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Abstract—Vision-aided inertial navigation systems (V-INSs) can
provide precise state estimates for the 3-D motion of a vehicle when
no external references (e.g., GPS) are available. This is achieved by
combining inertial measurements from an inertial measurement
unit (IMU) with visual observations from a camera under the as-
sumption that the rigid transformation between the two sensors
is known. Errors in the IMU-camera extrinsic calibration process
cause biases that reduce the estimation accuracy and can even lead
to divergence of any estimator processing the measurements from
both sensors. In this paper, we present an extended Kalman filter
for precisely determining the unknown transformation between a
camera and an IMU. Contrary to previous approaches, we explic-
itly account for the time correlation of the IMU measurements and
provide a figure of merit (covariance) for the estimated transforma-
tion. The proposed method does not require any special hardware
(such as spin table or 3-D laser scanner) except a calibration target.
Furthermore, we employ the observability rank criterion based on
Lie derivatives and prove that the nonlinear system describing the
IMU-camera calibration process is observable. Simulation and ex-
perimental results are presented that validate the proposed method
and quantify its accuracy.

Index Terms—Extended Kalman filter, inertial measurement
unit (IMU)-camera calibration, Lie derivatives, observability of
nonlinear systems, vision-aided inertial navigation.

I. INTRODUCTION

IN RECENT years, inertial navigation systems (INSs) have
been widely used for estimating the motion of vehicles mov-

ing in a 3-D space such as airplanes, helicopters, automobiles,
etc. [2]. At the core of most INS lies an inertial measurement
unit (IMU) that measures linear accelerations and rotational ve-
locities. By integrating these signals in real time, an INS is
capable of tracking the position, velocity, and attitude of a vehi-
cle. This deadreckoning process, however, cannot be used over
extended periods of time because the errors in the computed esti-
mates continuously increase. This is due to the noise and biases
present in the inertial measurements. For this reason, current
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INSs rely on GPS in order to receive periodic corrections. In
most cases, a Kalman filter estimator is used for optimally com-
bining the IMU and GPS measurements [3]. One of the main
limitations of the GPS-aided INS configuration is that it cannot
be used when the GPS signals are not available (e.g., indoors,
underground, underwater, in space, etc.), or their reliability is
limited (e.g., in the vicinity of tall buildings and structures due
to specular reflections and multipath error). Furthermore, high-
precision GPS receivers are prohibitively expensive, and often,
the acquired level of accuracy is not sufficient for certain appli-
cations (e.g., parallel parking a car within a tight space).

An alternative approach to provide corrections to an INS is
via the use of visual sensors such as cameras. Cameras are small-
size, light-weight, passive sensors that provide rich information
for the surroundings of a vehicle at low cost. When observing
a known scene, both the position and attitude of the camera
can be computed [4]. Furthermore, by tracking visual features
through sequences of images, the motion of the camera can be
estimated [5], [6]. Cameras and IMUs are complementary in
terms of accuracy and frequency response. An IMU is ideal for
tracking the state of a vehicle over short periods of time when
it undergoes motions with high dynamic profile. On the other
hand, a camera is best suited for state estimation over longer
periods of time and smoother motion profiles. Combining these
two sensors to form a vision-aided INS (V-INS) has recently
become a popular topic of research [7].

In order to fuse measurements from an IMU and a camera in
a V-INS, the 6-DOF transformation between these two devices
must be known precisely (cf. Fig. 1). Inaccuracies in the val-
ues of the IMU-camera relative pose (position and attitude) will
appear as biases that will reduce the accuracy of the estimation
process or even cause the estimator to diverge. In most cases,
in practice, this unknown transformation is computed manu-
ally (e.g., from computer-aided design (CAD) plots) or through
the use of additional sensors. For example, for the Mars Ex-
ploration Rover (MER) mission [8], a high precision 3-D laser
scanner was employed to measure the location of the four cor-
ners of the IMU housing with respect to a checkerboard placed
in front of the camera for calibration purposes. Although this
method achieved subdegree relative attitude accuracy and less
than 1 cm relative position error [9], it is prohibitive for many
applications due to the high cost of the equipment (3-D laser
scanner) involved. Additionally, every time one of the two sen-
sors is removed (e.g., for service) and repositioned, the same
process needs to be repeated, which requires significant time
and effort. Automating this procedure will reduce the cost of
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Fig. 1. Geometric relation between the known landmarks fi and the camera
{C}, IMU {I}, and global {G} frames of reference. The unknown IMU-camera
transformation is denoted by the position and quaternion pair (I pC , I q̄C ). This
transformation is determined using estimates of the IMU motion, (G pI , I q̄G ),
the projections of the landmarks’ positions, C pfi

, on the camera frame (image
observations), and the known positions of the landmarks, G pfi

, expressed in
the global frame of reference.

deploying a V-INS, increase the accuracy of the computed state
estimates during regular operation, and minimize the probability
of failure due to bias-induced divergence.

In this paper, we present an extended Kalman filter (EKF)-
based algorithm for determining the 6-DOF transformation be-
tween a single camera and an IMU using measurements only
from these two sensors [1]. Contrary to existing approaches
[10], [11] that rely on modified hand–eye calibration processes
(e.g., [12]–[14]), our method takes into account the time corre-
lation of the IMU measurements by explicitly modeling them
using an augmented-state EKF [15], [16]. Additionally, our al-
gorithm computes the uncertainty in the estimated quantities, or
equivalently, the covariance. Furthermore, we do not separate
the task of translation estimation from rotation estimation that
prevents potential error propagation. Moreover, unlike existing
approaches, the described method does not require any special
testbed except a calibration pattern that is also needed for es-
timating the intrinsic parameters of the camera. Therefore, it
offers the inherent capability of recalibrating the IMU-camera
system as frequently as needed. Finally, a comprehensive ob-
servability analysis based on Lie derivatives [17], [18] is per-
formed to ensure that the sensor measurements provide suf-
ficient information for accurately estimating the IMU-camera
transformation.

The rest of this paper is structured as follows. Section II
provides an overview of the related literature. Section III
presents the proposed EKF-based algorithm, and Section IV
investigates the observability of the nonlinear system describ-
ing the IMU-camera calibration process. Simulation and ex-
perimental results are provided in Section V, and finally,
Section VI concludes the paper and suggests future research
directions.

II. RELATED WORK

A well-known related process is the hand–eye calibration
[12], whose objective is to estimate the 6-DOF transformation

between a camera and a robot manipulator. Recently, there have
been some attempts to modify existing hand–eye calibration al-
gorithms to determine the IMU-camera alignment [10], [11].
Specifically, the rotation part of the hand–eye equation is solved
in [11] using nonlinear optimization software under the assump-
tion that the translation between the IMU and the camera is neg-
ligible. However, in most realistic situations, this assumption
is not valid, and ignoring the translation introduces biases in
estimation algorithms using these alignment parameters.

