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ABSTRACT

This paper is concerned with the problem of estimating the rela-
tive translation and orientation of an inertial measurement unit and
a spherical camera, which are rigidly connected. The key is to re-
alize that this problem is in fact an instance of a standard problem
within the area of system identification, referred to as a gray-box
problem. We propose a new algorithm for estimating the relative
translation and orientation, which does not require any additional
hardware, except a piece of paper with a checkerboard pattern on
it. The experimental results show that the method works well in
practice.

1 INTRODUCTION

This paper is concerned with the problem of estimating the transla-
tion and orientation of a camera and an inertial measurement unit
(IMU) that are rigidly connected. Accurate knowledge of this trans-
lation and orientation is important for high quality sensor fusion us-
ing the measurements from both sensors. The sensor unit used in
this work is shown in Figure 1. For more information about this
particular sensor unit, see [4, 12].

Figure 1: The sensor unit, consisting of an IMU and a spherical
camera. The camera calibration pattern is visible in the background.

The combination of vision and inertial sensors is very suitable for
augmented reality (AR), see e.g., [1]. An introduction to the tech-
nology is given by [2, 4]. The high-dynamic motion measurements
of the IMU are used to support the vision algorithms by providing
accurate predictions where features can be expected in the upcom-
ing frame. Combined with the large field of view of the spherical
camera, this facilitates development of robust real-time pose esti-
mation and feature detection/association algorithms, which are the
cornerstones for many AR applications.

The basic performance measure in these applications is how ac-
curate the feature positions are predicted. Let this measure be a
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general cost function V (p, C, B) that measures the sum of all fea-
ture prediction errors (measured in pixels) over time, where

• p denotes the relative position and orientation (pose) of the
IMU and the optical center of the camera.

• C denotes the intrinsic parameters of the camera. Camera
calibration for spherical lenses is a standard problem [7, 11],
which can be solved using a camera calibration pattern printed
using a standard office printer. That is, we assume that camera
is already calibrated and C is known.

• B denotes the parameters of the IMU. The IMU is already
factory calibrated, but some non-negligible time-varying sen-
sor offsets remain. Together with gravity, the sensor offsets
are nuisance parameters which need to be considered in the
calibration procedure.

In this paper we propose to use a weighted quadratic cost func-
tion V (p, C, B) and treat the problem within the standard gray-box
framework available from the system identification community [8].
This approach requires a prediction model. The key idea is to re-
alize that the camera motion and the image formation process can
be described using a nonlinear state-space model implying that an
Extended Kalman Filter (EKF) can be used as a predictor. The cost
function then consists of the sum of normalized squared innova-
tions over a batch of data. Minimizing the cost function V over
the parameters (p, B) yields the nonlinear least squares (NLS) esti-
mate. In case of Gaussian noise this estimate is also the maximum
likelihood (ML) estimate.

It is well known that gray-box identifications often require good
initial values to work, so initialization is an important issue. For the
problem at hand, orientation turns out to be critical. We make use
of a theorem by Horn [5] to align accelerometer readings with the
camera verticals and to find an initial orientation estimate.

The proposed calibration algorithm is fast and simple to use in
practice. Typically, waving the camera over a checkerboard for a
couple of seconds gives enough excitation and information for ac-
curately estimating the parameters. This is a significant improve-
ment over previous work on this problem, see e.g., [9], where addi-
tional hardware and manual effort is required.

2 PROBLEM FORMULATION

In this section we will give a more formal formulation of the prob-
lem we are trying to solve. The first thing to do is to introduce the
three coordinate frames that are needed,

• Earth (e): The camera pose is estimated with respect to this
coordinate system, which is fixed to the environment. The 3D
feature positions are assumed to be constant and known in this
frame. It can be aligned in any direction, however, preferably
it should be vertically aligned.

• Camera (c): This coordinate frame is attached to the mov-
ing camera. Its origin is located in the optical center of the
camera, with the z-axis pointing along the optical axis. The
camera acquires its images in the image plane (i), which is
perpendicular to the optical axis.
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• Body (b): This is the coordinate frame of the IMU and it is
rigidly connected to the c frame. All the inertial measure-
ments are made in this coordinate frame.

