y;|z;) are the key elements in the
filter iterations (2.6). They are usually implicitly specified by the process model ([2.4a)
and the measurement model (2.4D). For most applications the model formulation given
in 2.4) is too general. It is often sufficient to assume that the noise enters additively,
according to

Tep1 = fi(ze) + vt (2.7a)
ye = he(e) + e (2.7b)

The fact that the noise is additive in (2.7)) allows for explicit expressions for p(xs11|z¢)
and p(y¢|z;), according to

P(i1]ze) = po, (Te41 — fi(2r)), (2.8a)
P(ye|ze) = pe, (Y — he(r)), (2.8b)

where p,, () and pe, () denote the pdf’s for the noise v; and e;, respectively. Note
that the input signal u; has been dispensed with, since it does not exist in the present
application. The rest of this section will discuss the model used in the current application.

First of all, the state vector has to include the position and the orientation, since they
are the quantities of interest. However, in order to be able to use the IMU and provide
predictions the state vector should also include their time derivatives, as well as sensor
biases. The state vector is chosen to be

o e T
mo= (b by by g wh, 8L, 8h,) 2.9)

That is, the state vector consists of position of the IMU (the body coordinate system) ex-
pressed in the earth system b°, its velocity b" and acceleration b°, the orientation of the
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body with respect to the earth system ¢%¢, its angular velocity wgb, the gyroscope bias 63
and the accelerometer bias 62. All quantities are three dimensional vectors, except for
the orientation which is described using a four dimensional unit quaternion ¢%, resulting
in a total state dimension of 22. Parameterization of a three dimensional orientation is in
fact rather involved, see e.g.,[Shuster| (1993)) for a good account of several of the existing
alternatives. The reason for using unit quaternions is that they offer a nonsingular param-
eterization with a rather simple dynamics. Using (2.9) as state vector, the process model
is given by

by, =b; + Tb: + TTQb:, (2.10a)
by, = b, + Th, (2.10b)
by = by + 5, (2.100)
45, = exp(—Twh, ) © ¢", (2.10d)
“-’gb,t+1 = wgb,t + vg),ta (2.10e)
8041 =00 + V5, 4, (2.10f)
8o p1 =00, + 05 4, (2.10g)

where the quaternion multiplication and exponential are defined according to

Po dgo\ a Poqo —P-q
O] = , 2.11a
(p> <q> (poq+qop+p x q) (2.11a)
exp(v) 2 ( cos [[vll ) 2.11b
xp(v) WsmHUH ( )

A standard constant acceleration model (2.10a)- has been used to model the po-
sition, velocity and acceleration. Furthermore, the quaternion dynamics is standard, see
e.g., Shuster| (1993). Finally, the angular velocity and the bias terms are simply modeled
as random walks, since there is no systematic knowledge available about these terms.

There is more than one sensor type available, implying that several measurement mod-
els are required. They have already been introduced in Section [2.2] but for convenience
they are all collected here,

Yo = R(by —g°) + 0%, + €, (2.12a)
Yor = Wh + 00+ €0, (2.12b)
Yor = (—fI2 2z}) RP(R} (2§ — bf) — ) + ec,. (2.12¢)

Note that the rotation matrix Rfe is constructed from qfe (Kuipers, [1999). The trans-
formation from body to camera coordinate system is included in (2.12¢)), compared to

(2:3b).
2.3.3 Fusion Algorithm

The nonlinear estimation framework discussed in Section[2.3.1] suggests Algorithm[2.T]to
fuse the multi-rate information from the inertial and vision sensors. The algorithm uses
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Algorithm 2.1 Recursive camera pose calculation

1. Perform an initialization and set initial state estimate and covariance.
xg ~ p(,)

2. Time update. Calculate p(x¢|y1.4—1) by propagating p(x;—1|y1.4—1) through the
process model (2.10).

3. Accelerometer and gyroscope measurement update using model
and 29,

zy ~ p(Tt|y1:e)

4. If there is a new image from the camera,

(a) Predict feature positions from the scene model using &; = E(x¢|y1.¢)-
(b) Detect the features in the image.

(c) Measurement update with the found point correspondences using model

(2.12¢).
Ty ~ p($t|y1:t)

5. Sett :=t + 1 and iterate from step 2.

the models (2.10) and (2.12) to perform the time and measurement update steps given
in (2.6). Note that Algorithm [2.1]is generic in the sense that we have not specified which
state estimation algorithm is used. Our implementation, which runs in real-time with
100 Hz inertial measurements and frame rates up to 25 Hz, uses the EKF to compute the
estimates, implying that all involved pdf’s are approximated by Gaussian densities. An
UKF implementation was found to give similar accuracy at the cost of a higher computa-
tional burden (Pieper} 2007)). This confirms the results from |Armesto et al.[(2007)).

When the sensor unit is static during initialization, the IMU provides partial or full
(using magnetometers) orientation estimates. This information can be used to constrain
the search space when initializing from vision.

The high frequency inertial measurement updates in Algorithm [2.1] provide a rather
accurate state estimate when a new image is acquired. This implies that the feature posi-
tions can be predicted with an improved accuracy, which in turn makes it possible to use
a guided search in the image using reduced search regions. The algorithm can calculate
the expected covariance of a measurement. This can be the basis for a temporal outlier
removal as a complement to the spatial outlier removal provided by RANSAC methods
(Fischler and Bolles| [1981)). Alternatively it can be used to predict the amount of new in-
formation that a certain feature can contribute, which might be useful for task scheduling
when the computational resources are limited (Davison) 2005)).

The camera pose is estimated implicitly by Algorithm rather than trying to deter-
mine it explicitly by inverting the measurement equations. Hence, when sufficient motion
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is present, the system is able to continue tracking with a very low number of features and
maintain full observability using temporal triangulation.

The information from the IMU makes Algorithm [2.1]robust for temporary absence of
vision. Without vision measurements the estimates will eventually drift away. However,
short periods without vision, for instance, due to motion blur, obstruction of the camera
or an unmodeled scene, can be handled without problems.

Finally, Algorithm is rather flexible. It can be rather straightforwardly extended
to include other information sources. For instance, a GPS might be added to aid with
outdoor applications.

2.4 Implementation considerations

When implementing Algorithm [2.1] several practical issues have to be solved. These turn
out to be critical for a successful system, motivating their treatment in this section.

2.4.1 Metric scale

As mentioned in Section[2.2.3] vision-only methods suffer from a scale ambiguity, since
projections, unit-less measurements, are used. Once the scale of the scene model is de-
fined, camera pose can be determined explicitly using three or more correspondences in
combination with a calibrated camera. However, changing the scale of a scene model
will give scaled, but indistinguishable poses. Hence, for vision-only applications scene
models can have an arbitrary scale; a standard choice is to define the unit length to be the
distance between the first two cameras.

For the inertial-vision combination, the scale is relevant. Sensor fusion utilizes posi-
tion information both from the camera and the IMU, which implies that these quantities
must have identical units. Scale is also important when assumptions are made about the
motions of the camera, for instance the type and parameters of a motion model (Davison
et al., [2007).

Introducing a metric scale into the scene model solves this issue. An existing scene
model with arbitrary scale can be converted by comparing it with a Computer Aided
Design (CAD) model or measuring an object with known dimension. An interesting
solution might be to include metric information, for instance using accelerometers, in the
algorithms for building the scene models. However, this is still an open question.

2.4.2 \Vertical alignment

Accelerometers cannot distinguish accelerations of the body from gravity, as previously
discussed in Section [2.2.2] To separate the contributions in the measurement, the gravity
vector can be rotated from the earth coordinate system to the body frame and then sub-
tracted. Hence, the scene model should be vertically aligned, or equivalently the gravity
vector should be known in the scene model. Typically, this is not the case.

The performance of the system is extremely sensitive to this alignment, since gravity
is typically an order of magnitude larger than normal body accelerations. For example, a
misalignment of 1° introduces an artificial acceleration of 0.17 m/s? which gives rise to a
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systematic position drift of 8.5 cm when integrated over 1 s. Hence, even for small errors
a systematic drift is introduced which causes the system to lose track without continuous
corrections from correspondences. In this case the drift followed by a correction gives
rise to a saw tooth pattern in the estimates, which deteriorates performance and will be
visible as ‘jitter’.

The gravity vector can be determined by averaging the accelerometer readings over
some time, while the camera is stationary in a known pose. However, a preferable method
is to record accelerometer measurements while scanning the scene and include this data
in the model building procedure to align the scene model vertically.

2.4.3 Sensor pose calibration

The camera and the IMU both deliver measurements which are resolved in the camera
and the body coordinate system, respectively. Typically, these do not coincide, since
the sensors are physically translated and rotated with respect to each other. This rigid
transformation should be taken into account while fusing the measurements.

The problem of determining the relative position and orientation is a well studied
problem in robotics where it is known as hand-eye calibration, see for instance |Strobl
and Hirzinger (2006) for an introduction to this topic. However, most methods do not
apply directly since the IMU does not provide an absolute position reference. Absolute
orientation information is available since the accelerometers measure only gravity when
the sensor unit is stationary.

The orientation part of the calibration is determined using a slight modification of
standard camera calibration procedures (Zhang, [2000), where the calibration pattern is
placed on a horizontal surface and accelerometer readings are taken in the various camera
poses. The camera poses are determined in the camera calibration procedure, from which
the vertical directions in the camera frame can be determined. The combination of these
and the vertical directions in the body frame measured by the accelerometers allows for
calculation of the rotation between the frames (Horn, [1987; [Lobo and Dias, [2007). This
method requires accurate positioning of the calibration pattern. As floors and desks in
buildings are in practice better horizontally aligned than the walls are vertically aligned,
it is recommended to use horizontal surfaces.

The translational part of the calibration is harder to estimate and a solid calibration
method which does not require special hardware is an open issue. The translation should
also be available from technical drawings of the sensor unit and a rough guess using a
ruler gives a quite decent result in practice. However, with increasing angular velocity
this parameter becomes more dominant and an accurate calibration is necessary.

2.4.4 Time synchronization

It is very important to know exactly when the different measurements are taken. Multi-
ple sensors usually have multiple clocks and these have to be synchronized. This can be
achieved for instance by starting them simultaneously. However, clocks tend to diverge
after a while, which will introduce problems during long term operation. Hardware syn-
chronization, i.e., one central clock is used to trigger the other sensors, solves this problem
and this procedure has been applied in the sensor unit described in Section[2.2]
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2.4.5 Filter tuning

The process and measurement models described in Section[2.3]have a number of stochas-
tic components which are used to tune the filter. The settings used in the present setup are
given in Table The measurement noise typically depends on the sensors and should
be experimentally determined. For the accelerometers and gyroscopes a measurement of
a few seconds with a static pose was recorded to calculate an accurate noise covariance.
Alternatively, the specification by the manufacturer can be used.

The noise acting on the vision measurements is harder to determine. The algorithms
return a point estimate for the obtained matches, but typically there is no stochastic in-
formation available. The accuracy for each match is highly individual and can vary a
lot depending on e.g., lighting conditions, local texture, viewing angle, distance and mo-
tion blur. These individual characteristics cannot be captured by a common noise setting.
Hence, it would be beneficial to include accuracy estimation in the image processing al-
gorithms. Although attempts are being made to solve this open issue, see e.g.,|Skoglund
and Felsberg| (2007)), the current implementation uses a predefined noise covariance.

The process model currently used is a random walk in acceleration and angular ve-
locity. This model is not so informative but is very general and is useful for tracking
uncontrolled motions such as those generated by a human. The motion model is to be
considered as a separate source of information, apart from the sensors. Hence, when
more information is available in a certain application, for instance in the form of control
signals, these should be included in the model to improve the filter performance. The
covariances in the process model can be seen as tuning knobs, controlling the relative
importance of the measurements and the process model and as such they are important
parameters for stable tracking.

Valid models and parameters are imperative to obtain good estimates. The innova-
tions, defined as the difference between a measurement and its expected value,

et = Ys — e, (2.13)

can be used to asses whether the models are correctly tuned. Under the model assump-
tions, the innovations should be normally distributed and the squared normalized inno-
vations e/ S; 'e;, where S; is the predicted covariance of the measurement, should have
a x? distribution. It is highly recommendable to monitor these performance indicators,
especially during testing, but also during normal operation.

2.5 Experiments

This section is concerned with an experiment where Algorithm[2.T|with an EKF is used to
fuse the measurements from the sensor unit in order to compute estimates of its position
and orientation. The experimental setup is discussed in Section[2.5.T]and the performance
of the proposed inertial-vision combination provided by the sensor unit is assessed in

Section2.5.2]
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2.5.1 Setup

The sensor unit is mounted onto a high precision 6 degrees of freedom (DoF) ABB
IRB1440 industrial robot, see Figure [2.3] The reason for this is that the robot will allow

Figure 2.3: The camera and the IMU are mounted onto an industrial robot. The
background shows the scene that has been used in the experiments.

us to make repeatable 6 DoF motions and it will provide the true position and orientation.
The robot has an absolute accuracy of 2 mm and a repeatability of 0.2 mm. This enables
systematic and rather objective performance evaluation of various algorithms, based on
absolute pose errors instead of the commonly used feature reprojection errors. The sen-
sor unit provides 100 Hz inertial measurements synchronized with 12.5 Hz images. The
complete specification is listed in Table[2.1] The scene used for the experiments consists
of two orthogonal planar surfaces as shown in Figure 2.3] Because of the simple geom-
etry, the scene model could be constructed from a textured CAD model. Its coordinate
system is such that the x-axis points upward and that the y and z-axis span the horizontal
plane. Although the scene was carefully positioned, it had to be calibrated w.r.t. gravity
as described in Section[2.4.2] It should be emphasized that the scene has been kept simple
for experimentation purposes only. The system itself can handle very general scenes and
these are modeled using the methods described in[Koeser et al.| (2007).