A different approach to this problem is proposed by Lobo
and Dias [10], [19]. First, they obtain the vertical direction of
the IMU and the camera frames by measuring the direction of
gravity while viewing a vertically installed calibration pattern.
Then, using Horn’s method [20], they estimate the rotation be-
tween the IMU and the camera. Finally, they use a spin table
to rotate the system about the IMU’s center and zero out the
linear acceleration of the IMU due to rotation. This process al-
lows one to compute the translation between the camera and
the IMU based only on the camera measurements. The main
drawback of this approach is that it ignores the time correlation
between the inertial measurements due to the IMU biases. Ad-
ditionally, it does not provide any figure of merit of the achieved
level of accuracy (e.g., covariance of the estimated quantities).
Furthermore, this two-stage process decouples the computation
of rotation and translation, and hence, allows error propagation
from the rotation estimates to the translation estimates. Finally,
this method requires fine adjustment of the IMU-camera system
on a spin table that limits its applicability when recalibration is
frequently needed.

The IMU-camera and hand–eye calibration problems require
separate treatments due to the different noise characteristics
of the IMU and shaft-encoder signals. Specifically, while the
shaft-encoder measurements at different time instants are un-
correlated, consecutive IMU measurements are not. This is due
to the IMU biases. Ignoring the time correlation of the inertial
measurements limits the accuracy of the IMU-camera calibra-
tion process and can lead to inconsistent estimates.

To the best of our knowledge, the presented EKF-based al-
gorithm is the first approach to the IMU-camera calibration
problem that does not ignore the correlations between the IMU
measurements and requires no specialized hardware. Further-
more, the uncertainty in the estimated alignment parameters is
provided at every time step by computing their covariance. Fi-
nally, it is shown that it suffices to rotate the camera in place in
order for these parameters to become observable.

III. DESCRIPTION OF THE ALGORITHM

The IMU-camera calibration is achieved through a two-step
process. First, camera images are processed in a batch algo-
rithm to compute an initial estimate for the camera pose. Addi-
tionally, the approximate value of the unknown transformation
(e.g., hand-measured or from CAD plots) is combined with the
camera-pose estimate to compute an initial estimate for the IMU
pose (Section III-A). In the next step, both these estimates are
used to initialize the corresponding variables in the EKF estima-
tor. By sequentially processing additional measurements from
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the camera and the IMU, the EKF is able to refine the initial
estimate for the unknown transformation while simultaneously
tracking the position, velocity, and attitude of the two sensors
(Section III-B–III-E).

A. Filter Initialization

The purpose of this process is to determine the initial estimate
for the IMU pose (GpI , I q̄G ), where GpI denotes the position
of the IMU with respect to the global frame of reference and
I q̄G is the rotation quaternion between the IMU and the global
frames.

We first compute an estimate for the camera pose (GpC , C q̄G )
using visual features (corners of the squares in the calibration
pattern) whose positions, Gpfi , are known in global coordinates.
Specifically, the initial estimates of the depth to these features are
computed using Ansar’s method [4], while the initial estimate
for the camera pose is determined by employing Horn’s method
[20]. Finally, a least-squares algorithm refines the camera-pose
estimate and additionally computes its covariance [21].

In the next step of the initialization process, we use an ap-
proximate estimate for the unknown IMU-camera transforma-
tion (IpC , I q̄C ). This was determined manually in our case but
it can also be found using the CAD plots showing the IMU-
camera placement. We should note that the requirement for an
approximate estimate for the initial IMU-camera transformation
is not limiting since it can also be determined by employing any
hand–eye calibration algorithm. An initial estimate for the IMU
pose is then computed from the following relations (cf. Fig. 1):

GpI = GpC − CT (C q̄G )CT (I q̄C )IpC

I q̄G = I q̄C ⊗ C q̄G (1)

where C(q̄) is the rotational matrix corresponding to quater-
nion q̄ and ⊗ denotes quaternion multiplication. Finally, af-
ter computing the corresponding Jacobians [by linearizing (1)]
and considering the uncertainty (covariance) in the estimates of
(IpC , I q̄C ) and (GpC , C q̄G ), the covariance of the initial IMU
pose estimate is readily found.

B. Filter Propagation

The EKF estimates the IMU pose and linear velocity as well as
the unknown transformation (rotation and translation) between
the camera and the IMU. Additionally, the filter estimates the
biases in the IMU signals.

1) Continuous-Time System Model: We first derive the lin-
earized continuous-time system model that describes the time
evolution of the errors in the state estimates. Discretization of
this model will allow us to employ the sampled measurements
of the IMU for state propagation. The filter state is described by
the vector

x =
[
I q̄T

G bT
g

GvT
I bT

a
GpT

I
I q̄T

C
IpT

C

]T
(2)

where I q̄G (t) and I q̄C (t) are the quaternions that represent the
orientation of the global frame and the camera frame in the IMU
frame, respectively. The position and velocity of the IMU in the
global frame are denoted by GpI (t) and GvI (t), respectively.

IpC (t) is the position of the camera in the IMU frame, and
bg and ba are the 3 × 1 bias vectors affecting the gyroscope
and accelerometer measurements, respectively. These biases are
typically present in the signals of inertial sensors, and need
to be modeled and estimated, in order to attain accurate state
estimates. In our study, the IMU biases are modeled as random
walk processes driven by the zero-mean white Gaussian noise
vectors nwg and nwa , respectively.

The system model describing the time evolution of the IMU
state and of the IMU-camera transformation is given by the
following equations [22], [23]:

I ˙̄qG (t) =
1
2
Ω(ω(t))I q̄G (t) (3)

G ṗI (t) = GvI (t) G v̇I (t) = Ga(t) (4)

ḃg (t) = nwg (t) ḃa(t) = nwa(t) (5)
I ˙̄qC (t) = 03×1

I ṗC (t) = 03×1 . (6)

In these expressions, ω(t) = [ωx ωy ωz ]T is the rotational ve-
locity of the IMU, expressed in the IMU frame, and

Ω(ω) =
[
−$ω×% ω
−ωT 0

]
$ω×% =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0





Finally, Ga is the acceleration of the IMU, expressed in the
global frame.

The gyroscope and accelerometer measurements ωm and am ,
respectively, which are employed for state propagation, are mod-
eled as

ωm (t) = ω(t) + bg (t) + ng (t) (7)

am (t) = C(I q̄G (t))(Ga(t) − Gg) + ba(t) + na(t) (8)

where ng and na are zero-mean white Gaussian noise processes
and Gg is the gravitational acceleration.

By applying the expectation operator on both sides of (3)–(6),
we obtain the state estimates’ propagation equations:

I ˙̄̂qG (t) =
1
2
Ω(ω̂(t))I ˆ̄qG (t) (9)

G ˙̂pI (t) = G v̂I (t) G ˙̂vI (t) = CT (I ˆ̄qG (t))â(t) + Gg (10)

˙̂bg (t) = 03×1
˙̂ba(t) = 03×1 (11)

I ˙̄̂qC (t) = 03×1
I ˙̂pC (t) = 03×1 (12)

with

â(t) = am (t) − b̂a(t) and ω̂(t) = ωm (t) − b̂g (t). (13)

The 21×1 filter error-state vector is defined as

x̃=
[

I δθT
G b̃T

g
G ṽT

I b̃T
a

G p̃T
I

I δθT
C

I p̃T
C

]T (14)

For the IMU and camera positions, and the IMU velocity and
biases, the standard additive error definition is used (i.e., the
error in the estimate x̂ of a quantity x is x̃ = x − x̂). However,
for the quaternions, a different error definition is employed. In
particular, if ˆ̄q is is the estimated value of the quaternion q̄, then
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the attitude error is described by the error quaternion:

δq̄ = q̄ ⊗ ˆ̄q−1 & [ 1
2 δθT 1 ]T . (15)

Intuitively, the quaternion δq̄ describes the (small) rotation that
causes the true and estimated attitude to coincide. The main
advantage of this error definition is that it allows us to rep-
resent the attitude uncertainty by the 3 × 3 covariance matrix
E{δθδθT }. Since the attitude corresponds to 3 DOF, this is a
minimal representation.