In Figure 2 the relationship between the coordinate frames is illus-
trated. The coordinate frames are used to denote geometric quanti-
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Figure 2: The sensor unit consists of an IMU (b frame) and a cam-
era (c frame). These frames are rigidly connected, denoted by a
solid line. The position of the sensor unit with respect to the earth
(e frame) changes over time as the unit is moved, denoted with a
dashed line.

ties of interest, for instance, be is the position of the body coordinate
frame expressed in the earth frame and qbe, ϕbe, Rbe are the unit
quaternion, rotation vector and rotation matrix, respectively, de-
scribing the rotation from the earth frame to the body frame. These
rotation parameterizations are interchangeable. The camera and the
IMU are rigidly connected, i.e., cb and ϕcb are constant.

The goal of this paper is to device an algorithm that is capable of
estimating the following parameters,

• The relative orientation of the body and the camera frames,
parameterized using a rotation vector ϕcb.

• The relative position of these frames cb, i.e., the position of
the camera frame expressed in the body frame.

We will use θ to denote all the parameters to be estimated, which
besides ϕcb and cb will contain several parameters that we are
not directly interested, so called nuisance parameters, for example
the sensor offsets of the gyroscopes and the accelerometers. Even
though we are not directly interested in these nuisance parameters,
they affect the estimated camera trajectory and they have to be taken
into account to obtain accurate estimates of ϕcb and cb.

In order to compute estimates we need information about the
system, provided by measurements. The measured data is denoted

Z = {u1, . . . , uM , y1, . . . , yN}, (1)

where ut denote the input signals and yt denote the measurements.
In the present work the data from the inertial sensors is modeled
as input signals and the information from the camera is modeled as
measurements. Note that the inertial sensors are typically sampled
at a higher frequency than the camera, motivating the use of M and
N in (1). In this work the inertial data is sampled at 100 Hz and
the camera has a frame rate of 25 Hz.

The problem of computing estimates of θ based on the informa-
tion in Z is a standard gray-box system identification problem, see
e.g., [3, 8]. The parameters are typically estimated using the predic-
tion error method, which has been extensively studied, see e.g., [8].
The idea used in the prediction error method is very simple, min-
imize the difference between the measurements and the predicted
measurements obtained from a model of the system at hand. This
prediction error is given by

εt(θ) = yt − ŷt|t−1(θ), (2)

where ŷt|t−1(θ) is used to denote the one-step ahead prediction
from the model. The parameters are now found by minimizing
a norm of the prediction errors. Here, the common choice of a
quadratic cost function is used,

VN (θ, Z) =
1
N

N∑

t=1

1
2
εT

t (θ)Λ−1
t εt(θ), (3)

where Λt is a symmetric positive definite matrix that is chosen ac-
cording to the relative importance of the corresponding component
εt(θ). Finally, the parameter estimates are given by

θ̂ = arg min
θ

VN (θ, Z). (4)

Using (3), the minimization is a nonlinear least-squares prob-
lem and standard methods, such as Gauss-Newton and Levenberg-
Marquardt, see e.g., [10], apply.

It is worth noting that if Λt is chosen as the covariance of the pre-
diction errors, the estimate (4) becomes the well known and statis-
tically well behaved maximum likelihood estimate. In other words,
the maximum likelihood method is a special case of the more gen-
eral prediction error method.

3 PREDICTION MODEL

In order to solve (4) a prediction model ŷt|t−1(θ) is required. The
key idea is to realize that the camera motion and the image forma-
tion can be modeled as a discrete-time state-space model.

The task of the motion model is to describe the motion of the
sensor unit based on the inputs ut. Following the derivation of [4],
we have

be
t+1 = be

t + T ḃe
t +

T 2

2
b̈e
t , (5a)

ḃe
t+1 = ḃe

t + T b̈e
t , (5b)

qbe
t+1 = e−

T
2 ωb

eb,t " qbe
t , (5c)

where be and ḃe denote the position and velocity of the b frame
resolved in the e frame, qbe is a unit quaternion describing the ori-
entation of the b frame relative to the e frame and T denotes the
sampling interval. Furthermore, " is the quaternion multiplication
and the quaternion exponential is defined as a power series, similar
to the matrix exponential,

e(0,v) !
∞∑

n=0

(0, v)n

n!
=

(
cos ‖v‖, v

‖v‖ sin ‖v‖
)

. (6)

The acceleration b̈e
t and angular velocity ωb

eb,t are modeled using
the accelerometers signal ua and the gyroscope signal uω

b̈e
t = Reb

t ua,t + ge −Reb
t δb

a −Reb
t eb

a,t, (7a)

ωb
eb,t = uω,t − δb

ω − eb
ω,t. (7b)

Here, eb
a and eb

ω are i.i.d. Gaussian noises, δb
a and δb

ω are bias terms
and ge denotes the gravity vector. The bias terms are in fact slowly
time-varying. However, for the purpose of this work it is sufficient
to model them as constants, since short data sequences are used.
Typically, a few seconds of data is sufficient for calibration.

