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Abstract

Image rectification is the process of applying a pair of 2 dimensional projective transforms,
or homographies, to a pair of images whose epipolar geometry is known so that epipolar lines in
the original images map to horizontally aligned lines in the transformed images. We propose a
novel technique for image rectification based on geometrically well defined criteria such that image
distortion due to rectification is minimized. This is achieved by decomposing each homography
into a specialized projective transform, a similarity transform, followed by a shearing transform.
The effect of image distortion at each stage is carefully considered.

1 Introduction

Image rectification is an important component of stereo computer vision algorithms. We assume that
a pair of 2D images of a 3D object or environment are taken from two distinct viewpoints and their
epipolar geometry has been determined. Corresponding points between the two images must satisfy the
so-called epipolar constraint. For a given point in one image, we have to search for its correspondence
in the other image along an epipolar line. In general, epipolar lines are not aligned with coordinate axis
and are not parallel. Such searches are time consuming since we must compare pixels on skew lines in
image space. These types of algorithms can be simplified and made more efficient if epipolar lines are
axis aligned and parallel. This can be realized by applying 2D projective transforms, or homographies,
to each image. This process is known as image rectification.

The pixels corresponding to point features from a rectified image pair will lie on the same horizontal
scan-line and differ only in horizontal displacement. This horizontal displacement, or disparity between
rectified feature points is related to the depth of the feature. This means that rectification can be used
to recover 3D structure from an image pair without appealing to 3D geometry notions like cameras.
Algorithms to find dense correspondences are based on correlating pixel colors along epipolar lines
[1]. Seitz has shown[4] that distinct views of a scene can be morphed by linear interpolation along
rectified scan-lines to produce new geometrically correct views of the scene.

1.1 Previous Work

Some previous techniques for finding image rectification homographies involve 3D constructions[1, 4].
These methods find the 3D line of intersection between image planes and project the two images onto
the a plane containing this line that is parallel to the line joining the optical centers. While this approach



is easily stated as a 3D geometric construction, its realization in practice is somewhat more involved
and no consideration is given to other more optimal choices. A strictly 2D approach that does attempt to
optimize the distorting effects of image rectification can be found in [3]. Their distortion minimization
criterion is based on a simple geometric heuristic which may not lead to optimal solutions.

1.2 Overview

Our approach to rectification involves decomposing each homography into a projective and affine
component. We then find the projective component that minimizes a well defined projective distortion
criterion. We further decompose the affine component of each homography into a pair of simpler
transforms, one designed to satisfy the constraints for rectification, the other is used to further reduce
the distortion introduced by the projective component.

This paper is organized as follows. In Section 2 we present our notation and define epipolar geom-
etry. In Section 3 we define rectification and present results needed for our homography computation.
In Section 4 we give details of our decomposition. In Sections 5-7 we compute the component trans-
forms needed for rectification. Finally, we present an example of our technique and make concluding
remarks.

2 Background

We work entirely in 2 dimensional projective space. Points and lines are represented by lower-case
bold symbols, e.g. p and l. The coordinates of points and lines are represented by 3 dimensional
column vectors, e.g. p = [ pu pv pw ]T and l = [ la lb lc ]T . The individual coordinates are sometimes
ordered u, v, w for points, and a, b, c for lines. Transforms on points and lines are represented by 3×3
matrices associated with bold upper case symbols, e.g. T. Unless identified to the contrary, matrix
entries are given subscripted upper-case symbols, e.g. T11, T12, . . . , T33. Pure scalar quantities are
given lower-case Greek symbols.

As projective quantities, points and lines are scale invariant, meaning p = αp (α �= 0) represent
the same point. Points with w-coordinate equal to zero are known as affine vectors, directions or points
at ∞. Points with a non-zero w-coordinate are known as affine points when the scale has been fixed
so that p = [ pu pv 1 ]T . The set of all affine points is known as the affine plane. For our purposes,
we consider the image plane to be an affine plane where points are uniquely identified by u and v, w
is presumed to be equal to one.

