User Preference Based Automated Selection of
Web Service Compositions

Sudhir Agarwal and Steffen Lamparter

Institute of Applied Informatics and Formal Description Methods (AIFB),
University of Karlsruhe (TH), Germany.
{agarwal,lamparter}@aifb.uni-karlsruhe.de

Abstract. Semantically rich descriptions of web services enable auto-
matic composition and matchmaking. End users as well as providers com-
pose web services according to their needs. Since in general, there can
be more than one possibilities (combinations of web services) to achieve
a certain goal, a user has to decide which of the alternatives suits him
the best. This leads to the requirement that the combinations of web
services must be comparable. This can be achieved by aggregating web
service attributes. Since the ranking of web service combinations depends
on user’s needs, capabilities and willingness for investment of resources,
considering user preferences is important while calculating the rank of a
web service composition. We show, how user preferences as well as aggre-
gation information can be modeled in a formal way and how web service
combinations can be ranked automatically based on this information.

1 Introduction

Composition of web services is performed by end users as well as web service
providers. End users compose web services because (1) there may be no single
web service that directly offers the desired functionality (2) a combination of web
services may need less investment or capabilities than a single service. Providers
compose web services in order to offer the composite service as a new web service.
That is, the new composite web service acts as a mediator between an end user
and other (component) web services.

However, there are in general more than one combinations of web services
that can fulfill a given goal. That is, there is a need for decision support to help
an end user to select one combination from many combinations. Such a decision
support is only possible if the combinations are comparable. To compare two
combinations of web services, the values of attributes of the component web
services must be aggregated according to the structure of the composition. From
the point of view of a provider aggregation is needed in order know how much he
has to invest for the component web services so that he can decide how much he
can demand for his composite service. In the following, we will not differentiate
between end users and providers any further.

Consider a simple web service combination consisting of a sequence of web
services w1 and wy having price p; and py respectively. Now, if a user wants to

know, how much the execution of the combination costs him, he needs to add p;
and po. The values p; and p, are specified in the descriptions of the web services
wi and wsy. Note, that in general, there is a need for machine support to perform
such calculations, since (1) the number of web service combinations can be large,
(2) the structure of the web service combinations can be complex, (3) a user
may need to do such calculations very often. The most straightforward solution
of our above problem would be, that the user inserts the descriptions of the web
service combinations together with descriptions of the component web services
and queries the knowledge base for the desired value, e.g. p; + p2. This leads
to the requirement, that the underlying user’s description logic must support
functions like addition, multiplication, minimum and maximum of numbers. In
description logics theory, such functions are called aggregation functions and are
first introduced in [1].

In this paper, our focus is on the selection phase. We make use of the tech-
niques proposed in [1] to model aggregation information. In section 2, we will
discuss some important non-functional properties of web services and show how
they can be aggregated, when web services are composed. We show, how the
aggregation information can be modeled as part of the ontology for describing
web service combinations. In section 3, we show how user preferences can be
modeled with fuzzy rules. In section 4, we will show how web services can be
ranked based on the user preferences. We conclude in section 6 after discussing
some related work in section 5.

2 Modeling Aggregation Information

While WSDL is commonly used to describe functional properties of a web service,
there are currently no standards for describing non-functional properties of a web
service and for describing composite web services. In general, every user can
define his own ontologies to describe non-functional properties of his web service
and to describe web service combinations. But, we believe, that in many cases
users will use one of the already existing ontologies that are supported by their
tools. Current ontologies for describing web service combinations do not allow to
model the aggregation information about various attributes of component web
services. Modeling aggregation information as part of a plan ontology is our main
focus in this section. Having such aggregation information as part of description
of a web service combination, values of various attributes of component web
services can be aggregated automatically and a user only needs to specify his
preferences to rank the plans.

2.1 Description of Non-Functional Properties

All those properties that are not absolutely necessary to be able to invoke a ser-
vice and integrate the output are referred to as non-functional properties. In this
section, we introduce the most common non-functional properties related to the
direct usage of a web service. Note that only properties of the web service usage

itself and not of the product derived by means of a web service are discussed
here.