The camera measurements consist of the k = 1, . . . , ny corre-
spondences pi

t,k ↔ pe
t,k between a 2D image feature pi

t,k and the
corresponding 3D position in the real world pe

t,k. In general, find-
ing these correspondences is a difficult problem. However, for the
special case of the checkerboard patterns used in camera calibration
it is relatively easy to obtain the correspondences and off-the-shelf
software is available, e.g., [11].
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For a spherical camera, the relation between the normalized im-
age point pi

n = (u, v)T and the scene point pc = (X, Y, Z) is
given, see [11], by

λ




u
v

f(ρ)



 =




X
Y
Z



 , f(ρ) !
n∑

i=0

αiρ
i, ρ !

√
u2 + v2,

(8)

for some scale factor λ > 0. Solving for pi
n results in

(
u
v

)
= P(pc) =

β
r

(
X
Y

)
, r !

√
X2 + Y 2, (9a)

where β is the positive real root of the equation

n∑

i=0

αiβ
i − Z

r
β = 0. (9b)

The complete measurement model is now obtained as

pi
t,k = AP

(
Rcb(Rbe(pe

t,k − be
t )− cb)

)
+ oi + ei

t,k. (10)

Here pe
t,k is a position in 3D space with pi

t,k its coordinates in the
camera image, Rcb is the rotation matrix which gives the orientation
of the c frame w.r.t. the b frame, cb is the position of the c frame
w.r.t the b frame, and ei

c,t,k is zero mean i.i.d. Gaussian noise.
Furthermore, P is the projection of (9a), A is a scaling matrix and
oi is the image center.

Equations (5) and (10) form a discrete-time nonlinear state-space
model parameterized by

θ =
(
(ϕcb)T (cb)T (δb

ω)T (δb
a)T (ge)T

)T (11)

Hence, for a given θ it is straightforward to make use of the EKF [6]
to compute the one-step ahead predictor ŷt|t−1(θ) and its covari-
ance St. The EKF is run at the high data rate of the IMU and vision
updates are only performed when an image is taken. By choosing
the weights in (3) as Λt = St the predictor is fully specified.

4 ALGORITHMS

All parts that are needed to assemble the calibration algorithm are
now in place, resulting in Algorithm 1. This is a flexible algo-
rithm for estimating the relative pose of the IMU and the spheri-
cal camera. It does not require any additional hardware, except for
a standard camera calibration pattern that can be produced with a
standard printer. Besides relative position and orientation, nuisance
parameters like sensor biases and gravity are also determined. The
motion of the sensor unit can be arbitrary, provided it contains suf-
ficient rotational excitation. A convenient setup for the data capture
is to mount the sensor unit on a tripod and pan, tilt and roll it. How-
ever, hand-held sequences can be used equally well.

An initial estimate for the relative orientation can be obtained
simply by performing a standard camera calibration. Placing the
calibration pattern on a horizontal, level surface, a vertical refer-
ence can be obtained from the extrinsic parameters. Furthermore,
when holding the sensor unit still, the accelerometers measure only
gravity. From these two ingredients an initial orientation can be
obtained using Theorem 1, originally by [5].

Theorem 1 (Relative Orientation) Suppose {va
t }N

t=1 and
{vb

t}N
t=1 are measurements satisfying va

t = qab " vb
t " qba. Then

the sum of the squared residuals,

V (qab) =
N∑

t=1

‖et‖2 =
N∑

t=1

‖va
t − qab " vb

t " qba‖2, (12)

Algorithm 1 Relative Pose Calibration

1. Place a camera calibration pattern on a horizontal, level sur-
face, e.g., a desk or the floor.

2. Acquire inertial measurements {ua,t}M
t=1, {uω,t}M

t=1 as well
as images {It}N

t=1.

• Rotate around all 3 axes, with sufficiently exiting angu-
lar velocities.

• Always keep the calibration pattern in view.

3. Obtain the point correspondences between the 2D feature lo-
cations pi

t,k and the corresponding 3D grid coordinates pe
t,k

of the calibration pattern for all images {It}N
t=1.