The linearized continuous-time error-state equation is

˙̃x = Fc x̃ + Gcn (16)

where

Fc=





−$ω̂×% −I3 03×3 03×3 03×9
03×3 03×3 03×3 03×3 03×9

−CT (I ˆ̄qG )$â×% 03×3 03×3 −CT (I ˆ̄qG ) 03×9
03×3 03×3 03×3 03×3 03×9
03×3 03×3 I3 03×3 03×9
06×3 06×3 06×3 06×3 06×9





Gc=





−I3 03×3 03×3 03×3
03×3 I3 03×3 03×3

03×3 03×3 −CT (I ˆ̄qG ) 03×3
03×3 03×3 03×3 I3
03×3 I3 03×3 03×3
06×3 06×3 06×3 06×3




n =





ng

nwg

na

nwa





and I3 is the 3 × 3 identity matrix. The covariance Qc of the
system noise depends on the IMU noise characteristics and is
computed offline according to [24] and [25].

2) Discrete-Time Implementation: The IMU signals ωm and
am are sampled at 100 Hz (i.e., T = 0.01 s). Every time a new
IMU measurement is received, the state estimate is propagated
using the fourth-order Runge–Kutta numerical integration of
(9)–(12). In order to derive the covariance propagation equation,
we evaluate the discrete-time state transition matrix

Φk = Φ(tk + T, tk ) = exp
(∫ tk +T

tk

Fc(τ)dτ
)

(17)

and the discrete-time system noise covariance matrix

Qd =
∫ tk +T

tk

Φ(tk+1 , τ)GcQcGT
c ΦT (tk+1 , τ)dτ. (18)

The propagated covariance is then computed as

Pk+1|k = ΦkPk |kΦT
k + Qd .

C. Measurement Model

The IMU camera moves continuously and records images of
a calibration pattern. These are then processed to detect and
identify point features whose positions Gpfi are known with
respect to the global frame of reference (centered and aligned
with the checker-board pattern of the calibration target). Once
this process is completed for each image, a list of point features
along with their measured image coordinates (ui, vi) is provided
to the EKF, which uses them to update the state estimates.

The projective camera measurement model employed is

zi =
[

ui

vi

]
+ ηi =

[
xi/zi

yi/zi

]
+ ηi = hi(x, Gpfi

) + ηi (19)

where (cf. Fig. 1)

C pfi =




xi

yi

zi



=C(C q̄I )C(I q̄G )
(
Gpfi −GpI

)
− C(C q̄I )IpC

and ηi is the feature-measurement noise with covariance Ri =
σ2

i I2 .
The measurement Jacobian matrix Hi is

Hi = Ji
cam [Ji

θG
03×9 Ji

pI
Ji
θC

Ji
pc

] (20)

with

Ji
cam =

1
ẑ2
i

[
ẑi 0 −x̂i

0 ẑi −ŷi

]
(21)

Ji
θG

= C(C ˆ̄qI )$C(I ˆ̄qG )(Gpfi − G p̂I )×%

Ji
θC

= −C(C ˆ̄qI )$C(I ˆ̄qG )(Gpfi − G p̂I ) − I p̂C ×%

Ji
pI

= −C(C ˆ̄qI )C(I ˆ̄qG ) Ji
pc

= −C(C ˆ̄qI )



x̂i

ŷi

ẑi



 = C(C ˆ̄qI )C(I ˆ̄qG )
(
Gpfi − G p̂I

)
− C(C ˆ̄qI )

I p̂C .

When observations to N features are available concur-
rently, we stack these in one measurement vector z =
[zT

1 · · · zT
N ]T to form a single batch-form update equation.

Similarly, the batch measurement Jacobian matrix is defined
as H =

[
HT

1 · · ·HT
N

]T . Finally, the measurement residual is
computed as

r '= z − ẑ & Hx̃ + η (22)

where η = [ηT
1 · · ·ηT

N ]T is the measurement noise with covari-
ance R = Diag(Ri), i = 1, . . . , N .

D. Iterated EKF Update

In order to increase the accuracy and numerical stability in the
face of the highly nonlinear measurement model, we employ the
iterated EKF [26], [27] to update the state. The iterative scheme
proceeds as follows.

At each iteration step j, the following steps are done.
1) Compute ẑj = E{z} as a function of the current jth iterate

x̂j
k+1|k+1 using the measurement function (19).

2) Evaluate the measurement Jacobian matrix Hj [cf. (20)]
using the current iterate x̂j

k+1|k+1 .
3) Form the residual rj = z − ẑj , and compute its covariance

Sj = HjPk+1|kHjT + R.

4) Using the Kalman gain Kj = Pk+1|kHj T (Sj )−1 , com-
pute the correction

∆xj = Kj (rj + Hj∆xj−1) (23)

with ∆x0 = 021×1 , necessary for determining the next
iterate of the updated state estimate x̂j+1

k+1|k+1 .
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The iteration begins using the propagated state estimate
x̂0

k+1|k+1 = x̂k+1|k as the zeroth iterate, which makes the first
iteration equivalent to a regular EKF update. This process is
repeated till the reduction in the cost function

Jj = x̃jT

P−1
k+1|k x̃

j + rjT

R−1rj (24)

with x̃j '= x̂k+1|k − x̂j
k+1|k+1 falls below the threshold τ =

max(0.01, 0.001 × Jj−1), or when a maximum number of it-
erations is reached [28]. Finally, the covariance matrix for the
current state is updated using the values for K and S from the
last iteration:

Pk+1|k+1 = Pk+1|k − KSKT . (25)

E. Outlier Rejection

Before using the detected features in the measurement up-
date, we employ a Mahalanobis-distance test to detect and re-
ject mismatches or very noisy observations. Every time a new
measurement becomes available, we compute the following Ma-
halanobis distance:

χ2 = (zik − ẑik )T S−1
i (zik − ẑik ) . (26)

In this equation, zik is the measurement of the ith land-
mark at time step k, ẑik is the expected measurement of
the same landmark based on the latest state estimate, and
Si = HiPk+1|kHi + Ri is the covariance of the corresponding
measurement residual. A probabilistic threshold on χ2 is used
to specify whether the measurement is reliable or not. Measure-
ments that pass this test are processed by the iterative update
procedure as described before.

IV. OBSERVABILITY ANALYSIS

A system is observable if its state at a certain time instant
can be uniquely determined given a finite sequence of its out-
puts [29]. Intuitively, this means that the measurements of an
observable system provide sufficient information for estimating
its state. In contrast, the state vector of unobservable systems
cannot be recovered regardless of the duration of the estimation
process. In dynamic systems that contain a number of constant
but unknown quantities in their state vector (e.g., the IMU-
camera 6-DOF transformation in our case), system observabil-
ity results in an additional interesting property: given sufficient
number of measurements, the unknown constants can be esti-
mated with arbitrarily small uncertainty [30]. For this reason, it
is important to study the observability of the system describing
the IMU-camera calibration process.