With the setup several trajectories have been tested. In this paper, an eight-shaped
trajectory, shown in Figure [2:4] will be discussed in detail. The sensor unit traverses this
2.6 m eight-shaped trajectory in 5.4 s, keeping the scene in view at all times. The motion
contains accelerations up to 4 m/s? and angular velocities up to 1 rad/s. Hence, the
motion is quite aggressive and all six degrees of freedom are exited. As the displacement
between images is limited to 15 pixels it is still possible to use vision-only tracking, which
allows for a comparison between tracking with and without an IMU.

The experiment starts with a synchronization motion, which is used to synchronize
the ground truth data from the industrial robot with the estimates from the system. Time
synchronization is relevant, since a small time offset between the signals will result in a
significant error. After the synchronization, the eight-shaped trajectory (see Figure [2.4)
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Table 2.1: Specifications for the sensor unit and the parameter values used for in the
filter tuning. Note that the noise parameters specity the standard deviation.

IMU
gyroscope range +20.9 rad/s
gyroscope bandwidth 40 Hz
accelerometer range +17 m/s?
accelerometer bandwidth 30 Hz
sample rate 100 Hz

Camera
selected resolution
pixel size
focal length
sample rate

Filter settings
gyroscope measurement noise
accelerometer measurement noise
2D feature measurement noise
3D feature measurement noise
angular velocity process noise
acceleration process noise
gyroscope bias process noise
accelerometer bias process noise

320 x 240 pixel
7.4 x 7.4 pm/pixel
3.2 mm

12.5 Hz

0.01 rad/s
0.13 m/s?
0.1 pixel

1 mm

0.03 rad/s
0.1 m/s?
0.5 mrad/s
0.5 mm/s?

_
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Figure 2.4: The eight-shaped trajectory undertaken by the sensor unit. The gray
shaded parts mark the interval where vision is deactivated. The circle indicates the
origin of the scene model.
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is repeated several times, utilizing the accurate and repeatable motion provided by the
industrial robot.

2.5.2 Results

The experimental setup described in the previous section is used to study several aspects
of the combination of vision and inertial sensors. The quality of the camera pose estimates
is investigated by comparing them to the ground truth data. Furthermore, the increased
robustness of the system is illustrated by disabling the camera for 1 s during the second
pass of the eight-shaped trajectory. Additionally, the feature predictions are shown to
benefit from the inertial measurements. The findings will be discussed in the following
paragraphs.

By comparing the estimates from the filter to the ground truth the tracking errors are
determined. Examples of position and orientation errors (z, roll) are shown in Figure [2.5]
The other positions (z, y) and orientations (yaw, pitch) exhibit similar behavior. The
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Figure 2.5: Tracking error during multiple passes of the eight-shaped trajectory. The
black line shows the position (z) and orientation (roll) errors, as well as the number
of correspondences that were used. The gray band illustrates the 99% confidence
intervals. Note that vision is deactivated from 9.7 s to 10.7 s. The vertical dotted
lines mark the repetition of the motion.
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absolute accuracy (with vision available) is below 2 cm for position and below 1° for ori-
entation. These values turn out to be typical for the performance of the system in the setup
described above. Furthermore, the accuracy of the IMU is not affected by the speed of
motion, resulting in a tracking accuracy which is rather independent of velocity, as illus-
trated by Figure[2.6|which shows the tracking error of the eight-shaped trajectory executed
at various speeds. Other experiments, not described here, show similar performance for
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Figure 2.6: Tracking error for several experiments executing the eight-shaped tra-
Jjectory at different speeds.

various trajectories.

A proper treatment of the implementation considerations as discussed in Section [2.4]
is necessary in order to obtain good performance. Still, calibration errors and slight mis-
alignments as well as scene model errors and other unmodeled effects are causes for
non-white noise, which can deteriorate the performance. However, with the assumptions
and models used, the system is shown to estimate the camera pose quite accurately us-
ing rather low-rate vision measurements. The estimated camera poses result in good and
stable augmentation.

The system tracks the camera during the entire experiment, including the period where
vision is deactivated. The motion during this period, indicated using gray segments in Fig-
ure is actually quite significant. Vision-only tracking has no chance of dealing with
such a gap and loses track. Indeed, such an extensive period where vision is deactivated is
a little artificial. However, vision might be unavailable or corrupted, due to fast rotations,
high velocity, motion blur, or simply too few visible features. These difficult, but com-
monly occurring, situations can be dealt with by using an IMU as well, clearly illustrating
the benefits of having an IMU in the system. In this way, robust real-time tracking in
realistic environments is made possible.

The measurements from the IMU will also result in better predictions of the feature
positions in the acquired image. This effect is clearly illustrated in Figure which
provides a histogram of the feature prediction errors. The figure shows that the feature
prediction errors are smaller and more concentrated in case the IMU measurement updates
are used. This improvement is most significant when the camera is moving fast or at lower
frame rates. At lower speeds, the vision based feature predictions will improve and the
histograms will become more similar.

The improved feature predictions facilitate the use of smaller search regions to find
the features. This implies that using an IMU more features can be detected, given a
certain processing power. On the other hand, the improved feature predictions indicate
that the IMU handles the fast motion and that the absolution pose information which
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Figure 2.7: Histogram of the prediction errors for the feature positions. The feature
predictions are calculated using the latest vision pose and the most recent inertial
pose, respectively.

vision provides is required at a reduced rate.

2.6 Conclusion

Based on a framework for nonlinear state estimation, a system has been developed to ob-
tain real-time camera pose estimates by fusing 100 Hz inertial measurements and 12.5 Hz
vision measurements using an EKF. Experiments where an industrial robot is used to
move the sensor unit show that this setup is able to track the camera pose with an absolute
accuracy of 2 cm and 1°. The addition of an IMU yields a robust system which can handle
periods with uninformative or no vision data and it reduces the need for high frequency
vision updates.
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Sensors

Chapter [2] introduced the sensor unit and its application. This sensor unit consists of
an inertial measurement unit (IMU) and a camera which are integrated in a singe small
housing. The sensors are synchronized at hardware level, significantly simplifying the
signal processing. Figure [3.1] shows two versions of the sensor unit. In the upcoming

(a) 2005 (b) 2007

Figure 3.1: Two version of the sensor unit, showing progressing product design and
miniaturization.

sections of this chapter, the operating principles, measurements and processing algorithms
of the inertial measurement unit and the camera will be discussed in more detail.

3.1 Inertial measurement unit

The IMU within the sensor unit contains a 3D rate gyroscope and a 3D linear accelerom-
eter. The gyroscope and accelerometer are based on micro-machined electromechanical
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systems (MEMS) technology, see Figure[3.2] Compared to traditional technology, MEMS

MEMS gyroscope

MEMS accelerometer

Figure 3.2: The MEMS components are integrated into the circuit board of the IMU.

devices are small, light, inexpensive, have low power consumption and short start-up
times. Currently, their major disadvantage is the reduced performance in terms of accu-
racy and bias stability. This is the main cause for the drift in standalone MEMS inertial
navigation systems 2007).

The functionality of the MEMS sensors are based upon simple mechanical princi-
ples. Angular velocity can be measured by exploiting the Coriolis effect of a vibrating
structure. When a vibrating structure is being rotated, a secondary vibration is induced
from which the angular velocity can be calculated. Acceleration can be measured with a
spring suspended mass. When subjected to acceleration the mass will be displaced. Using
MEMS technology the necessary mechanical structures can be manufactured on silicon
chips in combination with capacitive displacement pickups and electronic circuitry

log Devices|, 2008).

3.1.1 Sensor model

The MEMS accelerometer and gyroscope sensors have one or more sensitive axes along
which a physical quantity (specific force and angular velocity, respectively) is converted
to an output voltage. A typical sensor shows almost linear behavior in the working area
as illustrated in Figure[3.3] Based on this linear behavior in a sensitive axis, the following
relation between the output voltage v and the physical signal y is postulated for multiple
sensors with their sensitive axis aligned in a suitable configuration,

u; = GRy, +b. 3.1)

Here G is a diagonal matrix containing the individual gains g, R is the alignment ma-
trix specifying the direction of the sensitive axis w.r.t. the sensor housing and b is the
offset vector. Note that the gain and the offset are typically temperature dependent. The
calibrated measurement signal y, is obtained from the measured voltages by inverting

@).
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Y >

Y

Figure 3.3: Schematic behavior of an inertial sensor. The output voltage u depends
almost linearly on the physical quantity y, where y denotes angular velocity or ex-
ternal specific force. This relation is parameterized by an offset b and a slope or gain

9=y
Gyroscopes

The 3D rate gyroscope measures angular velocities resolved in the body coordinate frame,
that is, with respect to (w.r.t.) the sensor housing. The sensor noise is characterized in
Figure [3.4] The histogram of Figure [3.4a] shows that the noise distribution is close to a
Gaussian. However, the minima in the Allan deviation of Figure @] indicate that even
under constant conditions a slowly varying sensor bias is present (IEEE Std 952-1997,
1998). Additionally, calibration errors (errors in gain, alignment and linearity) as well as
uncompensated temperature effects result in bias. The fluctuating behavior of the bias is
usually approximated with a random walk.

Summarizing the previous discussion, the 3D rate gyroscope measurements y,, are
modeled as

y, =w +8° +e, (3.2)

where wgb is the angular velocity, body to earth, expressed in the body coordinate frame,
65) is a slowly varying sensor bias and e’ is white noise.

Accelerometers

Contradictory to what their name implies, accelerometers do not measure accelerations.
Instead, they measure the total external specific force acting on the sensor. Although ac-
celeration is related to specific force by Newton’s law, the two are not identical as shown
in the following example: an accelerometer lying still on a table undergoes zero accelera-
tion but will measure a force of 1 g pointing upward due to the earth’s gravitational field.
By subtracting gravity, acceleration can be recovered. Alternatively, the accelerometer
can be used as an inclinometer when no acceleration is present.

Similar to the 3D gyroscope, the 3D accelerometer measurements suffer from white
noise and a slowly varying bias, see Figure[3.5] With these, the accelerometer measure-
ments y,, are modeled as

e

Y, =f'+0,+eb=R*Db —g°) + 0, +eb, (3.3)
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Figure 3.4: Gyroscope noise characteristics.

frequency

-0.05 0 0.05
acceleration (m/s?)

(a) Histogram together with a Gaussian approximation.

0.001

.0001 . - y
0.000 1 10 100 1000

T(s)

(b) Allan deviations and their 99% confidence intervals.

Figure 3.5: Accelerometer noise characteristics.
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where fb is the normalized external specific force in the body coordinate system, éb isa
slowly varying sensor bias and e’ is white noise. The second form the expressmn splits
the specific force into its contributions from the acceleration of the sensor b and the
gravity vector g¢, both expressed in the earth coordinate frame. These vectors have been
rotated to the body coordinate frame by the rotation matrix R"¢.

3.1.2 Calibration

Using the discussion in the previous section, calibrating the IMU boils down to finding
the gain G, alignment R and the offset b in (3.I)) for the accelerometer and gyroscope.
The calibration principle is to subject the IMU to a known acceleration or angular velocity
and choose the calibration parameters such that the observed sensor output is as likely as
possible. Ignoring the time variability of the biases and using the standard assumptions of
independent, identically distributed Gaussian noise, this maximum likelihood optimiza-
tion can be formulated as

:argmlnzfﬂuf (s4,0)]|%, (3.4)

where the parameter vector 6 consists of G, R and b. Traditionally, known excitations
are obtained using special manipulators such as turntables. Alternatively, the IMU can be
placed in several static orientations (Ferraris et al., [1995).

The sensor unit has been calibrated at production using a propriety calibration proce-
dure. Besides gain, alignment and offset also temperature effects and g-sensitivity of the
gyroscopes are accounted for (Xsens Motion Technologies, |2008). Recalibration is not
necessary unless the housing is opened or the sensor is subjected to a large shock.

3.1.3 Strapdown inertial navigation

Inertial navigation is a technique to compute estimates of the position and orientation of an
object relative to a known starting pose using inertial measurements from accelerometers
and gyroscopes (Woodman, 2007; |Chatfield, [1997; [Titterton and Weston, [1997). In a
strapdown configuration such as the sensor unit, the measurements are acquired in the
body coordinate frame, rather than in an inertial reference frame. Hence, the orientation
q°® can be calculated by integrating the angular velocity wa. The position b° can be
obtained by double integration of the external specific force fb which has been rotated
using the known orientation and corrected for gravity. This procedure is illustrated in
Figure 3.6]

In practice, the angular velocity and the external specific force are replaced by the
gyroscope and accelerometer measurements. These include bias and noise terms which
cause errors in the calculated position and orientation, the integration drift. The gyro-
scope noise results in a random walk in orientation, whereas a constant gyroscope bias
introduces orientation errors which grow linearly in time (Woodman,|2007). Similarly, the
accelerometer noise results in a second order random walk in position and a constant ac-
celerometer bias introduces position errors which grow quadratic in time. Note that in Fig-
ure there is a coupling between position and orientation. Hence, any orientation error
introduces an artificial acceleration as gravity is not correctly compensated for: a small,
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Figure 3.6: Strapdown inertial navigation algorithm.

but realistic inclination error of § = 0.1° already introduces a non-existing acceleration
of a = gsinf = 0.0017 m/s? which gives rise to a position error of p = fat> = 3.1 m
in 60 s. For the used inertial sensor, this coupling turns out to be the dominant position
error source (Woodman, [2007)).