Quality of Service. The most frequently discussed non-functional proper-
ties are quality of service attributes. These are attributes that define a minimal
level of quality a service has to provide. They cover different aspects: The prop-
erty Locative Availability defines a time frame a service is online, e.g. every day
from 6 AM to 8 PM. Furthermore, an Availability-Rate can be defined that spec-
ifies the minimal percentage a service has to be available within a day, e.g. an
Availability-Rate of 0.9 defines that a service has to be available at least 90% of
a day. Response Time measures the duration between sending out the request
and receiving a result from the service.

Price. A service price refers to the monetary amount that has to be paid by
the requester to be allowed to use the service. Thus, the price is defined by an
absolute amount and a specific currency. Furthermore, there may be discounts
and penalties that can have influence on the price of a service.

Payment Method. To specify the price that has to be paid, properties
like Payment Instrument, the Duration, and the Charging Style are required.
Payment instrument refers to the type of payment, e.g. paying cash, by credit
card, voucher, etc. The duration defines the time period in which the payment
has to be completed. Moreover, services can be invoiced in different ways, which
is specified by charging style (e.g. per invocation, for a certain time period).

Security. Security attributes allow to define Identification Methods as well
as Encryption Methods that are supported by a service. Identification Methods
refer to X509 [2], Kerberos [3], PIN input or similar systems. Encryption Methods
defines the supported protocols for communication with a service.

Trust. There are various different ways to define trust levels with respect
to web services. One way would be check for referrals by means of reputation
systems. In this case a Rating attribute can be used to specify the level of trust
within a certain integer range.

Privacy. Privacy statements basically describe what happens with the per-
sonal data of a requester once sent to a service. Such statements define, for
instance, the allowed Storage Period of the data or if the service provider is
allowed to disclose the data to third parties. This is expressed by the attribute
Disclosure, which is valued by ’yes’ or 'no’.

Of course, this list of non-functional properties is not exhaustive. A more
detailed description of such properties can be found in [4].

2.2 Description of Web Service Combinations

Having discussed the non-functional properties an atomic web service, we now
turn our attention to the description of web service combinations. We refer to
such combinations as plans, processes or composite web services. We model four
types of compositions, namely sequence, parallel, choice and loop. In this paper,
our aim is to describe only static aspects of a composite web service. For doing
so, we use standard description logic syntax and refer to [5] for details about the

semantics.

Sequence C WS M dcomponent.WS

Parallel C WSI1dcomponent.WS

Choice C WS Jcomponent.WS
Loop C WS M Jws.WS M Jtimes.N

Note, that we do not require to model the execution semantics of the various
constructs in order to model aggregation information about the non-functional
properties of the web service combinations. The roles ws and times are functional
roles. That is, an instance of Loop can be related to only one instance of WS via
the relation ws and to only one natural number via the relation times.

2.3 Modeling Aggregation Information

In section 2.1, we discussed some important non-functional properties of web
services. While aggregating web service compositions only domain independent
attributes are relevant.

l [[Sequence [Parallel[Choice [Loop [
Locative Availability (LA) || overlap |overlap |overlap LA of ws
Availability-Rate (AR) I min min | ezp((AR of ws), times)
Response Time (RT) > max | max |mult((RT of ws)), times)
Price Amount (PA) > > max | mult((PA of ws), times)
Encryption Method (EM) U U U EM of ws
Identification Method (IM) U U U IM of ws

Rating (R) min min min R of ws

Storage Period (SP) max max | max SP of ws
Disclosure (D) \ vV V D of ws

Fig. 1. Aggregation Functions

The function symbols used in figure 1 have their obvious meanings except the
functions overlap, exp and mult. The function overlap determines the overlap-
ping range of time periods t1,...,t, € t. The functions exp(x,y) and mult(x,y)
calculate ¥ and x x y respectively.