2.1 Epipolar Geometry

We now formally define the epipolar geometry between a pair of images. Let C and C ′ be a pair of
pinhole cameras in 3D space. Let m and m′ be the projections through cameras C and C ′ of a 3D
point M in images I and I ′ respectively. The geometry of these definitions is shown in Fig. 1. The
epipolar constraint is defined

m′TFm = 0, (1)

for all pairs of images correspondences m and m′, where F is the so-called fundamental matrix [1].
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Figure 1: Epipolar geometry between a pair of images.

The fundamental matrix F is a 3 × 3 rank-2 matrix that maps points in I to lines in I ′, and points
in I ′ to lines in I. That is, if m is a point in I then Fm = l′ is an epipolar line in I ′ since from
Eq. (1), m′T l′ = 0. In fact, any point m′ that corresponds with m must line on the epipolar line Fm.

For a fundamental matrix F there exists a pair of unique points e ∈ I and e′ ∈ I ′ such that

Fe = 0 = FTe′ (2)

where 0 = [ 0 0 0 ]T is the zero vector. The points e and e′ are known as the epipoles of images I and
I ′ respectively. The epipoles have the property that all epipolar lines in I pass through e, similarly all
epipolar lines in I ′ pass through e′.

In 3D space, e and e′ are the intersections of the line C C ′ with the planes containing image I and
I ′. The set of planes containing the line C C ′ are called epipolar planes. Any 3D point M not on line
C C ′ will define an epipolar plane, the intersection of this epipolar plane with the plane containing I
or I ′ will result in an epipolar line (see Figure 1).

In this paper, we assume that F is known. An overview of techniques to find F can be found
in [5]. If the intrinsic parameters of a camera are known, we say the images are calibrated, and
the fundamental matrix becomes the essential matrix [1]. Our method of rectification is suitable for
calibrated or uncalibrated images pairs, provided that F is known between them.

3 Rectification

Image rectification can be view as the process of transforming the epipolar geometry of a pair of images
into a canonical form. This is accomplished by applying a homography to each image that maps the
epipole to a predetermined point. We follow the convention that this point be i = [ 1 0 0 ]T (a point at
∞ ), and that the fundamental matrix for a rectified image pair be defined

F̄ = [ i ]× =


 0 0 0

0 0 −1
0 1 0


 .

We use the notation [x ]× to denote the antisymetric matrix representing the cross product with x.
Under these conventions, it is easy to verify that rectified images have the following two properties:
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i. All epipolar lines are parallel to the u-coordinate axis,

ii. Corresponding points have identical v-coordinates.

These properties are useful in practice since rectification maps epipolar lines to image scan-lines. Other
conventions for canonical epipolar geometry may be useful under special circumstances.

Let H and H′ be the homographies to be applied to images I and I ′ respectively, and let m ∈ I
and m′ ∈ I ′ be a pair of points that satisfy Eq. (1). Consider rectified image points m̄ and m̄′ defined

m̄ = Hm and m̄′ = H′m′.

It follows from Eq. (1) that

m̄′T F̄m̄ = 0,

m′T H′T F̄H︸ ︷︷ ︸
F

m = 0,

resulting in the factorization

F = H′T [ i ]×H. (3)

Note that the homographies H and H′ that satisfiy Eq. (3) are not unique. Our task is to find a pair of
homographies H and H′ minimize image distortion.

Let u, v, and w be lines equated to the rows of H such that

H =


 uT

vT

wT


 =


 ua ub uc

va vb vc

wa wb wc


 . (4)

Similarly, let lines u′, v′, and w′ be equated to the rows of H′. By definition we have that

He =
[

uTe vTe wTe
]T =

[
1 0 0

]T
.

