introspective reasoning about the perceived image (which has been transformed
by our visual system) will not necessarily be successful when applied to an
unmodified intensity image. Thus one argument for using a density transformation
followed by high spatial frequency emphasis filtering is that the computer is then
‘“‘seeing’’ more like the human image analyzer.

3.3 FINDING LOCAL EDGES

Boundaries of objects tend to show up as intensity discontinuities in an image. Ex-
periments with the human visual system show that boundaries in images are ex-
tremely important; often an object can be recognized from only a crude outline
[Attneave 1954]. This fact provides the principal motivation for representing ob-
jects by their boundaries. Also, the boundary representation is easy to integrate
into a large variety of object recognition algorithms.

One might expect that algorithms could be designed that find the boundaries
of objects directly from the gray-level values in the image. But when the boun-
daries have complicated shapes, this is difficult. Much greater success has been ob-
tained by first transforming the image into an intermediate image of local gray-
level discontinuities, or edges, and then composing these into a more elaborate
boundary. This strategy reflects the principle: When the gap between representa-
tions becomes too large, introduce intermediate representations. In this case,
boundaries that are highly model-dependent may be decomposed into a series of
local edges that are highly model-independent.

A local edge is a small area in the image where the local gray levels are chang-
ing rapidly in a simple (e.g., monotonic) way. An edge operator is a mathematical
operator (or its computational equivalent) with a small spatial extent designed to
detect the presence of a local edge in the image function.

It is difficult to specify a priori which local edges correspond to relevant boun-
daries in the image. Depending on the particular task domain, different local
changes will be regarded as likely edges. Plots of gray level versus distance along
the direction perpendicular to the edge for some hypothetical edges (Fig. 3.9a-¢)
demonstrate some different kinds of ““edge profiles’’ that are commonly encoun-
tered. Of course, in most practical cases, the edge is noisy (Fig. 3.9d) and may ap-
pear as a composite of profile types. The fact that different kinds of edge operators
perform best in different task domains has prompted the development of a variety
of operators. However, the unifying feature of most useful edge operators is that
they compute a direction which is aligned with the direction of maximal gray-level
change, and a magnitude describing the severity of this change. Since edges are a
high-spatial-frequency phenomenon, edge finders are also usually sensitive to
high-frequency noise, such as ““snow’’ on a TV screen or film grain.

Operators fall into three main classes: (1) operators that approximate the
mathematical gradient operator, (2) template matching operators that use multiple
templates at different orientations, and (3) operators that fit local intensities with
parametric edge models. Representative examples from the first two of these
categories appear in this section. The computer vision literature abounds with edge
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Fig. 3.9 Edge profiles.

operators, and we make no attempt to summarize them all here. For a guide to this
literature, see [Rosenfeld and Kak 1976].

Parametric models generally capture more detailed edge structute than the
two-parameter direction and magnitude vector; as a result, they can be more com-
putationally complicated. For this reason and others discussed in Section 3.3.4, we
shall omit a detailed discussion of these kinds of edge operators. One of the best
known parametric models is Hueckel’s [Hueckel 1971, 1973], but several others
have been developed since [Mero and Vassy 1975; Nevatia 1977, Abdou 1978;
Tretiak 19791.

3.3.1 Types of Edge Operators

Gradient and Laplacian

The most common and historically earliest edge operator is the gradient [Roberts
1965]. For an image function f(x), the gradient magnitude s(x) and direction
¢ (x) can be computed as

s(x) = (Af + AD” (3.22)
¢ (x) = atan(A, A;) (3.23)

where
Al=flx+ny)— flxy) (3.24)

Ay=fly+n— flx y)
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n is a small integer, usually unity, and atan (x, y) returns tan™' (x/y) adjusted to
the proper quadrant. The parameter n is called the ‘‘span’ of the gradient.
Roughly, n should be small enough so that the gradient is a good approximation to
the local changes in the image function, yet large enough to overcome the effects
of small variations in f.

Equation (3.24) is only one difference operator, or way of measuring gray-
level intensities along orthogonal directions using A; and A, . Figure 3.10 shows
the gradient difference operators compared to other operators [Roberts 1965;
Prewitt 1970]. The reason for the modified operators of Prewitt and Sobel is that
the local averaging tends to reduce the effects of noise. These operators do, in fact,
perform better than the Roberts operator for a step edge model.