4. Solve the gray-box identification problem (4), starting the
optimization from θ0 = ((ϕ̂cb

0 )T , 0, 0, 0, (ge
0)

T )T . Here,
ge
0 = (0, 0,−g)T since the calibration pattern is placed hori-

zontally and ϕ̂cb
0 can be obtained using Algorithm 2.

is minimized by q̂ab = x1, where x1 is the eigenvector correspond-
ing to the largest eigenvalue λ1 of the system Ax = λx with

A = −
N∑

t=1

(va
t )L(vb

t )R. (13)

Here, the quaternion operators · L, ·R are defined as

qL !





q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0



 (14a)

qR !





q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0



 (14b)

This theorem is used in Algorithm 2 to obtain an initial orienta-
tion estimate. Note that ge =

(
0 0 −g

)T , since the calibration
pattern is placed horizontally.

Algorithm 2 Initial Orientation

1. Place a camera calibration pattern on a horizontal, level sur-
face, e.g., a desk or the floor.

2. Acquire images {It}N
t=1 of the pattern while holding the sen-

sor unit static in various poses, simultaneously acquiring ac-
celerometer readings {ua,t}N

t=1.

3. Perform a camera calibration using the images {It}N
t=1 to ob-

tain the orientations {qce
t }N

t=1.

4. Compute an estimate q̂cb from the vectors gc
t = Rce

t ge and
gb

t = −ua,t using Theorem 1.

5 EXPERIMENTS

Algorithm 1 has been used to calibrate the sensor unit introduced
in Section 1. This algorithm computes estimates of the relative po-
sition and orientation of the IMU and the camera, i.e., cb and ϕcb,
based on the motion of the sensor unit. The setup employed is
identical to that of a typical camera calibration setup. A number
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Figure 3: A trajectory of the sensor unit used for calibration. It
contains both estimation data (t < 6.8 s) and validation data (t ≥
6.8 s), as indicated by the dashed line.

of experiments have been performed. During such an experiment
the sensor unit has been rotated around its three axis, see Figure 3
for an illustration. The data is split into two parts, one estimation
part and one validation part, see Figure 3. This facilitates cross-
validation, where the parameters are estimated using the estimation
data and the quality of the estimates can then be assessed using the
validation data [8].

In Table 1 the estimates produced by Algorithm 1 are given to-
gether with confidence intervals (99%). Reference values are also
given, these are taken as the result of Algorithm 2 on a separate data
set (orientation) and from the technical drawing (position). Note
that the drawing defines the position of the CCD, not the optical
center. Hence, no height reference is available and some shifts can
occur in the tangential directions. Table 1 indicates that the es-
timates are indeed rather good, but that their accuracy is a little
underestimated.

Table 1: Estimates from Algorithm 1 together with 99% confidence
intervals and reference values.

Orientation ϕ̂cb
x (◦) ϕ̂cb

y (◦) ϕ̂cb
z (◦)

Trial 1 -0.16 [-0.30, -0.03] 0.50 [ 0.39, 0.61] -0.30 [-0.51, -0.09]
Trial 2 -0.89 [-1.00, -0.77] 0.01 [-0.07, 0.09] -0.90 [-1.04, -0.77]
Referencea -0.55 0.01 -0.63

Position ĉb
x (mm) ĉb

y (mm) ĉb
z (mm)

Trial 1 -16.0 [-16.3, -15.7] -4.7 [ -5.0, -4.4] 38.2 [ 37.8, 38.6]
Trial 2 -18.1 [-18.3, -17.9] -6.2 [ -6.3, -6.1] 37.6 [ 37.3, 37.9]
Referenceb -14.5 -6.5 -
a using Algorithm 2 on a large data set.
b using the CCD position of the technical drawing.

In order to further validate the estimates the normalized inno-
vations are studied. Histograms of the normalized innovations are
given in Figure 4. This figure is generated using the validation data.
In Figure 4b the effect of using the wrong relative translation and
orientation and sensor biases is shown. From Figure 4a it is clear
that the normalized innovations are close to white noise, but have
heavy tails. This implies that the model with the estimated param-
eters and its assumptions appears to be reasonable, which in turn
is a good indication that reliable estimates ϕ̂cb, ĉb have been ob-
tained. The reliability and repeatability of the estimates has also
been confirmed by additional experiments.

6 CONCLUSION

The experiments indicate that the proposed algorithm is an easy-to-
use calibration method to determine the relative position and orien-
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Figure 4: Histogram of the normalized innovations, for validation
data. Both the empirical distribution (gray bar) as well as the theo-
retical distribution (black line) are shown.

tation of an IMU and a spherical camera, that are rigidly connected.
This solves an important issue preventing successful integration of
vision and inertial sensors in AR applications. Even small displace-
ments and misalignments can be accurately calibrated from short
measurement sequences made using the standard camera calibra-
tion setup.
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