This means that the lines v and w must contain the epipole e. Similarly v′ and w′ must contain the
other epipole e′. Furthermore, we show in Appendix A that lines v and v′, and lines w and w′ must
be corresponding epipolar lines. This has a simple geometric interpretation illustrated in Figure 2.
This result establishes a linkage between the homographies H and H′. This linkage is important when
minimizing distortion caused by rectification.

4 Decomposition of the Homographies

We compute rectifying homographies H and H′ by decomposing them into simpler transforms. Each
component transform is then computed to achieve a desired effect and satisfy some conditions.

It is convenient to equate the scale invariant homography H with a scale variant counterpart

H =


 ua ub uc

va vb vc

wa wb 1


 , (5)
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Figure 2: The lines v and v′, and w and w′ must be corresponding epipolar lines that lie on common
epipolar planes.

by dividing out wc. We similarly divide out w′
c from H′. This will not lead to difficulties arising from

the possibility that wc or w′
c be equal to zero since we assume the image coordinate system origin is

near the image and our minimization procedure will tend to keep the lines w and w′ away from the
images.

We decompose H into

H = HaHp,

where Hp is a projective transform and Ha is an affine transform. We define

Hp =


 1 0 0

0 1 0
wa wb 1


 . (6)

From Eqs. (5) and (6) it follows that

Ha = HH−1
p =


 ua − ucwa ub − ucwb uc

va − vcwa vb − vcwb vc

0 0 1


 .

The definitions of H′
a and H′

p are similar but with primed symbols.
We further decompose Ha (similarly H′

a) into

Ha = HsHr

where Hr is similarity transformation, and Hs is a shearing transformation. The transform Hr will
have the form

Hr =


 vb − vcwb vcwa − va 0

va − vcwa vb − vcwb vc

0 0 1


 . (7)

We define Hs as

Hs =


 sa sb sc

0 1 0
0 0 1


 .
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Note that Hs only effects the u-coordinate of a point, therefore it will not effect the rectification of an
image.

We now consider how to compute each component transforms just defined.

5 Projective Transform

The transforms Hp and H′
p completely characterize the projective components of H and H′. These

transforms map the epipoles e and e′ to points at ∞ (points with w-coordinate equal to zero). By
definition, Hp and H′

p are determined by lines w and w′ respectively.
The lines w and w′ are not independent. Given a direction z = [λ µ 0 ]T in image I, we find

w = [ e ]×z and w′ = Fz. (8)

This result follows from the correspondence of w and w′ as epipolar lines (see Appendix A for details).
Any such z will define a pair of corresponding epipolar lines; we are trying to find z that minimizes
distortion, to be defined below.

Let pi = [ pi,u pi,v 1 ]T be a point in the original image. This point will be transformed by Hp to
point [ pi,u

wi

pi,v

wi
1 ]T with weight

wi = wTpi.

If the weights assigned to points are identical then there is no projective distortion and the homography
is necessarily an affine transform. In order to map the epipole e from the affine (image) plane to a
point at ∞, Hp cannot in general be affine. However, as the image is bounded we can attempt to make
Hp as affine as possible. This is the basis of our distortion minimization criterion.

5.1 Distortion Minimization Criterion

Although we cannot have identical weights in general (except when the epipole is already at ∞), we
can try to minimize the variation of the weights assigned to a collection of points over both images.
We use all the pixels from both images as our collection, but some other subset of important image
points could also be used if necessary. The variation is measured with respect to the weight associated
with the image center. More formally, we compute

n∑
i−1

[
wi − wc

wc

]2

, (9)

where wc = wTpc, where pc = 1
n

∑n
i=1 pi is the average of the points. This measure will be zero

if the weights for all the points are equal, occurring only if Hp is an affine map, and the epipole is
already at ∞. By minimizing Eq. (9) we find Hp and H′

p that are as close to affine as possible over
the point set pi.

