

ANSYS Workbench를 이용한 해석 성공 사례

티타늄 터빈 블레이드의 피로 수명에 대한 신뢰성과 강건설계

ANSYS Werkbench DesignXplerer는 DesignSimulation, DesignMedeler에서의 변수와 다양한 CAD 모델의 설계 변 수를 이용하여 최적화를 수행하며, 최적점에서의 값을 다시 원본 데이터에 반영할 수 있다. 이번 호에서는 DesignXplerer를 활 용한 부품의 수명 신뢰도 산출과 강건설계 사례를 소개한다.

DesignXplorer는 네 가지 최적화 기법을 제공한다.

- 실험 계획법을 이용하는 최적화(Design of Experiments : DOE)
- 변분법을 이용하는 최적화(Variational Technology : VT)
- Six Sigma 기법을 이용하는 최적화(Design for Six Sigma : DFSS)
- 강건설계(Robust Design)

DesignXplorer는 그림과 같이 입력 매개변수가 특정한 값을 가지는 것 이 아닌 분포를 가질 때, 결과 또한 분포로서 나오게 된다. 예를 들어 모델 은 반드시 공차를 가지게 되며, 또한 하중을 1N을 가한다 해도 실제로는 1 ±0.01의 하중이 적용될 것이다. 이 때 결과 역시 어떤 분포를 가지고 나

태성에스엔이의 ANSYS 기술자원 담당 및 프로젝트 컨설팅 엔지니어이다. E-Mail | sijeong@tsne.co.kr 홈페이지 | http://www.tsne.co.kr 오게 된다. 실제 생산현장에서의 산포를 DesignXplorer를 이용하 여 적용하고 결과를 평가할 수 있는 것이다.

DesignXplorer가 제공하는 최적화 기법 실험 계획법을 이용하는 최적화

설계 변수의 개수에 따라(ANSYS Workbench-Simulation, CAD 등) 반응 표면을 생성하기 위한 추출점(design point)를 정하 는 방법으로, DOE(Design of Experiments)는 효율적인 최적화 를 위해서 최소의 추출점을 이용하여 최적의 반응 표면을 만들 수 있도록 한다.

DesignXplorer의 DOE는 해석에 필요한 변수의 개수와 값을 중 심합성법(CCD : Central Composite Design)을 이용하여 뽑는다. 추출점에서의 유한요소 해석이 모두 끝나면 하드포인트를 연결하여 반응 표면을 생성하고, 이 곡선을 이용하여 최적 설계가 이루어진다.

▲ 실험계획법

변분법을 이용하는 최적화(Variational Technology : VT)

VT법은 response surface를 얻기 위한 다양한 입력 파라미터 정보가 필요하게 된다. 그러나 VT법은 DOE와 다르게 한 번의 유 한요소 해석 결과만 필요하다.

VT법은 반응표면 생성 시에 요소의 모핑과 테일러(Taylor) 시리 즈를 이용한다. 커브 피팅의 정밀도는 사용된 테일러 시리즈의 도 함수의 차수에 좌우된다.

Six Sigma 기법을 이용하는 최적화

앞서 언급한 두 가지 방법(DOE와 VT)은 각각의 해석 모델에 있 어서 입력값은 고정되어 있다고 가정한다.(예를 들어, 탄성계수 = 30e6 psi, 두께 = 0.25mm 등) 하지만 실제 세계의 모든 입력 값은 일정한 편차나 분산을 가지게 된다.(물성치의 편차나 치수 공차 등) 따라서 일반적으로 이러한 편차에 대한 영향을 설계에 반영하기 위 해서 안전계수를 도입하게 된다.

DFSS(Design for Six Sigma DFSS)는 입력 변수의 편차나 변 동을 최적 설계에 반영할 수 있다. 전형적인 예는 다음과 같다.

- 입력 파라미터 값의 편차에 따라 어느 component에 failure가 일어날 것인가?
- 어느 입력 파라미터가 응답 파라미터에 미치는 영향이 가장 클 것인가?
- 입력 값의 scattering에 의한 결과로 출력 값의 범위는 얼마나 될 것인가?