From the previous discussion it follows that any inertial navigation solution deterio-
rates with time. Using MEMS inertial sensors, the integration drift causes the orientation
estimate, but especially the position estimate, to be accurate and reliable only for a short
period of time.

3.2 Vision

Besides an IMU, the sensor unit contains a camera. This is a rather complex system which
consists of two functional parts: an optical system (the so-called image formation system
or objective) which collects light to form an image of an object, and an image sensor,
usually a CCD or CMOS, which converts incident light into a digital image.

Various types of objectives exist, each with a specific application area. Examples
include standard perspective lenses, wide angle lenses, zoom lenses, macro lenses and
fish-eye lenses. In general they are rather complex composite devices composed of a
number of functional elements, see Figure The most important elements are lens

~
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Figure 3.7: Cross section of a low-cost objective. The triplet of lens elements bundle
the parallel rays of light entering the system from the left and to form an image on
the right.

elements and stops. The lens elements have refractive surfaces which bend the light,
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whereas the stops limit the bundle of light propagating through the system. Combining
a number of elements an optical system can be designed in such a way that the desired
image formation is achieved with minimal optical aberration.

From a pure geometric perspective, ignoring effects such as focus and lens thickness,
the process of image formation can be described as a central projection (Hartley and
Zisserman, 2004). In this projection, a ray is drawn from a point in space toward the
camera center. This ray propagates through the optical system and intersects with the
image plane where it forms an image of the point.

The perhaps best known example of a central projection is the pinhole camera, see
Figure [3.8] Its widespread use in computer vision literature can be explained by noting

P

image plane

y
f

A=

optical axis S z principal point

optical center

Figure 3.8: Pinhole camera projection. The image p of a point P is the intersection
point of the image plane and the line trough point P and the optical center C. Note
that placing the image plane in front of the optical center yields an identical image.

that a perfect perspective objective is equivalent to a pinhole camera. With this obser-
vation, the equivalence between the focal length f and the distance between the optical
center and the image plane becomes clear.

Although the pinhole model is powerful model which is sufficient for many applica-
tions, it is a simplification of the imaging process. This simplification has its limitations.
One of these is that it is unclear where the optical center is located physically in drawings
such as Figure[3.7] Clearly, the optical center has to lie somewhere on the optical axis, but
exactly where, or even whether it lies behind, inside, or in front of the objective depends
highly on the typically unknown detailed design of all the elements in an objective. As
discussed in Chapter [2] the location of the optical center is important when combining
vision with inertial sensors as in the tracking application at hand. A calibration algorithm
which can be used to determine the position of the optical center will be discussed in
Chapter [5]and Chapter [6]

3.2.1 Sensor model

The image formation process of a camera consists of two stages: the objective projects
incident rays of light to points in the sensor plane and these are converted to a digital
image by the image sensor. The former is usually described using an ideal projection
combined with a distortion accounting for deviations. The sensor model has to capture
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all three phenomena — projection, distortion and digitalization — to describe the image
formation of a real camera:

Normalized pinhole projection. Assume for now that the focal length of the pinhole
model is unity, that is f = 1. In that case the image is called normalized. From sim-
ilar triangles in Figureit follows that the 2D normalized image p’, = (7., y,)T
of a 3D point p¢ = (X, Y, Z)7, resolved in the camera coordinate system, is given

by
) 1 (X
(=) -1 (%) a5

This elementary camera model can be classified as a 2D bearings only measure-
ment: from image coordinates it is possible to find a line on which the correspond-
ing 3D point lies. However, it provides no information about the distance or depth
of the point. Hence, one cannot tell whether the size of an object is 1 mm or
1 km. This property is the reason why it is by definition impossible to determine the
scale factor in optical reconstruction or in structure from motion problems, where
a model of the observed scene is constructed from optical measurements.

In computer vision literature, it is common to work with homogeneous coordinates
which are elements of a projective space, see e.g., Hartley and Zisserman| (2004).
Homogeneous coordinates are obtained from Euclidean ones by augmenting them
with an additional 1. Using the homogeneous vectors p!, = (2, Yn, 1)’ and p© =
(X,Y, Z,1)T the normalized pinhole projection can be written as

Tn 1000)}5
Z{y| =10 10 0|,], (3.5b)
1 00 1 0f|\7

2711,

where Il is known as the standard projection matrix. In this form the projection
equation is linear, which is of course preferable in many situations. Note that since
in projective space equivalence is defined up to scale, (3.3b)) is usually written as

AP, = TL,p°, (3.5¢0)
where A € R is an arbitrary scale factor.

Distortion. The normalized pinhole projection is an ideal projection and the image for-
mation process of a real perspective objective will deviate from it, especially for
low-quality objectives. An example is shown in Figure[3.9] The typical distortion
encountered is dominated by radial distortion (Hartley and Zisserman, |2004; Zhang,
2000). A simple distortion model to account for the radial distortion expresses the
distorted image coordinates p%, = (z4,y4)" as a function of the normalized image
coordinates pi, = (2, yn)T,

py = (14 k1llpL|I* + kallpi 1Y) Pl (3.6)
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(a) Observed image. (b) Ideal image.

Figure 3.9: Camera images suffer from distortion.

where the k; are distortion coefficients. Several modifications and extensions of
this distortion model, which include e.g., tangential distortion, are encountered in
literature.

Digitalization. Digital cameras deliver images with coordinates typically specified in
pixels and indexed from the top left. Furthermore, there is the possibility of non-
square as well as non-orthogonal pixels. This introduces both (non-uniform) scaling
and a principal point offset. Both effects, as well as focal lengths f # 1, can be
accounted for by an affine transformation which transforms the distorted image

coordinates p}, = (4,ya)” into pixel coordinates p’ = (z,4)7,
x fse fse x| (x4
yl=10 Fsy wo| |va]- (3.7
1 0 0 1 1
N ——
AK

Here, the camera calibration matrix K is composed of the focal length f, the pixel
sizes s, sy, the principal point coordinates g, yo and a skew parameter sg.

Combining (3:3)—(3.7) in a single forward camera model, the image p* = (z,y)? of the
3D point p¢ = (X,Y, Z)7 is given by

p' = (AoDoP,)(p°), (3.8)
N—————’

&p

where P is a composite function which consists of a normalized projection function P,,,
a distortion function D and an affine transformation 4. Here, P,, maps 3D points to
normalized image coordinates as in (3:3b)), D distorts the normalized image as in (3.6) and
A transforms the distorted image to pixel coordinates, as in (B77). Thatis, p* = A(p}),
py = D(p}) and p!, = P,(p°). The discussed relations hold only for a perspective
camera, but the model structure is also applicable to omni-directional cameras and fish-
eye lenses (Kannala and Brandt, [2006).
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In general, 3D points will not be expressed in the camera coordinate frame as p© since
this coordinate frame is moving. Instead, they are expressed in the fixed earth coordinate
system as p°. These two coordinate frames are related by a rotation R° and a translation
¢, which can be used to obtain p© from p°,

pc _ Rce(pe _ Ce). (39)

The parameters R°® and c® parameterize the position and orientation of the camera and
are called the extrinsic parameters. In contrast, the parameters involved in (3.8) are the
so-called intrinsic or internal parameters.

The most direct way to obtain a measurement model for a 3D point p® and its corre-
sponding 2D image point p’ is the combination of (3.8) and (3.9). However, this would
yield an unnecessary complex equation. Instead, it is advantageous to apply preprocess-
ing and work with normalized image coordinates p,, = (D~! o A~!)(p?). Then, the
measurement model is based on the normalized camera projection P,,, which in case of a
perspective projection can be written in a particularly simple linear form,

Yor = [~z Dl ] R(pf — ) + ecp- (3.10)

Here y,. ;. is a measurement constructed from the k-th measured 2D/3D correspondence
p}'C « pg, ¢ is the position of the camera in the earth coordinate frame, R is the
rotation matrix which gives the orientation of the camera coordinate system w.r.t. the
earth coordinate frame and e, is white noise. Note that the prediction g j, 4,1 = 0.

3.2.2 Calibration

The goal of a camera calibration procedure is to find the intrinsic parameters of the cam-
era. These are the parameters involved in (3.8) and include the camera calibration ma-
trix and the distortion parameters. Camera calibration is a well-known problem in com-
puter vision and several approaches and accompanying toolboxes are available, see e.g.,
Bouguet (2003); Zhang| (2000); Kannala and Brandt (2006). These procedures typically
require images at several angles and distances of a known calibration object. A planar
checkerboard pattern is a frequently used calibration object because it is very simple to
produce, it can be printed with a standard printer, and has distinctive corners which are
easy to detect. An example image involving such a pattern is shown in Figure[3.10} From
the images of the calibration pattern 2D/3D correspondences p}, < p{ are constructed.
In general this is a difficult problem, but exploiting the simple structure of the calibration
pattern it is a relatively simple task.

The calibration problem is to choose the intrinsic parameters such that the obtained
correspondences are as likely as possible. This cannot be done without determining the
extrinsic parameters of the calibration images as well. Under the standard assumptions of
i.i.d. Gaussian noise, this maximum likelihood optimization can be formulated as

N

N : 1 i e

6 = argmin > 5 lIpk = Pk, 01, (3.11)
k=1

where the parameter vector € consists of the intrinsic and extrinsic parameters. This is a
nonlinear least squares problem which can be solved using standard algorithms (Nocedal
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Figure 3.10: An example of an image used for camera calibration. The calibration
object is a planar checkerboard pattern.

2006). These algorithms require an initial guess of the parameters which can
be found from the homographies, the one-to-one relations that exist between the images

and the planar calibration pattern 2000).

3.2.3 Correspondence detection

Computer vision techniques can be used to determine the position and orientation of the
camera from the images it takes. The key ingredients for doing so are the 2D/3D cor-
respondences, the corner stones in many computer vision applications. To obtain these
correspondences typically two tasks have to be solved, which are extensively studied in
literature:

Feature detection. The first task consists of detecting points of interest or features in
the image. Here, features are distinctive elements of the camera image, for in-
stance, corners, edges, or textured areas. Common algorithms include the gradient
based Harris detector and the Laplace detector (Harris and Stephens|, [1988} Miko-|
llajczyk et all,[2005)), and the correlation based Kanade-Lucas-Tomasi tracker
land Tomasil [1994).

Data association. Once a feature has been found, it needs to be associated to a 3D point
to form a correspondence. This is the second task, which can be solved using
probabilistic methods such as RANSAC (Fischler and Bolles| [1981). However,
it can be drastically simplified by making use of some kind of descriptor of the
feature which uniquely identifies it by providing information of the local image
such as image patches or local histograms. This descriptor should preferably be
invariant to scale changes and affine transformations. Common examples are SIFT

2004) and SURF (Bay et al.,[2008)). Other detectors as well as performance
overviews are given in[Mikolajczyk and Schmid| (2005)); Mikolajczyk et al] (2005]).
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Once three or more correspondences have been obtained in a single image, they can be
used to calculate the position and orientation of the camera, see e.g.,|Hartley and Zisser-
man|(2004); Ma et al.| (2006). This is actually a reduced version of the camera calibration
problem of Section [3.2.2] where in this case only the extrinsic parameters are sought as
the intrinsic parameters are already known. Minimizing the prediction errors of the cor-
respondences pi, — P(p¢, 0) using nonlinear least squares yields the camera pose.

Correspondences can also be used to find the 3D position of a feature. In the simplest
case this can be done using the epipolar geometry of a correspondence which is observed
in two images taken from different locations. Extensions to multiple images exist as well
(Hartley and Zisserman), 2004). These are the basis for structure from motion algorithms
in which a model of the environment is computed from a sequence of images, see for
instance [Bartczak et al.|(2007).

Implementation

In the setting of the MATRIS project, the basic assumption is that a textured 3D model
of the tracking environment is available. Such a model can be obtained from e.g., CAD
drawings or from structure from motion algorithms. Given a reasonably accurate predic-
tion of the camera pose, e.g., from inertial navigation, an artificial image can be obtained
by projecting the 3D model. This artificial image will resemble the camera image and
is used to construct 2D search templates which are matched against the camera image,
see Figure 3.11] For a successful match the association problem is already solved and a
correspondence is obtained directly.

Figure 3.11: Correspondences are generated by comparing the 3D scene model
viewed from the predicted camera pose (left) to the camera image (right).



State space models

Chapter 2] introduced a sensor fusion algorithm for real-time camera pose estimation. The
key components of this algorithm are the process and measurement models. In the up-
coming sections these models are derived from the equations in Chapter [3]in combination
with kinematics.

4.1 Kinematics

Kinematics deals with aspects of motion in absence of considerations of mass and force.
It assigns coordinate frames to a rigid body and describes how these move over time. A
general, length preserving transformation between two Cartesian coordinate frames con-
sists of a translation and/or a rotation. Both transformations are illustrated in Figure {.1]
A translation is defined as a displacement of the origin, while keeping the axes aligned,

(a) Translation. (b) Rotation.

Figure 4.1: The elementary transformations.

whereas a rotation is a change in axes, while keeping the origins coincident. These trans-
formations and their properties are the topic of the following sections.