Over one image, Eq. (9) can be written as

n∑
i=1

[
wT (pi − pc)

wTpc

]2

,
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or as a matrix equation

wTPPTw
wTpcpT

c w
, (10)

where P is the 3 × n matrix

P =


 p1,u − pc,u p2,u − pc,u · · · pn,u − pc,u

p1,v − pc,v p2,v − pc,v · · · pn,v − pc,v

0 0 · · · 0


 .

We similarly define p′
c and P′ for the other image.

Since w = [ e ]×z and w′ = Fz, we rewrite Eq. (10) over both images to get

zT

A︷ ︸︸ ︷
[ e ]T×PPT [ e ]× z

zT [ e ]T×pcpT
c [ e ]×︸ ︷︷ ︸

B

z
+

zT

A′︷ ︸︸ ︷
FTP′P′TFz

zT FTp′
cp

′T
c F︸ ︷︷ ︸

B′

z
,

or simply

zTAz
zTBz

+
zTA′z
zTB′z

, (11)

where A, B, A′, and B′ are 3 × 3 matrices that depend on the point sets pi and p′
j . Since the w-

coordinate of z is equal to zero, only the upper-left 2 × 2 blocks of these matrices are important. In
the remainder of this section, we denote z = [λ, µ ]T .

We now consider the specific point set corresponding to a whole image. We assume that an image
is a collection of pixel locations denoted

pi,j =
[

i j 1
]T

,

where i = 0, . . . , w − 1 and j = 0, . . . , h − 1, and w and h are the width and height of image I, The
image center is the point

pc =
[

w−1
2

h−1
2 1

]T
.

We similarly define primed counter-parts for image I ′. Under these assumptions, the upper-left 2 × 2
block of PPT is reduced to the following simple form:

PPT =
wh

12

[
w2 − 1 0

0 h2 − 1

]
,

and

pcpT
c =

1
4

[
(w − 1)2 (w − 1)(h − 1)

(w − 1)(h − 1) (h − 1)2

]
.

Using these results, we compute the 2 × 2 matrices A, B, A′, and B′ in Eq. (11).
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5.2 Solving the minimization problem

Solving z by minimizing Eq. (11) is a nonlinear optimization problem. z = [λ µ]T is defined up to a
scalar factor. Without loss of generality, we can set µ = 1. (If µ is much smaller than λ, we can set
λ = 1, but the following discussion still holds.) Quantity (11) is minimized when the first derivative
with respect to λ is equal to 0. This gives us a polynomial of degree 7, because (11) is the sum of two
rational functions, each the ratio of quadratic polynomials. The root can be found iteratively starting
from an initial guess.

The initial guess is obtained as follows. We first minimize zTAz/zTBz and zTA′z/zTB′z
separately (see below), which gives us two different estimations of z, denoted by ẑ1 and ẑ2. Their
average, (ẑ1/‖ẑ1‖ + ẑ2/‖ẑ2‖)/2, is used as the initial guess of z. It turns out that this is very close to
the optimal solution.

Minimizing zTAz/zTBz is equivalent to maximizing zTBz/zTAz, denoted by f(z). As A is
symmetric and positive-definite, it can be decomposed as A = DTD. Let y = Dz. Then, f(z)
becomes

f̂(y) =
yTD−TBD−1y

yTy
.

Since y is defined up to a scale factor, we can impose ‖y‖ = 1, and f̂(y) is maximized when y is
equal to the eigenvector of D−TBD−1 associated with the largest eigenvalue. Finally, the solution
for z is given by z = D−1y. Exactly the same procedure can be applied to find z which minimizes
zTA′z/zTB′z.

6 Similarity Transform

In the previous section, the transforms Hp and H′
p were found that map the epipoles e and e′ to points

at ∞. In this section we define a pair of similarity transforms Hr and H′
r that rotate these points at ∞

into alignment with the direction i = [ 1 0 0 ]T as required for rectification. Additionally, a translation
in the v-direction on one of the images is found to exactly align the scan-lines in both images.