▲ Design fer Six Sigma(DFSS)

강건설계(Robust Design)

강건설계는 제품의 가공과정에 서 품질을 저하시키는 외란 (variation)에 무관한 제품을 만드 는 것이다. 설계자가 외란의 잠재 적 요인을 이해하고 외란에 대한 민감성을 없애는 것에서 강건설계 는 수행된다. DesignXplorer에서 는 'Design for Six Sigma' 혹은

8건걸게

'Reliability-based Optimization' 과 같은 의미로 사용된다.

예제 해석 과정 모델 불러오기

Ansys Workbench는 대부분의 범용 3D CAD와 플러그인 방식 을 지원하고 있다. CAD 설치 후 ANSYS Workbench를 설치하게 되면 CAD의 메뉴 바에 'ANSYS 10.0'이 자동으로 메뉴로 구성이 된다. 따라서 ANSYS Workbench를 띄우지 않고, 바로 CAD에서 작업중인 모델을 해석으로 오픈시켜 해석 작업 시 모델을 다시 한 번 확인해야 한다거나 하는 번거로움이 없다. 또한 CAD 툴에서 공

통 확장자로 쓰이는 파일들은 CAD 없이 열 수 있다.

불러올 파일은 'ComBlade.agdb'의 DesignModeler 파일로, 해석환경인 시 뮬레이션으로 불러오도록 한다.(다른 CAD에서도 변수 부분을 파라미터로 정 의 후 불러오면 된다.)

그림은 DesignModeler 혹은 다른 CAD에서 작업한 것이다. 블레이드에서 X, Y 방향의 각도를 주어 모델링하는 부 분을 파라미터로 정의한다. X, Y 방향의 각도는 DS_xtilt, DS_ytilt 로 주어진다.

그림과 같이 CAD 파라미터가 생성된 것을 볼 수 있다. CAD에서 파라미터로 작업하면 ANSYS Workbench는 그 파라미터를 불러 온다. 파라미터의 변화에 따라 모델이 변경된다.

모델을 부른 후 가장 먼저 하는 것이 단위 설정이다. 불러온 모델 에 대하여 앞으로 부여할 하중이나 구속조건 등의 단위를 설정한 다. ANSYS Workbench는 자동으로 치수를 변환해 준다. 만약 변 위를 20mm로 부여를 했는데 센티미터로 바꾸게 되면 자동으로 2cm로 변환된다.

물성치 정의

물성치는 그림과 같이 'Titanium Alloy RD'를 사용하였다. ANSYS Workbench의 'Engineering DATA' 에서 그림과 같이 물성치를 정의한다. 다음 그림에서 블레이드의 필렛(fillet) 부분에 'Refinement'를 적용한다.

하중 및 경계 조건

그림과 같이 파란색 부분에 'Frictionless' 조건을 부여한다. 이 경 우 수직방향으로는 구속이 되고 평면 방향으로는 구속하지 않는다.

노란색 부분과 같이 Y 방향만 구속한다.

Z축에서 381mm를 축으로 733.04 rad/s의 각속도를 적용한다.

메시 사이즈 설정

메시를 생성하기 위해 다음과 같이 mapped와 refinement를 사용한다.

다음 그림에서 블레이드의 넓은 면에 'Mapped Meshing'을 적 용한다.

해석 실행

해석 준비가 완료되면 Solve 아이콘을 클릭한다. 이것은 초기값 이 다음과 같을 때 해석하는 것이다.

■ DS_Xtilt = 1.5(X의 각도)

- DS_Ytilt = 1.0(Y의 각도)
- DS_rootrad = 0.25

해석 결과

등가응력을 블레이드의 표면 에서 본다.

E - Katigue	Tool	>
Details of 'Fatigue Tool'		4
- Materials		_
Fatigue Strength Factor (Kf)	0.5	
- Loading		
Туре	Zero-Based	
Scale Factor	2,	
- Definition		
Display Time	End Time	
- Options		
Analysis Type	Stress Life	
Mean Stress Theory	None	
Stress Component	Equivalent (Von Mises)	
- Life Units		
Units Name	cycles	
1 cycle is equal to	1, cycles	

'Fatigue Tool'을 추가하여 피로수명을 본다.

피로수명을 보면 최소수명이 1.591회가 나온 것을 볼 수 있다. 이 값을 그림과 같이 'P'를 정의하여 파라미터로 만든다.