41
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4.1.1 Translation

A translation of a coordinate frame corresponds to a displacement of its origin and is
parameterized using a displacement vector. In the translated frame a point x has a new
coordinate vector, see Figure Mathematically, expressing a point x resolved in the b

Figure 4.2: The point x is expressed in the b frame and in the translated a frame.

frame in the translated a frame is defined as
x® £ b 4 b 4.1

Here, = denotes the position of the point & w.r.t. the a frame whose origin is the point
a. Solving for a® gives the inverse transformation,

=z —b* 2 2% + a’. 4.2)

Hence, a® = —b°.

4.1.2 Rotation

A rotation of a coordinate frame corresponds to changing direction of coordinate axis,
while the origin remains where it is. Rotations can be described using a number of differ-
ent parameterizations, see e.g., Shuster| (1993) for an overview. Commonly encountered
parameterizations include rotation matrices, Euler angles and unit quaternions.

A geometric interpretation of vector rotation is given in Figure The rotation the

b
€3

a
€3

Figure 4.3: The rotation of x around axis n with angle c.
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point x to x,, that is a rotation around the unit axis n by an angle «, can decomposed as

b b b b
. =p +(q—p) + (v.—q)
= (b - n")nb + (2® — (2" n®)nb)cosa + (n® x 2°)sina
=zbcosa+nb(xb n’)(1 —cosa) + (nb x 2®)sina.
Here all quantities are resolved in the b frame. Note that this ‘clockwise’ vector rotation
corresponds to an ‘anti-clockwise’ rotation of the coordinate frame. Hence, expressing a
point x resolved in the b frame in the rotated a coordinate frame is defined as

b b

x® 2 zbcosa + nb(x’ nb)(1 - cosa) + (n’ x zb)sina. 4.3)

This equation is commonly referred to as the rotation formula.
The cross product has the property,

uXvxw=vw- u)—wu- v),

and can be written as a matrix-vector multiplication, @ x b = S(a)b with

0 —as a9
S(a) 2 | a3 0 —aif. 4.4)
—as  aq 0

Using these relations, can be rewritten as

x® =z’ cosa + n’(x’ - n®)(1 — cosa) + (n® x ) sina

b

=alcosa+ (N’ x n® x 2’ + %) (1 — cosa) + (n® x x)sina

= [I + (sin@)S(n®) + (1 — cos @) S?(n)] ”. (4.5)

éRah
Hence, a rotation of the coordinate frame can be defined using a rotation matrix R,
x® & Ry (4.6)

The rotation matrix R®® is a member of the special orthogonal group, {R € R3*3 :
RRT = I,det R = +1}. Solving for 2 gives the inverse transformation

iI)b _ (Rab)Twa L Rbaxa. (47)

It follows that R®® = (R**)T.
Alternatively, a rotation of the coordinate frame can be defined using unit quaternions,

20 2 qab o 20 o <qab)c. 4.8)

Here, {z%, 2%} €Q , are the quaternion equivalents of {z%, x’}, ¢*® € Q; is a unit
quaternion describing the rotation from the b to the a coordinate frame and ©®, - ¢ denote
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quaternion multiplication and conjugation respectively. Details on quaternions and their
properties can be found in Appendix Solving for ¥ gives the inverse transformation

.’L’b — (qab)c ® 74 ® qab AL qba ® 74 ® (qba)c. (49)
Hence, ¢"* = (¢**)°. The connection to (#.3]) becomes clear by expanding the quaternion
products in (4-8) and substituting ¢** = (go, q) = (cos &, n’sin $):

(0,2%) = (0,(¢5 — q- @)2" +2(z" - q)q + 2q0 (" x q))

= (0,2 cosa + n’(x’ - nb)(1 — cosa) + (n® x x)sina).

All the rotation parameterizations are similar and can be interchanged. However, they
differ in the number of parameters, singularity, global representation and the difficulty
of the differential equations. The reason for using unit quaternions is that they offer a
nonsingular parameterization with a rather simple, bilinear differential equation which
can be integrated analytically and have only four parameters. In contrast, Euler angles
have only three parameters, but suffer from singularities and have a nonlinear differential
equation. Furthermore, rotation matrices have at least 6 parameters.

Although quaternions are used for all the calculations, rotation matrices are occasion-
ally used to simplify notation. Furthermore, Euler angles provide an intuitive represen-
tation which is used for visualizing a trajectory. All these parameterizations represent
the same quantity and can be converted to each other. These conversions are given in

Appendix [B]
4.1.3 Time derivatives

Straightforward differentiation of (4.I) w.r.t. time gives the translational transformation
for velocities

& =x" +b". (4.10)

The time derivative for rotation cannot be derived that easily. Since rotations can be
decomposed in incremental rotations, see e.g., Shuster] (1993), it holds that

q**(t + 0t) = 5qg © ¢°(t) = (cos ¥, nsin &) @ ¢* (1),

for some rotation axis n® and angle §6. Then, the formal definition of differentiation
yields

q*(t 4 t) — q**(t) 5q © ¢ (t) — ¢**(t)

ab :
() Praae ot Praant 5t ’
56 .80
. cos 5 — 1,n%sin 57 u “ N
= Jim (cos 5 ) © q"(t) = s () © ¢ (1). (4.11)

Here, the instantaneous angular velocity w¢, from b to a and resolved a is defined as

1—cos ¥ nosin
wgbélim2< 2 2):
ot—

) .00
s 5t 0, lim n > . 4.12)

6t—0 ot
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Note that the angular velocity is a vector and conforms to the standard definition. Fur-
thermore, (4.11)) can be written in several ways, for instance,
b -ab b 1 b 1 b 1
¢ =(q")" =q" O (3wa) = —¢" © gwa, = ¢ © 3wy,
= ¢ © jup, © ¢ © ¢ = fwp, ©¢™
This implies that the angular velocity vector can be transformed according to

Wap = —Whys (4.13a)

w? = ¢ ©uwl, © ¢ (4.13b)
Using the above results (4.8) can be differentiated to obtain
9= ® 20 ¢ +¢® 0zt 0+ ¢® i o g
_ %wngqabQQCb@qba_qabequbaQ%wgb+qab®¢b®qba
=wp @t + ¢ i’ o ¢, (4.14)

where ® is the quaternion cross product, see Appendix[A.T] Note that (4.14) is equivalent
to the perhaps more commonly used notation

&% = w? x x® + R™&’.

4.2 Continuous-time models

In Chapter [2] sensor fusion is used to combine the inertial and vision measurements to
obtain a real-time camera pose estimate. The key components are the process and mea-
surement models. In deriving these, the choice of which state vector to use is essential.
For this a number of issues are considered, including whether or not to treat the inertial
measurements as control inputs and which coordinates (body or camera) to use.

The process model consists of a constant acceleration model and a constant angular
velocity model, implying that acceleration and angular velocity are included in the state
vector. This model is mainly motivated by the intended application of real-time AR,
where accurate pose predictions are required to compensate for the processing lag. The
alternative of considering the inertial measurements as control inputs reduces the state
vector dimension, but lacks an easy possibility for prediction.

The IMU provides kinematic quantities measured in the body frame, whereas the
vision measurements relates to the camera frame. These two frames are rigidly connected,
ie., ¢’ and qbc are constant. Hence, the camera and sensor poses w.r.t. the earth frame are
related to each other according to

ct(t) = b°(t) + R (t)c, (4.15a)
a““(t) = ¢ @ ¢*(¢). (4.15b)
Differentiating these equations w.r.t. to time according to Section[4.1.3] yields
&) = b () + wsy(t) x R (), (4.16a)
E(t) = b7 (1) + @ (1) x RO(t)ed + w (1) x wsy (1) x R(t)c, (4.16b)
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as well as
§(t) = ¢ © ¢*(t). (4.16¢)

This implies that a transition from body to camera or vice versa can occur on multiple lo-
cations in the process and measurement models resulting in slightly different state vectors.

Some examples are given below.

Body based state vector. In this case the state vector contains position, velocity, accel-
eration, orientation and angular velocity of the body frame. This yields a relatively

straightforward process model,

2 b =", (4.17a)
2p° =¥, (4.17b)
2" =, (4.17¢)
F "= 5w 04", (4.17d)
0 b =P (4.17¢)

where the time-dependence has been suppressed. It is driven by the process noises
v¢ and v° . The state vector implies that the measurement model is given by

y, =R —g°) +d) +eb, (4.176)
Y, = why + 6, + el (4.17g)
Yor = [~12 P, ] RO(R"(pf — b°) — ) + ecp. (4.17h)

The inertial measurement models (3.2)) and (3.3)) are used directly. The correspon-
dence measurement model (3.10) is adapted using to incorporate the transi-
tion from the body frame to the camera frame.

Camera based state vector. Here, the state vector contains position, velocity, accelera-
tion, orientation and angular velocity of the camera frame. This results in

Lt =¢, (4.18a)
et =¢, (4.18b)
2 =t (4.18¢)
2 ¢ = —3w ©q, (4.184d)
2w, =g, (4.18¢)

and

Y, = RV(R(¢° — g°) + wC, x b° + w®, x w’, x b°) + 8" +e’, (4.18f)
(4.18g)
(4.18h)

y, = R"w, + 8, +el,
Yer = [_12 pix,k,] R*(pj, — ¢°) + eck-
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Note that the process model is very similar to (#.17). However, using the camera
based state vector the correspondence measurement model remains unmodi-
fied and the inertial measurement models (3.2) and (3.3) are adapted using (4.16) to
account for the transition from the camera frame to the body frame. This results in
additional nonlinear terms and requires the introduction of the angular acceleration
w¢. in the state.

Mixed state vector. Using a mixed state vector, i.e., the state contains position and ori-
entation of the camera frame and velocity, acceleration and angular velocity of the
body frame, the process model is given by

2 ¢ = b° + RRY(wh, x ), (4.192)

Ve e

nb =b, (4.19b)

S0 =, (4.19¢)
Fa = —5(RPWY) © ¢, (4.19d)
2wl =), (4.19%)

Note that this process model contains the transition from the body frame to the cam-
era frame (4.16), resulting in additional coupling between the states. The associated
measurement model is

y, = RR(b" — g°) + 6° + e, (4.19f)
y, = wl + 0, + el (4.199)
Yoo = [~ Phy] RE(Pf — ) + ec (4.19h)

That is, the measurement models (3.2)), (3.3) and (3.10) are unmodified.

In view of the framework for nonlinear estimation introduced in Chapter[2] linear models
are favorable. Compared to @.17), both @.18) and (@.19) introduce nonlinear terms at
the high sampling rate of the IMU. Hence the body based state vector has been
developed further, resulting in the discrete time models discussed in the upcoming section.

4.3 Discrete-time models

Integrating (@.17) — extended with the gyroscope and acceleration biases 62)1‘/ and 62,15
discussed in Section — w.r.t. time results in the discrete-time model of Chapter [2]
For convenience it is repeated here.

by, = bf +Tb, + Lb;, (4.20a)
by, = by + Thy, (4.20b)
by = by + 5, (4.200)
a5y = exp(—LTwh, ) @ ¢, (4.20d)

b b b
Wept41 = Wep g T Vgt (4.20e)
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8 =00 + 8, (4.20)
801 =00, +v5 (4.20g)

where 7' is the integration interval and exp denotes the quaternion exponential defined in
Appendix [A.2] Furthermore, the Jacobian of (.20) w.r.t. to the state vector is given by

[, TL LI 0 0 0 0]
0 I3 TIs 0 0 0 0
0 0 I3 0 0 0 0
F=10 o0 0 exp(—fwb), F1 0 0 4.21)
0 0 0 0 Is 0 0
0 0 0 0 0 I3 0
0 0 0 0 0 0 I3

Here, the quaternion operator - 1, (- g similarly) is defined in Appendix [A3]and

d .
I S (exp(—Tw?y) © ¢™)
eb

T
v
=-Z(")g T_WbmHUH i
2 .
ot [ = e sin ol + s cos o]
v

=T 2Wep

Using the small angle approximation, i.e., cosz = 1 and sinx = z, this expression can
be simplified to

T bT

~ _ T/ be FTWep
~—-3(q )R[QI; ]
This approximation is valid when the angular acceleration signal is sampled fast enough,
for instance in case of human motion and sample rates of 100 Hz and above.
The measurement models of (#.I7) remain unchanged, but are mentioned again for
completeness,

y, = R*(b° — g°) + 6% + €, (4.22a)
y, =wy +6° +eb, (4.22b)
Yo = [~12 P ] RO(R™(pf — b°) — ) + ecp. (4.22¢)

The Jacobian of (#.22) w.r.t. to the state vector is given by

0 0 R Hy(b"—g® 0 I3 0
H= 0 0 0 0 Is; 0 I3, (4.23)
HiR¥* 0 0 HHy(pi—b°) 0 0 0

where
Hy 2 [~ p,] R,

() 2 00 oot 00 = @R+ ey ]
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The discussed process and measurement models and their Jacobians are used in an
EKF to fuse the visual and inertial measurements using Algorithm 2.1} Note that these
models depend on the relative pose between the camera and the IMU, cb7 q“’b, for which
accurate calibration values need to be found.






Calibration theory

Calibration refers to the process of determining the output relation of a measurement de-
vice as well as applying suitable correction factors to it in order to obtain desired behavior.
Examples of calibration procedures are IMU calibration and camera calibration, see Sec-
tion3.1.2land Section[3.2.21 Camera calibration deals with estimation of the intrinsic and
extrinsic parameters explaining the observed projection. With IMU calibration the raw
sensor readings are converted into relevant physical units, while correcting for several
undesired effects such as non-orthogonality and temperature dependence.