The observability of linear time-invariant systems can be
investigated by employing any of the well-known observabil-
ity tests such as the rank of the Gramian matrix [15] or the
Popov–Belevitch–Hautus (PBH) test [31]. However, due to the
time-invariance requirement, the PBH test cannot be applied to
(linearized) nonlinear systems since these are usually time vary-
ing (i.e., the current state used as the linearization point changes
dynamically). On the other hand, application of the Gramian
matrix criterion, which does not assume time invariance, to lin-

earized systems in 2-D [32] often becomes intractable when
extended to 3-D.

An alternative tool for studying the observability properties
of nonlinear systems is the observability rank condition based
on Lie derivatives [17]. Bonnifait and Garcia [33] were the first
to employ this method for examining the observability of map-
based bearing-only single-robot localization in 2-D. Later on,
Martinelli and Siegwart [34] used Lie derivatives to analyze
the observability of cooperative localization for pairs of mo-
bile robots navigating in 2-D. In a related problem, Mariottini
et al. [35] investigated the observability of 2-D leader-follower
formations based on Lie derivatives and the observability rank
condition. Recently, Lie derivatives were also used for exam-
ining the observability of the single-robot simultaneous local-
ization and mapping (SLAM) in 2-D [36], and the camera-
odometry extrinsic calibration process in 2-D [37]. However, to
the best of our knowledge, there exists no similar analysis for
sensors or robots navigating in 3-D. Furthermore, the observ-
ability of 3-D systems with additional unknown parameters,
such as the 6-DOF IMU-camera transformation, has never been
considered.

In this paper for the first time, we study the observability
of the nonlinear system describing the IMU-camera calibration
process. Specifically, after a brief review of the Lie deriva-
tives and the observability rank condition (Section IV-A), in
Section IV-B, we prove that the IMU-camera calibration system
is locally weakly observable when at least two rotations about
different axes are performed.

A. Nonlinear Observability

Consider the state-space representation of the following in-
finitely smooth nonlinear system:

{
ẋ = f(x,u)
y = h(x) (27)

where x ∈ Rn is the state vector, u = [u1 , . . . , ul ]T ∈ Rl is the
vector of control inputs, and y = [y1 , . . . , ym ]T ∈ Rm is the
measurement vector, with yk = hk (x), k = 1, . . . ,m.

If the process function, f , is input-linear [38], it can be sep-
arated into a summation of independent functions, each one
corresponding to a different component of the control input
vector. In this case, (27) can be written as

{
ẋ = f0(x) + f1(x)u1 + · · · + fl(x)ul

y = h(x) (28)

where f0 is the zero-input function of the process model.
The zeroth-order Lie derivative of any (scalar) function is

the function itself, i.e., L0hk (x) = hk (x). The first-order Lie
derivative of function hk (x) with respect to fi is defined as

L1
fi
hk (x) =

∂hk (x)
∂x1

fi1(x) + · · · + ∂hk (x)
∂xn

fin (x)

= ∇hk (x) · fi(x) (29)

where fi(x) = [fi1(x), . . . , fin (x)]T , ∇ represents the gradient
operator, and ‘·’ denotes the vector inner product. Considering
that L1

fi
hk (x) is a scalar function itself, the second-order Lie
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derivative of hk (x) with respect to fi is

L2
fi
hk (x) = L1

fi

(
L1

fi
hk (x)

)
= ∇L1

fi
hk (x) · fi(x). (30)

Higher order Lie derivatives are computed similarly. Addition-
ally, it is possible to define mixed Lie derivatives, i.e., with
respect to different functions of the process model. For exam-
ple, the second-order Lie derivative of hk with respect to fj and
fi , given its first derivative with respect to fi , is

L2
fj fi

hk (x) = L1
fj

(
L1

fi
hk (x)

)
= ∇L1

fi
hk (x) · fj (x). (31)

Based on the preceding expressions for the Lie derivatives,
the observability matrix is defined as the matrix with rows:

O'={∇L(
fi ···fj

hk (x)|i, j = 0, . . . , l; k = 1, . . . , m; ( ∈ IN}.
(32)

The important role of this matrix in the observability analysis
of a nonlinear system is captured by the following proposition
[17].

Proposition 1 (Observability rank condition): If the observ-
ability matrix [cf. (32)] of the nonlinear system defined in (27)
is full rank, then the system is locally weakly observable.

Remark 1: Since the process and measurement functions
[cf. (27)] are infinitely smooth, the observability matrix O can
have infinite number of rows. However, to prove that O is full
rank, it suffices to show that a subset of its rows are linearly
independent.

In general, there exists no systematic method for selecting
the suitable Lie derivatives and corresponding rows of O when
examining the observability of a system. Instead, this selection
is performed by sequentially considering the directions of the
state space along which the gradient of each of the candidate
Lie derivatives provides information.

B. Observability of IMU-Camera Calibration

In this section, we compute the observability matrix of the sys-
tem describing the IMU-camera calibration process and prove
that it is full rank.

First and in order to simplify the notation, we retain only few
of the subscripts describing the variables in the system state
vector [cf. (2)]:

x(t) = [ q̄T
I bT

g vT bT
a pT

I q̄T
C pT

C ]T . (33)

Then, we rearrange the nonlinear kinematic equations (3)–(6)
in a suitable format for computing the Lie derivatives:





˙̄qI

ḃg

v̇
ḃa

ṗI

˙̄qC

ṗC





=





− 1
2Ξ(q̄I )bg

03×1
g−CT (q̄I )ba

03×1
v

03×1
03×1





︸ ︷︷ ︸
f0

+





1
2Ξ(q̄I )
03×3
03×3
03×3
03×3
03×3
03×3





︸ ︷︷ ︸
f 1

ωm +





03×3
03×3

CT (q̄I )
03×3
03×3
03×3
03×3





︸ ︷︷ ︸
f 2

am

(34)

where ωm and am are considered the control inputs, and

Ξ(q̄) =
[

q4I3×3 + $q×%
−qT

]
with q̄ =

[
q
q4

]
. (35)

Also, note that f0 is a 23 × 1 vector, while f 1 and f 2 are both
compact representations of three vectors of dimension 23×1,
i.e.,

f 1ωm = f11ωm1 + f12ωm2 + f13ωm3

where, for i = 1, . . . , 3, f1i denotes the ith column vector com-
prising f 1 and ωmi is the ith scalar component of the rotational
velocity vector.

A well-known result that we will use in the observability
analysis of (34) is the following: When four or more1 known
features are detected in each calibration image processed by the
filter, the camera pose is observable [39] and can be computed in
closed-form [4]. Based on this fact, we replace the measurement
equation [cf. (19)] with the following pair of inferred measure-
ments of the camera pose expressed with respect to the global
frame of reference:

G q̄C = ξ1(z1 , z2 , z3 , z4) = h∗
1(x) = Jq̄I ⊗ q̄C (36)

GpC = ξ2(z1 , z2 , z3 , z4) = h∗
2(x) = pI + CT (q̄I )pC (37)

whereC(q̄I ) is the rotational matrix corresponding to the quater-
nion q̄I , ⊗ denotes quaternion multiplication, and

Jq̄I = q̄−1
I ,J '=

[
−I3×3 0

0 1

]
. (38)

At this point, we should note that the functions ξ1 and ξ2 in
(36) and (37) need not to be known explicitly. Instead, what is
required for the observability analysis is their functional rela-
tion with the random variables, q̄I and pI , and the unknown
parameters, q̄C and pC , appearing in the system’s state vector.