Now, we turn our attention to how the aggregation information as summa-
rized figure 1 in can be modeled as part of the ontology for describing web service
combinations that we described in section 2.2.

Sequence C |_| P_(ay, Z(i(component oa;)) (1)
i€{l,...,n}

where Efi is an aggregation function for values of property a; when composed
in a sequence. E.g. a; is response time, Zi_ is equal to).

Parallel C |_| P_(a;, E«i (component o a;)) (2)
i€{1,..,n}

where E(Z is an aggregation function for values of property a; when composed
parallely. E.g. if a; is response time, Zfi is equal to max.

Choice C |_| P_(a;, £ (component o a;)) (3)
ie{l,...,n}

where Eg is an aggregation function for values of property a; when composed
as alternatives. E.g. if a; is response time, E(Z is equal to max.

LoopT [P-(as 5% (vs o a;, times)) (1)
i€{1,...,n}

where Ef is an aggregation function for values of property a; when composed
in a loop. E.g. if a; is response time, Elfi is equal to mult.

3 User Preference Modeling

In many application domains, not only the membership of an individual to a set
is nonrigid, but also the transition between the memberships of an individual
from one set to another is smooth. Consider, for example, height of a human.
Small children grow, but when do they stop to be small? So the transition from
short humans to humans of average height is rather smooth and not crisp. Such
kinds of knowledge can be encoded using techniques from fuzzy logic.

Vague knowledge, i.e. rules based on fuzzy logic, are also important from the
perspective of evaluating values of attributes that have very complex dependen-
cies with other attribute values. Such rules play an important role in application
domains, where a good approximation of the desired value of an attribute is
acceptable. For example, consider the controlling of a train. It is desired, that
when a train arrives at station, it halts at a certain fixed position. However,
calculating how exactly the brake should be applied at what position in which
speed so that the passengers can still sit comfortable etc. is difficult. Considering
that it is acceptable if the train stops a small distance before or after the mark,
automatic control of the train is much easier.

Fuzzy logic, first introduced by Zadeh in [6, 7], provides answers to both the
problems. On the one hand, the fuzzy sets allow to model vague memberships of
individuals to sets. On the other hand, fuzzy IF-THEN rules allow to evaluate
good approximations of desired attribute values in a very efficient way [6, 7).

In this section, we will show how user preferences can be modeled with fuzzy
IF-THEN rules. We begin with the modeling of fuzzy membership functions and
show how the membership of an individual to a fuzzy membership function can
be calculated inside an appropriate description logic reasoner. Then, we model
fuzzy IF-THEN rules and show how the degree of fulfillment of a rule by an
individual can be calculated.

3.1 Modeling Fuzzy Membership Functions

Figure 2 shows the linguistic terms fast, medium and slow modeled as member-
ship functions for a linguistic variable Response Time.

Now let Rjg,1) denote the set of real numbers between 0 and 1. For a con-
cept v and a linguistic term ¢, we define a membership function pu} as a finite
and non-empty set of points® (z,y) in R x Rjo,1), where x is a number repre-
senting?® an individual of the concept v. We will define next a concept Point.
For this purpose, we introduce two
concrete functional roles x and 1y,
which assign the first respectively sec- | _fast medium slow
ond coordinate to the point. So we
define the concept Point as Point T
Jx.RM Ely~R[O,1]-

Similarly, we define a concept pu
that denotes the set of membership
functions. We do this by means of
a (non-functional) role p which as-
signs points to individuals, as p C

0 5 15 25 Response
Time

Fig. 2. Example Membership Functions

Ip. Point>.
For a concept v, being viewed as a linguistic variable and having linguistic
terms ty,...,t,, we add n instances uy,...,puy of p with corresponding roles

and points. We interpret the set of points associated with some pf, as a piecewise
linear function. For a concept v being viewed as a linguistic variable, we denote
the set of its linguistic terms by v*.

We refer to [8] for complete modeling of the information needed to calculate
the membership of a given individual to a given fuzzy set. As an example, the
response time of 12 time units is medium with degree 0.7 and fast with degree
0.3 considering the fuzzy sets from figure 2.