A calibration method proposes an appropriate model structure to describe the mea-
surements and determines the model parameters which give the best match between the
prediction and the measured output. This can be formulated as a nonlinear least squares
minimization problem,

0 = argmin V (0) (5.1a)
6
N N
V)= llecl® =D llye — 9(6,un)|, (5.1b)
t=1 t=1

where V is the cost function, e, are the prediction errors, y; are the measurements, u; the
inputs, 6 are the model parameters to be estimated and §( -, - ) is the predicted measure-
ment according to the model. This formulation is a special case of the prediction error
framework (Ljung,|1999) used in system identification. Depending on the structure of the
problem and the available measurements, various calibration methods can be designed.
The sensor unit consists of an IMU and a camera. Obviously, these sensors have to be
calibrated individually. However, as stressed in Chapter [2]and Section[4.3] calibration of
the relative position and orientation between the sensors is essential for proper operation
of the present application. A similar type of problem occurs in assessing the performance
of Algorithm as discussed in Chapter[2] There the estimated pose is compared to an
external reference, in our case an industrial robot. Here, the positions and orientations

51
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between the involved coordinate systems have to be taken into account as well. Hence,
the relative pose calibration problem has to be solved for several coordinate frames, see
Figure[5.1] Details about the coordinate frames can be found in Chapter 2]

Earth |- Camera [« Body
A[ Jy Tracking system
A A\
Robot | Robot
base tool

Reference system

Figure 5.1: Relations between the coordinate frames. Solid lines stand for rigid
connections which have to be calibrated, dotted lines for non-rigid, time varying
relations.

The topic of this chapter is to provide a theoretical background on the various ap-
proaches which can be used to calibrate the relative position and orientation of the rigid
connections. The starting point for relative pose calibration are the geometric relations
between three coordinate frames, denoted a, b and ¢, see @])

¢ =4 ©q", (5.22)
c® = b" + R*cb. (5.2b)

These equations can be used in various ways, depending on which measurements are
available. Several possibilities will be discussed in the upcoming sections.

5.1 Kinematic relations

An IMU typically provides measurements of acceleration and angular velocity. This sec-
tion deals with the problem of finding the relative position and orientation from these
kinematic quantities.

5.1.1 Acceleration

A rigid connection between the b and the ¢ system implies that ¢°® and c” are constants.
Hence, (5.2b) reduces to

c(t) = b (t) + R (t)c’.

Differentiating twice w.r.t. time and applying the transformation rules for angular velocity
and angular acceleration yields the following relation between the accelerations
&*(t) and b (¢),

&(t) =

b (1) + @ (1) x R (1)c + w? () x w? (1) x R*(t)c"
b (1) + R™(1)(@h, () x € + why () x why(t) x ).
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This expression can be manipulated according to

e

R ()(€"(t) = b (1)) = R (dy(t) x € + woy (1) x wiy(t) x )
= R[S(wpy(t)) + S(wey (1)), (5:3)

where S has been defined in (@4). This equation is linear in ¢” and can be written as
yr = Hyx. Combining several time instants, a large system of linear equations can be
constructed from which ¢’ can be solved using the following theorem.

Theorem 5.1 (Generalized least squares)
Suppose {y;} N, are measurements satisfying y;, = Hyx. Then the sum of the squared
residuals, weighted according to »t

N N
Vi(z) = Z led[, = Z(yt — Hix)" (g — Hy), (54
t=1 t=1
equivalently formulated using stacked matrices,
V(@) = llels = (y — Hz)'S7 (y — Ha), (5.5)
is minimized by
&= (HT'ST'H) 'HTS ™1y, (5.6)

Proof: At its minimum, the gradient of V' is zero,

dVv
— = 20"S Yy - Hz) = 0.
1z (y — Hz)
Solving for z yields (5.6), see e.g.,[Nocedal and Wright| (2006). O

Note that methods based on the QR-factorization or the singular value decomposition
(SVD) are numerically superior to the analytical expression in Theorem [5.1] and should
be used to perform the actual computation.

Theorem [5.1] defines a mapping f from the measurements y to the estimate &, i.e.,
& = f(y) according to @ Introducing noise e in the model, that is, y = Hx + e, where
e has zero mean and covariance o2, the covariance of the estimate can be approximated
as

Cov & ~ [D, ] Cov y[D, 2]7, (5.7)

where D, & is the Jacobian of the estimator £ w.r.t. the measurements y. This expression
is known as Gauss’ approximation formula (Ljung| [1999) and is exact for linear estima-
tors. Application to Theorem [5.1]yields

Covi=c*(HTS'H)™, (5.8)

and Theorem [3. 1 returns the best linear unbiased estimate.
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Assuming Gaussian noise, i.e., y = Hx + e with e ~ N(0,02%Y), the probability
density function (PDF) of the measurements y is given by

1 o 5t (= Ha) TS (y—Ha) (5.9)

W)= o T onevae s |

where n, is the dimension of e. Maximizing p(y), or equivalently log p(y), w.r.t. = results
in (5.6). That is, the result of Theorem[5.1]can be interpreted as the maximum likelihood
(ML) estimate. Furthermore, maximizing log p(y) w.rt. o2 yields the following ML
estimate for the covariance scale factor,

62 = . (5.10)

Introducing the notation P = H(HTS~'H)~'HT¥~1, the expected value of V can be
shown to be
EV(#) =E(y— Hi)'S Yy — Hx) = Ee' (I — PTYY YT — P)e
=EefS™HI - Ple = Etr[(I — P)S " ee ] = tr[(I — P)S~! Cove]
=o%tr(I — P) = 0%(ne — na).
Hence, the ML estimate 6 is biased. Correcting for this bias results in

5% = &. (5.11D)

Ne — Ny

5.1.2 Angular velocity

Switching focus from translation to orientation, the rigid connection b—c implies that

(5.24) reduces to
g (t) = ¢ © ¢" (1)
Differentiating left and right hand sides w.r.t. time, see (@.12)), yields
3Wea(t) © ¢°(1) = 4™ © gwp, (1) © ¢"(2).
Hence, the angular velocities for rigid connections are related by
wea(t) = 4™ © wi, (1) © ¢ (5.12)

This expression can be used to solve for the relative orientation ¢°®. A one-step solution is
provided by [Horn| (1987). Theorem[5.2] contains a simplified proof and extends the orig-
inal theorem with expressions for the Jacobians of the estimate w.r.t. the measurements,
thus allowing analytic expressions for the covariance of estimate.

Before Theorem [5.2] is stated, some notation has to be introduced. In order to avoid
ambiguities with partitioning of Jacobian matrices, they are defined as (Magnus and
Neudecker, [1999)

_ dvec f(x)

Dz f d(vecx)T”’

(5.13)
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where vec( - ) is the vectorization operator. With this definition, even matrix functions of
matrix variables are well defined. As an alternative to evaluating each partial derivative
in (5.13)), the Jacobian D, f can be identified from the (vectorized) differential of f:

dvec f(z) = A(z)dvecx <& D, f=A(z). (5.14)

Since computations with differentials are relatively easy, this is a rather useful and pow-
erful approach.

Theorem 5.2 (Rotation A)
Suppose {ve}N | and {vb} | are measurements satisfying v¥ = q*° © v? © ¢*®. Then
the sum of the squared residuals,

N N
V(g™ =Y lled® =D llof = 0 v © ¢, (5.15)
t=1 t=1

is minimized by ¢*° = w1, where x1 is the eigenvector corresponding to the largest eigen-
value \1 of the system Ax = A\x with

A=—

t

(Vi) (v} k- (5.16)
1

N
Furthermore, the Jacobians of §°° w.r.t. the measurements are given by
Dyg ¢* = =[(4"")" ® (\dy — A)T][11 © (v})R][Dy vr], (5.17a)
Dy ¢ = (@) ® Mls = AL ® (0f))Dovrl.  (5.17b)

where ® is the Kronecker product and T is the Moore-Penrose pseudo inverse. The Jaco-
bians D, vy, and D,, vg are defined as

ek ey
1 1
e 0 e 0
Dyvr = & D,vg = L
2 v VR 2
eg Ig, ’ (2% ,[3 ’
R er

where {e'}}_, is the standard basis in R*.
Proof: The squared residuals can be written as
llecl® = o 11* = 20 - (¢° © vf © ¢"*) + o7 ||*.
Minimization only affects the middle term, which can be simplified to
v (@ Ov © ") = ~(vf © (¢" O vy © ¢"))o
= —(vf ©¢")" (v} © ¢")°

= —(¢")" (v})L(v))rg",
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using the relation (a ® b)g = a”b¢ for the scalar part of quaternion multiplication. The
minimization problem can now be restated as

N
arg minz lles]|? = arg max (¢*°)T Ag?°,
llge®ll=1 %=1 llg® =1

where A is defined in (5.16). Note that the matrices - 1, and - p commute, i.e., aLbp =
brar, since arbpxr = a ® x ® b = brapx for all xz. Additionally, - 1, and - p are skew
symmetric for vectors. This implies that

)L @)r = [ L= ()R] = () r(67) )" = (o)L ()R],

from which can be concluded that A is a real symmetric matrix.
Let ¢** = Xa with ||a|| = 1, where X is an orthonormal basis obtained from the
symmetric eigenvalue decomposition of A = XXX Then,

4
(@) Ag" = a"XTXSXTXa = afXi < Ay,
=1

where )\; is the largest eigenvalue. Equality is obtained for o = (1,0,0,0)7, that is,

fjab =21.

The sensitivity of the solution can be determined based on an analysis of the real
symmetric eigenvalue equation, Az = Ax. The Jacobian of the eigenvector 2:(A) is given
by

DA.’E = LET ® ()\1[4 — A)T

as derived by [Magnus and Neudecker] (1999). Furthermore, writing A, = —R;L; =
—L, R, and applying (5.14), yields

dAt(Lt) = —Rt(st) = DLt At = _I4®Rt

dAt(Rt) = —Lt(d Rt) <~ DRt At = —I4 ® Lt
Straightforward application of the chain rule results in

Dy; §** = [Da2][Dr, A[Dyg L, D, §* = [Daa][Dg, A][D,p Ry].

Evaluating this expression gives (5.17). O

To incorporate measurement noise, the model is extended to

v = v, +ef, vl =)+ el vio =g O] ©¢", (5.18)
where e and e’ are mutually independent, zero mean noises with covariance Y.,e and
Evf- Application of Gauss’ approximation formula (5.7)) yields the following covariance
expression for the estimate produced by Theorem[5.2]

N
Cov §* = Z[Dvg G*"1%0e Doz ¢*1" + [Dyp ¢*12,0 D, 41" (5.19)

t=1
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Assuming independent identically distributed Gaussian noise, e¢, e? ~ N(0,0213),
the residuals e; are distributed according to

e 20 — ¢ 0 0¢" = — ¢ 0 el @ ¢" ~ N(0,20%13), (5.20)

and the PDF for all the residuals is given by

w\@

N
H 4;2 (egfq"'bQEPt)@qba)T(eg*qab®€f®qba)_ (5.21)

Maximizing p(e), or equivalently log p(e), w.rt. ¢ results in Theorem That is,
the result of Theorem [5.2] can be interpreted as the maximum likelihood (ML) estimate.
Furthermore, maximizing log p(e) w.r.t. o2 yields the following ML estimate for the
covariance scale factor,

- . (5.22)

The expected value of V' (§?°) is given by
Aab EZ Rab b ( (tl _ Rabeg)
= EZtre?e?Tthrefe?T 2(e?)TR%eb ~ (6N — 6)02,

where a second order Taylor expansion of E(e?)Tﬁ“bef has been used. Hence, the ML
estimate 6% (5.22) is biased. Correcting for this bias results in
V(z
6'2 ( )

Validation

Theorem [5.2] and its associated covariance expressions have been Vahdated using Monte
Carlo (MC) simulations. The scenar10 deﬁned by orientation q“b =27 (1 1,0,0) and
measurements {v?} = {e', e?, €3, —el, —e?, —e®} where {€'}3_, is the standard basis
in R3 will be used as an example. Measurements are generated by addlng Gaussian noise
with ¥ = 107%I3 to {v¢} and {v}}.

From the measurements a set (M = 10%) of orientation estimates {g¢*}7 , and co-

variance estimates {Qk} 4=, have been generated using Theorem and (3.19). Fig-
ure 5.2/ shows the distribution of the orientation error vectors ej, = 2 log((jgbqb“) where
the quatermon logarithm is defined in Appendix[A] The orientation errors have zero mean,
implying that the orientation estimates are unbiased. Furthermore, the empirical dis-
tribution of the orientation errors is consistent with the theoretical distribution derived

using the covariance estimates of (5.19). A comparison between the MC covariance
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frequency

-0.5 0 0.5 1 1.5
orientation error [°]

|
N
o
[
N

Figure 5.2: Histogram of the orientation errors. Both the empirical distribution
(gray bar) as well as the theoretical distribution (black line) are shown.

Qmc = Cov ¢ and the theoretical covariance Qy = E Q shows also a very good match:
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5062 062 000 0.00
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—0.00 0.00 —0.01 1.24
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5.2 Geometric measurements

Besides measuring kinematic quantities, an IMU can also measure direction vectors such
as gravity and the magnetic field. These vectors are geometric measurements, as well as
direct position and orientation measurements from for instance an external reference sys-
tem or computer vision. In this section it is discussed how relative position and orientation
can be determined using these geometric measurements.