One way to study an edge operator’s performance is to use an ideal edge such
as the step edge shown in Fig. 3.11. This edge has two gray levels: zero and h units.
If the edge goes through the finite area associated with a pixel, the pixel is given a
value between zero and h, depending on the proportion of its area covered. Com-
parative edge operator performance has been carried out [Abdou 1978]. In the case
of the Sobel operator (Fig. 3.10¢) the measured orientation ¢’ is given by

A1 AZ
0 1 1 0
-1 0 0 -1
(a)
-1 0 1 1 1 1
-1 0 1 0 0 Q
=1 0 1 -1 -1 =1
(b)
-1 0 1 1 2 1
-2 0 2 0 0 0
=i 0 1 =1 -2 -1
(c) Fig. 3.10 Gradient operators.
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S0 ¢ <7/4 (3.25)

%

¢ if0 < ¢ < tan!

il
3

tanic] Ttan’¢ + 6tang — 1
—9tan’¢ + 22tan¢ — 1

¢ = ] if tan™

Arguments from symmetry show that only the 0 < ¢ < w/4 cases need be exam-
ined. Similar studies could be made using ramp edge models.

A rather specialized kind of gradient is that taken ‘‘between pixels.”” This
scheme is shown in Fig. 3.12. Here a pixel may be thought of as having four crack
edges surrounding it, whose directions of are fixed by the pixel to be multiples of
/2. The magnitude of the edge is determined by |f(x) — f(y)|, where x and y are
the coordinates of the pixels that have the edge in common. One advantage of this
formulation is that it provides an effective way of separating regions and their
boundaries. The disadvantage is that the edge orientation is crude.

The Laplacian is an edge detection operator that is an approximation to the
mathematical Laplacian 82f/8x* + 827/8y” in the same way that the gradient is an
approximation to the first partial derivatives. One version of the discrete Laplacian
is given by

X Y
[,

“Crack” edge  Fig. 3.12 “‘Crack’ edge representation.
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Lx,y)=70yp) —UlfC,y+1D+fx,y—1) (3.26)
+fx+1,y)+ flx =1, )]

The Laplacian has two disadvantages as an edge measure: (1) useful directional in-
formation is not available, and (2) the Laplacian, being an approximation to the
second derivative, doubly enhances any noise in the image. Because of these disad-
vantages, the Laplacian has fallen into disuse, although some authors have used it
as an adjunct to the gradient [Wechsler and Sklansky 1977; Akatsuka 1974] in the
following manner: There is an edge at x with magnitude g (x) and direction ¢ (x) if
g(x) > Tyand L (x) > T,.

Edge Templates

The Kirsch operator [Kirsch 1971] is related to the edge gradient and is given
by

S(x) = max [1, mfx%lf(xk)] (3.27)
k=1

where f(x,) are the eight neighboring pixels to x and where subscripts are com-
puted modulo 8. A 3-bit direction can also be extracted from the value of k& that
yields the maximum in (3.27). In practice, ‘“‘pure’’ template matching has replaced
the use of (3.27). Four separate templates are matched with the image and the
operator reports the magnitude and direction associated with the maximum match.
As one might expect, the operator is sensitive to the magnitude of f(x), so that in
practice variants using large templates are generally used. Figure 3.13 shows
Kirsch-motivated templates with different spans.

1
-11 -1

3
[}
[NIES

-1.0 1 T 04 1 1 4 bpeO
n=1 - -10 1 000 -1.0 1 1.0 -1
101 -1 =1 =1 -1-1 0 0 -1-1

-1 -1
-1 -1
n=2 =11
-1-1
-1 -1

111 11 01 1 11
11111 -10 1 11
0 0000 -1-10 1 1
-1 =1 -1-1-1 -1-1-10 1
-1 =1-1 -1-1 -1-1-1-10
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Fig. 3.13 Kirsch templates.
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This brief discussion of edge templates should not be construed as a com-
ment on their appropriateness or popularity. In fact, they are widely used, and the
template-matching concept is the essence of the other approaches. There is also
evidence that the mammalian visual system responds to edges through special
low-level template-matching edge detectors [Hubel and Wiesel 1979].

3.3.2 Edge Thresholding Strategies

For most images there will be but few places where the gradient magnitude is equal
to zero. Furthermore, in the absence of any special context, small magnitudes are
most likely to be due to random fluctuations, or noise in the image function f.
Thus in practical cases one may use the expedient of only reporting an edge ele-
ment at x if g(x) is greater than some threshold, in order to reduce these noise
effects.