3.2 Modeling Fuzzy Rules

A fuzzy IF-THEN rule consists of an IF part (antecedent) and a THEN part
(consequent). The antecedent is a combination of terms, whereas the consequent
is exactly one term. In the antecedent, the terms can be combined by using
fuzzy conjunction, disjunction and negation. A term is an expression of the form
X =T, where X is a linguistic variable and T is one of its linguistic terms.
Since terms are the elementary building blocks of a fuzzy rule, we start with
modeling terms. As described above, a term consists of two parts, a linguis-
tic variable and a linguistic term. So, we model a concept Term as Term C
Jr. T M 3f.u, where the roles r and m are functional roles assigning linguistic

! Le. we allow only membership functions which are piecewise linear.

2 Identifying individuals with real numbers simply serves to make computations sim-
pler, though it may appear to be counterintuitive in some cases.

3 1 C >2p.Point would be more precise if qualified number restrictions are available.

variable resp. linguistic term. Terms can be combined via conjunction, disjunc-
tion and negation to term expressions. Further, a term expression is fulfilled by
an individual to a certain degree. So, we define concept TermFEzxp and extend
the definition of the concept Term as follows:

TermEzp € ddegree.Rg 1]
Term C TermFExp

A rule has an antecedent and a consequent. The antecedent is a term expres-
sion and the consequent is a term. Further, a rule has a degree to which it is
fulfilled by an individual. So, we define a concept Rule as*

Rule C Jantecedent. TermExp M Jconsequent. Term M degree.R(g 1.

3.3 Calculating the Degree of Fulfillment of a Rule

Since terms are the basic building blocks of a rule, the degree of fulfillment of a
rule depends ultimately on the degrees of fulfillment of the terms occurring in
the rule. Now, an individual connected to a term via the role r fulfills the term
with the same degree as the corresponding value of the membership function the
term is connected with via the role m. We model this by extending the concept
Term with the axiom Term T P—(degree, o my).

We can calculate the degree of fulfillment of a term expression according to
the semantics suggested by Zadeh in [6, 7], which can be summarized as follows.®
Given two membership functions pa and pp, (paAup)(a) = min{pa(a), ps(a)},
(na V pp)(a) = max{pa(a), pp(a)} and (-pa)(a) =1 — pa(a).

So, we define the concept TermEzxp,, TermExp, and TermExp_ as follows,
introducing also the corresponding roles®.

TermFEzp, T TermEzp M Jconjunct. TermExp M P—(degree, min{ conjunct o degree})

C
TermExp,, C TermExp N 3disjunct. TermExp N P_(degree, max{disjunct o degree})
-

TermExp_ T TermExp M Joperand. TermExp M P _ (degree, operand o degree)

The predicate P—1_(a,b) is true iff @ = 1 — b. min and max are aggregate
functions for the concrete domain R.

To interpret a fuzzy IF-THEN rule, we need an interpretation for the im-
plication. In general, one can have a different interpretation of the implication
for every rule, which is particularly important when the application domain re-
quires the use of weighted rules. Here, we use a universal interpretation 7 of the
implication in all the rules. However, we do not fix = any further. In most of the
cases, it is equal to minimum. So,

Rule C P, (degree, antecedent o degree, consequent o degree),

4 The roles antecedent and consequent are functional roles.
5 Certainly, other T-norms and T-conorms could be used.
5 The relation operand is a function role.

where P, is a ternary predicate from the concrete domain R and represents
the interpretation of the implication function 7. That is, for given a,b,c € R,
Pr(a,b,c) is true iff a = w(b, ¢).

3.4 Modeling User’s Preference as Fuzzy Rules

We view preferences as the information that describes the constraints on the
properties of an individual in order to be accepted for further consideration.
We specify different levels of acceptance with fuzzy membership functions as
described above.