5.2.1 Direction vectors

Directional vectors evaluated in different coordinate frames are related by
v? = ¢ Ol e ¢, (5.24)

This is the same relation that holds for angular velocities (5.12). Hence, ¢°° can be deter-
mined by direct application of Theorem[5.2]
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5.2.2 Position and orientation

The transformations (5.2)) can be written using homogeneous transformation matrices,

N RAC¢ o
s[5
ab pPbc a ab b ab a cb b
_ {R oR b +f’7 C} _ [Ro bl} ﬁ) ﬂ — Tabrbe (5.25)

These transformation matrices are useful for evaluating paths between coordinate frames.
Comparing multiple paths between two systems yields relations between the intermedi-
ate coordinate transformations. Figure [5.3] gives two examples of such relations. These

Tbc
b=
bb’ cc’
Tt T Tbc T t Tbc
b——>cC b—> ¢
TtabT ad TTtdc
Qo ceeeeen d- a—»d
(a) Relative pose. (b) Absolute pose.

Figure 5.3: Two examples of geometric relations between 4 coordinate systems.
Multiple paths exist between a — ¢ and b — ¢'. The connections a — d and b — ¢ are
rigid, implying that T®®, T are constant. All other transformations vary between
measurements, denoted with Ty.

geometric relations have been studied extensively in the robotics literature and are there
known as hand-eye calibration, see for instance|Tsai and Lenz|(1989);|Strobl and Hirzinger
(20006).

The classical hand-eye calibration scenario in robotics is to move a manipulator (hand)
from b to &’ and observe the position change of a sensor (eye) from c to ¢’. Figure
illustrates this scenario. Evaluating the two routes between b and ¢’ yields the relation
Ttbc/ = TtbblTl’c = TbCTfC/, typically written as AX = X B, from which the unknown
transformation 7°¢ can be solved given a number of relative poses {Ttbb', ch/ WV . The
relative poses are usually not available since both the manipulator and the sensor give the
tool - robot base transformation respectively the camera - world transformation. Hence,
the relative poses are constructed from two absolute poses at different times, e.g., Ttbb/ =
ﬂ’laTt‘;b. These absolute poses are used directly in the slightly more general scenario
given in Figure It yields the relation 7%¢ = Ta*T = Te4Td¢ typically written as
AX = 7B, from which the unknown transformations 7°*¢ and 7%¢ can be jointly solved
for, given a number of poses {7°, T2}V .

The relation of Figure[5.3b|can be decomposed in its rotational and translational part,

qg,bqbc _ qadqzic

(5.26)
b! + R%cb = d* + R ¢!

TtabTbC _ Tathdc o {
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These parts are inherently coupled and many nonlinear optimization techniques have been
proposed for solving it, see [Strobl and Hirzinger| (2006) for an overview. However, de-
coupling approaches are frequently employed with satisfactory results: assuming known
rotations, the translational part is linear in the unknowns ¢®, d* and can be solved using
d_d c’
by — R%*cf = [R?b I] [d“} (5.27)
in combination with Theorem [5.1] A one step solution to the rotational part is given by

Theorem [5.3] It gives an explicit solution along with expressions for the Jacobians of the
estimate.

Theorem 5.3 (Rotation B)
Suppose {q°} N, and {qi°}N | are measurements satisfying ¢t* ©¢*¢ = q*¢© q¢. Then
the residual rotation error,

N

V(g™ q") = lledl® = leq o ogtod —17, (528
t=1

is minimized by ¢°* = v, and @°° = w,, the first right and left singular vectors of the
matrix A = UXVT | with

N
A= ()T () g- (5.29)
t=1
Furthermore, the Jacobians of §%¢, §*® w.r.t. the measurements are given by
Dy & = [#" @ (01116 — B)'|[Da Bl[Kaa(ls @ (¢/°)%)][Dy qL] (5.30a)
Do & = [#" ® (01116 — B)'[Da Bl © (¢;*)1][Dy qrl, (5.30b)

where K, implicitly defined by vec AT = K vec A, is the commutation matrix. Further-
more,

=(§) =6 ). oot mal(8)e ()]

Dyar = [(eR)" (er)", (er)™, (ex)"]", Dgar = [(e)”, (er)", (e1)". (e1)"]",
where {e'}1_, is the standard basis in R*.
Proof: The residual orientation error can be rewritten as
lecll® = llgf® © ¢* © g5 © ¢** — 17
= ("0 ¢" 0 ¢ © ¢ - 1) (¢ ©¢" 0 ¢’ ©¢" - 1)°
=2 (/" © ¢ 0 ¢"©q™) ~ (¢ © ¢"° © g{" © ™) .

Using the quaternion properties, ¢ + ¢¢ = 2qo and (a ® b)g = a’'b°, the above expression
can be simplified to

leel|* =2 = 2(¢/° © ¢") " (¢ © ¢**)° =2 — 2(¢")" (/") (&) R
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The minimization problem can now be restated as

N
i t = ¢ ’
arg mmz le]|? = arg max (¢°¢)T A¢*?

Hq‘;dH:l =1 qudl\zl
llg"e|I=1 lla”ll=1
where A is defined in (5.29).

Let ¢*¢ = Ua and ¢*? = V3 with ||a| = 1 and ||8]| = 1, where U and V are
orthonormal bases obtained from the singular value decomposition of A = UX VT, Then,

4
(¢")"Ag" = "UTUSVIVE = cioifl; < o4,
i=1
where o is the largest singular value. Equality is obtained for « = 3 = (1,0, 0,0)7, that
is, ¢*¢ = uq and ¢%¢ = v1.

The sensitivity of the solution can be found by analyzing the differential of the SVD,
analogous to [Papadopoulo and Lourakis| (2000). However, explicit expressions can be
obtained by making use of the connection between the singular value decomposition of A
and the eigenvalue decomposition of B, see|Golub and Van Loan|(1996). Indeed,

B_OAT v\ 0 VSUTN (v v
=4 o) \w) " \uzvt o u ) = g )

so a singular value oy of A, with its singular vectors u; and vy, is also an eigenvalue of
B with eigenvector x. Hence, the sensitivity of the solution can be determined based on
an analysis of the real symmetric eigenvalue equation, Bx = ox. The Jacobian of the
eigenvector z:(B) is given by

Dpz =z @ (011s — B)}

as derived by Magnus and Neudecker| (1999). Now, notice that B can be decomposed as

B:(S1 ‘%T)=<IO4>AT(0 14)+<194>A(14 0).

Taking the differential of the above equation yields

de(%)dAT(O I4)+<z)dA(I4 0).

vec(d B) = [(0 AN (I;)] Kyavec(d A) + [(14 0)" @ GM vec(d A)

— Uss + Kss] K%) ® (?4)] vee(d A).

Da B

Furthermore, writing A; = L] R, and applying (5.14) once more, yields

dAy(L;) = (dL)"R, < Dp, A = Kyu(ly® R]),
dAy(R;) = LI'(dR;) <+ Dg, A= LT).
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Straightforward application of the chain rule results in

Dawz= [DB IE][DA BHDLr, A}[Dng Lt],

qy

Dquc T = [DB IE] [DA B] [DR,, A] [Dng Rf]
Evaluating these expressions gives (5.30). O

Notice that ¢/ ® ¢"° ® ¢{? © ¢% = 1 ©® bq;, where g, = (cos &, n¢sin &) = (1,0)
in absence of errors. With this notation, the cost function (3.28)) can be interpreted as

N N
gt ¢ o gt e g — 1) :Z(Cosf—l n{ sin %)

N
That is, an intuitive interpretation of Theorem @ is that it minimizes error angles, and

the solution is physically relevant.
To incorporate measurement noise, the model is extended to

o~
Il

_
(‘#
H

»lk\'—‘

[
WE

N
(cos & — 1) + (sin %) 22 (1 —cos %)~
t=1

o~
Il
—

@’ =qh 06k, ¢ =q50dq", @hodogiod =1 (531

Here, the quaternion errors 6q?b, 6qu are modeled as mutually independent random ro-
tations about random vectors, that is, ¢ = exp 29 where 0 is zero mean noise and has
covariance Ygy. This implies that

_ 2
Eog=Eexp 6 ~ (1 Blel ) , (5.32a)
Cov éq = E(6q — Edq)(6q — Edq)”
a0 —E(6[?)? —1(||9||2—E|9||2)9T)
~E( & 16 . (532b)
<—116(9||2 ~E6]*)6" 106"

where the small angle approximation, i.e., cosz = 1 — %xQ and sinz = z have been
used. Application of Gauss’ approximation formula (5.7) yields the following covariance
expression for the estimate of Theorem [5.3]

N
Covi = [Dye #]5

t=1

»[Dyer 2" + [Dgge &5 ge [D gae 2], (5.33)

qy q;

where the covariance ¥ o = (q#%) [Cov 6¢2°](g#*)T (and ¥ qg analogously).

Assuming independent identically distributed Gaussian noise Gfb, 0?‘: ~ N(0,0%13),
the quaternion covariance (3.32b)) simplifies to

60t
Cov iq ~ < 64 020 ) ) (5.34)
0 1
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Hence, for small o2 the (1,1) entry is negligible and the residuals e, are distributed ac-
cording to

, , 0 0
e 2¢O 0¢ 0" —1~N(0,5,), T, = [ : } (5-35)
Hence, the PDF for all the residuals is given by

ple) = H 1 @0 0q 0" —)TS], (7" 0d" 0 0g" 1), (5.36)
o (m/6)203

Maximizing p(e), or equivalently log p(e), w.r.t. x results in Theorem only with a

different weighting. That is, the result of Theorem [5.2]is very similar to the maximum

likelihood (ML) estimate. Furthermore, maximizing log p(e) w.r.t. o2 yields the follow-

ing ML estimate for the covariance scale factor,

o 2V(@)

SN (5.37)

The expected value of V (%) is given by

N
BV(@) =B 6" 00" 0q! 0" ~ 1) (" 0" 0 g0 §" - 1)
t=1

3(N -2
SEUEL WY
where a second order Taylor expansion w.r.t. ¢#® g% has been used. Hence, the ML
estimate 62 (5.37) is biased. Correcting for this bias results in

o2 )
62 = 73(N_2)V(x). (5.38)

Validation

Theorem [5.3] and its associated covariance expression have been validated using Monte
Carlo (MC) simulations. The scenario defined by the orientations ¢%¢ = 273 (1,1,0,0),
¢"¢ = 272(0,0,1,1) and measurements {¢g?*} = {e!,e2, €3, et —e!, —e2, —e3, —¢t}
where {e’}?_, is the standard basis in R* will be used as an example. Measurements are
generated by adding Gaussian rotation vectors with ¥ = 107*I3 to {¢?*} and {¢{°}.
From the measurements a set (M = 10%) of orientation estimates {G¢?, Gv°}* | and
covariance estimates {Qk}{c\/fz ; have been generated using Theorem and (5.33). Fig-
ure shows the distribution of the orientation error vectors ef 210g(cj,‘;dqd“) and
eb = 21log(g2°q®). The orientation errors have zero mean, implying that the orientation
estimates are unbiased. Furthermore, the empirical distribution of the orientation errors
is consistent with the theoretical distribution derived using the covariance estimates of
(333). A comparison between the MC covariance Qumc = Cov Z and the theoretical
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Figure 5.4: Histogram of the orientation errors. Both the empirical distribution
(gray bar) as well as the theoretical distribution (black line) are shown.

covariance Qp = E Q shows also a very good match:

0.31 0.00 —-0.31 —0.00 0.01 0.00 -0.00 -0.01
0.00 0.62 —-0.00 —-0.00 —-0.00 —-0.00 —0.01 0.00
—-0.31 —0.00 0.31 0.00 -0.01 —0.00 0.00 0.01
—-0.00 —0.00 0.00 0.63 0.01 0.00 0.00 -0.01
0.01 -0.00 -0.01 0.01 0.31 —-0.00 —-0.01 -0.31}"
0.00 —-0.00 —0.00 0.00 —0.00 0.61 —0.01 0.00
—-0.00 -0.01 0.00 0.00 -0.01 -0.01 0.61 0.01
—0.01 0.00 0.01 -0.01 -0.31 0.00 0.01 0.31

0.31 0.00 -0.31 0.00 0.00 —0.00 0.00 —0.00
0.00 0.63 0.00 0.00 0.00 0.00 0.00 —0.00
—0.31 0.00 0.31 0.00 —0.00 0.00 —0.00 0.00
Qp = 107 0.00 0.00 0.00 0.63 0.00 0.00 0.00 —0.00
b= 0.00 0.00 —0.00 0.00 0.31 —0.00 0.00 -0.31
—0.00 0.00 0.00 0.00 -0.00 0.63 0.00 -0.00
0.00 0.00 —0.00 0.00 0.00 0.00 0.63 0.00
—0.00 —0.00 0.00 —-0.00 —-0.31 —0.00 0.00 0.31

Qmc = 107°

Note that the estimates ¢*? and §°¢ are uncorrelated.

5.3 Mixing kinematic and geometric measurements

The methods discussed in Section 5.1l and Section [5.2] are based on either kinematic or
geometric measurements. Difficulties arise combining the two types of measurements,
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for instance in case of an IMU measuring angular velocity and acceleration and a cam-
era (indirectly) measuring position and orientation. Attempts using differentiated or in-
tegrated measurements are not successful. Integration of the kinematic measurements
(dead-reckoning) suffers from severe drift after a short period of time. Differentiating
the geometric measurements has problems due to noise amplification and low sampling
frequencies.