This strategy is computationally efficient but may not be the best. An alter-
native thresholding strategy [Frei and Chen 1977] views difference operators as
part of a set of orthogonal basis functions analogous to the Fourier basis of Sec-
tion 2.2.4. Figure 3.14 shows the nine Frei-Chen basis functions. Using this
basis, the image near a point X, can be represented as

8
fx =Y (f, h)h(x— x¢)/ (hy, hy) (3.28)
k=1

where the (f, ) is the correlation operation given by

(f, he) = 2 f (xp) i (x — xp) (3.29)
D

and D is the nonzero domain of the basis functions. This operation is also regarded
as the projection of the image into the basis function A,. When the image can be
reconstructed from the basis functions and their coefficients, the basis functions
span the space. In the case of a smaller set of functions, the basis functions span a
subspace.

The value of a projection into any basis function is highest when the image
function is identical to the basis function. Thus one way of measuring the ‘‘edge-
ness’’ of a local area in an image is to measure the relative projection of the image

-1v2 -1 1 1 1 -2 1

-1 1 -1 1 -2 4 -2

11 1 1421 -1 -1 1 -2 1
11 1

Lt 0t -1 1 VZ -1 -1 1 -2 1 -2

V2 2 -1 1 1.4 1

-1 1 142 1 -1 -2 1 -2

Fig. 3.14 Frei-Chen orthogonal basis.
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into the edge basis functions. The relative projection into the particular ‘‘edge sub-
space’’ is given by

E\y

where
2
E=Y (f, h)?
k=1
and
8
S =Y (f, h)?
k=0

Thus if @ < T, report an edge; otherwise, not. Figure 3.15 shows the potential ad-
vantage of this technique compared to the technique of thresholding the gradient
magnitude, using two hypothetical projections B, and B,. Even though B, has a
small magnitude, its relative projection into edge subspace is large and thus would
be counted as an edge with the Frei-Chen criterion. This is not true for B,.

Under many circumstances it is appropriate to use model information about
the image edges. This information can affect the way the edges are interpreted after
they have been computed or it may affect the computation process itself. As an ex-
ample of the first case, one may still use a gradient operator, but vary the threshold
for reporting an edge. Many versions of the second, more extreme strategies of us-
ing special spatially variant detection methods have been tried [Pingle and Tenen-
baum 1971; Griffith 1973; Shirai 1975]. The basic idea is illustrated in Fig. 3.16.
Knowledge of the orientation of an edge allows a special orientation-sensitive
operator to be brought to bear on it.

3.3.3 Three-Dimensional Edge Operators

In many imaging applications, particularly medicine, the images are three-
dimensional. Consider the examples of the reconstructed planes described in Sec-
tions 1.1 and 2.3.4. The medical scanner that acquires these data follows several
parallel image planes, effectively producing a three-dimensional volume of data.

Z /o
@
52
7, Edge
subspace
g (x)"" . . .
Fig. 3.15 Comparison of thresholding
(a) (b) techniques.

Sec. 3.3 Finding Local Edges 81



82

(a)

Fig. 3.16 Model-directed edge
(b) detection.

In three-dimensional data, boundaries of objects are surfaces. Edge elements
in two dimensions become surface elements in three dimensions. The two-
dimensional image gradient, when generalized to three dimensions, is the local
surface normal. Just as in the two-dimensional case, many different basis operators
can be used [Liu 1977; Zucker and Hummel 1979]. That of Zucker and Hummel
uses an optimal basis assuming an underlying continuous model. We shall just
describe the operator here; the proof of its correctness given the continuous image
model may be found in the reference. The basis functions for the three-
dimensional operator are given by

g1lx y, 2) = % (3.31)
g2(x, y, z) = %

it
g3(xn W Z) 5 ,

where r = (x2 + y2 + z9)%. The discrete form of these operators is shown in Fig.
3.17fora3 x 3 x 3 pixel domain D. Only g, is shown since the others are obvious
by symmetry. To apply the operator at a point xg, )9, z¢ compute projections a, b,
and ¢, where

a = (g, f) = X &g1(x) f(x—x¢)
D

b= (g f) (3.32)
c = (g;, f)

The result of these computations is the surface normal n = (a, b, ¢) at (xq, yo zo).
Surface thresholding is analogous to edge thresholding: Report a surface element
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only if s(x, y, z) = |n|exceeds some threshold. Figure 3.18 shows the results of
applying the operator to a synthetic three-dimensional image of a torus. The

display shows small detected surface patches.
3.3.4 How Good are Edge Operators?