CAD Para ds_xtilt ds_ytilt

이 모델에서 파라미터는 위의 그림과 같이 최소 피로 수명을 파라미터로 한다. 다음 그림에서도 CAD 파라미터 3개가 있다.

4개의 파라미터를 이용하여 다음 과정에서 강건설계를 수행한다.

강건설계 수행 과정

ANSYS Workbench의 'Project' 메뉴로 가서 'New DesignXplorer study'를 실행한다.

🙀 [Project] 🗙 👩 CompBlade [Simulation]		
File Tools Help	🔣 Data 🕜	
Simulation Tasks	Name	File
G Open	😽 Unsaved Project	
New DesignXplorer VT study	🔞 CompBlade_original.agdb	
Parametric Geometry Updates	🕒 Model	

CAD 파라미터 범위 지정

다음 그림과 같이 DesignXplorer가 실행되며 CAD 파라미터가 DesignXplorer로 들어온 것을 볼 수 있다. 초기에는 3개의 파라미 터 중에 그림과 같이 2개만 활성화한다. X와 Y의 각도가 변경되는 경우 DS Xtilt와 DS Ytilt의 범위를 지정하여 피로수명 값이 초기 의 값보다 커지는 설계안을 찾는다.

Views P Parameters	Simulation Parameter Type				
🕞 Automatic Design Points	Design Variabl	e 💌			
	Parameter C	lassification:			
Parameters					
Input Parameters	Continuoue	-			
Image: ds_xtilt Image: width of the state 1.35 ← 1.5 → 1.65 1.15 Initial Value = 1.5 1.5	Parameter Properties:				
ds_ytilt 0.9 ← 1. → 1.1					
Initial Value = 1.	Property	Value			
🗖 ds_rootrad 🛛 🖉	Lower Bound	1.35			
0.225 ← 0.25 → 0.275 Initial Value = 0.25	Upper Bound	1.65			
	Initial Value	1.6061			
Response Parameters	Current Value	1.6061			

실험계획법 수행

Automatic Design Points CCDType: Auto Defined Summary Design Point Design Point 2 Design Point 3 Design Point 4 Design Point 6 Design Point 7 Design Point 8 Design Point 9

실험계획법에 의해 2개의 변수가 있을 때

9개의 해석할 데이터가 생성된다.

9개의 데이터에 대해 해석을 수행한다.

the At	😝 Run 👻	🕜 Stop	Publish Report
	🔰 Solve /	Automatic D	esign Points

결과 보기

'Response' 메뉴로 반응표면을 본다. 위의 9개의 입력과 출력을 이용하여 반응표면을 만든다. X. Y 각도의 변화에 따라 수명결과를 볼 수 있다.

Geal Driven Optimization 수행

위의 반응 표면 식에 1,000번을 샘플링하여 최소수명에 대한 최적화를 수행한다.

			and the second se				
1	💦 CompBlade	e [Project]	🕒 CompBla	ade [Simulation] 🗙	CompBlade [DesignXplorer]		
1	Details of "Geo	metry"		Cometry Ca	The Delet Marce		
-	Definition			Outline for "Comp	Jedates Lies Circulation December Values		
	Source	E:\Robust W	/orkshop\Run2\	Project P+	Jpdate: Use Simulation Parameter Values		
	Туре	DesignMode	ler	🗄 🎯 Model 🍑	Spade. Use desined y raidineed values		
	Length Unit	Inches		Ge Recent Geometry			
+	Bounding B	ох		E Mesn	Tom Piess		
+	Mass Prope	rties			ment		
+	Statistics						
+	Preferences	5					
-	CAD Parameters						
	ds_xtilt	1.58					
	ds vtilt	0.9					

Six Sigma 해석의 수행(1)

위의 최적해로 나온 DS_Xtilt=1.58, DS_Ytilt=0.9 값은 실제 생 산현장에서는 공차를 가진다. 이 상태에서 Six Sigma 해석을 수행 하여 현재 불확실성(공차)이 있을 때의 최소 피로수명의 분포를 파 악해보자.(DS_rootrad는 고정된 상태임)

DS_Xtilt와 DS_Ytilt가 그림과 같이 Gauss 분포를 가질 때 결과 를 해석해 보자.