In this section the prediction error method (Ljung, [1999) is used to combine mea-
surements from both types. The idea used in the prediction error method is very simple,
minimize the difference between the measurements and the predicted measurements ob-
tained from a model of the system at hand. This prediction error is given by

et(0) = yr — Yrje—1(0), (5.39)

where g;—1(0) is used to denote the one-step ahead prediction from the model. The
parameters 6 are now found by minimizing a norm V' (6, e) of the prediction errors,

0 = argmin Vy (6, €). (5.40)
0

Obviously, a suitable predictor g, () is needed to solve (5.40). The key idea is to
realize that the state-space models derived in Chapter 4] describe the underlying process
and that a EKF can be used to compute the one-step ahead prediction g, (), see Fig-
ure [5.5] The parameters in the process and measurements model have a clear physical

Minimization
VN (6, 6)
(&
0
Y
[ Measurements )—» —>[ Innovations ]
EKF

( Inputs J—» —>( State J

Figure 5.5: Gray-box system identification using KF innovations as prediction er-
rors. The parameter vector 0 is adjusted to minimize the cost function Vi (0, e).

interpretation, allowing for gray-box identification where only the parameters of interest
are estimated. The prediction errors, e; = y; — |1 (), or innovations are already being
computed in the KF iterations. This explains why the term innovation representation is
used for KF-based model structures (Ljung||1999).

Although the choice of the cost function Vy(6, e) does not influence the limit of the
estimate é, it influences the covariance of the estimate (Ljung, [1999). The optimal, mini-
mum variance estimate is obtained with the maximum likelihood cost function

N
Vn(0,e) = Z—logpe(et,t). (5.41)

t=1
Since for a correctly tuned filter, the innovations e; are normal distributed with zero mean
and covariance S; = C’tPt|t,1CtT + Ry, where the state covariance P;j;_1, the measure-
ment Jacobian C}; and the measurement covariance R, are provided by the EKF, the cost
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function (5.41) is equivalent to

N

1 _ 1
Vn(0.e) = 5 ; e/ Siter = 5e'e (5.42)
Here, the Nn,-dimensional vector ¢ = (e7,...,eX)T is constructed by stacking the
normalized innovations
e =S, %, (5.43)

on top of each other. With this choice of cost function the optimization problem boils
down to a nonlinear least-squares problem. This kind of problem can be efficiently solved
using Gauss-Newton or Levenberg-Marquardt methods, see e.g., Nocedal and Wright
(2006). These methods require partial derivatives of the normalized innovations € w.r.t.
the parameter vector 6. Since the KF iterations do not allow simple analytic expression
for these numerical differentiation is used. The covariance of the estimate 6 can be deter-
mined using

T

A €le
Cov il =
ov N,

(IDg e][Dy ™) ", (5.44)

where the residuals e and the Jacobians [Dy €] are evaluated at é see [Ljung| (1999). This
expression can also be obtained by linearizing €(6),

e(0) ~ €(f) + [Dg €](6 — 0).

and applying Theorem[5.1]
The validation of this system identification approach to calibrate relative pose from
mixed measurements is postponed to Section [6.3]



Calibration algorithms

The calibration theory discussed in Chapter [5] can be applied in a number of calibration
methods for relative pose. Two groups are distinguished: internal calibration algorithms,
which calibrate the coordinate frames within the sensor unit of the tracking system and
external calibration algorithms for calibrating the tracking system with an external ref-
erence system. The classification and their coordinate frames are shown in Figure [6.1]
These coordinates frames have already been introduced in the previous chapters, but their

Earth  f-ooeeeeee Camera [+«—> Body

A A Tracking system
Y A\

Robot | Robot

base tool

Reference system

Figure 6.1: coordinate frames of the tracking system and the reference system. Solid
lines are rigid connections, dotted lines are non-rigid, varying connections.

definition will be repeated here for convenience.

Earth (e): The camera pose is estimated with respect to this coordinate frame. It is fixed
to earth and the features of the scene are modeled in this coordinate frame. It can
be aligned in any way, however, preferably it should be vertically aligned.

Camera (c¢): The coordinate frame attached to the moving camera. Its origin is located
in the optical center of the camera, with the z-axis pointing along the optical axis.
The camera, a projective device, acquires its images in the image plane (i). This

67
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plane is perpendicular to the optical axis and is located at an offset (focal length)
from the optical center of the camera.

Body (b): This is the coordinate frame of the IMU. Even though the camera and the
IMU are rigidly attached to each other and contained within the sensor unit, the
body coordinate frame does not coincide with the camera coordinate frame. They
are separated by a constant translation and rotation.

Robot base (r): The robot positions its tool with respect to this coordinate frame. This
unmovable frame is fixed to the earth, so it is rigidly connected to the earth frame.

Robot tool (t): This is the coordinate frame controlled by the robot. The sensor unit
is mounted to the robot tool, hence the camera frame is rigidly connected to this
frame.

Both the internal and external calibration methods will be discussed in the subsequent
sections.

6.1 Internal calibration

Internal calibration algorithms determine the relative pose between the camera and the
IMU in the sensor unit, see Chapter |3} It has to be repeated when the objective of the
camera is adjusted or changed. Since in that case a camera calibration has to be performed
anyway, it would be preferable when the sensor unit can be calibrated reusing the camera
calibration setup and without additional hardware.

Lobo and Dias| (2007) present a two-step algorithm to determine the relative pose
between an IMU and a camera. First they determine the relative orientation comparing
gravity measured by the IMU with gravity determined from the camera images, i.e., using
directional vectors as discussed in Section[5.2.1] The optical vertical direction is calcu-
lated from vertical vanishing points, determined using vertical lines present in the scene
or in a vertically aligned camera calibration pattern. However, it is quite difficult to align
a calibration pattern perfectly with the vertical; it requires a vertical surface on which
the pattern has to be aligned. It turns out that floors and desks are more horizontal than
walls and edges are vertical. Additionally, levelness can be easily verified with a spirit
level and the vertical is independent of the alignment in the horizontal plane. Taking this
into account, a modified algorithm is presented in Algorithm[6.1] It is an extension to the
camera calibration procedure, see Section @} and facilitates calculation of the relative
orientation between the IMU and the camera.

Once the relative orientation is known, [Lobo and Dias|(2007) describe a second algo-
rithm to determine the relative position: the sensor unit has to be placed on a turntable and
positioned such that the accelerometer reading stays constant for rapid rotations. That is,
the accelerometers are positioned in the rotation center of the turntable and do not trans-
late when the turntable is rotated. This geometric measurement is complemented with
relative pose information from images of a calibration pattern before and after a turn. To
calculate the relative position this procedure has to be repeated several times with different
poses of the sensor unit on the turntable.
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Algorithm 6.1 Orientation calibration (static)

1. Place a camera calibration pattern on a horizontal, level surface, e.g., a desk or the
floor.

2. Acquire images {I; }?¥ ; of the pattern while holding the sensor unit static in various
poses, simultaneously taking accelerometer readings {ya’t}éil.

3. Perform a camera calibration using the images {I;} ; to obtain the orientations
{Ri}L

4. Compute an estimate ¢ from {g§} = {R{°g°} and {g}} = {—y, ,} using Theo-
rem Note that g¢ = (0,0, —g)7 since the calibration pattern is placed horizon-
tally.

5. Determine the covariance of ¢°* using (5.19).

This algorithm has two major drawbacks: not only does it require special hardware,
i.e., a turntable, but it is also labor intensive as the positioning of the sensor unit is very
sensitive. Using Section[5.3]a flexible algorithm has been derived for estimating the rela-
tive pose between the IMU and the camera which does not suffer from these drawbacks.

The system is modeled similar to Section[4.3]as

. e T2 e
bf_;'_l = bf + be + 7bt’ (613)
by = b, +Thy, (6.1b)
qfil — e_%“’le?b,t ® qge’ (610)
where b; and w?, , are given by
b, = R*ua, +g° — R8" — Rebel (6.2a)
whyy =y — 6, — el . (6.2b)

Here u, ; and u,, ; are the accelerometer signal and the gyroscope signal respectively.
The associated measurements are modeled as

y.= [ pi] R(R"(p® — b°) — ) + e.. (6.3)

This is a standard discrete-time state-space model parameterized by
0= (@), (7. (8L)".(6)". (g)") (6.4)

That is, the parameter vector 6 consists of relative orientation as axis angle d)Cb, relative
position c?, gyroscope bias (52, accelerometer bias 52 and gravity g°.

Algorithm [6.2] applies the model (6.1)—(6.3) in the grey-box system identification ap-
proach discussed in Section[5.3]to estimate the relative pose. Besides relative position and
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Algorithm 6.2 Pose calibration (dynamic)

1. Place a camera calibration pattern on a horizontal, level surface, e.g., a desk or the
floor.

2. Acquire inertial measurements {y,, ,};2,, {y, ;}/<, and images {I;}}" ;.

e Rotate around all 3 axes, with sufficiently exiting angular velocities.
o Always keep the calibration pattern in view.
3. Obtain the point correspondences between the undistorted and normalized 2D fea-

ture locations ziiz and the corresponding 3D grid coordinates 2§ ; of the calibration
pattern for all images {1}, see Section

4. Compute an estimate 0 by solving (540), using 0y = (( T 0,0,0, (gg)) as

a staring point for the optimization. Here, g§ = (0,0, —g)” since the calibration
pattern is placed horizontally and ¢gb can be obtained using Algorithm

5. Determine the covariance of 6 using (5.44).

orientation, nuisance parameters like sensor biases and gravity are also determined. The
algorithm requires a calibrated camera and, apart from a camera calibration pattern, no
hardware is required. The data sequences can be short, a few seconds of data is sufficient.
The algorithm is very flexible: the motion of the sensor unit can be arbitrary, provided
it contains sufficient rotational excitation. A convenient setup for the data capture is to
mount the sensor unit on a tripod and pan, tilt and roll it. However, hand-held sequences
can be used equally well.

6.2 External calibration

In case the tracking system is to be compared to an external reference system a calibra-
tion has to be performed to determine the relative poses between the coordinate frames
involved. Depending of the type of reference system different calibration methods have
to be used. For a reference system providing pose measurements, e.g., an industrial robot
as used in Chapter 2] the theory of Section[5.2]applies and Algorithm [6.3]can be used.

Alternatively, a high grade inertial navigation system, see Section[3.1.3] can be used
to as an external reference system. Such systems also provide kinematic measurements,
see Section [5.1} and Algorithm [6.4] can be used to determine the relative poses between
the involved coordinate frames.

6.3 Experiments

The algorithms presented in the previous sections have been applied to obtain the results
of Chapter[2] This section is devoted to show calibration results for internal calibration.
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Algorithm 6.3 Reference system calibration (pose)

1. Acquire pose measurements {7} | and {T7*}_; from the sensor unit and the
reference system respectively.

2. Compute an estimate ¢, ¢*° from {g}*} and {¢§°} using Theorem|[5.3]
3. Compute an estimate &”, & from {¢}} and {c{} by applying Theoremto (5.27).
4. Use (5.33) and (5.8) to determine the covariances of ", §*¢ and &", &".

Algorithm 6.4 Reference system calibration (inertial)

1. Capture inertial measurements {y, ,}* 1, {y, }ie1 and {za}iy, {Zwe e,
from the sensor unit and the reference IMU respectively. Rotate around all 3 axes,
with sufficiently exiting angular velocities.

2. Compute an estimate ¢** from {w?} = {y, ;} and {w}} = {z. .} using Theo-

rem[3.2]

3. Compute an estimate b’ from {Y,,1} and {z, +} by application of Theoremto
the combination of (5.3)) and

You — R'200 = RY(b, — g°) — RV RI(E; — g°) = R (b, — 1)).

. . R ;b
4. Use (5.19) and (5.8)) to determine the covariances of ¢** and ¢ .

Algorithm[6.2] has been used to calibrate the sensor unit described in Chapter[3] This
algorithm computes estimates of the relative position and orientation between the IMU
and the camera, i.e., ¢® and qub, based on the motion of the sensor unit. This motion
can be arbitrary, as long as it is sufficiently exiting in angular velocity and the calibration
pattern always stays in view. The setup employed, shown in Figure [6.2] is identical to
that of a typical camera calibration setup: the camera has been mounted on a tripod and a
camera calibration pattern is placed on a desk.

A number of experiments have been performed. During such an experiment the sensor
unit has been rotated around its three axes, see Figure for an example. The measure-
ments contains relatively small rotations as the calibration pattern has to stay in view.
However, modest angular velocities are present, which turn out to provide sufficient ex-
citation. The data is split into two parts, one estimation part and one validation part, see
Figure[6.3] This facilitates cross-validation, where the parameters are estimated using the
estimation data and the quality of the estimates can then be assessed using the validation
data|Ljung|(1999).

In Table the estimates produced by Algorithm are given together with confi-
dence intervals (99%). Note that the estimates are contained within the 99% confidence
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Figure 6.2: The sensor unit is mounted on a tripod for calibration. The background
shows the camera calibration pattern that has been used in the experiments.

intervals. Reference values are also given, these are taken as the result of Algorithm [6.1]
(orientation) and from the technical drawing (position). Note that the drawing defines the
position of the CCD, not the optical center. Hence, no height reference is available and
some shifts can occur in the tangential directions. Table [6.1] indicates that the estimates
are indeed rather good.