The plethora of edge operators is very difficult to compare and evaluate. For exam-
ple, some operators may find most edges but also respond to noise; others may be

= N

NN

o e

Fig. 3.18 Results of applying the Zucker-Hummel 3-D operator to synthetic im-

age data in the shape of a torus.
83
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noise-insensitive but miss some crucial edges. The following figure of merit [Pratt
1978] may be used to compare edge operators:

1 g1
P 333
max (NA: Nj) El 1+ (adr'z) ( )

where N, and N, represent the number of actual and ideal edge points, respec-
tively, a is a scaling constant, and 4 is the signed separation distance of an actual
edge point normal to a line of ideal edge points. The term ad? penalizes detected
edges which are offset from their true position; the penalty can be adjusted via a.
Using this measure, all operators have surprisingly similar behaviors. Unsurpris-
ingly, the performance of each deteriorates in the presence of noise [Abdou 1978].
(Pratt defines a signal-to-noise ratio as the square of the step edge amplitude di-
vided by the standard deviation of Gaussian white noise.) Figure 3.19 shows some
typical curves for different operators. To make this figure, the threshold for report-
ing an edge was chosen independently for each operator so as to maximize Eq.
(3.33).

These comparisons are important as they provide a gross measure of
differences in performance of operators even though each operator embodies a
specific edge model and may be best in special circumstances. But perhaps the
more important point is that since all real-world images have significant amounts
of noise, all edge operators will generally produce imperfect results. This means
that in considering the overall computer vision problem, that of building descrip-
tions of objects, the efforts are usually best spent in developing methods that can
use or improve the measurements from unreliable edges rather than in a search for
the ideal edge detector.

Prewitt/Sobel
L
100
80
Hueckel with
conf=0.,9
60 diff = 100
w
40 Roberts
20
0 1 1 1 ] ] ]
1.0 2.0 5.0 10 20 50 100

h2/02

Fig. 3.19 Edge operator performance using Pratt’s measure (Eq. 3.33).
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3.3.5 Edge Relaxation

One way to improve edge operator measurements is to adjust them based on meas-
urements of neighboring edges. This is a natural thing to want to do: If a weak hor-
izontal edge is positioned between two strong horizontal edges, it should gain cred-
ibility. The edges can be adjusted based on local information using parallel-
iterative techniques. This sort of process is related to more global analysis and is
complementary to sequential approaches such as edge tracking (Chapter 4).

Early cooperative edge detection techniques used pairwise measurements
between pixels [Zucker et al. 1977]. A later version [Prager 1980] allows for more
complicated adjustment formulas. In describing the edge relaxation scheme, we
essentially follow Prager’s development and use the crack edges described at the
end of the discussion on gradients (Sec. 3.31). The development can be extended
to the other kinds of edges and the reader is invited to do just this in the Exercises.

The overall strategy is to recognize local edge patterns which cause the
confidence in an edge to be modified. Prager recognizes three groups of patterns:
patterns where the confidence of an edge can be increased, decreased, or left the
same. The overall structure of the algorithm is as follows:

Algorithm 3.1 Edge Relaxation

0. Compute the initial confidence of each edge C°(¢) as the normalized gradient
magnitude normalized by the maximum gradient magnitude in the image.

1. k=1,
Compute each edge type based on the confidence of edge neighbors;

3. Modify the confidence of each edge C*(e) based on its edge type and its pre-
vious confidence C*1(e);

4. Test the C*(e)’s to see if they have all converged to either 0 or 1. If so, stop;
else, increment kand go to 2.

The two important parts of the algorithm are step 2, computing the edge type, and
step 3, modifying the edge confidence.

The edge-type classification relies on the notation for edges (Fig. 3.20). The
edge type is a concatenation of the left and right vertex types. Vertex types are
computed from the strength of edges emanating from a vertex. Vertical edges are
handled in the same way, exploiting the obvious symmetries with the horizontal
case. Besides the central edge e, the left vertex is the end point for three other pos-
sible edges. Classifying these possible edges into ‘‘edge’’ and ‘‘no-edge’’ provides
the underpinnings for the vertex types in Fig. 3.21.
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(a) (b) 5 I ! Fig. 3.20 Edge notation. (a) Edge
— position with no edge. (b) Edge position
" 24 # with edge. (c) Edge to be updated. (d)
Edge of unknown strength. (e)
R ¢ 2 Configuration of edges around a central
{c) (d) (e) edgee.