Prebability Density Function

결과는 다음 그림과 같이 나온다. 최적화로 나온 결과는 3만 8,000회 정도의 수명이 나왔지만 공차를 적용했을 때 수명이 그림 과 같이 분포로 나온다. 그런데 왼쪽을 보면 수명이 722회인 부분 이 나왔다.

Six Sigma 해석의 수행(2)

DS_rootrad를 포함하여 Six Sigma 해석을 수행해 보자. 먼저 실험계획법으로 15회를 해석하여 반응표면 모델을 만든

최적화 해석의 결과

X, Y 각도의 변화에 따른 최적화된 수명결과를 볼 수 있다. X의 각도를 1.5895, Y 각도를 0.96667로 하는 경우 최소 수명이 38,188이 된다.

초기의 X의 각도를 1.5, Y 각도를 1.0으로 할 때 1,591회에 비해 24배 수명이 증가했다.

모델의 수정

앞에서 나온 최적값으로 모델을 수정해 보자.

다음 그림과 같이 시뮬레이션으로 가서 DS_Xtilt=1.58, DS_Ytilt=0.9로 수정 후 'Update' 메뉴를 선택하면 모델이 수정 된다.

다.(3개의 인자이므로 15회의 실험값이 나온다.) 각 3개의 인자는 다음과 같은 분포를 가진다.

이 반응 표면 모델(식)에 몬테카를로법으로 1,000번을 샘플링한다.

그 다음 해석을 수행한다.

🚽 Run 👻	G Stop	Publish Report
🔰 Solve .	Automatic D	esign Points

Six Sigma 해석의 결과

다음 그림과 같이 최소 피로수명의 분포가 나온다. 그림에서 'Probability'는 확률을 말한다.

최소 피로 수명 값 4,621회가 나올 확률이 1e-3이다. 즉 0.1%의 파괴 확률을 의미한다. 만일 이 모델을 4,621회 사용 후 정비나 교 환을 하면 99.9% 안전하다는 의미이다.

강건설계 수행

그림과 같이 강건 설계를 수행해 보자. 이전에 Six Sigma 해석에서 행했던 1,000번의 샘플링에 100번을 더 수행하는 것이 된다.

강건설계 결과

해석 결과 DS_rootrad는 0.29995의 값이 되고 최소피로수명 값 은 6,409가 되었다.

이전의 Six Sigma 해석의 결과가 최소피로수명 값이 4,621에서 강건설계를 통해 6,409로 증가한 것이다. 터빈 모델의 경우 4,621 회 운전 후 정비해야 하던 것을 6,409회 운전 후 정비해도 되게 된 것이다. 이 경우 경비의 절감이 클 것이다.

RD San	nple Set	2								
 A Goals D these point 	riven Study uses a ts.	calculated set of s	ample desig	gn points.	Click the "	Generate S	Sample Desi	igns" but	ion to gene	rate
Input Param Click rows in	eter Goals this table to assign	n design goals to ir	iput parame	ters.						
Name	Lower Bound	Upper Bound	Target	Desired	Value	Importar	nce			
ds_rootrad	0.2	0.3		No Pref	erence	Default				
Click rows in Name Value of Life Life Minimun	this table to assign Minimum @ Sigm n Mean (SSA Sam	n design goals to re a-Level = -3.0902 (ple Set 2)	esponse par SSA Sampl	ameters. le Set 2)	Defining a Target	Desirer Maximu Maximu	e is optional. d Value um Possible um Possible	Impo Defai Defai	ult ult	Trade(On On
Candidate D	or update candida	te designs based o	in the currer	nt goals	G Can	A atabi	C Cand	idate B	C Can	lidato (
ds rootrad	1				0.29995	-	0.28995	-	0 27995	
Value of Life	Minimum @ Sigm	a-Level = -3.0902 (SSA Sampl	le Set 2)	6404.9	***	6045.9	**	5689.8	**
Life Minimun	Mean (SSA Sam	(C to 2 ala			20522	-	37914	-	20000	-

결론

	초기 설계안	첫번째 최적설계안	첫번째 최적안의 공차적용 결과	Six Sigma 해석	강건설계
최소 피로 수명	1,591회	38,188회	722회 이하 부분 발생	4,621회 에서 0.1% 파괴 확률 발생	6,404회 에서 0.1% 파괴 확률 발생