In order to further validate the estimates the normalized innovations (3.43) are studied.
A histogram of the normalized innovations and their autocorrelations are given in Fig-
ure[6.4] and Figure [6.5] respectively. Both figures are generated using the validation data.
The effect of using the wrong relative position and orientation is shown in Figure [6.4b]
and Figure From Figure [6.4a] and Figure [6.3]it is clear that the normalized inno-
vations are close to white noise using 6. This implies that the model with the estimated
parameters and its assumptions appears to be correct, which in turn is a good indication
that reliable estimates dgd’, ¢® have been obtained. The reliability and repeatability of the
estimates has also been confirmed by additional experiments.

The experiments show that Algorithm[6.2]is an easy-to-use calibration method to de-
termine the relative position and orientation between the IMU and the camera. Even
small displacements and misalignments of the sensor unit can be accurately calibrated
from short measurement sequences made using the standard camera calibration setup.
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position (m)

orientation (°)

Figure 6.3: A trajectory of the sensor unit used for calibration. It contains both
estimation data (t < 3.5s) and validation data (¢ > 3.5 s), as indicated by the

dashed line.

Table 6.1: Calibration results for Algorithm The obtained estimates and their
99% confidence intervals are listed for 3 trials. Reference values have been included

time (s)
1 2 3 4 5 6 7 8
time (s)

for comparison.
Orientation B (°) ¢§b ®) 2 (°)
Trial 1 -0.06 [-0.28, 0.17] 0.84 [ 0.67,1.01] 0.19 [-0.06, 0.44]
Trial 2 -0.19 [-0.36, -0.02] 0.75[ 0.62,0.88] 0.45[ 0.23,0.67]
Trial 3 -0.29 [-0.48, -0.10] 0.91 [ 0.76, 1.05] 0.08 [-0.11, 0.27]
Reference® -0.23 [-0.29, -0.17] 0.80 [ 0.73, 0.87] 0.33 [ 0.22, 0.44]
Position ® (mm) cb (mm) ® (mm)
Trial 1 -13.5[-15.2,-11.9] -6.7[ -8.1, -5.2] 34.5[ 31.0, 38.0]
Trial 2 157 [-17.3,-14.2] -8.8 [-10.1, -7.5] 33.2 [ 28.7,37.7]
Trial 3 -13.5 [-14.9,-12.0] -7.3[ -8.6, -6.0] 29.7 [ 26.8, 32.7]
Reference’” -14.5 -6.5 -
% using Algorithm|6.1
) using Algori m|_|

using the CCD position of the technical drawing.
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Figure 6.4: Histograms of the normalized innovations, for validation data. Both the
empirical distribution (gray bar) as well as the theoretical distribution (black line)

are shown for several parameter vectors.
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Normalized correlation

Figure 6.5: Autocorrelation of the normalized innovations, for validation data. The
horizontal lines indicate the 99% confidence interval.






Application example

The pose estimation system of Chapter [2 has been tested in a number of scenarios. Its
accuracy has been evaluated using an industrial robot as ground truth, discussed in Sec-
tion 23] Furthermore, the system has been tested as an augmented reality application,

also reported in|Chandaria et al.| (2007)). The results of this experiment will be the topic
of this chapter.

—— Example 7.1: An augmented reality application

The system has been used to track the sensor unit in a relatively large room, approximately
5 x 4 x 2.5 m in size, see Figure [7.I] The sensor unit is handheld and is allowed to

Figure 7.1: The sensor unit is tracked in a large room. The monitor shows the live
camera image augmented with a virtual character.

77
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move without constraints in this room, both close to and far away from the walls. The
pose output of the pose estimation system is used to draw virtual graphics on top of the
camera images in real-time. There is no ground-truth data available for this test, implying
that the tracking performance has to be evaluated qualitatively from the quality of the
augmentation.

The pose estimation system requires a 3D model of the environment. In this case, the
model was not generated using the computer vision approaches described in Section[3.2.3]
but created manually using a 3D modeling tool. This tool takes the geometry from a
CAD model and uses digital photo’s to obtain textures for the surfaces. The resulting
model, shown in Figure [7.2a] consists of the three main walls. The floor and roof do

(a) 3D model of the room.

z [m]

[w] A

0 / \
-1 0 1 2 3 4
x [m]

(b) Camera trajectory.
Figure 7.2: Overview of the test setup.

not contain sufficient features and are ignored, together with the fourth wall containing
mostly windows.

The system worked very well for the described setup. The augmentations showed no
visible jitter or drift, even during fast motion. Tracking continued for extensive periods
of time without deterioration or divergence. Furthermore, the system is capable to handle
periods with few or no features at all, which pose difficulties for pure computer vision
approaches. These situations occur for instance when the camera is close to a wall or
during a 360° revolution. A reinitialization was required after 2 s without visible features.
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Beyond that period the predicted feature positions were to far off to enable detection.

A sample trajectory of about 90 s is shown in Figure It contains acceleration
up to 12 m/s? and angular velocity up to 9.5 rad/s. Furthermore, the trajectory involves
several 360° rotations which include several views where the camera only observes the
unmodeled window wall. An impression of the augmentation result is given by Figure[7.3]
The overlaid graphics stay on the same location, regardless of the position and orientation
of the camera. This is also the case when no features are available, for instance when only
the unmodeled wall is in view, see Figure

This example serves as a proof of concept for the performance of the developed pose
estimation system in realistic environments. The potential of the system is high as this
example is only one of many possible applications where it can be used.
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(d) (e

Figure 7.3: Several frames taken from the sample trajectory. Shown are the camera image (gray), located feature positions (+) and
overlaid graphics (avatar, coordinate frames).



Concluding remarks

In this thesis the problem of pose estimation is approached using a combination of vision
and inertial sensors. The aim has been to show how the associated nonlinear state estima-
tion problem can be solved in real-time using the available sensor information and how
a solution working in practice can be obtained. The conclusions are given in Section [8.]
and in Section some ideas about future work are discussed.

8.1 Conclusions

This thesis deals with estimating position and orientation in real-time, using measure-
ments from vision and inertial sensors. A system has been developed to solve this problem
in unprepared environments, assuming that a map or scene model is available. Compared
to ‘camera-only’ systems, the combination of the complementary sensors yields a robust
system which can handle periods with uninformative or no vision data and reduces the
need for high frequency vision updates.

The system is well suited for use in augmented reality applications. An application
example is discussed where the augmentations based on the pose estimates from the sys-
tem showed no visible jitter or drift, even during fast motion and tracking continued for
extensive periods of time without deterioration or divergence. Furthermore, experiments
where an industrial robot is used to move the sensor unit show that this setup is able to
track the camera pose with an absolute accuracy of 2 cm and 1°.

The system achieves real-time pose estimation by fusing vision and inertial sensors
using the framework of nonlinear state estimation. Accurate and realistic process and
measurement models are required. Fur this reason, a detailed analysis of the sensors and
their measurements has been performed.

Calibration of the relative position and orientation of the camera and the inertial sen-
sor is essential for proper operation. A new algorithm for estimating these parameters
has been developed, which does not require any additional hardware, except a piece of
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paper with a checkerboard pattern on it. The key is to realize that this problem is in fact
an instance of a standard problem within the area of system identification, referred to as
a gray-box problem. The experimental results shows that the method works well in prac-
tice. Even small displacements and misalignments can be accurately calibrated from short
measurement sequences made using the standard camera calibration setup.

8.2 Future work

Some suggestions for future research related to the work in this thesis are the following:
¢ Sensor fusion
— Adapt the pose estimation system and its models to function in combination
with spherical lenses.

— Extend the scene model while tracking with newly observed features or gen-
erate it from scratch. That is, perform simultaneous localization and mapping
(SLAM).

— Investigate covariance estimation for feature detectors.
e Calibration algorithms

— Extend the calibration method to determine the relative pose of the camera
and the inertial sensor (Algorithm [6.2)) for use with spherical lenses.

— Apply the calibration theory of Chapter [5]to related problems, such as deter-
mining the distance between a GPS antenna and an IMU.
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Quaternion preliminaries

This appendix provides a very short introduction to quaternions and their properties. Only
the most basic operations are stated, without proof. For more details, see e.g., [Kuipers
(1999)); Hamilton| (1844]).

A.1 Operations and properties

A quaternion ¢ € R* is a 4-tuple of real numbers is denoted by ¢ = (qo,q1, g2, q3)-
Alternatively it is denoted by ¢ = (qo, q), where qq is called the scalar part and q the
vector part of a quaternion. Special quaternions groups are Qs = {¢ € R* : ¢ = 0},
QT):{QGR4:(]0:O}aHdQ1 :{q€R4 : HQH :1}

For quaternions the following operators are defined:

addition p+q=(po+q.p+q), (A.1)
multiplication quE@wwﬂ9qmq+%p+pxm (A.2)
conjugation 2 (g0, —q), (A3)
norm \MP%%+qm%= (©q%)o (A4)
inverse I (A.5)
inner product p-qg= fi(p ©q+q0Op), (A.6)
cross product pPRqELI(pOg—qOp). (A7)

Associative and distributive properties hold, but only additions are commutative. Multi-
plications do in general not commutate.

pt(@+r)={@+aq +r,
p+q=q+p,
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PO@or)=(pPoqor,
pPO(g+r)=pOq+por,
POGFqOP.
An exception to this is scalar multiplication,
Ag = (A, 0)® (q0,9) = (Ao, Aq) = gA.
Furthermore, the following properties are useful,
(P©q)*=q"Op°,
o9 =q¢ o,
I © all = llpllllqll

A.2 Exponential

The quaternion exponential is defined as a power series similar to the matrix exponential:

S

n!’
n=0

expq = (A.8)

The quaternion exponential of a vector v € Q,, is a special case, since v = (0,v) and
P2 vov=(0-0-v-v,00+0v+v x v) = (—|v|?0). Hence,

2n+1

eXp”_Z ! ZQn' Z (2n + 1)
B e B |,U||2n |vH2n+1
- <Z< D" Gt ol & Z 2n+1>>

n=0

v
= (cos lv]|, 7— sin ||v||> . (A.9)
o]l
The inverse operation log ¢ is for unit quaternions q = (qo, q) given by

logq = ” T arccos qo (A.10)

A.3 Matrix/vector notation

The multiplication of quaternions can also be written using matrix/vector notation:

P®q=(pogo —P-q,P0q + QP+ P X q)

Po —PpP1 —PpP2 —P3 q0 go —q1 —Qq2 —q3 Po
_ | p Po —P3 p2 @l _ | & do a3 —92 1
P2 P3  po —D1 q2 42 —93 Qo q1 pa|’
pP3  —DP2 yal Po q3 g3 g2 —q1 q0 b3
PL qrR

(A.11)
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where the left and right multiplication operators, - 1, - r have been introduced. Note that
(¢°)e =ai, (¢°)r = qk-

This notation turns out to be very useful in deriving various expressions, for instance,

d d d d
dfp(pGQ)— @(QRP)—QR7 dfq(pCDq)— @(mq)—m.

Furthermore, the Jacobians of the matrix operators have the following special structure

[ 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

K= S

1 0 0 0

0O 0 O 1 e% e(li

-1
Dow= | g-¢ 5| = |- Deam=|E. @

0 0 0 -1 et e
1 0 0 0

0 1 0 0

0 0 0 -1

0 0 1 0

0 -1 0 0
1 0 0 0]

where {e’}}_ is the standard basis of R*.






Conversions

Orientations can be described with several interchangeable parameterizations. This ap-
pendix gives conversions between unit quaternions, rotation vectors, rotation matrices
and Euler angles.

B.1 Rotation matrices

The rotation 2% = ¢**2%¢%® can also be written as £ = R*z" with

203 +2¢7 — 1 2q1q2 — 2qoq3  2q193 + 2q0g2
R = |2q1q2 + 29093 2q5 + 245 — 1 2q2q3 — 2901 | , (B.1)
2¢193 — 2q0q>  2q293 + 2qoq1  2q3 + 2q3 — 1

where the annotation 5 has been left out for readability.

B.2 Euler angles
The aerospace sequence — Euler angles (¢0¢) — (zyx) — yields the rotation matrix

R = RERyR},

1 0 0 cosf 0 —sind cosy siny 0
=10 cos¢ sing 0 1 0 —siny cosy O
|0 —sing cosg| |sinf 0 cost 0 0 1
i cos f cos ¢ cos fsin v —sinf
= |sin¢sinfcosy —cos@siny singsinfsiny + cospcosyy  sin ¢ cos b
| cos ¢sinfcosy) +singsiny  cos@sinfsiny —singceosy  cospcosl
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Solving for the angles gives

R 2 -2
ab 1 12 —1 q192 4043
= tan -4 = tan — |, B.2a
v (Ru> <2q8+2<ﬁ—1> (B2
0" = —sin™!(Ry3) = —sin™ " (2q1¢3 + 2q0q2), (B.2b)
_1 [ Ros 1 { 29293 — 29001
¢(J,b = tan 1 () = tan T . (B.2C)
R33 2q3 +2¢3 — 1

Here, the convention is to call 1) heading or yaw, 6 elevation or pitch and ¢ bank or roll.

B.3 Rotation vector

A rotation around axis n by angle « has a rotation vector e £ an. The conversion to and
from a quaternion is given by

¢ = exp %e“b, e = 2log ¢, (B.3)

with exp and log defined in Appendix
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