In the web service compositions scenario, the individuals are concrete web
service compositions. We model user preferences with fuzzy IF-THEN rules. The
IF part contains membership functions of the various properties of an individual
(e.g. those listed in figure 1) and the THEN part is one of the membership
functions of a special concept called Rank. Intuitively, a fuzzy rule describes
which combination of attribute values a user is willing to accept to which degree,
where attribute values and degree of acceptance are fuzzy sets, i.e. vague. Note,
that a user has to define at most as many rules as there are degrees of acceptance
that he/she wants to differentiate. We believe, that in practice, the number of
such categories will not be large. An example fuzzy IF-THEN rule can be

IF RT = fast and PA = cheap THEN Rank = high.

4 Automated Plan Selection

Let o represent the concept that represents the acceptance and let o be cat-
egorized in k categories represented by g¢; ...gx. Further, there exists k rules
Ry,...,R;, ..., Ry, where R; has g; as conclusion. In the following, we calculate
the ranking r of an individual a with respect to objective o according to the
FITA principle (First Inferencing Then Aggregation). The other alternative for
interpreting fuzzy rules is FATI (First Aggregation Then Inferencing). It has
been shown in [9] that the two principles are equivalent.

4.1 FITA

Consider a rule base containing n rules of the form Fy — Gi,...F, — G,.
In FITA, first each rule is interpreted. That is, for each z,y and each rule i,
the value of w(F;(z), G;(y)) is calculated. Now, for a given z, the inference step
is performed for each rule. Again, the inference operator can be different for
different rules. However, we use a universal inference operator for all the rules
and call it Kk — in many practical cases, k is equal to minimum. In general,
the inference operator & is some function that maps the square [0,1)2 to [0, 1].
Performing an inference step for a given x and a given rule ¢ means calculating
k(F(x),n(F;(z),Gi(y))), where F is some fuzzy set describing the membership
function for a given situation. Having performed the inferencing step for all the

n rules, an aggregation step is performed to obtain a single value from n values.
For this purpose, an aggregation operator « : [0,1]" — [0,1] is needed. The
most common aggregation operator is maximum. However, we do not fix « any
further. In the aggregation step,

a(’%(F(m)v 71-(Fl ($)7 Gl(y)))v s H(F(.%‘), F(Fn(x)’ Gn(y))))

is calculated. We define a concept FITA as:

FITAC |_| Jrule;. Rule |—| Jx;.Ro,1) M Joutput. Ry 1) M

i€{l,...,n} i€{l,...,n}
|_| P, (x;, rule; o degree, z o my) M P=(output, a{x;})
i€{1,..,n}

where « is an aggregate function and P is a ternary predicate on the concrete
domain Ry 1j. Px(a,b,c) is true iff a = (b, c).

4.2 Defuzzification

The goal of a DL query is to determine the value of an instance. FITA delivers
the membership of an arbitrary instance of the target concept to the goal fuzzy
concept according to the compositional rule of inference. That is, if we have a
sufficient number of instances of the target concept, we can calculate for each
instance its membership to the goal fuzzy concept. This way, we obtain a set of
points (z, pr(x)), where x is an arbitrary instance of the target concept and pr
is the target fuzzy concept.

However, the goal of query answering is to determine an instance of the target
concept. This is done by interpreting the set of points (z, ur(z)) as an area in
R? and defuzzifying this area. One of the most common defuzzification methods
is the so called center of gravity method, where the geometrical center of gravity
of a given area is calculated. The desired instance is then equal to the value of
the z-coordinate of the center of gravity of the area. Hence, the desired instance
w can be calculated by the following formula:

_ [z p(z)de
[u(a)dz

To model the defuzzification process, we define a concept Defuzlnfo as:
DefuzInfo T 3fita. FITA N 3z N Iprod.R N P,,(prod, z, fita o output).