Furthermore, we enforce the unit-quaternion constraints by
employing the following additional measurement equations:

h∗
3(x) = q̄T

I q̄I − 1 = 0 (39)

h∗
4(x) = q̄T

C q̄C − 1 = 0. (40)

According to Remark 1, it suffices to show that a subset of
the rows of the observability matrix O [cf. (32)] are linearly
independent. In the remaining of this section, we prove that
the system described by (34) and (36)–(40) is observable by
computing among the candidate zeroth-, first-, and second-order
Lie derivatives of h∗

1 , h∗
2 , and h∗

3 , the ones whose gradients
ensure that O is full rank.

1) Zeroth-Order Lie Derivatives (L0h∗
1 ,L

0h∗
2 ,L

0h∗
3): By def-

inition, the zeroth-order Lie derivative of a function is the func-
tion itself, i.e.,

L0h∗
1 = h∗

1 = q̄−1
I ⊗ q̄C (41)

L0h∗
2 = h∗

2 = pI + CT (q̄I )pC (42)

L0h∗
3 = h∗

3 = q̄T
I q̄I − 1. (43)

1If an initial estimate of the pose is available, then observation of only three
known features is sufficient for uniquely determining the camera pose [39].
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Therefore, the gradients of the zeroth-order Lie derivatives are
exactly the same as the Jacobians of the corresponding mea-
surement functions:

∇L0h∗
1 = [R(q̄C )J 04×12 L(Jq̄I ) 04×3 ] (44)

∇L0h∗
2 = [Ψ(q̄I ,pC ) 03×9 I3×3 03×4 CT (q̄I ) ] (45)

∇L0h∗
3 = [ 2q̄T

I 01×19 ] (46)

where, for a quaternion q̄ and a vector p, we define

L(q̄) '=
[

q4I3×3 − $q×% q

−qT q4

]
(47)

R(q̄) '=
[

q4I3×3 + $q×% q

−qT q4

]
(48)

and

Ψ(q̄,p) '=
∂

∂q̄
CT (q̄)p. (49)

Also, note that for deriving (44), we have used the following
identities [23]:

q̄−1
I ⊗ q̄C = R(q̄C )q̄−1

I = R(q̄C )Jq̄I

= L(Jq̄−1
I )q̄C = L(Jq̄I )q̄C

2) First-Order Lie Derivatives (L1
f0
h∗

1 ,L
1
f0
h∗

2 ,L
1
f 1

h∗
2): The

first-order Lie derivatives of h∗
1 and h∗

2 with respect to f0 are
computed as (50), shown at the bottom of the page

L1
f0
h∗

1 = ∇L0h∗
1 · f0 = − 1

2R(q̄C )JΞ(q̄I )bg (51)

L1
f0
h∗

2 = ∇L0h∗
2 · f0 = − 1

2Ψ(q̄I ,pC )Ξ(q̄I )bg + v (52)

while their gradients are given by

∇L1
f0
h∗

1 = [X1 − 1
2R(q̄C )JΞ(q̄I ) 04×9 X2 04×3 ]

∇L1
f0
h∗

2 = [X3 X4 I3×3 03×10 X5 ] . (53)

In these last expressions, Xi , i = 1, . . . , 5, are matrices of ap-
propriate dimensions (4 × 4 the first two, 3 × 4 the third one,
and 3 × 3 the last two) which, regardless of their values, will
be eliminated in the following derivations; hence, they need not
be computed explicitly.

The next first-order Lie derivative of interest is that of h∗
2 with

respect to f 1 , i.e., L1
f 1

h∗
2 . At this point, we remind the reader

that f 1 as defined in (34) is a compact representation of three
column vectors. Similarly, we can also write the resulting Lie
derivative in a compact form (i.e., a 3 × 3 matrix):

L1
f 1

h∗
2 = ∇L0h∗

2 · f 1 =
1
2
Ψ(q̄I ,pC )Ξ(q̄I ). (54)

The gradients of the three columns of L1
f 1

h∗
2 stacked together

give

∇L1
f 1

h∗
2 = [Γ(q̄I ,pC ) 09×16 Υ(q̄I ) ] (55)

where the matrices

Γ(q̄I ,pC ) =




Γ1(q̄I ,pC )
Γ2(q̄I ,pC )
Γ3(q̄I ,pC )



 Υ(q̄I ) =




Υ1(q̄I )
Υ2(q̄I )
Υ3(q̄I )



 (56)

of dimensions 9 × 4 and 9 × 3, respectively, have block-row
elements (for i = 1, . . . , 3)

Γi(q̄I ,pC ) =
∂

∂q̄I

[(
L1

f 1
h∗

2

)
ei

]

Υi(q̄I ) =
∂

∂pC

[(
L1

f 1
h∗

2

)
ei

]

with e1 = [1 0 0]T , e2 = [0 1 0]T , and e3 =
[0 0 1]T .

Note that inclusion of all the block-row elements of the gra-
dient (55) in the observability matrix O [cf. (50)] implies that
all components of ωm are nonzero. However, as it will become
evident later on, in order to prove observability, only two of the
elements of ωm need to be nonzero. In such case, matrix O will
contain the block matrices

Γij (q̄I ,pC ) =
[ Γi(q̄I ,pC )
Γj (q̄I ,pC )

]
Υij (q̄I ) =

[Υi(q̄I )
Υj (q̄I )

]

(57)
with i, j = 1, . . . , 3, i += j, instead of Γ(q̄I ,pC ) and Υ(q̄I ).

3) Second-Order Lie Derivative (L2
f0
h∗

2): Finally, we compute
the second-order Lie derivative of h∗

2 with respect to f0 :

L2
f0
h∗

2 = L1
f0

L1
f0
h∗

2 = ∇L1
f0
h∗

2 · f0

= −1
2
X3 Ξ(q̄I )bg + g − CT (q̄I )ba (58)

and its gradient

∇L2
f0
h∗

2 = [X6 X7 03×3 −CT (q̄I ) 03×7 X8 ] (59)

where the matrices X5 , X6 , and X7 (of dimensions 3 × 4 the
first one and 3 × 3 the last two) will be eliminated in the ensuing
derivations, and therefore, we do not need to compute them
explicitly.

Stacking together all the previously computed gradients of
the Lie derivatives, we form the observability matrix O shown
in (50).

In order to prove that the system described by (34) and (36)–
(40) is observable, we employ the result of Proposition 1 and

O =





∇L0h∗
1

∇L0h∗
2

∇L1
f0
h∗

1
∇L1

f0
h∗

2
∇L1

f 1 i j
h∗

2

∇L0h∗
3

∇L2
f0
h∗

2





=





R(q̄C )J 04×3 04×3 04×3 04×3 L(Jq̄I ) 04×3
Ψ(q̄I ,pC ) 03×3 03×3 03×3 I3×3 03×4 CT (q̄I )

X1 − 1
2R(q̄C )JΞ(q̄I ) 04×3 04×3 04×3 X2 04×3

X3 X4 I3×3 03×3 03×3 03×4 X5
Γij (q̄I ,pC ) 06×3 06×3 06×3 06×3 06×4 Υij (q̄I )

2q̄T
I 01×3 01×3 01×3 01×3 01×4 01×3

X6 X7 03×3 −CT (q̄I ) 03×3 03×4 X8





(50)
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show that matrix O is full rank (i.e., the state space of the
system is spanned by the gradients of the Lie derivatives of the
measurement functions [17], [18]). Before presenting the main
result of this section (cf. Lemma 3), we first state the following
two lemmas whose proofs are detailed in Appendix I.