At this stage, we assume that the lines w and w′ are known. We can therefore eliminate va and vb

from Eq. (7) by making use of the following:

F = H′T [ i ]×H (12)

=


 vaw

′
a − v′

awa vbw
′
a − v′

awb vcw
′
a − v′

a

vaw
′
b − v′

bwa vbw
′
b − v′

bwb vcw
′
b − v′

b

va − v′
cwa vb − v′

cwb vc − v′
c


 .

Using the last row of this matrix equation, we determine that

va = F31 + v′
cwa, (13)

vb = F32 + v′
cwb, (14)

vc = F33 + v′
c. (15)
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Eqs. (13-15) are substituted into Eq (7), resulting in

Hr =


 F32 − wbF33 waF33 − F31 0

F31 − waF33 F32 − wbF33 F33 + v′
c

0 0 1


 . (16)

Similarly, v′
a and v′

b can be eliminated to get

H′
r =


 F23 − w′

bF33 w′
aF33 − F13 0

F13 − w′
aF33 F23 − w′

bF33 v′
c

0 0 1


 . (17)

Note that there remains a translation term involving v′
c in Eqs. (17) and (16). This shows that translation

in the v-direction is linked between the two images, and that an offset of F33 is needed to align horizontal
scan-lines. We find v′

c so that the minimum v-coordinate of a pixel in either image is zero.
As similarity transforms, Hr and H′

r can only rotate, translate, and uniformly scale the images I
and I ′. None of these operations introduce any additional distortion.

The combined transforms HrHp, and H′
rH

′
p are sufficient to rectify images I and I ′. However,

there remains additional freedom, corresponding to u and u′ of Eq. (4). These elements take the form
of shearing transforms described below, that can be leveraged to reduce distortion and to map the
images into a more practical pixel range.

7 Shearing Transform

In this section the freedom afforded by the independence of u and u′ is exploited to reduce the distortion
introduced by the projective transforms Hp and H′

p. Due to this independence, we consider only one
image, as the procedure is carried out identically on both images.

We model the effect of u as a shearing transform

S =


 a b 0

0 1 0
0 0 1


 .

We set the translation components of S to zero since these terms add no useful freedom at this stage.
Let a = [ w−1

2 0 1 ]T , b = [w − 1 h−1
2 1 ]T , c = [ w−1

2 h − 1 1 ]T , and d = [ 0 h−1
2 1 ]T be

points corresponding to the midpoints of the edges of I. Furthermore, let â = HrHpa, be a point in
the affine plane by dividing through so that âw = 1; similarly define b̂, ĉ, and d̂.

In general, Hp is a projective transform, so it is not possible to undistort I completely using the
affine transform S. Instead we attempt to preserve perpendicularity and aspect ratio of the lines b̄d
and c̄a. Let

x = b̂ − d̂,

y = ĉ − â.

As the difference of affine points, x and y are vectors in the euclidean image plane. Perpendicularity
is preserved when

(Sx)T (Sy) = 0, (18)
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and aspect ratio is preserved if

(Sx)T (Sx)
(Sy)T (Sy)

=
w2

h2 . (19)

Eqs. (18) and (19) represent quadratic polynomials in a and b (the unknown elements of S) whose
simultaneous satisfaction is required. Using the method outlined in [2] we find the real solution

a =
h2x2

v + w2y2
v

hw(xvyu − xuyv)
and b =

h2xuxv + w2yuyv

hw(xuyv − xvyu)
,

up to sign; the solution where a is positive is preferred. We define Hs (and similarly H′
s) to be S

composed with a uniform scaling and translation as discribed below.
The combined transform HsHrHp, and similarly H′

sH
′
rH

′
p, rectify images I and I ′ with minimal

distortion. However these image may not the appropriate size, or in the most desirable coordinate
system. Therefore, additional uniform scaling and translation may be applied. It is important that
the same scale factor, and the same v-translation be applied to both images to preserve rectification.
Translations in the u-direction have no effect on rectification.