Finally, consider a concept C C Jw.W. For a given instance 6 of C, to
determine an instance w such that w(f,w) holds while considering fuzzy rules,
we extend the definition of the concept C' as follows:

()

C C 3di. DefuzInfor P—(w, x)M Py, (x, sum{ dioprod}, sum{ dic fitac output}). (6)

We use the already existing instances of the concept W as the arbitrary
instances for determining the area that is defuzzified. If no instances of W are

available in the knowledge base, we can always insert some instances which do
not need to be in any relation with instances of other concepts. The number and
value of such instances depends on the application domain, more precisely on
the width of the range (subset of R) and on the value of dz in equation 5.

4.3 Calculation of Ranking of Web Service Compositions

In the above sections, we have explained how an attribute value of an individual
that has complex dependencies on other attribute values of the same individual
can be calculated automatically, where the dependencies are modeled as fuzzy
rules. Coming back to our big picture described in section 1, we have the situation
that a user has many web service compositions, each of them fulfilling user’s goal,
and the user needs to select one of them for execution. That is, we have many
web service compositions and we wish to calculate rank for each of them based
on user’s preferences.

We calculate the rank of a web service composition by setting C' equal to
WS and w equal to rank in equation 6. Further, we set range of rank equals to
Rank. That is, WS C Jrank.Rank. The rank of a web service composition is
then the value of the attribute rank. Finally, we perform this step for each web
service composition. Since, we have already modeled the calculation of aggrega-
tion of various attribute values in equations 1, 2, 3 and 4, they are automatically
considered in the calculation of the overall ranking.

4.4 Example

Consider two web services w; and ws. Suppose both the web services wy and wq
use the web services c1, co and ¢z with the only difference that w; uses them in
sequence whereas ws calls them in parallel. Suppose the response times of ¢y, co
and cg are 3, 4 and 5 time units resp. Suppose, a user is only concerned with the
response time of the web services and has the following preferences modeled as
fuzzy rules

IF RT = fast THEN Rank = high
IF RT = medium THEN Rank = average
IF RT = slow THEN Rank = low

The response times rt; and rts of w; and wy are calculated with equations
1 and 2 as 12 and 5 time units resp. Degrees of fulfilments of the rules by w;
are 0.3, 0.7 and 0 resp. and by wy 1.0, 0 and 0 resp. (cf. figure 2). Considering,
“low”, “medium” and “high” as fuzzy sets for the concept “Rank”, step FITA
yields one area for each web service. For w; this area is the maximum of the
areas for the sets low, medium and high chopped at 0, 0.7 and 0.3 and for ws the
maximum of of the areas chopped at 0, 0 and 1.0. Now, the center of gravities ¢;
and go of both the areas are calculated in the defuzzification step. g; lies left to
g2 which means w; is ranked lower than ws, which corresponds to the intuition.

5 Related Work

There are quite a few efforts for modeling web processes. OWL-S [10] and
BPEL4WS [11] are the most widely known. OWL-S claims to have formal seman-
tics and thus added value as compared to XML based approaches like BPEL4WS.
However, none of them allows to model aggregation information, which is nec-
essary to reason about composite web services. We believe, that OWL-S and
similar ontologies can become more useful by using our approach to enable for-
mal specification of aggregation information and thus allowing reasoning about
properties of web service combinations and making them comparable.

There are a few approaches that have investigated how various attributes of
workflows or composite web services can be aggregated [12-14]. Our approach
builds on the existing works, since it uses the insights gained from the mentioned
works. The mentioned works does not provide a mechanism how the aggrega-
tion information can be modeled as part of a process ontology. We have shown,
that ranking and thus plan selection is a possible use case for aggregation of
web service attributes. We have also shown how rankings can be calculated and
plan selection can be automated. Most of the existing approaches for automatic
selection e.g. [15] either consider only atomic services or they are not based on
user preferences.

6 Conclusion and Outlook

In this paper, we presented a generic approach for modeling aggregation infor-
mation for various web service attributes as part of an ontology for describing
composite web services. We have also shown, how user preferences can be mod-
eled as fuzzy rules. Consequently, with the techniques presented in this paper,
web service combinations can be compared with each other and ranked according
to the user preferences.