Lemma 1: The matrix

Aij =
[
Γij Υij

2q̄T
I 01×3

]
(60)

formed by the fifth and sixth block-row elements of the first and
last block-columns of the observability matrix O [cf. (50)], with
Γij and Υij defined in (57), is full rank.

Corollary 1: The matrix described by (60) is full rank if the
IMU-camera rig is rotated about at least two different axes.

Note that only two block rows of Γ(q̄I ,pC ) and Υ(q̄I )
[cf. (56)]—the ones corresponding to two nonzero components
of ωm —are included in Aij [cf. (60)]. Therefore, the third
component of ωm can be zero (i.e., no rotation around the cor-
responding axis) without affecting the observability properties
of the system.

Lemma 2: For any unit-quaternions q̄ and s̄, matrix B =
R(q̄)JΞ(s̄) is full rank.

Lemma 3: The observability matrix O [cf. (50)] is full rank
when the IMU-camera rig is rotated about at least two different
axes.

Proof: Here, we provide a sketch of the proof based on block
Gaussian elimination (for details please see [40]). We start by
employing Lemma 1 and Corollary 1 to eliminate all the matri-
ces in the first and last columns ofO. The next step is to eliminate
X2 usingL(Jq̄I ), i.e., the (1,6) block element ofO in (50). Note
that q̄ is unit quaternion and det(L(Jq̄)) = ||Jq̄|| = ||q̄|| = 1
[cf. (38), (40), and (47)]. Finally, since − 1

2R(q̄C )JΞ(q̄I ) is full
rank (cf. Lemma 2), it can be used to eliminate X4 and X7 .
Following these steps, O reduces to





04×4 04×3 04×3 04×3 04×3 I4×4 04×3
03×4 03×3 03×3 03×3 I3×3 03×4 03×3
03×4 I3×3 03×3 03×3 03×3 03×4 03×3
01×4 01×3 01×3 01×3 01×3 01×4 01×3
03×4 03×3 I3×3 03×3 03×3 03×4 03×3
I4×4 04×3 04×3 04×3 04×3 04×4 04×3
03×4 03×3 03×3 03×3 03×3 03×4 I3×3
03×4 03×3 03×3 −CT (q̄I ) 03×3 03×4 03×3





.

(61)
Considering that a property of a rotation matrix is that it is full
rank (∀q̄,det(C(q̄)) = 1), it is easy to see that (61) is full rank,
indicating that O is also full rank. !

Corollary 2: The system described by (34) and (36)–(40) is
observable regardless of the linear motion of the IMU-camera
rig.

This is evident from the fact that for proving Lemma 3, we
did not use any Lie derivatives with respect to f 2 [cf. (34)].
Therefore, am , the measured linear acceleration can take ar-
bitrary values without compromising the observability of the
system. This observation has important practical implications
when no significant linear motion is possible due to physical
constraints (e.g., calibration of an IMU-camera rig in an indoor

Fig. 2. Trajectory of the IMU-camera system for 15 s.

laboratory): the IMU-camera transformation can be accurately
estimated even if no linear acceleration is exerted.

Remark 2: Since no noise is injected into the system along
the directions of the IMU-camera transformation [cf. (6)], re-
gardless of the observability of the system, the uncertainty of
the IMU-camera transformation will never increase.

When the linearization of the IMU-camera calibration system
is sufficiently accurate, this remark has the following important
implication: running the estimation algorithm during periods
when the observability conditions are not met (e.g., as a result
of stopping the IMU-camera rig) will not decrease the accuracy
of the IMU-camera estimates, although it might not improve
their quality either. However, it is advisable to excite at least
two degrees of rotational freedom for sufficiently long time at
the beginning of the calibration process, so as to significantly
reduce the error in the IMU-camera transformation and ensure
the validity of the linear approximation.

V. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation Results

In order to validate the proposed EKF algorithm for esti-
mating the IMU-camera transformation when ground truth is
available, we have performed a number of simulation exper-
iments. In our simulation setup, an IMU-camera rig moves in
front of a calibration target containing 25 known features. These
correspond to the vertices of a rectangular grid with 50 × 50 cm
cell size, which is aligned with the yz plane (cf. Fig. 2). The
camera is assumed to have 50◦ field of view. Additionally, the
image measurements received at a rate of 10 Hz are distorted
with noise of σ = 1 pixel. The IMU noise characteristics are the
same as those of the ISIS IMU used in the real-world experi-
ments (cf. Section V-B). The IMU measurements are received
at 100 Hz.

The initial alignment error for translation is set to I p̃C =
[5 − 5 6]T cm with a standard deviation of 5 cm in each axis.
The initial alignment error for rotation is set to δθ = [4◦ −
4◦ 3◦]T [cf. (15)] with 3◦ standard deviation of uncertainty in
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Fig. 3. State-estimate error and 3σ bounds for the IMU-camera transfor-
mation. Translation along axes x, y, and z. The initial error is I p̃C =
[5 − 5 6]T cm.

Fig. 4. State-estimate error and 3σ bounds for the IMU-camera transforma-
tion. Rotation about axes x (roll), y (pitch), and z (yaw). The initial alignment
errors are δθ = [4◦ − 4◦ 3◦]T .

each axis of rotation. Consequently, the filter state vector and
error-state covariance matrix are initialized according to the
process described in Section III-A.

Following the initialization step, the system performs a spi-
ral motion within 3–5 m off the calibration pattern. The EKF
processes the IMU and camera measurements, and concurrently
estimates all the components of the state vector [cf. (2)]. The
actual and estimated trajectories are shown in Fig. 2. For the
duration of this simulation (only 15 s), 150 images were pro-
cessed and, on the average, 21.7 landmarks were visible in each
image. The state-estimate errors and their 3σ bounds for the
6-DOF transformation between the IMU and the camera in a
typical simulation are shown in Figs. 3 and 4. As evident from
these plots, even with a relatively large initial error for the IMU-
camera transformation, the algorithm is still able to attain very
accurate estimates of the calibration parameters. The final un-

TABLE I
FINAL UNCERTAINTY (3σ) OF THE IMU-CAMERA PARAMETERS AFTER 100 S

FOR TWO MOTION SCENARIOS

certainty (3σ) of the estimates is [0.96 0.84 0.90]T cm for
translation and [0.072◦ 0.120◦ 0.120◦]T for rotation.

1) General Motion Versus Rotation Only: In Section IV, we
have shown that the system describing the IMU-camera calibra-
tion process is observable when the IMU-camera rig undergoes
rotational motion even if no translation occurs. Hereafter, we
examine the achievable accuracy for motions with and without
translation after 100 s when the IMU-camera rig undergoes:
1) spiral motion (i.e., exciting all 6 DOF) and 2) pure rota-
tion (i.e., exciting only the DOF corresponding to attitude). In
all these simulations, the initial uncertainty of the IMU-camera
translation and rotation are set to 15 cm and 9◦ deg (3σ) in
each axis, respectively. A summary of these results is shown
in Table I. The third row of Table I, (xyz–rpy), corresponds to
motion with all 6 DOF excited. In this case, after sufficient time,
the translation uncertainty is reduced to less than 2 mm (3σ) in
each axis.