To compute vertex type, choose the maximum confidence vertex, i.e., the
vertex is type jwhere j maximizes conf ()

and
conf(0) = (m-a)(m-b)(m-c
conf(1) = alm-b)(m-o
conf(2) = ab(m-c)
conf(3) = abc

where

m = max (a, b, ¢, q)

gis a constant (0.1 is about right)
and a, b, and ¢ are the normalized gradient magnitudes for the three edges.
Without loss of generality, a = b = ¢. The parameter m adjusts the vertex
classification so that it is relative to the local maximum. Thus (a, 4, ¢) = (0.25,
0.01, 0.01) is a type 1 vertex. The parameter g forces weak vertices to type zero
[e.g., (0.01, 0.001, 0.001) is type zerol.

Once the vertex type has been computed, the edge type is simple. It is merely
the concatenation of the two vertex types. That is, the edge type is (ij), where iand
jare the vertex types. (From symmetry, only consider i 2 j.)

(0 B3, —— [ |

(d)
— Fig. 3.21 Classification of vertex type
of left-hand endpoint of edge e, Fig. 3.20.
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Decisions in the second step of modifying edge confidence based on edge
type appear in Table 3.1. The updating formula is:

increment: C**1(e) = min (1, C*(e) + 8)
decrement: C**1(e) = max (0, C*(e) — &)
leave as is: Cr*l(e) = C¥(e)

where & is a constant (values from 0.1 to 0.3 are appropriate). The result of using
the relaxation scheme is shown in Fig. 3.22. The figures on the left-hand side show

(c) -.,_ﬂ--p—"""—r"‘" - e (d) «

Fig. 3.22 Edge relaxation results. (a) Raw edge data. Edge strengths have been threshold-
ed at 0.25 for display purposes only. (b) Results after five iterations of relaxation applied to
(a). (c) Different version of (a). Edge strengths have been thresholded at 0.25 for display
purposes only. (d) Results after five iterations of relaxation applied to (c).
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the edges with normalized magnitudes greater than 0.25. Weak edges cause many
gaps in the boundaries. The figures on the right side show the results of five itera-
tions of edge relaxation. Here the confidence of the weak edges has been increased
owing to the proximity of other edges, using the rules in Table 3.1.

Table 3.1

Decrement  Increment  Leave as is

0-0 1-1 0-1
0-2 1-2 2-2
0-3 1-3 2-3

3-3

3.4 RANGE INFORMATION FROM GEOMETRY

88

Neither the perspective or orthogonal projection operations, which take the three-
dimensional world to a two-dimensional image, is invertible in the usual sense.
Since projection maps an infinite line onto a point in the image, information is lost.
For a fixed viewpoint and direction, infinitely many continuous and discontinuous
three-dimensional configurations of points could project on our retina in an image
of, say, our grandmother. Simple cases are grandmothers of various sizes cleverly
placed at varying distances so as to project onto the same area. An astronomer
might imagine millions of points distributed perhaps through light-years of space
which happen to line up into a ‘“‘grandmother constellation.”” All that can be
mathematically guaranteed by imaging geometry is that the image point
corresponds to one of the infinite number of points on that three-dimensional line
of sight. The ‘‘inverse perspective’ transformation (Appendix 1) simply deter-
mines the equation of the infinite line of sight from the parameters of the imaging
process modeled as a point projection.

However, a line and a plane not including it intersect in just one point. Lines
of sight are easy to compute, and so it is possible to tell where any image point pro-
jects on to any known plane (the supporting ground or table plane is a favorite).
Similarly, if two images from different viewpoints can be placed in correspon-
dence, the intersection of the lines of sight from two matching image points deter-
mines a point in three-space. These simple observations are the basis of light-
striping ranging (Section 2.3.3) and are important in stereo imaging.

3.4.1. Stereo Vision and Triangulation

One of the first ideas that occurs to one who wants to do three-dimensional sensing
is the biologically motivated one of stereo vision. Two cameras, or one camera
from two positions, can give relative depth or absolute three-dimensional location,
depending on the elaboration of the processing and measurement. There has been
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