In our examples, we chose a uniform scale factor that preserves the sum of image areas. Other
criteria may work equally well. We also compute translations in u so that the minimum pixel coordinate
has a u-coordinate of zero. A similar translation is found for the v direction, but the minimum is taken
over both images to preserve rectification.

8 Conclusion

We have presented a procedure for computing rectification homographies for a pair of images taken
from distinct viewpoints of a 3D scene. Figure 3 shows the results of each stage of our technique
on one example. This new method is based entirely on quantifiable 2D image measures and requires
no 3D constructions. Furthermore, these measure have intuitive geometric meaning. We have shown
the technique that minimizes distortion due to the projective component of rectification, and used
additional degrees of freedom in the affine component to further reduce distortion to a well defined
minimum.

A Proof of Correspondence Properties

In this appendix we demonstrate i) how corresponding epipolar lines are related by a direction in one
image, and ii) that the second and third rows of a pair of rectifying homographies correspond to a pairs
of corresponding epipolar lines. We use the symbol ∼ to indicate correspondence.

Let l ∈ I and l′ ∈ I ′ be a pair of epipolar lines.

Proposition 1. If l ∼ l′ and x ∈ I is a direction (point at ∞) such that l = [e]×x then

l′ = Fx.

Proof. Let x be the intersection of lines l and k = [ 0 0 1 ]T (the line at ∞), found by x = [k]×l.
Similarly, let x′ = [k]×l′. Clearly l = [e]×x, since [ e ]×[k ]×l = l.

Since l ∼ l′ it follows that x′TFx = 0. By defintion e′T l′ = e′TFx = 0 and x′T l′ = x′TFx = 0,
which shows that lines l′ and Fx both contain points e′ and x′ and must be the same line.
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In the following, we denote the rows of H and H′ as in Eq. (4), and i = [ 1 0 0 ]T .

Proposition 2. If H and H′ are homgraphies such that

F = H′T [i]×H, (20)

then v ∼ v′ and w ∼ w′.

Proof. Expanding H′T [i]×H shows that

F =


 vaw

′
a − v′

awa vbw
′
a − v′

awb vcw
′
a − v′

awc

vaw
′
b − v′

bwa vbw
′
b − v′

bwb vcw
′
b − v′

bwc

vaw
′
c − v′

cwa vbw
′
c − v′

cwb vcw
′
c − v′

cwc


 .

We observe that F does not depend on u or u′. Without loss of generality, we set u = k = u′, where
k = [ 0 0 1 ]T is the line at ∞. It is straightforward to show that, up to a scale factor

H−1 =
[

[v ]×w [w ]×u [u ]×v
]
.

Since v and w are independent (follows from Eq. (20)) and both contain e, we conclude that [v ]×w =
e. Let y = [v ]×k and z = [w ]×k. From Eq. (20) we get

H′T [i]× = FH−1[
k v′ w′ ]

[i]× = F
[

e z −y
]

[
0 w′ −v′ ]

=
[

0 Fz −Fy
]
. (21)

We conclude that v′ = Fy and w′ = Fz. By Proposition 1 it follows that v ∼ v′ and w ∼ w′.
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(a) Original image
pair overlayed with
several epipolar
lines.

(b) Image pair
transformed by the
specialized projec-
tive mapping Hp

and H′
p. Note that

the epipolar lines
are now parallel to
each other in each
image.

(c) Image pair
transformed by
the similarity Hr

and H′
r. Note

that the image pair
is now rectified
(the epipolar lines
are horizontally
aligned).

(d) Final image
rectification after
shearing transform
Hs and H′

s. Note
that the image pair
remains rectified,
but the horizon-
tal distortion is
reduced.

Figure 3: An example showing various stages of the proposed rectification algorithm.
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