By comparing the results of Table I to those corresponding to
Figs. 3 and 4, it is obvious that by allowing the EKF algorithm
to run for longer period of time (i.e., 100 s instead of 15 s),
we can estimate the calibration parameters more accurately.
Additionally, as it can be seen in this particular example, the
translational uncertainty along the x-axis is slightly higher than
the uncertainty along the other two axes. This is a typical result
observed in all simulations with similar setup. The main reason
for this is the limited range of pitch and yaw rotations (i.e.,
about the y- and z-axes, respectively) required for keeping the
landmarks within the field of view. On the other hand, the roll
rotation (about the x-axis) is virtually unlimited, and it can
span a complete circle without losing visual contact with the
landmarks (note that the optical axis of the camera is aligned
with the local x-axis).

The fourth row of Table I corresponds to a scenario where the
motion is constrained to pure rotation. As expected, the system is
still observable, and both the translation and the rotation between
the IMU and the camera are accurately estimated [40]. The accu-
racy of the rotation estimation between the IMU and the camera
in both scenarios (i.e., with or without translation) is shown in
the last three columns of Table I. As evident, in all cases, the ro-
tational parameters can be estimated extremely accurately, even
when the system has not undergone any translation.

2) Monte Carlo Simulations: Finally, we have conducted
Monte Carlo simulations to statistically evaluate the accuracy
of the filter. We ran 100 simulations with a setup similar to the
first simulation described in this section. The initial standard
deviation of the IMU-camera transformation is set to 3 cm for
translation and 3◦ for rotation. The initial values in each run are
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TABLE II
MONTE CARLO SIMULATIONS: COMPARISON OF THE STANDARD DEVIATIONS

OF THE FINAL IMU-CAMERA TRANSFORMATION ERROR (σerr ) AND THE
AVERAGE COMPUTED UNCERTAINTY OF THE ESTIMATES (σest )

Fig. 5. Testbed used for the experiments.

randomly generated according to a Gaussian probability distri-
bution with these standard deviations. Each simulation is run for
15 s and the final calibration errors along with their estimated
uncertainty are recorded. The ensemble mean of the recorded
errors is [0.058 − 0.002 0.044]T cm for translation and
[−0.0038◦ 0.0013◦ − 0.0009◦]T for rotation. It can be seen
that the mean error is at least one order of magnitude smaller than
the typical error, demonstrating that the filter is indeed unbiased.

The standard deviations of the recorded errors are shown in
the second row of Table II. The third row of this table shows
the average of the standard deviations computed by the EKF
at each realization of the experiment. Comparison of these two
rows indicates consistency of the filter as the standard deviation
of the actual error is smaller than or equal to the standard de-
viations computed by the EKF (i.e., the filter estimates are not
overconfident).

B. Experimental Results

In order to demonstrate the validity of our EKF algorithm
in realistic situations, we have conducted experiments using
a testbed that consists of an ISIS IMU, a firewire camera,
and a PC104 computer for data acquisition (cf. Fig. 5). The
IMU and the camera are rigidly mounted on the chassis and
their relative pose does not change during the experiment. The
intrinsic parameters of the camera were calibrated prior to the
experiment [41] and are assumed constant. The camera’s field
of view is 60◦ with a focal length of 9 mm. The resolution of
the images is 1024 × 768 pixels. Images are recorded at a rate
of 3.75 Hz while the IMU provides measurements at 100 Hz.
The PC104 stores the images and the IMU measurements for
postprocessing using our EKF algorithm. Furthermore, consid-
ering that the exact values of the IMU-camera transformation

Fig. 6. Estimated trajectory of the IMU for 50 s. The starting point is shown
by a circle on the trajectory.

(ground truth) were not available in this experiment, a batch
least squares (BLS) estimator was implemented to provide
the best possible estimates of the alignment parameters by
postprocessing all the collected IMU and image measurements
concurrently (cf. Appendix II).

A calibration pattern (checker board) was used to provide 72
globally known landmarks that were placed 5.5–11 cm apart
from each other. The bottom-left corner of this checker board
was selected as the origin of the global reference frame, and
the calibration pattern was aligned with the direction of the
gravitational acceleration. The landmarks (i.e., the corners of
the squares) were extracted using a least-squares corner detector.
We have assumed that the camera measurements are corrupted
by additive white Gaussian noise with standard deviation equal
to 2 pixels.2

The hand-measured translation and rotation between the IMU
and the camera was used as an initial guess for the unknown
transformation. Additionally, the pose of the IMU was initial-
ized as described in Section III-A. Finally, initialization of the
gyro and the accelerometer biases was performed by placing the
testbed in a static position for approximately 80 s. During this
time, the EKF processed IMU and camera measurements while
enforcing the static constraint (zero position and attitude dis-
placement). The resulting state vector along with the error-state
covariance matrix were then directly used to run the experiment.

Once the initialization process was complete, we started mov-
ing the testbed while the camera was facing the calibration pat-
tern. For the duration of the experiment, the distance between
the camera and the calibration pattern varied between 0.5 and
2.5 m in order to keep the corners of the checker board visible.
Additionally, the testbed was moved in such a way so as to ex-
cite all degrees of freedom while at the same time keeping the
landmarks within the camera’s field of view.

During the motion of the testbed (∼ 50 s), 180 images were
recorded, of which 24 were not processed due to motion blur.

2The actual pixel noise is less than 2 pixels. However, in order to compensate
for the existence of unmodeled nonlinearities and imperfect camera calibration,
we have inflated the noise standard deviation to 2 pixels.
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Fig. 7. Time evolution of the estimated IMU-camera translation along the x-,
y-, and z-axes (solid blue lines) and the corresponding 3σ bounds centered
around the BLS estimates (dashed red lines).

Fig. 8. Time evolution of the estimated IMU-camera rotation about the axes
x, y, and z (solid blue lines), and the corresponding 3σ bounds centered around
the BLS estimates (dashed red lines).

The EKF algorithm was able to estimate the IMU-camera trans-
formation while keeping track of the IMU pose, velocity, and
IMU biases. The estimated trajectory of the IMU is shown in
Fig. 6.

The time evolution of the estimated calibration parameters
along with their estimated 3σ bounds centered around the BLS
estimates are depicted in Figs. 7 and 8. As evident from these
plots, the calibration parameters converge to steady-state values
after approximately 130 s (including the 80 s of the duration of
the initialization process). The small inconsistencies observed
during the initial transient period are due to the nonlineari-
ties of the system and measurement models, and the imprecise
initialization of the filter state vector. In particular, evaluating
the Jacobians using the inaccurate state estimates available at
the beginning of the calibration process causes the estimates to
fluctuate significantly around their true values. As more feature

TABLE III
INITIAL, EKF, AND BLS ESTIMATES OF THE IMU-CAMERA PARAMETERS AND

THEIR UNCERTAINTY FOR THE DESCRIBED EXPERIMENT

Fig. 9. [Calibrated IMU-Camera] Measurement residuals along with their 3σ
bounds for the horizontal u (top plot) and vertical v (bottom plot) axes of the
images.

observations become available, the accuracy of the state esti-
mates improves, which subsequently increases the accuracy of
the system Jacobian and eventually leads to convergence to the
states’ true value.