In our previous works [16], we have developed a tool for automatic composi-
tion of web services. Currently, a user has to go through all the generated plans
and decide manually, which plan he wishes to execute. We intend to extend this
tool by a plan selection component based on the approach presented in this pa-
per. The tool will allow a user to enter his preferences and present the user a
list of generated plans sorted by rank. On the basis of which the user can de-
cide more easily which of the plans, he wishes to execute. Further, a user can
define a priori a threshold for rank of a plan, which he wishes to be executed
automatically.

In this paper, we suggested to select composite services based on a ranking
calculated with respect to user preferences. However, this ”take it or leave it”
principle may be sometimes economically inefficient, since possible negotiations
yielding higher benefits for both sides are not considered [17]. In future, we wish
to investigate the possibility of integrating multi attributive negotiations that
facilitates Pareto-optimal allocations into our system.

Acknowledements

This work was funded by the Federal Ministry of Education and Research
(BMBF), the German Research Foundation (DFG), and the European Union
in scope of the Internetékonomie project SESAM, the Graduate School Infor-
mation Management and Market Engineering and the IST project SEKT under
contract IST-2003-506826.

References

o

10.

11.

12.

13.

14.

15.

16.

17.

Baader, F., Sattler, U.: Description Logics with Concrete Domains and Aggrega-
tion. In Prade, H., ed.: Proceedings of the 13th European Conference on Artificial
Intelligence (ECAI-98), John Wiley & Sons Ltd (1998) 336-340

OpenSSL: Openssl x509. (http://www.openssl.org/docs/apps/x509.html)

MIT: Kerberos. (http://web.mit.edu/kerberos/www/)

O’Sullivan, J., Edmond, D., ter Hofstede, A.: Formal description of non-functional
service properties. Technical report, Queensland University of Technology (2005)
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.:
The Description Logic Handbook: Theory Implemenation and Applications. Cam-
bridge University Press (2003)

Zadeh, L.A.: Fuzzy Sets. Information and Control 8 (1965) 338-353

Yager, R.R., Ovchinnikov, S., Tong, R.M., Nguyen, H.T., eds.: Fuzzy sets and
applications - Selected Papers by L. A. Zadeh. John Wiley & Sons, New York,
NY, USA (1987)

Agarwal, S., Hitzler, P.: Modeling Fuzzy Rules with Description Logics. In: Pro-
ceedings of Workshop on OWL Experiences and Directions, Galway, Ireland (2005)
Temme, K.H., Thiele, H.: On the correctness of the principles of FATI and FITA
and their equivalence. In: IFSA 95 - Sixth International Fuzzy Systems Association
World Congress. Volume II. (1995) 475-478

Coalition, D.S.: DAML-S: Web Service Description for the Semantic Web. In:
ISWC2002: Ist International Semantic Web Conference, Sardinia, Italy. LNCS,
Springer (2002) 348-363

et al., T.A.: Business Process Execution Language for Web Services. Technical
report, Bea Systems, IBM Corp., Microsoft Corp., SAP AG, Siebel Systems (2003)
Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of Service for
Workflows and Web Service Processes. Journal of Web Semantics 1 (2004)
Cardoso, J., Sheth, A.: Semantic e-Workflow Composition. Journal of Intelligent
Information Systems 21 (2003) 191-225

Jaeger, M.C., Rojec-Goldmann, G., Miihl, G.: QoS Aggregation in Web Service
Compositions. In: Proceedings of IEEE International Conference on e-Technology,
e-Commerce and e-Service (EEE-05), China, IEEE Press (2005) 181-185

Liu, Y., Ngu, A.H., Zeng, L.Z.: Qos computation and policing in dynamic web
service selection. In: WWW Alt. ’04: Proc. of 13th Int. WWW Conf. on Alternate
track papers & posters. (2004) 66-73

Agarwal, S., Handschuh, S., Staab, S.: Annotation, Composition and Invocation
of Semantic Web Services. Journal of Web Semantics 2 (2005) 1-24

Bichler, M.: An experimental analysis of multi-attribute auctions. Decision Support
Systems 29 (2000)