A summary of the results from this experiment is provided
in Table III. It is worth mentioning that the initial uncertainty
of 9 cm (3σ) in the translation parameters improves to less than
0.8 cm (3σ) for all axes. Additionally, the initial uncertainty
of 6◦ (3σ) decreases to less than 0.1◦ (3σ) for each axis of
rotation. Moreover, this table shows that the EKF estimator,
which can run in real time, attains a level of accuracy close to
that of the BLS. Also, note that the final accuracy of the EKF
is consistent with that of the BLS, demonstrating that the EKF
is not overconfident. A further indicator of the consistency of
the EKF is provided in Fig. 9. As shown in these plots, the
measurement residuals of the filter along the image axes (i.e.,
reprojection errors) lie within their estimated 3σ bounds.

In order to stress the importance of acquiring precise IMU-
camera calibration estimates, we have also tested with the same
experimental setup, an EKF-based estimator that does not esti-
mate the calibration parameters online. Instead, this filter uses
the initial guess for the unknown IMU-camera transformation
to estimate the IMU pose, velocity, and biases. In this case, as
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Fig. 10. [Uncalibrated IMU-Camera] Measurement residuals along with their
3σ bounds for the horizontal u (top plot) and vertical v (bottom plot) axes of
the images.

evident from the camera measurement residuals shown in
Fig. 10, the approximate values for the calibration parameters
lead to large inconsistencies of the estimator.

VI. CONCLUSION

In this paper, we have presented an EKF-based algorithm for
estimating the transformation between an IMU and a camera
rigidly attached on a mobile platform. To the best of our knowl-
edge, this is the first approach to the IMU-camera calibration
problem that appropriately accounts for the time correlation
between the IMU measurements. Additionally and contrary to
previous work on this subject, we do not separate the task of
translation estimation from rotation estimation, and hence, pre-
vent error propagation. Moreover, by treating the problem within
the Kalman filtering framework, we are also able to compute
the covariance of the estimated quantities as an indicator of the
achieved level of accuracy. Therefore, by accounting for this
uncertainty in the consequent estimation algorithm, we are able
to explicitly model their impact. Last but not the least, an im-
portant feature of this algorithm is the ability to perform the
calibration process without requiring any specific testbed (such
as rotating table [10] or high precision 3-D laser scanner [8]) ex-
cept the calibration pattern that is also needed when calibrating
the intrinsic parameters of the camera. The derived estimator
was tested both in simulation and experimentally, and it was
shown to achieve accuracy in the order of millimeters and sub-
degrees, respectively, for the translational and rotational compo-
nents of the IMU-camera transformation. Additionally and for
the first time, the observability of the nonlinear system describ-
ing the IMU-camera calibration was investigated by employing
the observability rank condition based on Lie derivatives. As
presented, estimating the IMU-camera transformation requires
exciting only two of the rotational DOF, while no translational
motion is necessary.

Currently, we are investigating the possibility to extend this
study to the most challenging case of the IMU-camera cali-
bration, where instead of using a calibration pattern, we will

consider naturally occurring visual features whose positions are
unknown.

APPENDIX I

PROOF OF LEMMAS 1 AND 2

Lemma 1: Matrix Aij defined in (60) is full rank.
Proof: We prove this lemma for the case of practical interest

when the elements of pC = [p1 p2 p3 ]T (i.e., the vector de-
noting the position of the camera expressed with respect to the
IMU frame) are nonzero.3

For i, j = 1, . . . , 3, i += j, we expand Aij as

Aij =




Γi Υi

Γj Υj

2q̄T
I 01×3




} (1 : 3) ↔ ωm i
} (4 : 6) ↔ ωm j
} 7.

(62)

The variables on the right side of the matrix next to the row
numbers specify the component of ωm = [ωm1 ωm2 ωm3 ]T
that are excited in order for these rows to be included in the
observability matrix O [cf. (50)]. After considerable algebra, it
can be shown that [40]

det (Aij ) = 8(−1)kpk

(
p2

j + p2
i

)
(63)

where i, j, k = 1, . . . , 3, k += i, k += j, and i += j. We conclude
the proof by noting that since all elements of pC are nonzero,
the determinant of Aij in (63) is nonzero; hence, Aij is full
rank. !

Lemma 2: For any unit quaternions q̄ = [q1 q2 q3 q4 ]T and
s̄ = [s1 s2 s3 s4 ]T , B = R(q̄)JΞ(s̄) is full rank.

Proof: This can be readily proved by computing BT B, which
is a 3 × 3 matrix:

BT B = ΞT (s̄)JT RT (q̄)R(q̄)JΞ(s̄) = I3×3 . (64)

Therefore, matrixB is full rank. For computing (64), we used the
identities RT (q̄)R(q̄) = I4×4 and ΞT (s̄)Ξ(s̄) = I3×3 [23]. !

APPENDIX II

BUNDLE ADJUSTMENT

In order to compare the results of the proposed EKF algorithm
for estimating the 6-DOF IMU-camera transformation with the
best achievable (offline) estimates, we compute the batch least-
squares estimate, also known as bundle adjustment [42]. For this
purpose, we minimize the following linearized cost function:

Ci
M =

1
2

(
x̄0 − x̂i

0
)T P−1

0
(
x̄0 − x̂i

0
)

+
1
2

M −1∑

k=0

(
z̃k − Hi

k x̃
i
k

)T R−1
k

(
z̃k − Hi

k x̃
i
k

)

+
1
2

M −1∑

k=0

(
x̃i

k+1 −Φi
k x̃

i
k

)T Q−1
k (x̃i

k+1 −Φi
k x̃

i
k ) (65)

3Note that pC = 03×1 is not physically realizable since it means that the
centers of the IMU and the camera coincide. Also, the case when one or more
elements of pC are zero is extremely rare in practice, since it requires perfect
position alignment of the camera and the IMU. However, the latter case is
addressed in [40], where it is shown that the system is still observable when all
three degrees of rotational freedom are excited.
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where Φi
k [cf. (17)], Hi

k [cf. (20)], and z̃k = rk [cf. (22)] are
evaluated at x̂i

k = x̂i−1
k + x̃i−1

k , the ith iterate of the system’s
state-vector estimates at time step k, k = 0, . . . ,M [cf. (2) and
(14)]. Additionally, Rk represents the measurement noise co-
variance matrix (cf. Section III-C) and Qk is the discrete-time
system noise covariance matrix [cf. (18)]. Furthermore, x̄0 and
P0 represent the initial state estimate and its covariance, re-
spectively. Minimizing this cost function requires solving the
following system of equations iteratively:

Mx̃i = ε (66)

whereM and ε are computed as functions of x̂i
k ,zk ,Φi

k ,Hi
k ,P0 ,

Rk , Qk , and x̃i = [x̃iT
0 . . . x̃iT

N ]T [43]. In our implementation,
we have initialized x̂0

k , k = 0, . . . ,M , with the results from the
EKF proposed in this paper, and employed the sparse Cholesky
factorization with symmetric approximate minimum degree per-
mutation to solve (66) [44]. The resulting estimates are used as
the EKF benchmarks in our experiments (cf. Section V).
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